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COUNTING IN TWO-SPIN MODELS ON d-REGULAR GRAPHS
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and Stanford University

We establish that the normalized log-partition function of any two-spin
system on bipartite locally tree-like graphs converges to a limiting “free
energy density” which coincides with the (nonrigorous) Bethe prediction of
statistical physics. Using this result, we characterize the local structure of
two-spin systems on locally tree-like bipartite expander graphs without the
use of the second moment method employed in previous works on these ques-
tions. As a consequence, we show that for both the hard-core model and the
anti-ferromagnetic Ising model with arbitrary external field, it is NP-hard to
approximate the partition function or approximately sample from the model
on d-regular graphs when the model has nonuniqueness on the d-regular tree.
Together with results of Jerrum–Sinclair, Weitz, and Sinclair–Srivastava–
Thurley, this gives an almost complete classification of the computational
complexity of homogeneous two-spin systems on bounded-degree graphs.

1. Introduction. Spin systems are stochastic models defined by local interac-
tions on networks. While playing a central role in statistical physics, they are also
closely associated with a range of combinatorial counting problems. In this pa-
per, we give a detailed analysis of two-spin models at all temperatures on locally
tree-like bipartite d-regular graphs and prove that the free energy—the limiting
log-partition function normalized by the number of vertices in the graph—is given
by the Bethe prediction. We use this result to obtain detailed information about
the local properties of such measures, allowing us to essentially complete a long-
standing program of classifying the computational complexity of approximating
the partition function for all homogeneous two-spin systems on bounded-degree
graphs.

The study of locally tree-like graphs in statistical physics was initiated by
Bethe [5] as a way to investigate mean-field phenomena expected in high-
dimensional systems. In theoretical computer science and combinatorics, locally
tree-like graphs play an important role in the study of randomized constraint sat-
isfaction problems such as random k-SAT or proper graph colorings. The under-
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standing of the partition functions of such systems is closely linked to the study of
Gibbs measures on trees.

It is natural to ask if the free energy of an ensemble of locally tree-like graphs
depends on the choice of ensemble. Dembo–Montanari [7] showed that the free en-
ergy density for the ferromagnetic Ising model on a class of locally tree-like graphs
is given by the Bethe prediction, defined in terms of a distributional fixed point of
a certain recursion on the limiting tree (and hence not depending on the particular
graph sequence); this result was subject to a second moment condition on the de-
gree distribution which was relaxed to a (1 + ε)-moment condition by Dommers
et al. [10]. The Bethe prediction was proved for a wide class of models and graph
sequences in regimes of Gibbs uniqueness [9], and it was recently verified in all
regimes for the ferromagnetic Potts model on d-regular graphs with d even [8].
In contrast, for anti-ferromagnetic models at low temperatures, the graph ensem-
ble plays an important role in the asymptotic partition function: for the hard-core
model at high fugacity, the free energy density for random d-regular graphs can
easily be shown to differ from that for random bipartite d-regular graphs. Indeed
the statistical physics theory of replica symmetry breaking was developed to deal
with the frustration and complicated long-range dependencies induced by the anti-
ferromagnetic nature of such models.

In the case of two-spin systems on d-regular bipartite graphs, we show that at
all temperatures the limiting free energy density is independent of the ensemble
chosen and is again given by the Bethe prediction.

THEOREM 1. For any nondegenerate homogeneous two-spin model on bipar-
tite d-regular locally tree-like graphs, the log-partition function normalized by the
number of vertices has an asymptotic value which coincides with the Bethe free
energy prediction.

The Bethe prediction is defined precisely in Section 2.2; for the precise state-
ment, see Theorem 4. Establishing lower bounds on partition functions is challeng-
ing in general, and for random graph ensembles this is often done using the second
moment method. This approach typically leads to difficult optimization problems
which become increasingly challenging in systems with more parameters (see,
e.g., [1–3]).

In this paper, we follow a different approach which is more conceptual and
completely circumvents second moment method calculations, and further yields
results for more general graph ensembles. The idea is to bound the derivative of
the log-partition function with respect to the inverse temperature or fugacity of the
model, similarly to what was done in [7, 9, 10] for the ferromagnetic Ising and
Potts models. However, unlike those models, the systems we consider not have an
FK-representation or the FKG property.

We show that the derivative is bounded above by a maximization over Gibbs
measures on the d-regular tree which is attained by the extremal semi-translation-
invariant Gibbs measures (see Definition 1.7). At low temperatures, these measures
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favor a higher density of +-spins on one side of the bipartition. Underpinning our
arguments is that on bipartite graphs (in contrast to general graphs) the limiting
free energy can be calculated at zero temperature (β ↑ ∞ or λ ↑ ∞) as well as
at infinite temperature (β = 0 or λ ↓ 0). Interpolating our sharp upper bound on
the derivative between these endpoint values then gives matching upper and lower
bounds for the free energy.

Our proof further yields additional information about the local structure of the
model on the finite graphs. Adapting methods developed in [19], we show that the
local weak limit is a mixture of the two semi-translation-invariant Gibbs measures.
More can be said under additional assumptions that the graph is an expander and
symmetric with respect to the two sides of the bipartition: the spins have long-
range correlations due to the one-sided bias (“phase”) of a typical configuration,
but conditioned on the phase the spins of a collection of vertices are essentially
independent with marginals depending on the side of the graph chosen. A full
description of the local behavior is developed in Theorem 5 and Proposition 4.1.

An extensive literature in theoretical computer science has analyzed the ques-
tion of when it is possible to approximate the partition function of Gibbs measures
on sparse graphs. Using our detailed analysis of the local structure, we are able to
essentially complete the classification of the complexity of approximating the par-
tition function for two-spin systems on d-regular graphs. Jerrum and Sinclair [16]
gave a fully polynomial-time randomized approximation scheme (a randomized
algorithm whose running time is polynomial in both in the number of vertices and
the required accuracy, hereafter abbreviated FPRAS) for approximating the par-
tition function of the ferromagnetic Ising model, which covers all ferromagnetic
two-spin systems.

For anti-ferromagnetic systems such as the hard-core and anti-ferromagnetic
Ising models, the complexity of approximating the partition function depends on
the model parameters, and is known to be NP-hard when the interactions are suffi-
ciently strong. In this paper, we establish that the computational transition for such
models on d-regular graphs is located precisely at the uniqueness threshold (see
Definition 1.6) for the corresponding model on the d-regular tree.

THEOREM 2. For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d
, unless RP = NP there

exists no PRAS for the partition function of the hard-core model with fugacity λ

on d-regular graphs.

The famous conjecture P �= NP states that deterministic polynomial-time al-
gorithms cannot solve all NP-problems (roughly, problems whose solutions are
polynomial-time verifiable). Our hardness results assume the conjecture RP �= NP
which states that polynomial-time algorithms using randomness cannot solve all
NP-problems; this assumption is standard in computational complexity theory. For
information on the RP complexity class, see, for example, [21].
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The uniqueness threshold λc(d) marks the point above which distant boundary
conditions have a nonvanishing influence on the spin at the root. In a seminal
paper [24], Weitz used computational tree methods to provide a (deterministic)
fully polynomial-time approximation scheme (FPTAS) for the partition function of
the hard-core model on graphs of maximum degree d at any λ < λc(d). Together
with Weitz’s result, Theorem 2 completes the classification of the complexity of
the hard-core model except at the threshold λc.

Previously, it was shown that there is no FPRAS for the hard-core model at
λd ≥ 10,000 [18]. In the case of λ = 1, this was improved to d ≥ 25 [11, 12], using
random regular bipartite graphs as basic gadgets in a hardness reduction. Mossel et
al. [20] showed that local MCMC algorithms are exponentially slow for λ > λc(d),
and conjectured that λc is in fact the threshold for existence of an FPRAS.

The first rigorous result establishing a computational transition at the unique-
ness threshold appeared in [23], where hardness was shown for λc(d) < λ <

λc(d) + ε(d) for some ε(d) > 0. The proof relies on a detailed analysis of the
hard-core model on random bipartite graphs, which are then used in a randomized
reduction to MAX-CUT. More precisely, the result of [23] gives hardness subject
to a technical condition which was an artifact of a difficult second moment calcu-
lation from [20], and which could only be verified for λ < λc(d) + ε(d). Hardness
was subsequently shown by Galanis et al. [13] for all λ > λc(d) when d �= 4,5 by
verifying the technical condition of [23].

As mentioned above, our method avoids the difficult second moment calcula-
tions. Moreover, essentially the same method of proof gives the analogous result
for anti-ferromagnetic Ising models with arbitrary external field:

THEOREM 3. For d ≥ 3, B ∈ R and β < βc,af(d,B) < 0, unless RP = NP
there exists no PRAS for the partition function of the anti-ferromagnetic Ising
model with inverse temperature β and external field B on d-regular graphs.

Here, βc,af(d,B) denotes the uniqueness threshold for the anti-ferromagnetic
Ising model with external field B on the d-regular tree. Extending the meth-
ods of Weitz [24], Sinclair et al. [22] (see also [17]) gave an FPTAS for
the anti-ferromagnetic Ising model on d-regular graphs at inverse temperature
β > βc,af(d,B), so together with Theorem 3 this again establishes that the compu-
tational transition coincides with the tree uniqueness threshold.

We emphasize that while Theorem 1 applies to a class of bipartite tree-like
d-regular graphs, Theorems 2 and 3 concern the problem of computing the par-
tition function on the class of (all) d-regular graphs. The hard-core and anti-
ferromagnetic Ising models together encompass all (nondegenerate) homogeneous
two-spin systems on d-regular graphs (see Section 2.1). Thus, the results of [16,
22, 24] combined with Theorems 2 and 3 give a full classification of the com-
putational complexity of approximating the partition function for (homogeneous)
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two-spin systems on d-regular graphs, except at the uniqueness thresholds λc(d)

and βc,af(d,B).
In fact, we will show inapproximability in nonuniqueness regimes in a strong

sense: not only does there not exist a PRAS, but for any fixed choice of model
parameters and d there exists c > 0 such that it is NP-hard even to approximate
the partition function within a factor of ecn on the class of d-regular graphs.

Independent results of Galanis–Štefankovič–Vigoda. In a simultaneous and in-
dependent work, Galanis, Štefankovič and Vigoda [14] established the result of
Theorem 2, and Theorem 3 in the case of zero external field (B = 0). Their meth-
ods differ from ours: they analyze the second moment of the partition function on
random bipartite d-regular graphs, and establish the condition necessary to apply
the approach of [23]. Their proof analyzes a difficult optimization of a real function
in several variables by relating the problem to certain tree recursions.

1.1. Computational reduction via Gibbs measures on bipartite graphs. The
computational results of Theorems 2 and 3 are proved by a variation on the con-
struction of [23], using the bipartite graphs in a randomized reduction to approx-
imate MAX-CUT on 3-regular graphs, which is known to be NP-hard [4]. First,
we use Theorem 5 to construct a symmetric bipartite d-regular locally tree-like
graph G of large constant size such that in the hard-core or anti-ferromagnetic
Ising model, conditioned on the phase of the global configuration, spins at distant
vertices are asymptotically independent with known marginals depending only on
the side of the graph (Proposition 4.1).

Given a 3-regular graph H on which we wish to approximate MAX-CUT, first
we take a disjoint copy Gv of G for each vertex v ∈ H which we call gadgets.
After removing 6k edges from each Gv , for each edge (u, v) ∈ H , we add 2k edges
joining each side of Gu to the corresponding side of Gv in such a way that the
resulting graph HG is d-regular.

The connections between gadgets do not substantially change the spin distribu-
tions inside them, and in particular the ± phases remain. The anti-ferromagnetic
nature of the interaction, however, results in neighboring copies of G in HG pre-
ferring to be in opposing phases. Using the asymptotic conditional independence
result Proposition 4.1, we can estimate the partition function for the model on HG

restricted to configurations of given phase on each copy of G within a factor of
eε|H | (Lemma 4.2). We find that the distribution is concentrated on configurations
where the vector of phases gives a good cut of H , and the effect is strengthened as
k is increased. Thus, for any ε > 0, by taking k (hence G ) to be sufficiently large
a (1 + ε)-approximation of MAX-CUT(H) can be determined from the partition
function of the model on HG , thereby completing the reduction.

In the remainder of this introductory section, we formally introduce the mod-
els which we consider. We then define the notion of local (weak) convergence of
graphs and give precise statements of our results on the partition function (Theo-
rem 4) and local structure (Theorem 5) of these models on bipartite graphs.
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1.2. Definition of spin systems. Let G = (V ,E) be a finite undirected graph,
and X a finite alphabet of spins. A spin system or spin model on G is a probability
measure on the space of (spin) configurations σ ∈ X V of form

ν
ψ

G(σ) = 1

ZG(ψ)

∏
(ij)∈E

ψ(σi, σj )
∏
i∈V

ψ̄(σi),(1.1)

where ψ is a symmetric function X 2 →R≥0, ψ̄ is a positive function X →R≥0,
and ZG(ψ) is the normalizing constant, called the partition function. The pair
ψ ≡ (ψ, ψ̄) is called a specification for the spin system (1.1).

In this paper, we consider spin systems with an alphabet of size two; without
loss X ≡ {±1}. The Ising model on G at inverse temperature β and external field
B is given by

ν
β,B
G (σ ) = 1

ZG(β,B)

∏
(ij)∈E

eβσiσj
∏
i∈V

eBσi .(1.2)

The model is said to be ferromagnetic (favoring the alignment of neighboring
spins) when β ≥ 0, and anti-ferromagnetic (neighboring spins repel) when β < 0.
The hard-core (or independent set) model on G at activity or fugacity λ is given
by

νλ
G(σ) = 1

ZG(λ)

∏
(ij)∈E

1{σ̄i σ̄j �= 1}∏
i∈V

λσ̄i ,(1.3)

where σ̄ ≡ 1{σ = +1} = 1
2(1 + σ). The edge interaction has no temperature pa-

rameter and is a hard constraint forbidding neighboring occupied sites, so the hard-
core model is considered anti-ferromagnetic for all λ > 0. Our definition (1.3) is
trivially equivalent to the standard definition of the hard-core model which has
spin 0 in place of −1, but we take X = {±1} throughout to unify the notation.

1.3. Local convergence and the Bethe prediction. If G is any graph and v a
vertex in G, write Bt(v) for the subgraph induced by the vertices of G at graph
distance at most t from v, and ∂v ≡ B1(v) \ {v} for the neighbors of v. We let
T ≡ (T , o) denote a general tree with root o, with T t ≡ Bt(o) ⊆ T the subtree
of depth t . We also fix d throughout and write T ≡ (T, o) for the rooted d-regular
tree. (Every vertex of T has d neighbors, in contrast with the (d −1)-ary tree where
the root has d − 1 neighbors.)

DEFINITION 1.1. Let Gn = (Vn = [n],En) be a sequence of (random) finite
undirected graphs, and let In ∈ Vn denote a uniformly random vertex. The se-
quence Gn is said to converge locally to the d-regular tree T if for all t ≥ 0, Bt(In)

converges to Tt in distribution with respect to the joint law Pn of (Gn, In): that is,
limn→∞Pn(Bt (In) ∼= Tt ) = 1 (where ∼= denotes graph isomorphism).
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We write En for expectation with respect to Pn and impose the following inte-
grability condition on the degree of In.

DEFINITION 1.2. The sequence Gn is uniformly sparse if the random vari-
ables |∂In| are uniformly integrable, that is, if

lim
L→∞ lim sup

n→∞
En

[|∂In|1{|∂In| ≥ L
}]= 0.

We assume throughout that Gn (n ≥ 1) is a uniformly sparse graph sequence
converging locally to the d-regular tree T; this setting is hereafter denoted
Gn →loc T. The free energy density for a specification ψ on Gn is defined by

φ ≡ lim
n→∞φn ≡ lim

n→∞
1

n
En[logZn], Zn ≡ ZGn(ψ),(1.4)

provided the limit exists. For ferromagnetic spin systems on a broad class of locally
tree-like graphs, heuristic methods from statistical physics yield an explicit (con-
jectural) formula for the value of φ, the so-called “Bethe prediction” 
 whose def-
inition we recall in Section 2.2. For anti-ferromagnetic two-spin models, the Bethe
prediction is well defined only on graph sequences Gn which are near-bipartite, in
the following sense: let T+ denote the d-regular tree T with vertices colored +1
(black) or −1 (white) according to whether they are at even or odd distance from
the root o; let T− be T+ with the colors reversed. Let bT be the random tree which
equals T+ or T− with equal probability; write bP for the law of bT and bE for
expectation with respect to bP.

DEFINITION 1.3. For Gn →loc T, we say the Gn are near-bipartite, and write
Gn →loc bT (equivalently Gn →loc bP), if there exists a black–white coloring of
Gn such that for all t ≥ 0, Bt(In) → bTt in distribution.

In Definition 1.3, the coloring on Gn can be random, and is not required to be
proper, though its limit in distribution must be proper for the graph sequence to be
near-bipartite. The canonical example of a uniformly sparse graph sequence con-
verging to the d-regular tree T is the random d-regular multigraph Gcm

n,d , sampled
according to the “configuration model” as described in Lemma 4.3 (see, e.g., [6]
for the proof that Gcm

n,d →loc T). However, Gcm
n,d is not near-bipartite: an easy first-

moment calculation (see Lemma 4.3) shows that for any small constant δ > 0 there
exists constant λδ > 0 such that with high probability as n → ∞, every subset of
vertices S in Gcm

n,d of size n(1
2 −δ) ≤ |S| ≤ n(1

2 +δ) has at least |S|λδ internal edges.
From this, it is clear that for any black–white coloring of Gcm

n,d , either the propor-
tions of black and white vertices are asymptotically unequal, or there will be an
asymptotically positive density of vertices with like-colored neighbors, meaning
the local limit cannot be bT. On the other hand, the gadgets used in our reduction
are constructed (Section 4.1) from the bipartite double cover of Gcm

n,d which indeed
converges to bT. The precise statement of Theorem 1 is as follows.
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THEOREM 4. For the computation of the free energy density φ, all nondegen-
erate homogeneous two-spin systems on graph sequences Gn →loc T reduce to
either the Ising model (1.2) or the hard-core model (1.3).

(a) In the ferromagnetic Ising model, the free energy density φ exists for any
Gn →loc T and equals nb
 as defined by (2.2) [and given more explicitly by (2.5)].

(b) In the hard-core or anti-ferromagnetic Ising models, the free energy density
φ exists for any Gn →loc bT and equals b
 as defined in (2.2) [and given more
explicitly by (2.4)].

The reduction to Ising or hard-core is shown in Section 2.1. While part (a)
of Theorem 4 applies to general d-regular tree-like graphs, part (b) is false
without the assumption of bipartiteness. For example, for the hard-core model
on the random d-regular multigraph Gcm

n,d →loc T, one can directly calculate
EZn to see that (applying Jensen’s inequality) lim supn→∞ n−1E[logZn] ≤
lim supn→∞ n−1 logEZn < b
.

REMARK 1.4. Hereafter, we treat Gn →loc T and Gn →loc bT in a unified
manner when possible by writing Gn →loc PT for PT the uniform measure on T ,
which always denotes either {T} or {T±}. We write ET for expectation with respect
to PT .

1.4. Local structure of measures. Under some additional assumptions on Gn,
Theorem 4, together with the arguments of [19], characterizes the asymptotic local
structure of the spin systems νn ≡ νGn . For Gn →loc bT, let τ :Vn → X ≡ {±}
denote the given black–white coloring of the vertices of Gn (hereafter writing ±
as shorthand for ±1). We say that Gn is symmetric if it is isomorphism-invariant
to reversing the black–white coloring. For a spin configuration σ on Gn we define
the phase of σ to be

Y(σ ) ≡ sgn
∑
i∈Vn

τiσi where sgnx ≡ 1{x ≥ 0} − 1{x < 0}.

For s ∈ X , let νs
n denote the measure νn conditioned on the s-phase configurations:

that is,

νs
n(σ ) ≡ 1

Zs
n

1
{
Y(σ ) = s

} ∏
(ij)∈En

ψ(σi, σj )
∏
i∈Vn

ψ̄(σi),(1.5)

where Zs
n is the partition function restricted to the s-phase configurations. We will

characterize the local structure of the measures νs
n on graph sequences satisfying

an edge-expansion assumption, as follows.

DEFINITION 1.5. A graph G = (V ,E) is a (δ, γ, λ)-edge expander if, for any
set of vertices S ⊆ V with δ|V | ≤ |S| ≤ γ |V |, there are at least λ|S| edges joining
S to V \ S.
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The measures νs
n will be related to Gibbs measures on the infinite tree. In par-

ticular, recall the definition of (Gibbs) uniqueness:

DEFINITION 1.6. For a rooted tree T , let GT denote the set of Gibbs measures
for the specification ψ on T . The specification is said to have (Gibbs) uniqueness
(on T ) if |GT | = 1.

For s ∈ X , let μs be the element of GT defined by conditioning on all spins iden-
tically equal to s on the vertices at depth 2t , and taking the weak limit as t → ∞.
In the ferromagnetic Ising model, the measures μs are extremal and translation-
invariant, with μ− � μ � μ+ for all μ ∈ GT where � denotes stochastic domina-
tion with respect to the coordinate-wise partial ordering ≤ on X T: thus the model
has uniqueness if and only if μ+ = μ−. In the hard-core or anti-ferromagnetic
Ising model, the measures μs are extremal and semi-translation-invariant. For
σ, σ́ ∈ X T, write σ ≤b σ́ if σvτv ≤ σ́vτv for all v ∈ T where τv is +1 if the
distance from the root o to v is even, and −1 if odd. Then μ− �b μ �b μ+ for all
μ ∈ GT where �b denotes stochastic domination with respect to ≤b, so again the
model has uniqueness if and only if μ+ = μ−.

Recalling Remark 1.4, let GT denote the space of mappings ν :T → ν(T ) where
ν(T ) ∈ GT . When T = {T±}, we denote GT by bG , and write νs as shorthand
for ν(Ts); note GT may be naturally regarded as the subset of mappings ν ∈ bG
which satisfy ν+ = ν−.

DEFINITION 1.7. An element ν ∈ GT is translation-invariant if for (T , o) ∈ T
and any vertex x ∈ T , ν(T , x) coincides with the law on spin configurations of
(T , x) induced by ν(T , o). When T = {T}, this coincides with the usual defi-
nition of translation-invariance. In contrast, if ν ∈ bG then the image measures
ν+ ≡ ν(T+) ∈ GT+ and ν− ≡ ν(T−) ∈ GT−—if regarded as Gibbs measures on
the uncolored tree T—need only be semi-translation-invariant, since ν(T , x) is
allowed to depend on the coloring of x.

With μ+,μ−, the extremal semi-translation-invariant elements of GT define

νr ∈ bG , νr :Ts → μsr.(1.6)

In our abbreviated notation νs ≡ ν(Ts), the above reads νr
s = μsr. The νr are then

translation-invariant in the sense of Definition 1.7—that is, invariant under isomor-
phisms of the tree which preserve the black–white coloring.

DEFINITION 1.8. For Gn ∼ Pn a random graph sequence and νn any law on
spin configurations σn of Gn, we say that Pn ⊗ νn converges locally (weakly) to
PT ⊗ ν (for ν ∈ GT ), and write Pn ⊗ νn →loc PT ⊗ ν, if it holds for all t ≥ 0 that
(Bt (In), σBt (In)) converges in distribution to (T t , σ t ) where T ∼ PT and σ t is the
restriction to T t of σ ∼ ν(T ). In particular, ν must be translation-invariant in the
sense of Definition 1.7.
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THEOREM 5. For any anti-ferromagnetic two-spin system on Gn →loc bT, the
following hold:

(a) If the Gn are symmetric, then Pn ⊗ νn →loc bP ⊗ (1
2ν+ + 1

2ν−).
(b) If for all δ > 0 the Gn are (δ, 1

2 , λδ)-edge expanders for some λδ > 0, then

Pn ⊗ νr
n →loc bP ⊗ νr for r ∈ X .(1.7)

Further, with 〈 〉μ denoting expectation with respect to the Gibbs measure μ,
the spatial average 1

n

∑
i∈V τiσi is nearly constant in σ :

νr
n

(∣∣∣∣Y(σ)
1

n

∑
i∈V

τiσi − 1

2

[〈σo〉μ+ − 〈σo〉μ−
]∣∣∣∣≥ ε

)
→ 0

(1.8)
in probability.

1.5. Outline of the paper. In Section 2, we review the Bethe prediction in the
d-regular setting and prove Theorem 1 (in its form Theorem 4). In Section 3, we
show how to deduce Theorem 5 from Theorem 4 by the methods of [19]. In Sec-
tion 4, we prove the approximate conditional independence statement (Proposi-
tion 4.1) and demonstrate the randomized reduction to MAX-CUT to prove Theo-
rems 2 and 3.

2. Partition function for two-spin models. In this section, we prove Theo-
rem 4, establishing the free energy density φ (and verifying the Bethe prediction)
for two-spin models on graph sequences Gn →loc bT. In Section 2.1, we show that
for purposes of computing φ on d-regular locally tree-like graph sequences, all
nondegenerate two-spin systems reduce to Ising or hard-core. In Section 2.2, we
review the Bethe prediction in the d-regular setting; for more general background
and references, we refer to [6, 9]. In Section 2.3, we review an interpolation scheme
for the Bethe free energy described in [9], and in Section 2.4 we apply the scheme
to compute the free energy density for the hard-core and Ising models, thereby
proving Theorem 4.

2.1. Reduction to Ising and hard-core on d-regular graphs. We first show that
for the computation of the free energy density, all (nondegenerate) homogeneous
two-spin models on graph sequences Gn →loc T reduce to either the Ising or hard-
core model. Indeed, let ψ ≡ (ψ, ψ̄) be a specification for a two-spin system with
alphabet X = {±}. If we define ψ ′ by ψ ′(σ, σ ′) ≡ ψ(σ,σ ′)ψ̄(σ )1/dψ̄(σ ′)1/d and
ψ̄ ′(σ ) ≡ 1, then

1

n
logZG(ψ) − 1

n
logZG

(
ψ ′)= O

(
En

[|∂In|1{|∂In| �= d
}])

,

which for Gn →loc T tends to zero as n → ∞ by uniform sparsity. Therefore, we
assume without loss ψ̄ ≡ 1, and consider the possibilities for ψ :
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1. If ψ > 0, then ψ(σ,σ ′) = eB0eβσσ ′
eBσ/deBσ ′/d for β,B,B0 defined by

ψ(+,+)

ψ(−,−)
= e4B/d,

ψ(+,+)ψ(−,−)

ψ(+,−)2 = e4β,

ψ(+,+)ψ(+,−)2ψ(−,−) = e4B0,

so φn − B0
d
2 is asymptotically equal to the free energy density for the Ising model

on Gn with parameters (β,B).
2. If ψ(+,−) = ψ(−,+) > 0 and ψ(−,−) > ψ(+,+) = 0, then, recalling

σ̄ ≡ 1{σ = +}, we have ψ(σ,σ ′) = eB01{σ̄ σ̄ ′ �= 1}λσ̄/dλσ̄ ′/d for B0, λ defined by

ψ(−,−) ≡ eB0, ψ(+,−)/ψ(−,−) ≡ λ1/d .

Therefore, φn − B0
d
2 is asymptotically equal to the free energy density for the

independent set model on Gn at fugacity λ.

The remaining two-spin models are degenerate, with free energy density which is
easy to calculate:

3. Suppose ψ(+,−) = ψ(−,+) = 0, so that ψ(σ,σ ′) may be written as 1{σ =
σ ′}eB0eBσ/deBσ ′/d . Then

φn = B0
1

n
En

[|En|]+ B + 1

n
En

[
k(Gn)∑
j=1

log
(
1 + e−2B|Cj |)],

where the sum is taken over the connected components C1, . . . ,Ck(Gn) of Gn.
We claim φn → φ = B0

d
2 + B: we have lim infn→∞(φn − φ) ≥ 0 (using uniform

sparsity) and

lim sup
n→∞

(φn − φ) ≤ lim sup
n→∞

1

n
En

[
k(Gn)

]
log 2,

so it suffices to show 1
n
En[k(Gn)] → 0. Indeed, if this fails then there exists

ε > 0 such that for infinitely many n, the event {k(Gn) ≥ nε} occurs with Pn-
probability at least ε. On this event, Gn has at least 1

2nε components of size ≤ 2/ε,
so for t > logk(2/ε), lim supn→∞Pn(Bt (In) � Tt ) ≥ 1

2ε2 > 0, in contradiction of
Gn →loc T.

4. Suppose instead ψ(+,+) = ψ(−,−) = 0 while ψ(+,−) = ψ(−,+) > 0.
If the Gn are not exactly bipartite then φn = −∞. If they are exactly bipartite, then

φn = 1

n
En

[|En|] logψ(+,−) + 1

n
En

[
k(Gn)

]
log 2

and by the observation of (3) this converges to φ = d
2 logψ(+,−).
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2.2. The Bethe prediction. Recalling the notation of Remark 1.4, we now re-
view the Bethe prediction for a generic spin model ψ with finite spin alphabet X

defined on a graph sequence Gn →loc PT .3 The prediction is based on a heuristic
connection between the free energy density φ on a graph sequence Gn →loc PT
and a special class of Gibbs measures on T . These measures are translation-
invariant in the sense of Definition 1.7, and are characterized by fixed points h� of
a certain “Bethe recursion.” The Bethe prediction is a nonrigorous formula for φ,
expressed as an explicit function 
(h) evaluated with h equal to a Bethe fixed-
point h�. (It can arise that there are multiple fixed-points h�, in which case one
typically selects the fixed point which maximizes 
.)

DEFINITION 2.1. Let Te ≡ Te(T ) denote the set of (T , x → y) (tree T rooted
at oriented edge x → y) such that (T , x) ∈ T . A message on T is a mapping h

from Te to the (|X | − 1)-dimensional simplex � of probability measures on X .

For T ∈ T and h a message on T , we write hx→y for the image of (T , x → y)

under h. Elements of T and Te are regarded modulo isomorphism, where if the tree
is equipped with a black–white coloring then the isomorphism must preserve the
coloring: thus, if T = {T} then Te = {(T, o → j)}, whereas if T = {T±} then Te =
{(T±, o → j)}. With H(T ) denoting the space of messages on T , we abbreviate
nbH ≡H({T}) and bH ≡ H({T±}).

DEFINITION 2.2. The Bethe or belief propagation recursion is the map
BPT :H(T ) → H(T ) on the space of messages on T defined by

(BPh)x→y(σ ) ≡ fd−1
[
(hv→x)v∈∂x\y

]
,

(2.1) [
fd−1(h)

]
(σ ) ∼= ψ̄(σ )

d−1∏
j=1

{∑
σj

ψ(σ,σj )hj (σj )

}
,

where h ≡ (h1, . . . , hd−1) ∈ �d−1, and ∼= denotes equivalence up to a positive
normalizing factor which is uniquely determined by the requirement that fd−1 is a
mapping �d−1 → �.

We write H�(T ) ⊆ H(T ) for the set of all fixed points of BPT . Since elements
of T are regarded modulo isomorphism, all the incoming messages hv→x in (2.1)
must be the same; and if T = {T} then they must also coincide with the out-
put message (BPh)x→y . Thus, nbH� ≡ H�({T}) corresponds simply to the fixed
points of the mapping f :� → �, h → fd−1(h, . . . , h). If T = {T±}, then the map-
pings h ∈ H(T ) are allowed to take two different values hs ≡ h(Ts, o → j) in �,

3The discussion in this subsection is fairly general; in particular X is not required here to be
binary.
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which must then satisfy hs = f(h−s): thus bH� ≡ H�({T±}) corresponds to the
fixed points of the double recursion g ≡ f(2) ≡ f ◦ f.

The Bethe free energy functional on H(T ) is defined by


T (h) ≡ ET
[

T (h)

]
,

where 
T is a difference of “vertex” and “edge” terms, 
T ≡ 
vx
T − 
e

T with


vx
T (h) ≡ log

{∑
σo

ψ̄(σo)
∏

j∈∂o

(∑
σj

ψ(σo, σj )hj→o(σj )

)}
,


e
T (h) ≡ 1

2

∑
j∈∂o

log
{∑

σo,σj

ψ(σo, σj )ho→j (σo)hj→o(σj )

}
.

DEFINITION 2.3. For any homogeneous spin system on Gn →loc PT , the
Bethe prediction is that the free energy density φ of (1.4) exists and equals


T ≡ sup
{

T (h) :h ∈ H�(T )

}
.(2.2)

We hereafter write nb
 ≡ 
T and b
 ≡ 
bT ≡ 1
2 [
+ + 
−] with 
s ≡ 
Ts .

We emphasize that the Bethe prediction depends on the limiting measure PT :
fixed points of g ≡ f(2) need not be fixed points of f, so in general nbH� is a subset
of bH�, meaning that the Bethe prediction b
 for bipartite graph sequences can
be strictly larger than the prediction nb
 for nonbipartite sequences. Figure 1 il-
lustrates the hard-core Bethe recursion, which can be expressed as the univariate
mapping f(q) = [1 + λqd−1]−1 with q ≡ h(−) for h ∈ �. The function f is de-
creasing on 0 ≤ q ≤ 1, so nbH� is always a singleton corresponding to the unique
solution q� of f. However, the double recursion g is an increasing function of y,

FIG. 1. Hard-core Bethe recursion f :h(−) → [1 + λh(−)d−1]−1 (blue curve, decreasing) shown
together with double recursion f(2) (red curve, increasing) for d = 4, with fixed points circled. For

λ ≤ λc nbH� = bH�, while for λ > λc nbH� � bH�. (a) λ = 1, (b) λ = λc(4) = 27
16 , (c) λ = 3.
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FIG. 2. Bethe fixed points h ∈ bH� and the corresponding evaluations of the Bethe func-
tional b
(h), shown as functions of λ in hard-core model with d = 4. Above the uniqueness thresh-
old λc, nbH� corresponds to the blue curve, and the Bethe prediction b
 for Gn →loc bT (boundary
of shaded red region) is larger than the prediction nb
 for Gn →loc T (boundary of shaded blue
region). (a) h(−) evaluated for h ∈ bH�, (b) 
(h) evaluated for h ∈ bH�.

and for λ > λc it turns out that g has two additional fixed points q− < q� < q+
[shown in Figure 1(c) for a fixed value of λ, and in Figure 2(a) as λ varies], so that
bH� contains two additional solutions not in nbH�. The explicit evaluation of the
hard-core Bethe functional on nbH� is

nb
(h) = log
(
λqd + 1

)− d

2
log
[
1 − (1 − q)2]= − logq − d

2
log
[
1 − (1 − q)2]

for h ∈ nbH�, q = h(−).

For h ∈ bH�, recalling the notation hs ≡ h(Ts, o → j), the Bethe functional eval-
uates to

b
(h) = 1

2

[

+(h) + 
−(h)

]
(2.3) where 
s(h) = − logy−s − d

2
log
[
1 − (1 − ys)(1 − y−s)

]
for h ∈ bH�, ys ≡ hs(−).

If h ∈ nbH�, then nb
(h) = b
(h). Figure 2(b) shows that b
 strictly exceeds nb


for λ > λc.
In the course of proving Theorem 4, we will identify the fixed points attaining

the supremum in (2.2). Let gs ∈ � denote the fixed point of f(2) giving maximal
probability to spin s, and note f(gs) = g−s. In the anti-ferromagnetic case, we will
see that

b
 = b

(
h+)= b


(
h−)

(2.4)
for messages hr ∈ bH� defined by hr : (Ts, o → j) → gsr.

The ferromagnetic case reduces to the Ising model, and here we will see that

nb
 = nb

(
arg max
h∈nbH�

ho→j (sgnB)
)
.(2.5)
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2.3. Bethe Gibbs measures and interpolation scheme. We now describe the
connection between Bethe fixed points and Gibbs measures; for a discussion in
a more general setting and further references, see [9], Remark 2.6. Recall that
for T ∈ T , GT denotes the set of Gibbs measures for the specification ψ on T .
An element μ ∈ GT is a Markov chain or splitting Gibbs measure (see [25]) if
there exists a collection hμ ≡ (h

μ
x→y) of elements of � indexed by the oriented

edges of T such that for any finite connected induced subgraph U = (VU ,EU)

of T , the marginal law of σU under μ is given by

μ(σU) = z−1
∏

i∈VU

ψ̄(σi)
∏

(ij)∈EU

ψ(σi, σj )

(2.6)

× ∏
j∈∂U

{∑
σj

ψ(σp(j), σj )h
μ
j→p(j)(σj )

}
,

where p(j) denotes the unique neighbor of j inside U for j belonging to the
external boundary ∂U of U . We emphasize that in contrast to the messages of
Definition 2.1, the measures h

μ
x→y need not be isomorphism-invariant. However,

the finite-dimensional marginals of μ given by (2.6) must be consistent with one
another, and this imposes relations on the measures h

μ
x→y which closely resemble

the Bethe fixed-point equation (2.1). Extremal Gibbs measures are Markov chains,
but the converse is false. Also, for any distinct Markov chains μ,μ′, any mixture
pμ + (1 − p)μ′ with 0 < p < 1 is not a Markov chain ([25], Theorem 4.4).

Next, recall that GT denotes the space of mappings ν :T → ν(T ) ∈ GT with
T ∈ T . We say that an element ν ∈ GT is Markovian if ν(T ) is a Markov chain for
each T ∈ T . The associated collection hν ≡ (hν(T ))T ∈T is called an entrance law;
the correspondence between Markovian ν ∈ GT and entrance laws hν is bijective.

If ν is also translation-invariant in the sense of Definition 1.7, then each h
ν(T )
x→y

can depend only on the isomorphism class of (T , x → y) in Te, so h is a mes-
sage on T (Definition 2.1). It then follows from the consistency of the finite-
dimensional marginals (2.6) that h satisfies the Bethe recursions (2.1), that is,
h ∈ H�(T ). Thus, there is a bijective correspondence

Bethe fixed points h ∈H�(T )
(2.7)

←→ translation-invariant Markovian νh ∈ GT .

In particular, for two-spin models, the νr ∈ bG of (1.6) and the hr ∈ bH� of (2.4) are
related by this correspondence and so may be regarded as essentially equivalent.

We now evaluate the hard-core and Ising free energy densities by interpolat-
ing in the model parameters. Write ξ ≡ logψ , ξ̄ ≡ log ψ̄ , and for the hard-core
model take B ≡ logλ. Let 〈 〉β,B

n denote expectation with respect to the measure
ν

β,B
n ≡ ν

β,B
Gn

as defined by (1.2) or (1.3). Recalling Definition 1.1 that In denotes a
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uniformly random vertex in Gn, define

ān(β,B) ≡ ∂Bφn(β,B) = En

[〈
∂Bξ̄ (σIn)

〉β,B
n

]
,

ae
n(β,B) ≡ ∂βφn(β,B) = 1

2
En

[ ∑
j∈∂In

〈
∂βξ(σIn, σj )

〉β,B
n

]
.

In the hard-core model, ān(β,B) is the average occupation En[〈σ̄In〉Bn ], and
we define ∂βξ ≡ 0 so that ae

n ≡ 0. In the Ising model, ān(β,B) is the aver-

age magnetization En[〈σIn〉β,B
n ] while ān(β,B) is the average edge correlation

1
2En[∑j∈∂In

〈σInσj 〉β,B
n ].

We also define analogous quantities on the limiting tree T ∼ PT . By standard
compactness arguments (see, e.g., [19], Section 3.1), Pn ⊗ νn has subsequential
limits. If Pn⊗νn →loc PT ⊗ν along any subsequence, then ν must be a translation-
invariant element of GT (see Definition 1.8). Writing 〈 〉ν for expectation with
respect to ν, the tree analogues of ān,ae

n are given by

āT (β,B, ν) ≡ ET
[〈
∂Bξ̄ (σo)

〉β,B
ν

]
,

ae
T (β,B, ν) ≡ 1

2
ET

[∑
j∈∂o

〈
∂βξ(σo, σj )

〉β,B
ν

]
.

If ν = νh corresponds to the Bethe fixed point h ∈ Hβ,B
� (T ) via (2.7), then we

write āT (β,B,h) ≡ āT (β,B, νh) and ae
T (β,B,h) ≡ ae

T (β,B, νh).
The following lemma, describing our interpolation scheme, may be verified di-

rectly by calculus, or obtained as a consequence of [9], Proposition 2.4. We always
interpolate in one parameter at a time, keeping the other fixed and suppressing it
from the notation.

LEMMA 2.4. If for B ∈ [B0,B1], we have h ≡ h(B) ∈ HB
� which is continu-

ous and of bounded total variation in B , then


T (B1, h) − 
T (B0, h) =
∫ B1

B0

āT (B,h)dB where 
(B,h) ≡ 

(
B,h(B)

)
.

The same holds for B, āT replaced with β,ae
T .

The main implication of Lemma 2.4 is the following (which may also be
obtained as a special case of [9], Theorem 1.13): if for B ∈ [B0,B1] we have
h ≡ h(B) ∈ HB

� which is continuous and of bounded total variation in B , then

lim sup
n→∞

ān(B) ≤ āT (B,h)

(2.8)
implies lim sup

n→∞
[
φn(B1) − φn(B0)

]≤ 
T (B1, h) − 
T (B0, h).
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That is, asymptotic bounds on φn(B1) − φn(B0) can be proved by relating ān,
the expectation of the local observable ∂Bξ̄ (σIn) under the measure νn on the
finite graph, to āT , the expectation of the observable ∂Bξ̄ (σo) under translation-
invariant Markov chains on the limiting tree. The analogous statements hold
with B, ā replaced by β,ae. In the following, we write nbā ≡ āT, bā ≡ ābT, and
similarly nbae, bae.

The difficulty in proving relations of the type lim supn→∞ ān ≤ suph∈H�(T ) āT
is that translation-invariant Gibbs measures may not have a decomposition in terms
of translation-invariant Markov chains. As noted above, if PT ⊗ ν is any subse-
quential local weak limit of Pn ⊗νn, then ν must be a translation-invariant element
of GT , but it need not be a Markov chain. By extremal decomposition, ν is a convex
combination of Markov chains, but the measures appearing in the decomposition
need not be translation-invariant. Thus, there is no a priori connection between the
model on the finite graph model and the Bethe prediction on the infinite tree. Our
proof of Theorem 4(b), which occupies the majority of Section 2.4, is based on
two observations:

1. In the hard-core model with B ≡ logλ, the maximum of bā(B, ν) over all
translation-invariant ν ∈ bG is achieved by the translation-invariant Markov chains
νr of (1.6), so (2.8) can be used to deduce the upper bound lim supn→∞[φn(λ1) −
φn(λ0)] ≤ b
(λ1) − b
(λ0) for any 0 < λ0 ≤ λ1. Since φ = b
 is already known
for λ ≤ λc, we obtain lim supn→∞ φn ≤ b
 for all λ > 0.

In the anti-ferromagnetic Ising model, the minimum of bae(β, ν) over all
translation-invariant ν ∈ bG is achieved by the νr, so lim infn→∞[φn(β1) −
φn(β0)] ≥ b
(β1) − b
(β0) for any β0 ≤ β1 ≤ 0. Since φ = b
 holds trivially
for β = 0, we obtain lim supn→∞ φn ≤ b
 for all β ≤ 0.

2. For Gn →loc bT, the near-bipartite structure of the graphs Gn gives easy
lower bounds on the partition function which can be used to see that the limit
of [lim infn φn − b
] as B → ∞ (hard-core) or β → −∞ (Ising) is nonnegative,
implying that the preceding upper bound must be tight.

2.4. Verification of hard-core and Ising Bethe predictions. In the remainder of
this paper, we restrict all consideration to X = {±}.

2.4.1. Interpolation for hard-core.

LEMMA 2.5. For the hard-core model at fugacity λ, the supremum of
〈σ̄o + d−1∑

j∈∂o σ̄j 〉μ over μ ∈ GT is achieved precisely by the extremal semi-
translation-invariant measures μ+,μ−.4 Consequently, bE[〈σ̄o〉ν] is strictly maxi-
mized over all translation-invariant ν ∈ bG by the elements ν+, ν− defined in (1.6).

4Note μ need not be translation-invariant. The lemma is nontrivial only when μ− �= μ+.
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PROOF. By extremal decomposition, assume without loss that μ is itself
an extremal Gibbs measure, hence also a splitting Gibbs measure, with finite-
dimensional marginals given by (2.6) with entrance law hμ ≡ (h

μ
x→y). In particu-

lar, the marginal of μ on the depth-1 subtree T1 is given by

μ(σ̄o = 1, σ̄ ∂o ≡ 0) = z−1λ
∏

j∈∂o

h
μ
j→o(−)

and

μ(σ̄o = 0, σ̄ ∂o) = z−1
∏

j∈∂o

h
μ
j→o(σj )

with all other configurations receiving zero measure as they violate the hard-core
constraint. Abbreviating qj ≡ h

μ
j→o(−), we find z = 1 + λ

∏
j∈∂o qj , and so〈

σ̄o + d−1
∑
j∈∂o

σ̄j

〉
μ

= λ
∏

j∈∂o qj + d−1∑
j∈∂o(1 − qj )

1 + λ
∏

j∈∂o qj

= 1 − d−1∑
j∈∂o qj

1 + λ
∏

j∈∂o qj

.

For fixed q ≡ (
∏

j∈∂o qj )
1/d , it follows from Jensen’s inequality that the above is

(strictly) maximized by taking all qj = q , therefore,〈
σ̄o + d−1

∑
j∈∂o

σ̄j

〉
μ

≤ 1 −
[

max
q−≤q≤q+

(
q−1 + λqd−1)]−1

,

where q− and q+ are the minimal and maximal achievable values for q: by the
discussion following Definition 1.6, they correspond to μ+ and μ−, respectively,
and thus are the fixed points of g ≡ f(2) where f(q) = [1 + λqd−1]−1. Since q−1 +
λqd−1 is convex in q , its maximum can only be attained at the interval endpoints,
and by the relation f(qs) = q−s the maximum is attained at both endpoints with
value 1/q− + 1/q+ − 1. This proves the first statement of the lemma. To conclude,
recall that for ν ∈ bG ,

bE
[〈σ̄o〉ν]≡ 1

2

[〈σ̄o〉ν+ + 〈σ̄o〉ν−
]

where νs ≡ ν(Ts).

If further ν is translation-invariant (Definition 1.7), then 〈σ̄o〉νs = 〈σ̄j 〉ν−s for j ∈
∂o, so we find bE[〈σ̄o〉ν] = 1

2〈σ̄o + d−1∑
j∈∂o σ̄j 〉ν+ = 1

2〈σ̄o + d−1∑
j∈∂o σ̄j 〉ν− ,

and the second statement of the lemma follows directly from the first. �

LEMMA 2.6. For the hard-core model, nbHλ
� always consists of a single mes-

sage h� ≡ h�(λ). bHλ
� consists of the messages h�,h+, h− which coincide for

λ ≤ λc and are distinct for λ > λc. The messages are continuous in λ, smooth
except possibly at λ = λc.

The supremum in (2.2) is achieved by h� for nb
, and by h+, h− for b
, with
nb
 = b
 for λ ≤ λc and nb
 < b
 for λ > λc.
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PROOF. In the hard-core model, measures h ∈ � are naturally parameterized
in terms of q = h(−), and so nbH� corresponds to fixed points of f(q) = (1 +
λqd−1)−1 while bH� corresponds to fixed points of g ≡ f(2). As q increases from 0
to 1, f decreases from 1 to (1 + λ)−1, so f has a unique fixed point q� which is
smoothly decreasing in λ for all λ > 0.

Next we determine the messages in bH�, corresponding to fixed points of the
double recursion g ≡ f(2). We calculate

f′(q) = −d − 1

q
f[1 − f], f′′(q) = −

(
d − 1

q

)2

f(1 − f)
(

2f − d

d − 1

)
and use these to simplify the expression for g′′(q) = (f′ ◦ f)f′′ + (f′′ ◦ f)(f′)2:

g′′(q) = −2
(

d − 1

q

)4[
f(1 − f)

]2g(1 − g)(g − g0),

where

g0 ≡ − d

2(d − 1)2 q

[
f−1 − d − 2

d
(1 − f)−1 − (d − 1)q−1

]
.

Since f is decreasing in q , g is increasing in q while g0 is decreasing. Thus, g can
have at most one inflection point, hence at most three fixed points. If g has any
fixed point other than q�, then necessarily it has exactly two additional fixed points
q− < q� < q+ with f(qs) = q−s. In this case, the function g is convex (concave) to
the left (right) of its unique inflection point, so g′(q�) > 1. But g′(q�) = f′(q�)

2 =
(d − 1)2(1 − q�)

2 is smoothly increasing in λ with g′(q�) = 1 precisely at λ =
λc(d), so we see g has a unique fixed point q− = q� = q+ when λ ≤ λc, and when
λ > λc it has three fixed points q− < q� < q+, which are smooth on the open
interval λc < λ < ∞ (being isolated zeroes of a polynomial equation).

We now verify that limλ↓λc(qs − q�) = 0. Suppose otherwise, so that q+ = q� +
2ε+ with lim infλ↓λc ε+ ≥ ε > 0. It is possible to take a sequence λ ↓ λc along
which the inflection point of g always lies on the same side of q�: assume it is ≤ q�

(the argument for the ≥ q� case is symmetric), so that g′ is decreasing on q ≥ q�.
Then

g′(q� + ε+) ≥ 1

ε

[
g(q� + 2ε+) − g(q� + ε+)

]
= 1

ε

[
q� + 2ε+ − q� − ε+g′(q�)

]
= 2 − g′(q�),

so we find g′(q�) ≥ g′(q) ≥ 2 − g′(q�) for all q� ≤ q ≤ q� + ε+. At λ = λc, this
implies g′(q) = 1 for all q� ≤ q ≤ q� + ε+—contradicting our above observation
that g′′ can have at most one zero on the interval 0 ≤ q ≤ 1 and proving our claim
that limλ↓λc(qs − q�) = 0.
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It remains to identify the Bethe fixed points achieving the supremum in (2.2).
It is clear from the above that nb
 = nb
(h�) ≤ b
 with equality for λ ≤ λc since
nbH� = bH� = {h�} in this regime. For λ > λc, we have bā(B,h�) < bā(B,h+) =
bā(B,h−) as a special case of Lemma 2.5. From the above calculations, the reg-
ularity conditions of Lemma 2.4 are clearly satisfied by h�,h+, h−, so we may
integrate to see that nb
 < b
 = b
(h+) = b
(h−) for λ > λc, concluding the
proof. �

PROPOSITION 2.7. For the hard-core model,

(a) If Gn →loc T then φ = nb
 = b
 for λ ≤ λc and lim supn→∞ φn ≤ b
 for
λ > λc.

(b) If Gn →loc bT then φ = b
 for all λ > 0.

PROOF. (a) Since any subsequential local weak limit Pn ⊗ νn →loc bP ⊗ ν

must have ν a translation-invariant element of bG , the second part of Lemma 2.5
implies

lim sup
n→∞

ān(B) = lim sup
n→∞

En

[〈σ̄In〉Bn
]≤ bE

[〈σ̄o〉νs
]≡ bā

(
B,hs),

where the right-hand side is the same for s = +,−. (We comment that this in-
equality can be alternatively obtained by expressing ān(B) as o(1) + 1

2En[〈σ̄In +
d−1∑

j∈∂In
σ̄j 〉Bn ], then directly applying the first part of Lemma 2.5 to the local

weak limit Pn ⊗ νn →loc P⊗ μ, where μ belongs to GT rather than bG .)
Recall from Lemma 2.6 that the regularity conditions of Lemma 2.4 are satisfied

by h+, h−, so the above implies [cf. (2.8)] that for λ > λc, s ∈ X ,

lim sup
n→∞

[
φn(λ) − φn(λc)

]≤ b

(
λ,hs)− b


(
λc, h

s),
where the right-hand side is the same for s = +,−. It was shown in [9], Theo-
rem 1.11, that φ = nb
 = b
(h+) = b
(h−) for λ ≤ λc so the claim follows.5

(b) It suffices to show that for Gn →loc bT,

lim inf
λ→∞

[
lim inf
n→∞ φn − b


]
≥ 0,(2.9)

implying that the upper bound obtained in (a) must be tight. If An denotes the
maximum size of an independent set on Gn, then accounting for all subsets of the
maximum independent set shows that the hard-core partition function on Gn is
at least (λ + 1)An , so φn ≥ 1

n
En[An] log(λ + 1). But An is at least the number of

5Note that continuity of h+, h− at λc (Lemma 2.6) was necessary to conclude continuity of b


at λc.
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black vertices with no black neighbors, so Gn →loc bT implies lim infn→∞ φn ≥
1
2 log(λ + 1). From (2.3),

b
 − 1

2
log(λ + 1)

= 1

2
log
(
qd+ + λ−1)− 1

2
log
(
1 + λ−1)− 1

2
logq+

− d

2
log
[
1 − (1 − q+)(1 − q−)

]
.

Since limλ→∞ q+ = 1 = limλ→∞(1 − q−), the above tends to zero as λ → ∞.
This implies (2.9), concluding the proof. �

We remark that in the entire hard-core interpolation argument the near-bipartite
structure plays a role only in the proof of (2.9).

2.4.2. Interpolation for Ising.

LEMMA 2.8. For the Ising model with parameters β < 0 and B ∈ R, the infi-
mum of d−1∑

j∈∂o〈σoσj 〉μ over μ ∈ GT is achieved uniquely by the extremal semi-
translation-invariant measures μ+,μ−. Consequently, bE[d−1∑

j∈∂o〈σoσj 〉ν] is
strictly minimized over all translation-invariant ν ∈ bG by the elements ν+, ν−
defined in (1.6).

PROOF. We argue as in the proof of Lemma 2.5: assume μ is extremal with
entrance law hμ, and write xj ≡ hj→o(+)/hj→o(−). Then

〈σoσj 〉μ = (aRj − c)e2B + (a/Rj − c)
∏

k∈∂o Rk

e2B +∏k∈∂o Rk

,

where

Rj ≡ R(xj ) ≡ e−βxj + eβ

eβxj + e−β
, a ≡ 2

e−2β − e2β
, c ≡ e−2β + e2β

e−2β − e2β
.

Summing over j ∈ ∂o and simplifying gives

d−1
∑
j∈∂o

〈σoσj 〉μ = −c + ad−1∑
j∈∂o(Rje

2B + 1/Rj

∏
k∈∂o Rk)

e2B +∏
k∈∂o Rk

.

For β < 0, note that a and c are positive, and R(x) increases between e2β and
e−2β for x ≥ 0. For fixed r ≡ (

∏
j∈∂o Rj )

1/d , it follows from Jensen’s inequality
that the above is (strictly) minimized by taking all Rj = r , therefore,

d−1
∑
j∈∂o

〈σoσj 〉μ ≥ −c + a min
R(x−)≤r≤R(x+)

γ (r), γ (r) ≡ e2Br + rd−1

e2B + rd
,
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where x−, x+ are the minimal, maximal achievable values for x. We compute(
1 + e−2Brd)2γ ′(r) = −S

[
S − S−1 + (d − 1)

(
r − r−1)]|S=e−2Brd−1 .

The right-hand side is strictly decreasing in r > 0, so γ ′ can have at most one zero
on the positive real line. Using the Bethe fixed-point equation, we evaluate

γ
[
R(x+)

]= eβ(x+ + x−) + e−β(1 + x+x−)

e−β(x+ + x−) + eβ(1 + x+x−)
= γ

[
R(x+)

]
,

so on the interval R(x−) ≤ r ≤ R(x+) the function γ (r) is strictly minimized at
the endpoints, from which the lemma follows. �

LEMMA 2.9. For the anti-ferromagnetic Ising model, nbHβ,B
� always consists

of a single message h� ≡ h�(β,B). bHβ,B
� consists of the messages h�,h+, h−

which coincide for βc,af ≤ β ≤ 0 and are distinct for β < βc,af. The messages are
continuous in β,B , smooth except possibly at β = βc,af.

The supremum in (2.2) is achieved by h� for nb
, and by h+, h− for b
, with
nb
 = b
 for βc,af ≤ β ≤ 0 and nb
 < b
 for β < βc,af.

PROOF. In the hard-core model, measures h ∈ � are naturally parameter-
ized in terms of t ≡ logx ≡ log[h(+)/h(−)], and so nbH� corresponds to fixed
points of

f(t) = 2B + (d − 1) log
[(

et + θ
)
/
(
θet + 1

)]
, θ ≡ e−2β.(2.10)

Observe that f − 2B is an odd function of t ∈ R, identically zero when β = 0
and strictly monotone otherwise, going from (d − 1) log θ to −(d − 1) log θ as t

increases from −∞ to ∞, and with ∂θ f(t) taking the opposite sign as t . If β < 0,
then f has a unique fixed point t� of the same sign as B , smoothly increasing in B ,
and with absolute value smoothly decreasing in θ .

Next, we determine the messages in bH�, corresponding to fixed points of the
double recursion g ≡ f(2). For β �= 0, we calculate

f′(t) = − (d − 1)(θ2 − 1)

(θ + et )(θ + e−t )

and

f′′(t) = −θ(et − e−t )f′(t)
(θ + et )(θ + e−t )

= (et − e−t )f′(t)2

(d − 1)(θ − θ−1)
,

so

g′′(t)
−f′(t)2f′(f(t))

= θ(ef − e−f)

(θ + ef)(θ + e−f)
− et − e−t

(d − 1)(θ − θ−1)
.
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For any β �= 0, g′′(t) is strictly decreasing in t , so g can have at most one inflection
point. For β < 0, we calculate the total derivative of f′(t�) with respect to θ to be

∂θ

[
f′(t�)

]= [
∂θ

(
f′
)]

(t�) + f′′(t�)(∂θ t�) < 0,

implying that g′(t�) = f′(t�)2 is smoothly increasing in θ for θ > 1. Consequently,
there is a unique threshold βc,af ≡ βc,af(d,B) < 0 such that g has a single fixed
point t− = t� = t− for βc,af ≤ β ≤ 0, and has three fixed points t− < t� < t+ for
β < βc,af. The lemma then follows by repeating the argument of Lemma 2.6. �

PROPOSITION 2.10. For the anti-ferromagnetic Ising model with external
field B ∈R:

(a) If Gn →loc T then φ = nb
 = b
 for βc,af ≤ β ≤ 0 and lim supn→∞ φn ≤
b
 for β < βc,af.

(b) If Gn →loc bT then φ = b
 for all β ≤ 0.

PROOF. (a) Since any subsequential local weak limit Pn ⊗ νn →loc bP ⊗ ν

must have ν a translation-invariant element of bG , Lemma 2.8 gives

lim inf
n→∞ ae

n(β) = 1

2
lim inf
n→∞ En

[ ∑
j∈∂In

〈σInσj 〉βn
]

≥ 1

2
bE
[∑
j∈∂o

〈σoσj 〉νs

]
= bae(β,hs),

where the right-hand side is the same for s = +,−. Recall from Lemma 2.9 that the
regularity conditions of Lemma 2.4 are satisfied by h+, h−, so the above implies
[cf. (2.8)] that for β0 ≤ β1 ≤ 0 and s ∈ X ,

lim inf
n→∞

[
φn(β1) − φn(β0)

]≥ b

(
β1, h

s)− b

(
β0, h

s),
where the right-hand side is the same for s = +,−. If β = 0, then trivially
φ = log(eB + e−B) = nb
 = b
, so we conclude lim supn→∞ φn(β) ≤ b
(β,hs)

for all β ≤ 0. For βc,af ≤ β ≤ 0, Gibbs uniqueness implies limn→∞ ae
n(β) =

nbae(β,h�) = bae(β,h�) where nbH� = bH� = {h�}, therefore, φ = nb
 = b
.
(b) By considering the configuration σ on Gn which gives spin + to all black

vertices and spin − to all white vertices, we see clearly that Gn →loc bT implies
lim infn→∞ φn ≥ −d

2 β . Writing ys ≡ (1+ e−ts)−1 for t−, t+ the minimal, maximal
fixed points of the function g analyzed in Lemma 2.9, we also calculate

2b
(β) + dβ = −d log
[
1 − (1 − e2β)[y+y− + (1 − y+)(1 − y−)

]]
+ log

[
eB(e2βy+ + (1 − y+)

)d + e−B(y+ + e2β(1 − y+)
)d]

+ log
[
eB(e2βy− + (1 − y−)

)d + e−B(y− + e2β(1 − y−)
)d]

.

It is straightforward to check that limβ→−∞ y+ = limβ→−∞(1 − y−) = 1, so in
the above the first term tends to 0, the second to −B , and the third to +B , so we
conclude limβ→−∞[2b
(β) + dβ] = 0. Therefore, limβ→−∞[lim infn→∞ φn −
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b
(β)] ≥ 0, which implies that the upper bound obtained in (a) must be tight and
concludes the proof. �

For completeness, we review what is known for the ferromagnetic Ising model.

PROPOSITION 2.11. For the ferromagnetic Ising model on Gn →loc T, φ ex-
ists and equals nb
 as defined by (2.2) [and given more explicitly by (2.5)].

PROOF. It follows from [7], Theorem 2.4 (see also [9], Theorem 1.8) that
for Gn →loc T, φ exists and equals 
 as defined by (2.5). Therefore, it remains
to verify that the supremum in (2.2) is indeed achieved by the Bethe fixed point
h ∈ nbH� maximizing ho→j (sgnB).

The messages h ∈ nbH� correspond simply to fixed points of a single itera-
tion of the mapping f of (2.10). For β > 0, f is strictly increasing in t , with
a single inflection point at t = 0. At B = 0, a fixed point is always given by
0 = t◦ = t− = t+, and it is unique provided f′(0) = (d − 1) tanhβ < 1. For
β > βc,f = βc,f(d,B)|B=0 = atanh( 1

d−1), f has three fixed points t− < 0 = t◦ < t+,
with t+ = −t− ↓ 0 = t◦ as β ↓ βc,f.

Since adding the external field B simply shifts the map f by the constant 2B ,
it is easy to deduce the behavior for general β ≥ 0, B ∈ R: in the unique-
ness regime, f has a single fixed point t− = t◦ = t+, and in the nonuniqueness
regime it has three fixed points t− < t◦ < t+ which all converge to the same
point as (β,B) approaches the boundary of the uniqueness regime. Thus, in the
ferromagnetic Ising model nbH� consists of the messages h◦, h+, h− defined by
h◦

o→j (+) = y◦ ≡ (1 + e−t◦)−1 and hs
o→j (+) = ys ≡ (1 + e−ts)−1 (in the unique-

ness regime the messages coincide). The messages are continuous in the parame-
ters (β,B), smooth except possibly at the uniqueness threshold. At β = 0, clearly
φ = nb
 = log(eB + e−B) = nb
(h) for all h ∈ nbH�. We now claim that

nb

(
h+)≥ nb


(
h◦)∨ nb


(
h−) for all B ≥ 0;(2.11)

the proposition follows by symmetry in B . For h ∈ nbH�, we have

nbae(β,B,h) = 1

2

∑
j∈∂o

〈σoσj 〉 = (eβ + e−β)[y2 + (1 − y)2] − e−β

(eβ − e−β)[y2 + (1 − y)2] + e−β

with y ≡ ho→j (+),

which is an even function of 2y − 1, decreasing for 2y ≤ 1 and increasing for
2y ≥ 1. In the nonuniqueness regime, if B ≥ 0 then 2y− < 1 < 2y+ with 1 −
2y− ≤ 2y+ − 1 (with equality if and only if B = 0). Therefore, nbae(β,B,h+) ≥
nbae(β,B,h◦)∨ nbae(β,B,h−) for all B ≥ 0, so (2.11) follows by interpolation in
β ≥ 0 using Lemma 2.4. �

PROOF OF THEOREMS 1 AND 4. Follows by combining the reduction of Sec-
tion 2.1 with the results of Propositions 2.7, 2.10 and 2.11. �
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3. Local structure of measures. In this section, we show how Theorem 4 can
be used to deduce Theorem 5 by straightforward modifications of the arguments
of [19].

PROOF OF THEOREM 5(a). In the hard-core model, observe that ∂2
Bφn =

n−1En[〈S2〉Bn − (〈S〉Bn )2] with S =∑
i∈Vn

σ̄i , implying that the φn are convex in B ,
and hence so is the limiting free energy density φ (which equals b
 by Theo-
rem 4). Convex functions are absolutely continuous, so it holds for a.e. B that
φn,φ are differentiable in B with ∂Bφn → ∂Bφ = ∂B(b
). From the identification
in Lemma 2.6 of the Bethe fixed points achieving the supremum in (2.2), and re-
calling Lemma 2.4, ∂B(b
) = bā(B,hs) = bE[〈σo〉νs] for s = +,−. On the other
hand, as we have noted before, Pn ⊗ νn must have subsequential local weak limits
bP ⊗ ν with ν a translation-invariant element of bG . Along any such subsequence
∂Bφn = ān(B) must converge to bE[〈σ̄o〉ν], therefore, bE[〈σ̄o〉ν] = bE[〈σ̄o〉νs].
Since we saw in Lemma 2.5 that ν+ and ν− are the only translation-invariant max-
imizers for bE[〈σ̄o〉νs], we conclude ν must be a convex combination of ν+, ν−;
and since the Gn are symmetric, necessarily ν = 1

2(ν+ +ν−). The argument for the
anti-ferromagnetic Ising model is very similar, with β in place of B and applying
Lemma 2.8 in place of Lemma 2.5. �

We now analyze the conditional measures νs
n of (1.5), beginning with an easy

observation.

LEMMA 3.1. For anti-ferromagnetic two-spin models on Gn →loc bT,

lim
n→∞En

[
νn

(∑
i∈Vn

τiσi = 0
)]

= 0.

PROOF. For the Ising model, see [19], Lemma 4.1. For the hard-core model,
let An denote the set of vertices i ∈ Vn with B2(i) isomorphic to T2+, the depth-
two subtree of T+; then An is necessarily an independent set of black vertices.
The law of X ≡∑

i∈An
σ̄i under νn(·|σV \An

) is Bin(N,λ/(1+λ)) where N ≡ {i ∈
An : σ̄ ∂i ≡ 0}. If N ≥ nε for ε a small positive constant, then the local CLT or the
Berry–Esséen theorem implies supj∈Z P(X = j) = O(1/

√
nε), so we conclude

νn(
∑

i∈Vn
τiσi = 0|N ≥ nε) = O(1/

√
nε). If N ≤ nε, decompose

1

n

∑
i∈Vn

τiσi = 2

n

∑
i∈An

τi σ̄i + 2

n

∑
i∈∂An

τi σ̄i + 2

n

∑
i /∈An∪∂An

τi σ̄i − 1

n

∑
i∈Vn

τi

= 2

n

∑
i∈An

σ̄i − 2

n

∑
i∈∂An

σ̄i + 2

n

∑
i /∈An∪∂An

τi σ̄i − 1

n

∑
i∈Vn

τi .

On the right-hand side, the first term is ≤ 2ε. The second term, recalling the defi-
nition of An, is ≤ −2(|An|−nε)/(nd), which tends in probability to −(1 − 2ε)/d
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since Gn →loc bT. The third and fourth terms tend to zero in probability, so for
small ε the overall sum is negative with high probability, implying in particu-
lar limn→∞ νn(

∑
i∈Vn

τiσi = 0|N ≤ nε) = 0. Combining these observations con-
cludes the proof for the hard-core model. �

In view of Lemma 3.1, we may without loss restrict attention to the mea-
sures ν+

n . Define the local observables [cf. [19], equation (3.9)]

F t
i ≡ F t

i (δ, σ ) ≡ 1
{ ∑

j∈Bt (i)

τjσj ≤ −δ
∣∣Bt(i)

∣∣};
roughly speaking F t

i indicates the vertices of Gn which are locally not in the
+ phase.

PROOF OF THEOREM 5(b). We outline the steps of the proof of (1.7) follow-
ing [19], describing minor modifications where needed.

1. Let bP ⊗ ν∗ denote any subsequential local weak limit of the Pn ⊗ ν+
n . Then

ν∗ ∈ GT (see [19], Lemma 3.4). By Lemma 3.1, ν+
n has free energy density con-

verging to φ, so the proof of Theorem 5(a) implies that ν∗ = (1 − q)ν+ + qν− for
some q ∈ [0,1].

2. By local weak convergence, limn→∞En[〈F t
In

〉n] = bE[〈F t
o〉ν∗]; further, if Jn

denotes a uniformly random neighbor of In, then

lim
n→∞En

[〈
1
{
F t

In
�= F t

Jn

}〉
n

]= bE
[〈

1
{
F t

o �= F t
j

}〉
ν∗
]
, j ∈ ∂o

(cf. [19], Lemma 3.7).
3. For the hard-core or anti-ferromagnetic Ising model in nonuniqueness

regimes, there exists δ > 0 such that

lim
t→∞

〈
F t

o

〉
ν+ = 0 = 1 − lim

t→∞
〈
F t

o

〉
ν−,

lim
t→∞

〈
F t

o �= F t
j

〉
ν+ = 0 = lim

t→∞
〈
F t

o �= F t
j

〉
ν−

(cf. [19], Lemma 3.8). It follows that for sufficiently large t

lim
n→∞En

[〈
F t

In

〉
n

]≥ q − ε, lim
n→∞En

[〈
1
{
F t

o �= F t
j

}〉
n

]≤ ε.

The argument of [19], Proposition 3.9 (using the edge-expansion hypothesis) now
gives a contradiction unless q = 0, establishing (1.7). The proof of (1.8) then fol-
lows from applying the proof of [19], Theorem 2.5, to the bipartite case. �

4. Computational hardness. In this final section, we prove the hardness re-
sults Theorems 2 and 3 by a randomized reduction, via certain bipartite expander
gadgets, to the approximate MAX-CUT problem.



COUNTING IN TWO-SPIN MODELS ON d-REGULAR GRAPHS 2409

4.1. Bipartite gadgets and randomized reduction. In this subsection, we con-
struct the bipartite gadgets G and explain how they can be used to encode an ap-
proximate MAX-CUT on a given input graph. The gadgets will be constructed by
deterministic search over symmetric bipartite d-regular graphs of nondecreasing
size. To prove that a gadget with the desired properties can be constructed de-
terministically in finite time, we shall consider the uniform probability measure
on (a large subset of) symmetric bipartite d-regular graphs on 2n vertices, and
show that the desired properties are satisfied with positive probability in the limit
n → ∞. Explicitly, for any fixed positive integer k, Gk

2n will be a random bipartite
graph on 2n vertices, as follows:

1. Take Hn to be the uniformly random simple6 d-regular graph on vertex
set [n].

2. Take G2n to be the bipartite double cover of Hn: the vertex set has bipartition
(i+)ni=1 and (i−)ni=1, with two edges (i+, j−) and (i−, j+) corresponding to each
edge (i, j) of Hn. This is a simple symmetric bipartite d-regular graph.

3. Distinguish k vertices (i�)k�=1 uniformly at random from Hn, and for each
� choose a uniformly random neighbor j� ∈ ∂i�. Remove the edges (i�+, j�−)k�=1
and (i�−, j�+)k�=1 from G2n to form the simple symmetric bipartite graph Gk

2n. All
vertices in Gk

2n have degree d except the distinguished vertices W ≡ W+ ∪ W−
where W s ≡ {i�s }k�=1 ∪ {j�

s }k�=1.

We abbreviate ν2n ≡ νG2n
and ν2n,k ≡ νGk

2n
. For r ∈ X let νr

2n and νr
2n,k denote the

corresponding r-phase measures, as in (1.5). For h, h́ ∈ � define h ⊗ψ h́ ∈ �X 2

by (
h ⊗ψ h́

)(
σ,σ ′)≡ zψ

(
h, h́

)−1[
h(σ)ψ

(
σ,σ ′)h́(σ ′)](4.1)

with zψ(h, h́) the normalizing constant. The following proposition is our main
result concerning the local structure of measures on the graphs Gk

2n.

PROPOSITION 4.1. For k fixed and r ∈ X , the measures νr
2n,k(σW = ·) con-

verge in the limit n → ∞ to the product measure

Qr(σ ) ≡ ∏
w∈W+

gr(σw)
∏

w∈W−
g−r(σw) with g+, g− ∈ � as in (2.4).

We defer the proof to Section 4.2, and now demonstrate how to use Propo-
sition 4.1 to establish a randomized reduction from approximating the partition
function to the problem of approximate MAX-CUT on 3-regular graphs, which is
NP-hard [4].

6No self-loops or multiedges.
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By Lemma 3.1 and Proposition 4.1, for any ε > 0 there exists n(ε) large enough
such that for all n ≥ n(ε), there is a positive number of graphs G3k

2n which arise
from the above construction and satisfy the following properties:

(I) G3k
2n was formed by removing 6k distinct edges from G2n, leaving a set

W ≡ W+ ∪ W− of 12k distinct vertices of degree d − 1;
(II) 1

2(1 − ε) ≤ ν2n,3k(Y (σ ) = s) ≤ 1
2(1 + ε) for both s ∈ X ;

(III) 1 − ε ≤ νs
2n,3k(σW )/Qs(σW ) ≤ 1 + ε for both s ∈ X , for all σW ∈ X W .

Consequently, for given ε we may find G3k
2n satisfying properties (I)–(III) within

finite time by deterministic search, and define the gadget G to be the first such
graph which is found.

Given a 3-regular input graph H ≡ (VH ,EH ) on m vertices, we construct from
H and G a new graph HG as follows. First, take ĤG be the disjoint union of
copies Gx of G as x runs over VH . For s ∈ X , let W s

x denote the vertices of Gx

corresponding to W s in G . For each edge (x, y) ∈ EH , add 2k edges between
W s

x and W s
y for both s ∈ X . From property (I), |W+| = |W−| = 6k so this can

be done deterministically in such a way that the resulting graph HG is exactly
d-regular.

Write W for the union of the Wx , and E for the between-gadget edges added
in going from ĤG to HG . We write a spin configuration on ĤG or HG as
σ ≡ (σ x)x∈H with σx the restriction of σ to Gx . We write Yx ≡ Y(σx) for the
phase of each σx , and Y(σ ) for the vector of phases (Y (σ x))x∈H ∈ X H . Write
ZHG (Y) for the partition function for the two-spin model on HG restricted to con-
figurations with phase vector Y, and define likewise ZĤG (Y). Recalling (4.1),
let � ≡ zψ(g+, g+)zψ(g−, g−) and � ≡ zψ(g+, g−)2, and note that for anti-
ferromagnetic two-spin models in nonuniqueness regimes, � > �.

LEMMA 4.2. For G satisfying properties (I)–(III),

log((ZHG /ZĤG )/(�2k|EH |(1 + ε)m))

2k log(�/�)

≤ MAX-CUT(H)

≤ log((ZHG /ZĤG )/(�2k|EH |[(1/2)(1 − ε)2]m))

2k log(�/�)
.

PROOF. From the construction of HG ,
ZHG (Y)

ZĤG (Y)
=∑

σW

( ∏
x∈VH

ν
Yx

Gx
(σWx

)

)( ∏
(ij)∈E

ψ(σi, σj )

)
and by property (III) this is within a (1 ± ε)m factor of∑

σW

( ∏
x∈VH

QYx (σWx
)

)( ∏
(ij)∈E

ψ(σi, σj )

)
.
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By a simple calculation, the last expression equals �2k|EH |(�/�)2k cut(Y) where
cut(Y) denotes the number of edges crossing the cut of H induced by Y. Then

ZHG =∑
Y

ZHG (Y)

ZĤG (Y)

× ZĤG (Y)

⎧⎪⎨⎪⎩
≤ �2k|EH |(�/�)2kMAX-CUT(H)ZĤG (1 + ε)m,

≥ �2k|EH |(�/�)2kMAX-CUT(H)ZĤG

[
1

2
(1 − ε)2

]m
,

where the lower bound uses the fact that minY ZĤG (Y) ≥ [1
2(1 − ε)]mZĤG which

follows from property (II). Rearranging gives the stated result. �

Using this lemma, we now complete the reduction to approximate MAX-CUT.

PROOF OF THEOREMS 2 AND 3. Let H be a 3-regular graph on m vertices.
The upper and lower bounds in Lemma 4.2 differ by O(m/k). Since ĤG is a
disjoint collection of constant-size graphs, its partition function can be computed
in polynomial time. If for any fixed c > 0, the partition function ZHG could be
approximated within a factor of exp{c|HG |} in polynomial time, then both the
upper and lower bounds in Lemma 4.2 can be computed up to additive error
O(mc|G |/k) in polynomial time, giving a computation of MAX-CUT(H) up to
additive error O(m(c|G | + 1)/k). Then note that MAX-CUT(H) is at least linear
in m, since it must exceed the expected value of a random balanced cut which is
3m/[8(1 − m−1)] � m—therefore this computes MAX-CUT(H) up to a multi-
plicative factor 1 + O((c|G | + 1)/k).

The error term can be made arbitrarily small: first take k large; the size |G | can
depend on k but then we may choose c to be small. This completes the reduction to
a PRAS for MAX-CUT on 3-regular graphs, in contradiction of the result of [4].

�

4.2. Local structure on bipartite gadgets. We conclude with the proof of
Proposition 4.1 which refines the local structure result Theorem 5 for the bipar-
tite gadgets. The following lemma shows that the Gk

2n have with high probability
the expansion properties required in Theorem 5(b). The proof is quite standard but
is included here for completeness.

LEMMA 4.3. Let k be fixed. For all δ > 0 there exists λδ > 0 such that the
graphs Gk

2n are (δ, 1
2 , λδ)-edge expanders (Definition 1.5) with high probability.

PROOF. Let us first show that Hn is a (δ,1 − δ,2λδ)-edge expander with high
probability. To this end, let Gcm

n,d be the uniformly random d-regular multigraph
on vertex set V = [n], generated by the configuration model—that is, the edge
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set is given by a perfect matching on the set [nd] of labelled half-edges, where
half-edge i is incident to vertex �i/d� (self-loops and multiedges allowed). Then
Hn has the law of Gcm

n,d conditioned on the event that Gcm
n,d is a simple graph—and

since this event occurs with asymptotically nonnegligible probability (see, e.g.,
[15], Chapter 9), the claim is proved showing that Gcm

n,d is a (δ,1 − δ,2λδ)-edge
expander with high probability.

Let Sn(x, z) denote the number of subsets of vertices S in Gcm
n,d of size |S| =

m ≡ nx such that there are exactly j ≡ ndz edges between S and its complement.
With E′

n denoting expectation with respect to the configuration model law of Gcm
n,d ,

we have

E′
n

[
Sn(x, z)

]= (
n

m

)
1

(nd − 1)!!
(

md

j

)(
(n − m)d

j

)
× j !(md − j − 1)!!((n − m)d − j − 1

)!!,
where the double factorial (k−1)!! ≡ k!/[(k/2)!2k/2] counts the number of match-
ings on [k]. By Stirling’s formula,E′

n[Sn(x, z)] = nO(1) exp{n[H(x)+dF(x, z)]}
where

F(x, z) ≡ xH

(
z

x

)
+ (1 − x)H

(
z

1 − x

)
+ z log z + 1

2
(x − z) log(x − z)

+ 1

2
(1 − x − z) log(1 − x − z).

Since limz↓0 F(x, z) = −1
2H(x) and d ≥ 3, we see that for any δ > 0 there exists

λδ > 0 such that E′
n[Sn(x, z)] is exponentially small in n for all δ ≤ x ≤ 1 − δ,

0 ≤ z ≤ 2λδ—implying that with high probability every subset of vertices S in
Gcm

n,d with nδ ≤ |S| ≤ n(1 − δ) has edge-expansion at least 2λδ . Similarly, note that

limx↑1/2 limz↑x F (x, z) = −1
2 log 2, so (adjusting λδ as needed) with high proba-

bility every subset S in Gcm
n,d with n(1

2 − δ) ≤ |S| ≤ n(1
2 + δ) has edge-expansion

at most d − 2λδ , that is, has at least |S|λδ internal edges.
We now show expansion for Gk

2n: since k does not change with n, it suffices
to show expansion for the bipartite double cover G2n of Gcm

n,d . Let S± be subsets
of the ± sides of G2n such that S ≡ S+ ∪ S− has size 2nδ ≤ |S| ≤ n, and let π

denote the projection from G2n to Hn, so that |πS| ≥ 1
2 |S| ≥ nδ. The calculation

above implies that (with high probability) all such subsets S with |πS| ≤ n(1 − δ)

have edge-expansion at least λδ . Suppose instead |πS| ≥ n(1 − δ): without loss
|S+| ≥ |S−|, so |πS+ \ πS−| = |πS| − |πS−| ≥ n(1

2 − δ). By the preceding
calculation, πS+ \ πS− must have at least n(1

2 − δ)λδ internal edges, implying
that S must have edge-expansion at least (1

2 − δ)λδ , concluding the proof. �

PROOF OF PROPOSITION 4.1. Without loss, fix r = +. Let Bt denote the
union of the balls Bt(w) ⊆ G2n over w ∈ {i�+}k�=1 ∪ {i�−}k�=1; assume that Bt is
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a disjoint union of graphs isomorphic to Tt with internal boundary St ≡ Bt \Bt−1,
which is the case with high probability. By construction, the G2n are symmet-
ric bipartite graphs with law P2n →loc bP. Lemma 4.3 implies that they satisfy
with high probability the expansion condition of Theorem 5(b), so we conclude
P2n ⊗ ν+

2n →loc bP ⊗ ν+. Let Yt (σ ) ≡ sgn(
∑

i∈V \Bt
τiσi): in the nonuniqueness

regime, the concentration result (1.8) implies that ν2n(Y (σ ) �= Yt (σ )) → 0 in prob-
ability, so that we also have the convergence P2n ⊗ ν

+,t
2n →loc bP ⊗ ν+ where

ν
+,t
2n (·) ≡ ν2n(·|Yt (σ ) = +). In particular, with E2n denoting expectation over the

law P2n of G2n, we must have

lim sup
t→∞

lim sup
n→∞

E2n

[∥∥ν+,t
2n

(
(σi�s

, σj�−s
) = ·)− g+ ⊗ψ g−

∥∥
TV

]
= 0.(4.2)

For s ∈ X and η ∈ X St , let ξ
�,s
t,η and ζ

�,s
t,η denote the marginals with respect to

ν2n,k of the spins at i�s and j�
s , respectively, conditioned on configuration η on St :

ξ
�,s
t,η ≡ ν2n,k(σi�s

= ·|σSt
= η),

ζ s
t,�,η(·) ≡ ν2n,k(σj�

s
= ·|σSt

= η).

Notice that ξ, ζ are defined with respect to the measure on Gk
2n (i.e., with no

direct edge interaction between i�s and j�−s), whereas Bt is defined with respect to
the graph structure of G2n. The reason for conditioning on Yt rather than Y is that
we now have the decomposition

ν
+,t
2n

(
(σi�s

, σj�−s
) = ·)=∑

η

ν
+,t
2n (σ St

= η)

(
ξ

�,s
t,η ⊗ψ ζ

�,−s
t,η

)
.(4.3)

Since the local neighborhoods of i�s , j
�
s in Gk

2n converge to (d − 1)-ary trees, the

marginals ξ
�,s
t,η and ζ

�,s
t,η are asymptotically sandwiched (in the limit n → ∞ fol-

lowed by t → ∞, uniformly over all η) between g− and g+. On the other hand,

it is easily seen that the maximum of (h ⊗ψ h́)(+,−) over all g− � h, h́ � g+ is
attained uniquely by (h, h́) = (g+, g−), so the only way for the average (4.3) to
be close to h ⊗ψ h́ is for most of the ξ

�,+
t,η and ζ

�,−
t,η to be close to g+ and g−,

respectively,

lim sup
t→∞

lim sup
n→∞

E2n

[∑
η

ν
+,t
2n (σ St

= η)

(4.4)

× (∥∥ξ�,+
t,η − g+

∥∥
TV + ∥∥ζ �,−

t,η − g−
∥∥

TV

)]= 0.

We now claim (4.4) continues to hold if η is averaged with respect to ν
+,t
2n,k in place

of ν
+,t
2n ; since the marginals ξ

s,�
t,η and ζ

s,�
t,η are η-measurable, it suffices to show
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that ν
+,t
2n (σSt

= η) � ν
+,t
2n,k(σ St

= η) uniformly over η. Indeed,

ν
+,t
2n (σSt

= η)

ν
+,t
2n,k(σ St

= η)
= Z

+,t
out (η)Zin(η)

Z
+,t
out (η)Zk

in(η)
·
∑

η′ Z+,t
out (η

′)ψ̄(η′)−1Zk
in(η

′)∑
η′ Z+,t

out (η
′)ψ̄(η′)−1Zin(η′)

,(4.5)

where ψ̄(η) ≡∏
v∈St

ψ̄(ηv) and

Z
+,t
out (η) ≡ ZG2n\Bt−1

[{
σG2n\Bt−1

:Yt (σ ) = + and σSt
= η

}]
,

Zin(η) ≡ ZBt

[{σBt
:σSt

= η}],
Zk

in(η) ≡ ZBt∩Gk
2n

[{σBt
:σSt

= η}].
Now note that with k fixed, in the limit n → ∞ followed by t → ∞ we have
Zin(η) � Zk

in(η) uniformly over η: for the hard-core model

Zin(η)

Zk
in(η)

=
k∏

�=1

([
1 − ξ+

t,�,η(1)ζ−
t,�,η(1)

][
1 − ξ−

t,�,η(1)ζ+
t,�,η(1)

])
,

which is �1 uniformly over η; a similar argument applies for Ising. Thus, (4.4)

continues to hold with ν
+,t
2n,k in place of ν

+,t
2n . Since the spins (σw)w∈W are exactly

independent under ν
+,t
2n,k(·|σSt

= η) for any η, this further implies

lim sup
t→∞

lim sup
n→∞

E2n

[∥∥ν+,t
2n,k(σW = ·) − Q+

W

∥∥
TV

]= 0.(4.6)

Finally, ν
+,t
2n (σ St

= η) � ν
+,t
2n,k(σ St

= η) implies ν2n,k(Y (σ ) �= Yt (σ )) → 0 in

probability, so (4.6) holds with ν+
2n,k in place of ν

+,t
2n,k which proves the result.

�
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