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LOCALISATION AND AGEING IN THE PARABOLIC ANDERSON
MODEL WITH WEIBULL POTENTIAL

BY NADIA SIDOROVA AND ALEKSANDER TWAROWSKI

University College London

The parabolic Anderson model is the Cauchy problem for the heat equa-
tion on the integer lattice with a random potential ξ . We consider the case
when {ξ(z) : z ∈ Z

d } is a collection of independent identically distributed ran-
dom variables with Weibull distribution with parameter 0 < γ < 2, and we
assume that the solution is initially localised in the origin. We prove that, as
time goes to infinity, the solution completely localises at just one point with
high probability, and we identify the asymptotic behaviour of the localisation
site. We also show that the intervals between the times when the solution re-
localises from one site to another increase linearly over time, a phenomenon
known as ageing.

1. Introduction and main results.

1.1. Parabolic Anderson model. We consider the heat equation with random
potential on the integer lattice Z

d and study the Cauchy problem with localised
initial condition,

∂tu(t, z) = �u(t, z) + ξ(z)u(t, z), (t, z) ∈ (0,∞) ×Z
d,

u(0, z) = 1{0}(z), z ∈ Z
d,

(1)

where

(�f )(z) = ∑
y∼z

[
f (y) − f (z)

]
, z ∈ Z

d, f :Zd →R

is the discrete Laplacian, and the potential {ξ(z) : z ∈ Z
d} is a collection of inde-

pendent identically distributed random variables. The problem (1) and its variants
are often called the parabolic Anderson model.

The model originates from the seminal work [1] of the Nobel laureate P. W. An-
derson, who used the Hamiltonian � + ξ to describe electron localisation inside a
semiconductor, a phenomenon now known as Anderson localisation. The parabolic
version of the model appears naturally in the context of reaction–diffusion equa-
tions; see [5, 14], describing a system of noninteracting particles diffusing in space

Received June 2012; revised April 2013.
MSC2010 subject classifications. Primary 60H25; secondary 82C44, 60F10.
Key words and phrases. Parabolic Anderson model, Anderson Hamiltonian, random potential, in-

termittency, localisation, Weibull tail, Weibull distribution, Feynman–Kac formula.

1666

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/13-AOP882
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


LOCALISATION AND AGEING IN THE PAM WITH WEIBULL POTENTIAL 1667

according to the Laplacian � and branching at rate ξ(z) dt at any given point z.
It turns out that the solution u(t, z) gives the average number of such particles at
time t at location z.

1.2. Intermittency and localisation. A lot of mathematical attention to the
parabolic Anderson model over the last 30 years has been due to the fact that it
exhibits the intermittency effect. In general, a random model is said to be intermit-
tent if its long-term behaviour cannot be described using an averaging principle;
see [18]. In the context of the parabolic Anderson model, this means that, for large
times t , the solution u(t, z) is mainly concentrated on a small number of remote
random islands; see [7] for a survey.

The long-term behaviour of the parabolic Anderson model is determined by the
upper tail of the underlying distribution of the potential ξ , and it is believed that the
intermittency is more pronounced for heavier tails. However, an initial approach
to understanding intermittency was proposed for light-tailed potentials (those with
finite exponential moments). It was suggested to study large time asymptotics of
the moments of the total mass of the solution

U(t) = ∑
z∈Zd

u(t, z),

which are finite for such potentials. The model was defined as intermittent if higher
moments exhibited a faster growth rate, and it was proved in [9] that the parabolic
Anderson model is intermittent in this sense. This method, however, does not work
for heavy-tailed potentials (those with infinite exponential moments), as for them
the moments of U(t) are infinite. Such distributions include the exponential distri-
bution and all heavier-tailed distributions.

In order to understand the intermittent picture in more detail, it proved to be
useful to study various large-time asymptotics of the total mass U(t), as they pro-
vided some insight into the geometry of the intermittent islands. It was shown in
[16] that there are four types of behaviour the parabolic Anderson model can ex-
hibit depending on the tail of the underlying distribution. The prime examples from
each class are the following distributions:

(1) Weibull distribution with parameter γ > 1, that is, F(x) = 1 − e−xγ
.

(2) Double-exponential distribution with parameter ρ > 0, that is, F(x) = 1 −
e−ex/ρ

.
(3) “Almost bounded” distributions, including some unbounded distributions with

tails lighter than double-exponential and some bounded distributions.
(4) Other bounded distributions.

The asymptotics of the total mass U(t) was studied in [10] for cases (1) and (2),
in [16] for case (3) and in [4] for case (4). Heuristics based on the asymptotics of
U(t) suggests that the intermittent islands will be single lattice points in case (1),
bounded regions in case (2) and of size growing to infinity in cases (3) and (4).
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However, a rigorous geometric picture of intermittency has not been well under-
stood. In particular, it is not clear how many intermittent islands are needed to
carry the total mass of the solution, and where those islands are located.

Moreover, the four classes above only cover light-tailed potential, and the class
of all heavy-tailed distributions should be included to complete the picture. The
prime examples of such distributions are

(0a) Pareto distributions, that is, F(x) = 1 − x−α , α > d ;
(0b) Weibull potentials with parameter γ ≤ 1.

Heavy-tailed potentials were first studied in [17], and it turned out that the asymp-
totics of U(t) in this case becomes nondeterministic and difficult to control. It
was suggested to study the nondeterministic nature of U(t) using extreme value
theory and point processes techniques. This approach was further developed in
[12], where the intermittency was fully described in its original geometric sense
for Pareto potentials (0a). Polynomial tails are the heaviest tails for which the so-
lution of the parabolic Anderson model still exists (see [9]), and one expected the
localisation islands to be small and not numerous. It was proved that the extreme
form of this conjecture is true, namely, that there is only one localisation island
consisting of only one site. In other words, at any time the solution is localised at
just one point with high probability, a phenomenon called complete localisation.

It is a challenging problem to describe geometric intermittency for lighter tails.
In [8], intermittent islands were described for potentials from classes (1) and (2),
but the question about the number of islands remained open. Case (0b) was stud-
ied in [13], and it was shown that the solution is localised on an island of size

o(
t(log t)1/γ−1

log log t
). However, it was believed that a much smaller region should actu-

ally contribute to the solution.
In this paper, we assume that the potential has Weibull distribution with param-

eter γ > 0, that is, the distribution function of each ξ(z) is

F(x) = Prob
{
ξ(z) < x

}= 1 − e−xγ

, x ≥ 0.(2)

We focus on 0 < γ < 2, which covers case (0b) and partly case (1). We prove that
for such potentials the solution of the parabolic Anderson model completely lo-
calises at just one single site, exhibiting the strongest form of intermittency similar
to the Pareto case (0a). This was plausible for 0 < γ < 1 as in this case the spectral
gap of the Anderson Hamiltonian � + ξ in a relevant t-dependent large box tends
to infinity, but is quite surprising for the exponential distribution (γ = 1) where the
spectral gap is bounded, and even more so for 1 < γ < 2 where the spectral gap
tends to zero. We identify the localisation site explicitly in terms of the potential ξ

and describe its scaling limit.
For all sufficiently large t (so that log log t is well defined), denote

�t(z) = ξ(z) − |z|
γ t

log log t, z ∈ Z
d,(3)
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and let Z
(1)
t be such that

�t

(
Z

(1)
t

)= max
z∈Zd

�t (z).

The existence of Z
(1)
t will be proved in Lemma 2.2.

Denote by |x| the 	1-norm of x ∈ R
d , and denote by �⇒ weak convergence.

THEOREM 1.1 (Complete localisation). Let 0 < γ < 2. As t → ∞,

lim
t→∞

u(t,Z
(1)
t )

U(t)
= 1 in probability.

REMARK 1. It is easy to see that the solution cannot be localised at one point
for all large times t since occasionally it has to relocalise continuously from one
site to another, and at those periods the solution will be concentrated at more than
one point. It was shown in [12] that for Pareto potentials the solution in fact re-
mains localised at just two points at all large times t almost surely. We conjecture
that the same is true for Weibull potentials with 0 < γ < 2.

REMARK 2. There is a chance that our proof could be adjusted to the case
γ = 2. However, new ideas are required to deal with γ > 2, and there is a high
chance that complete localisation will simply fail in that case. The technical rea-
sons why our proof breaks down for γ ≥ 2 are explained in Remark 8 and Re-
mark 9 in Sections 4 and 5, respectively.

THEOREM 1.2 (Scaling limit for the localisation site). Let γ > 0. Then

Z
(1)
t

rt
�⇒ X(1),

as t → ∞ where

rt = t (log t)1/γ−1

log log t
(4)

and X(1) is an R
d -valued random variable with independent exponentially dis-

tributed coordinates with parameter d1−1/γ and uniform random signs, that is,
with density

p(1)(x) = dd(1−1/γ )

2d
exp

{−d1−1/γ |x|}, x ∈ R
d .

REMARK 3. Although we prove Theorem 1.2 for all γ > 0, it only describes
the scaling limit for the concentration site for 0 < γ < 2 as otherwise the solution
may not be localised at Z

(1)
t .
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REMARK 4. This scaling limit agrees with the scaling limit for the centre
of the intermittent island obtained in [13] for 0 < γ ≤ 1. However, according to
Theorem 1.1, this island is now of radius zero (being a single point) rather than
o(rt ), and the result holds for the wider range 0 < γ < 2.

1.3. Ageing. The notion of ageing is a key paradigm in studying the long-
term dynamics of large disordered systems. A system exhibits ageing if, being
in a certain state at time t , it is likely to remain in this state for some time s(t)

which depends increasingly, and often linearly, on the time t . Roughly speaking,
the system becomes increasingly more conservative and reluctant to change.

The ageing phenomenon has been extensively studied for disordered systems
such as trap models and spin glasses; see [3] and references therein. In the context
of the parabolic Anderson model, a certain form of ageing based on correlations
was studied for some time-dependent potentials in [2, 6], and it was shown that
such systems exhibit no ageing. The recent paper [11] dealt with potentials from
class (1) and studied the correlation ageing (which gives only indirect information
about the evolution of localisation) and more explicit annealed ageing (which, in
contrast to the quenched setting, is based on the evolution of the islands contribut-
ing to the solution averaged over the environment). It was shown that these two
forms of ageing are similar, and somewhat surprisingly, ageing was observed for
Weibull potentials with parameter γ > 2 but not for heavier-tailed Weibull poten-
tials with parameter 1 < γ ≤ 2.

The explicit ageing in the quenched setting has so far only been observed for
Pareto potentials; see [15]. In that case, the solution completely localises at just one
point and ageing of the parabolic Anderson model is equivalent to ageing of the
concentration site process. In this paper, we use a similar approach to show that
the parabolic Anderson model with Weibull potential with parameter 0 < γ < 2
exhibits ageing as well. Notice that, remarkably, this is in sharp contrast to the
absence of annealed and correlation ageing observed for γ > 1 in [11].

For each t > 0, denote

Tt = inf
{
s > 0 :Z(1)

t+s 
= Z
(1)
t

}
.

THEOREM 1.3 (Ageing). Let γ > 0. As t → ∞
Tt

t
�⇒ 
,

where 
 is a nondegenerate almost surely positive random variable.

REMARK 5. In the proof of Theorem 1.3, we identify the distribution function
of 
 as a certain integral over Rd ×R.

REMARK 6. Although we prove Theorem 1.3 for all γ > 0, it only charac-
terises the ageing behaviour of the parabolic Anderson model for 0 < γ < 2 as
otherwise the solution may not be localised at Z

(1)
t .



LOCALISATION AND AGEING IN THE PAM WITH WEIBULL POTENTIAL 1671

1.4. Outline of the proofs. It follows from [9], Theorem 2.1, that the parabolic
Anderson model with Weibull potential possesses a unique nonnegative solution
u : (0,∞) ×Z

d → [0,∞), which has a Feynman–Kac representation

u(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}

]
, (t, z) ∈ (0,∞) ×Z

d,

where (Xs : s ≥ 0) is a continuous-time simple random walk on the lattice Z
d with

generator �, and Pz and Ez denote the corresponding probability and expectation
given that the random walk starts at z ∈ Z

d .
The Feynman–Kac formula suggests that the main contribution to the solution

u at time t comes from paths (Xs) spending a lot of time at sites z where the value
ξ(z) of the potential is high but which are reasonably close to the origin so that
the random walk would have a fair chance of reaching them in time t . It turns out
that the functional �t defined in (3) captures this trade-off, being the difference of
the energetic term ξ(z) and an entropic term responsible for the cost of going to a
point z in time t and staying there. Furthermore, the maximiser Z

(1)
t of �t turns

out to be the site where the solution u is localised at time t .
In order to prove this, we decompose the solution u into the sum

u(t, z) = u1(t, z) + u2(t, z)

according to two groups of paths ending at z:

(I) paths visiting Z
(1)
t before time t and staying in the ball Bt centred in the origin

with radius |Z(1)
t |(1 + ρt ), where ρt is a certain function tending to zero;

(II) all other paths.

We show that u1 localises around Z
(1)
t and that the total mass of u2 is negligible.

To prove the localisation of u1, we use spectral analysis of the Anderson Hamil-
tonian � + ξ in the ball Bt . In order to do so, we show that, although the spectral
gap tends to zero for γ > 1, it is still reasonably large. We suggest a new tech-
nique which allows us to show that the principal eigenfunction just manages to
localise at Z

(1)
t . Then we use a result from [8] to show that this is sufficient for the

localisation of u1.
In order to prove that the total mass of u2 is negligible, we notice that the paths

from the second group fall into one of the following three subgroups:

(1) paths having the maximum of the potential at the point Z
(1)
t but making more

than |Z(1)
t |(1 + ρt ) steps;

(2) paths having the maximum of the potential not at the point Z
(1)
t , with the

maximum being reasonably large;
(3) paths missing all high values of the potential.

In Section 4, we show that the total mass of the paths corresponding to each
group is negligible. In all cases, this is due to an imbalance between the energetic
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forces (which do not contribute enough if the site Z
(1)
t is not visited) and entropic

forces (as the probabilistic cost is too high if a path is too long), as well as to the
fact that the gap between �t(Z

(1)
t ) and the second largest value of �t is too large.

Denote by Z
(2)
t a point where the second largest value of �t is attained, that is,

�t

(
Z

(2)
t

)= max
{
�t(z) : z ∈ Z

d, z 
= Z
(1)
t

}
.

In order to find the scale of growth of �t(Z
(1)
t ) − �t(Z

(2)
t ) as well as of Z

(1)
t and

Z
(2)
t we extend the point processes techniques developed in [17] and [12]. For

sufficiently large t , we denote

at = (d log t)1/γ and dt = (d log t)1/γ−1.

Further, for all z ∈ Z
d and all sufficiently large t , we denote

Yt,z = �t(z) − art

drt

,(5)

where rt is defined by (4), and define a point process

�t = ∑
z∈Zd

ε
(zr−1

t ,Yt,z)
,(6)

where we write εx for the Dirac measure in x. In Section 3, we show that the point
processes �t are well defined on a carefully chosen domain, and that they converge
in law to a Poisson point process with certain density. This allows us to analyse
the joint distribution of the random variables Z

(1)
t , Z

(2)
t , �t(Z

(1)
t ), �t(Z

(2)
t ) and,

in particular, prove Theorem 1.2.
Finally, to prove ageing, we argue that due to the form of the functional �t the

probability of {Z(1)
t+wt = Z

(1)
t }, for each w > 0, is roughly equal to∫

Rd×R

Prob
{
�t(dx × dy) = 1,�t

(
Dw(x, y)

)= 0
}
,(7)

where

Dw(x, y) =
{
(x̄, ȳ) ∈ R

d ×R :y + wθ |x|
1 + w

≤ ȳ + wθ |x̄|
1 + w

}
(8)

∪ (
R

d × [y,∞)
)
,

and

θ = γ −1d1−1/γ .(9)

In particular, the integral in (7) converges to the corresponding finite integral with
respect to the Poisson point process � as t → ∞. This proves Theorem 1.3 since
that integral is a continuous function of w decreasing from one to zero as w varies
from zero to infinity and so it is the tail of a distribution function.
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The paper is organised as follows. In Section 2, we introduce notation and prove
some preliminary results. In Section 3, we develop a point processes approach,
analyse the joint distribution of Z

(1)
t , Z

(2)
t , �t(Z

(1)
t ), �t(Z

(2)
t ) and prove Theo-

rem 1.2. In Section 4, we deal with the total mass corresponding to the paths from
groups (1)–(3) and show that it is negligible. In Section 5, we discuss the localisa-
tion of u1 and prove Theorem 1.1. Finally, in Section 6, we study ageing and prove
Theorem 1.3.

2. Preliminaries. We focus on potentials with Weibull distribution (2) with
parameter 0 < γ < 2. However, most of our point processes results can be obtained
for all γ > 0 at no additional cost. Therefore, we will assume γ > 0 in Sections 2,
3 and 6, and restrict ourselves to the case 0 < γ < 2 in Sections 4 and 5.

2.1. Extreme value notation and preliminary results. We denote the upper or-
der statistics of the potential ξ in the centred ball of radius r > 0 by

ξ (1)
r = max|z|≤r

ξ(z)

and

ξ (i)
r = max

{
ξ(z) : |z| ≤ r, ξ(z) < ξ(i−1)

r

}
for 2 ≤ i ≤ 	r , where 	r is the number of points in the ball. Observe that throughout
the paper we use the 	1-norm.

Let 0 < ρ < σ < 1/2 and for all sufficiently large r let

Fr = {
z ∈ Z

d : |z| ≤ r,∃i ≤ rρ such that ξ(z) = ξ (i)
r

}
,

Gr = {
z ∈ Z

d : |z| ≤ r,∃i ≤ rσ such that ξ(z) = ξ (i)
r

}
.

The sets Fr and Gr contain the sites in the centred ball of radius r where the
highest 
rρ� and 
rσ � values of the potential ξ are achieved, respectively.

LEMMA 2.1. Almost surely

ξ (1)
r ∼ (d log r)1/γ as r → ∞.

PROOF. This result was proved in [17] for the case 0 < γ ≤ 1 but it can be
easily extended to all γ > 0 by observing that ζ(z) = ξ(z)γ , z ∈ Z, are exponential
identically distributed random variables. Denote the maximum of the potential ζ

by

ζ (1)
r = max|z|≤r

ζ(z).

Since ξ
(1)
r = (ζ

(1)
r )1/γ and ζ

(1)
r ∼ d log r by [17], Lemma 4.1, with γ = 1, we

obtain the required asymptotics. �
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For all c ∈R, z ∈ Z
d , and all sufficiently large t define

�t,c(z) = �t(z) + c|z|
t

.

Denote by Z
(1,c)
t and Z

(2,c)
t points where the first and second largest values of the

functional �t,c are achieved, that is,

�t,c

(
Z

(1,c)
t

)= max
{
�t,c(z) : z ∈ Z

d
}
,

�t,c

(
Z

(2,c)
t

)= max
{
�t,c(z) : z ∈ Z

d, z 
= Z
(1,c)
t

}
.

(10)

Observe that �t = �t,0 and so Z
(1)
t = Z

(1,0)
t and Z

(2)
t = Z

(2,0)
t . We are mostly

interested in the case c = 0, but some understanding of the general case is needed
for Lemma 4.5. This is explained more carefully in Remark 7 in Section 3.

LEMMA 2.2. For each c, the maximisers Z
(1,c)
t and Z

(2,c)
t (and, in particular,

Z
(1)
t and Z

(2)
t ) are well defined for all sufficiently large t almost surely.

PROOF. Observe that �t,c(0) > 0 and �t,c(1) > 0 almost surely if t is large
enough. On the other hand, by Lemma 2.1 for all sufficiently large t there exists a
random radius ρ(t) > 0 such that, almost surely,

ξ(z) ≤ ξ
(1)
|z| ≤ (

2d log |z|)1/γ ≤ |z|
γ t

log log t − c|z|
t

for all |z| > ρ(t).

Hence, �t,c(z) ≤ 0 for all |z| > ρ(t) and so �t,c takes only finitely many positive
values. This implies that the maxima in (10) exist for all c. The existence of Z

(1)
t

and Z
(2)
t follows as a particular case when c = 0. �

Choose {
β ∈ (1 − 1/γ,1/γ ) if 1 ≤ γ < 2,
β = 0 if 0 < γ < 1.

Observe that β ≥ 0 and define

μr = (log r)−β(11)

for all r large enough. For 0 < γ < 1, the gaps between higher order statistics
of the potential get larger (as r → ∞) and the auxiliary scaling function μr is
not needed (so that we can simply set μr = 1 as above). For γ = 1, the gaps are
of finite order, and for γ > 1 they tend to zero, and an extra effort is required
to control this effect. This is done by the correction term μr . It is essential for
the choice of μr that, on the one hand, it is negligible with respect to dr and so
with respect to the gap �t(Z

(1)
t ) − �t(Z

(2)
t ) (which is achieved by the condition

β > 1 − 1/γ ) and on the other hand − logμr must be smaller than log ξ
(1)
r (which
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is guaranteed by β < 1/γ ). However, this method only works for γ < 2 as the
interval (−1/γ + 1,1/γ ) is empty otherwise. This is explained in more detail in
Remark 8 in Section 4.

We introduce four auxiliary positive scaling functions ft → 0, gt → ∞, λt →
0, ρt → 0 satisfying the following conditions as t → ∞:

(a) f −1
t , gt , λ

−1
t , ρ−1

t are o(log log t),(12)

(b) gtρtλ
−1
t → 0.(13)

Further, we define

kt = ⌊
(rtgt )

ρ⌋ and mt = ⌊
(rtgt )

σ ⌋.
For any c ∈ R, we introduce the event

Ec(t) = {
rtft <

∣∣Z(1)
t

∣∣< rtgt ,�t

(
Z

(1)
t

)− �t

(
Z

(2)
t

)
> dtλt ,

�t

(
Z

(1)
t

)
> art − dtgt ,�t

(
Z

(2)
t

)
> art − dtgt ,(14) ∣∣Z(1,c)

t

∣∣< rtgt ,
∣∣Z(2,c)

t

∣∣< rtgt

}
.

For any x, y ∈ R, we denote by x ∧y and x ∨y the minimum and the maximum
of x and y, respectively, and we denote x− = −x ∨ 0.

2.2. Geometric paths on the lattice. For each n ∈ N∪ {0} denote by

Pn = {
y = (y0, . . . , yn) ∈ (

Z
d)n+1 : |yi − yi−1| = 1 for all 1 ≤ i ≤ n

}
the set of all geometric paths in Z

d . Define

q(y) = max
0≤i≤n

ξ(yi) and p(y) = max
0≤i≤n

|yi − y0|,
and denote by z(y) a point yi of the path y such that ξ(yi) = q(y).

Let (τi), i ≥ 0, be waiting times of the random walk (Xs), which are indepen-
dent exponentially distributed random variables with parameter 2d . Denote by E
the expectation with respect to (τi). For each y ∈ Pn, denote by

P(t, y) = {X0 = y0,Xτ0+···+τi−1 = yi for all 1 ≤ i ≤ n,

and t − τn ≤ τ0 + · · · + τn−1 < t}
the event that the random walk has the trajectory y up to time t . Here, we assume
that the random walk is continuous from the right. Denote by

U(t, y) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1P(t,y)

]
(15)

the contribution of the event P(t, y) to the total mass of the solution u of the
parabolic Anderson model.

For any set A ⊂ Z
d and any geometric path y ∈ Pn denote

n+(y,A) = ∣∣{0 ≤ i ≤ n :yi ∈ A}∣∣ and n−(y,A) = ∣∣{0 ≤ i ≤ n :yi /∈ A}∣∣.
We call a set A ⊂ Z

d totally disconnected if |x − y| 
= 1 whenever x, y ∈ A.
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LEMMA 2.3. Let A be a totally disconnected finite subset of Zd , and y ∈ Pn

for some n. Then

n+(y,A) ≤ n − p(y)

2
+ |A| ∧

⌈
p(y) + 1

2

⌉
.

PROOF. Let i(y) = min{i : |yi − y0| = p(y)} and denote z = yi(y). Similarly
to [12], page 371, we first erase loops that the path y may have made before
reaching z for the first time and extract from (y0, . . . , yi(y)) a self-avoiding path
(yi0, . . . , yip(y)

) starting at y0 of length p(y), where we take i0 = 0 and

ij+1 = min
{
i :yl 
= yij ∀l ∈ [

i, i(y)
]}

.

Since this path is self-avoiding and has length p(y), at most |A| ∧ �p(y)+1
2 � of

its points belong to A. Next, for each 0 ≤ j ≤ p(y) − 1, we consider the path
(yij+1, . . . , yij+1−1), which was removed during erasing the j th loop. It contains
an even number ij+1 − ij −1 of steps and at most half of them belong to A since A

is totally disconnected. Finally, the remaining piece (yip(y)+1, . . . , yn) consists of
n − ip(y) points, and at most half of them lie in A for the same reason. We obtain

n+(y,A) ≤ |A| ∧
⌈
p(y) + 1

2

⌉
+

p(y)−1∑
j=0

ij+1 − ij − 1

2
+ n − ip(y)

2

= |A| ∧
⌈
p(y) + 1

2

⌉
+ n − p(y)

2

as required. �

3. A point processes approach. In this section, we use point processes tech-
niques to understand the joint scaling limit of the random variables Z

(1,c)
t , Z

(2,c)
t ,

�t,c(Z
(1,c)
t ), �t,c(Z

(2,c)
t ) for each c and, in particular, that of Z

(1)
t , Z

(2)
t , �t(Z

(1)
t ),

�t(Z
(2)
t ). We show that Z

(1,c)
t and Z

(2,c)
t grow at scale rt and that �t,c(Z

(1,c)
t )−art

and �t,c(Z
(2,c)
t ) − art grow or decay at scale dt (which goes to infinity for γ < 1,

is a constant for γ = 1, and tends to zero for γ > 1), and we find their joint scaling
limit in Proposition 3.2. In particular, we show that the probability of the event
Ec(t) defined in (14) tends to one for any c and so it suffices to prove complete
localisation and ageing on the event Ec(t) for a sufficiently large constant c. This
constant will be identified later in Proposition 4.3 in Section 4. Finally, in the end
of this section we prove Theorem 1.2.

For all z ∈ Z
d and all sufficiently large r , denote

Xr,z = ξ(z) − ar

dr
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and define

�r = ∑
z∈Zd

ε(zr−1,Xr,z)
,

where εx denotes the Dirac measure in x. For each τ ∈ R and q > 0, let

Hq
τ = {

(x, y) ∈ Ṙ
d × (−∞,∞] :y ≥ q|x| + τ

}
,

where Ṙ
d denotes the one-point compactification of the Euclidean space. It was

proved in [17], Lemma 4.3, that for 0 < γ ≤ 1 the restriction of each �r to H
q
τ is

a point process and, as r → ∞, �r |Hq
τ

converges in law to a Poisson point process
� on H

q
τ with intensity measure

η(dx, dy) = dx ⊗ γ e−γy dy.

However, it is easy to check that the same proof works for all γ > 0.
Observe that we need to restrict �r from R

d ×R to H
q
τ in order to ensure that

there are only finitely many points of �r in every relatively compact set. This is
achieved with the help of q , and τ makes it possible for the spaces H

q
τ to capture

the behaviour of �r on the whole space R
d × R as it can be chosen arbitrarily

small.
For each τ ∈R and α > −θ , let

Ĥ α
τ = {

(x, y) ∈ Ṙ
d+1 :y ≥ α|x| + τ

}
,

where the hat over H reflects the fact that the spaces Ṙ
d × (−∞,∞] and Ṙ

d+1

have different topology.
For all c ∈ R, z ∈ Z

d , and all sufficiently large t define

Yt,z,c = �t,c(z) − art

drt

and �t,c = ∑
z∈Zd

ε
(zr−1

t ,Yt,z,c)
.

Recall the definitions of Yt,z and �t from (5) and (6) and observe that Yt,z,c =
Yt,z,0 and �t = �t,0.

LEMMA 3.1. Let c ∈ R. For all sufficiently large t , �t,c is a point process
on Ĥ α

τ . As t → ∞, �t,c converges in law to a Poisson point process � on Ĥ α
τ

with intensity measure

ν(dx, dy) = dx ⊗ γ exp
{−γ

(
y + θ |x|)}dy.

PROOF. Observe that

Yt,z,c = ξ(z) − art

drt

− |z|
γ tdrt

log log t + c|z|
tdrt

= ξ(z) − art

drt

− (
θ + o(1)

) |z|
rt

.

Choose α′ and q so that −θ < α′ < α and α′ + θ < q < α + θ . Then

�t,c|Ĥ α
τ

= (
�rt |Hq

τ
◦ T −1

t,c

)∣∣
Ĥ α

τ
,(16)
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where Tt,c :Hq
τ → Ĥ α′

τ is such that

Tt,c : (x, y) �→
{ (

x, y − (
θ + o(1)

)|x|), if x 
= ∞ and y 
= ∞,
∞, otherwise.

We define T :Hq
τ → Ĥ α′

τ by

T : (x, y) �→
{ (

x, y − θ |x|), if x 
= ∞ and y 
= ∞,
∞, otherwise.

It was proved in [17], Lemma 2.5, that one can pass to the limit in (16) as t → ∞
simultaneously in the mapping Tt,c and the point process �rt to get

�t,c|Ĥ α
τ

�⇒ (
�|Hq

τ
◦ T −1)∣∣

Ĥ α
τ
.

Observe that the conditions of that lemma are satisfied as T is continuous, H
q
τ is

compact, Tt,c → T uniformly on {(x, y) ∈ H
q
τ : |x| ≥ n} as t → ∞ for each n ∈ N,

and

η
{
(x, y) ∈ Hq

τ : |x| ≥ n
}→ 0 as n → ∞

since η(H
q
τ ) is finite. Finally, it remains to notice that (�|Hq

τ
◦T −1)|

Ĥ α
τ

is a Poisson

process with intensity measure η ◦ T −1 = ν restricted on Ĥ α
τ . �

PROPOSITION 3.2. Let c ∈ R.

(a) As t → ∞, (
Z

(1,c)
t

rt
,
�t,c(Z

(1,c)
t ) − art

drt

,
Z

(2,c)
t

rt
,
�t,c(Z

(2,c)
t ) − art

drt

)

�⇒ (
X(1), Y (1),X(2), Y (2)),

where the limit random variable has density

p(x1, y1, x2, y2)

= γ 2 exp
{−γ

(
y1 + y2 + θ |x1| + θ |x2|)− 2d(γ θ)−de−γy2

}
1{y1>y2}.

(b) Prob{Ec(t)} → 1 as t → ∞.

PROOF. (a) Let A ⊂ Ĥ 0
τ × Ĥ 0

τ for some τ , and assume that Leb(∂A) = 0.
Since H 0

τ is compact, we have by Lemma 3.1

Prob
{(

Z
(1,c)
t

rt
,
�t,c(Z

(1,c)
t ) − art

drt

,
Z

(2,c)
t

rt
,
�t,c(Z

(2,c)
t ) − art

drt

)
∈ A

}

=
∫
A

1{y1>y2} Prob
{
�t,c(dx1 × dy1) = �t,c(dx2 × dy2) = 1,

�t,c

(
R

d × (y1,∞)
)= �t,c

(
R

d × (y2, y1)
)= 0

}
(17)
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→
∫
A

1{y1>y2} Prob
{
�(dx1 × dy1) = 1

}
Prob

{
�(dx2 × dy2) = 1

}

× Prob
{
�
(
R

d × (y1,∞)
)= 0

}
Prob

{
�
(
R

d × (y2, y1)
)= 0

}

=
∫
A

1{y1>y2}ν(dx1, dy1)ν(dx2, dy2) exp
{−ν

(
R

d × (y2,∞)
)}

.

Integrating we obtain

ν
(
R

d × (y2,∞)
)= γ

∫
Rd

∫ ∞
y2

exp
{−γy − γ θ |x|}dy dx

(18)
= 2d(γ θ)−de−γy2 .

Substituting this, as well as the expressions for ν(dx1, dy1) and ν(dx2, dy2) into
(17) we obtain

lim
t→∞ Prob

{(
Z

(1,c)
t

rt
,
�t,c(Z

(1,c)
t ) − art

drt

,
Z

(2,c)
t

rt
,
�t,c(Z

(2,c)
t,c ) − art

drt

}
∈ A

)

=
∫
A

p(x1, y1, x2, y2) dx1 dy1 dx2 dy2.

It remains now to generalise this equality to all sets A ⊂ R
d × R with

Leb(∂A) = 0. Since τ can be arbitrarily small, to do so it suffices to show that
p integrates to one. We have∫

Rd×R×Rd×R

p(x1, x2, y1, y2) dx1 dy1 dx2 dy2

= 22d(γ θ)−2d
∫ ∞
−∞

∫ ∞
y2

γ 2 exp
{−γ (y1 + y2) − 2d(γ θ)−de−γy2

}
dy1 dy2

(19)
= 22d(γ θ)−2d

∫ ∞
−∞

γ exp
{−2γy2 − 2d(γ θ)−de−γy2

}
dy2

=
∫ ∞

0
ue−u du = 1,

where in the last line we used the substitution u = 2d(γ θ)−de−γy2 .
(b) This immediately follows from (a) since drt = dt (1 + o(1)) and ft → 0,

gt → ∞, λt → 0. �

REMARK 7. The reason why we need to study a general c rather than c = 0 is
just to show that |Z(1,c)

t | < rtgt and |Z(2,c)
t | < rtgt with high probability, which

is done in part (b) of the proposition above. This will be required later on in
Lemma 4.5 with some c identified in Proposition 4.3. The full strength of the
convergence result proved in the part (a) of the proposition will only be used for
c = 0.
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PROOF OF THEOREM 1.2. The result follows from Proposition 3.2(a) with
c = 0 by integrating the density p over all possible values of x2, y1, and y2. Simi-
larly to (19), we obtain

p(1)(x) =
∫
R×Rd×R

p(x, y1, x2, y2) dy1 dx2 dy2

= 2d(γ θ)−d exp
{−γ θ |x|}

×
∫ ∞
−∞

∫ ∞
y2

γ 2 exp
{−γ (y1 + y2) − 2d(γ θ)−de−γy2

}
dy1 dy2

= 2−ddd(1−1/γ ) exp
{−d1−1/γ |x|}

as required. �

4. Negligible paths of the random walk. Throughout this section, we as-
sume that 0 < γ < 2. We introduce three groups of paths of the random walk (Xs)

informally described in the Introduction and show that their contribution to the
total mass of the solution u of the parabolic Anderson model is negligible.

Denote by Jt the number of jumps the random walk (Xs) makes up to time t

and consider the following three groups of paths:

Ei(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
max

0≤s≤t
ξ(Xs) = ξ

(
Z

(1)
t

)
, Jt >

∣∣Z(1)
t

∣∣(1 + ρt )
}
, i = 1,{

ξ
(kt )
rt gt ≤ max

0≤s≤t
ξ(Xs) 
= ξ

(
Z

(1)
t

)}
, i = 2,{

max
0≤s≤t

ξ(Xs) < ξ(kt )
rt gt

}
, i = 3.

Denote by

Ui(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1Ei(t)

]
, 1 ≤ i ≤ 3

their contributions to the total mass of the solution. The aim of this section is to
show that all Ui(t) is negligible with respect to U(t).

We start with Lemma 4.1 where we collect all asymptotic properties of the
environment which we use later on. In Lemma 4.2, we prove a simple lower bound
for the total mass U(t). Then we prove Proposition 4.3, which is a crucial tool for
analysing U1(t) and U2(t) as it gives a general upper bound on the total mass
corresponding to the paths reaching the maximum of the potential in a certain set
and having a lower bound restriction on the number of jumps Jt . Equipped with
this result, we show that U1(t) and U2(t) are negligible in Lemmas 4.4 and 4.5.
Finally, Lemma 4.6 provides a simple proof of the negligibility of U3(t).

Observe that Proposition 4.3 identifies the constant c, which is then fixed and
used throughout the paper afterward.
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LEMMA 4.1. Almost surely,

(a) ξ
(
rρ�)
r ∼ ((d − ρ) log r)1/γ and ξ

(
rσ �)
r ∼ ((d − σ) log r)1/γ as r → ∞;

(b) ξ
(kt )
rt gt ∼ ((d − ρ) log t)1/γ and ξ

(mt )
rt gt ∼ ((d − σ) log t)1/γ as t → ∞;

(c) log(ξ
(
rρ�)
r − ξ

(
rσ �)
r ) = 1

γ
log log r + O(1) as r → ∞;

(d) log(ξ
(1)
rt gt − ξ

(mt )
rt gt ) = 1

γ
log log t + O(1) as t → ∞;

(e) the set Gp is totally disconnected eventually for all p.

Further,

(f) for all c, Z
(1)
t ∈ Frtgt on the event Ec(t) eventually for all t ;

(g) for all c, log ξ(Z
(1)
t ) = 1

γ
log log t + O(1) on the event Ec(t) as t → ∞;

(h) there exists a constant c1 > 0 such that |z| > tc1 for all z ∈ Frtgt eventually for
all t almost surely.

PROOF. (a) It follows from the proof of [17], Lemma 4.7, that for each κ ∈
(0, d) almost surely

ξ (
rκ�)
r ∼ (

(d − κ) log r
)1/γ

as r → ∞. It remains to substitute κ = ρ and κ = σ .
(b) This follows from (a) since kt = 
(rtgt )

ρ� and mt = 
(rtgt )
σ �.

(c) This follows from (a) since ρ 
= σ .
(d) This follows from (a) and Lemma 2.1 since ρ 
= 0.
(e) This was proved in [12], Lemma 2.2, for Pareto potentials (observe that the

proof relies on σ < 1/2 which is the reason why we have imposed this restriction).
It remains to notice that ξ(z) = (α log(ζ(z)))1/γ , where {ζ(z) : z ∈ Z

d} is a Pareto-
distributed potential with parameter α. As the locations of upper order statistics for
ζ and ξ coincide, we obtain that Gp is eventually totally disconnected for Weibull
potentials as well.

(f) Denote by wt the maximiser of ξ in the ball of radius t . Using Lemma 2.1,
we obtain

ξ
(
Z

(1)
t

)≥ �t

(
Z

(1)
t

)≥ �t(wt) = ξ(wt ) − |wt |
γ t

log log t

≥ ξ
(1)
t − 1

γ
log log t ∼ (d log t)1/γ .

It remains to observe that |Z(1)
t | ≤ rtgt on the event Ec(t) and use (a) to get

ξ
(
Z

(1)
t

)≥ (
(d − ρ) log t

)1/γ ∼ ξ (kt )
rt gt

.

(g) It follows from (f) that log ξ
(kt )
rt gt ≤ log ξ(Z

(1)
t ) ≤ log ξ

(1)
rt gt on the event Ec(t).

It remains to observe that log ξ
(kt )
rt gt = 1

γ
log log t + O(1) according to (a) and

log ξ
(1)
rt gt = 1

γ
log log t + O(1) by Lemma 2.1.
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(h) Choose c1 small enough so that c1(d + c1) < d −ρ − c1. Then almost surely
eventually

ξ
(1)
tc1 ≤ (

(d + c1) log tc1
)1/γ

<
(
(d − ρ − c1) log t

)1/γ
< ξ(kt )

rt gt
,

which implies the result. �

LEMMA 4.2. For each c,

logU(t) ≥ t�t

(
Z

(1)
t

)− 2dt + O(rtgt )(20)

on the event Ec(t) eventually for all t .

PROOF. The idea of the proof is the same as of [17], Lemma 2.1, for Weibull
potentials and [12], Proposition 4.2, for Pareto potentials. However, we need to
estimate the error term more precisely.

Let ρ ∈ (0,1] and z ∈ Z
d , z 
= 0. Following the lines of [12], Proposition 4.2,

we obtain

U(t) ≥ exp
{
t (1 − ρ)ξ(z) − |z| log

|z|
eρt

− 2dt + O
(
log |z|)}.(21)

Take z = Z
(1)
t and ρ = |Z(1)

t |/(tξ(Z
(1)
t )). Observe that on the event Ec(t) this ρ

belongs to (0,1] eventually as

|Z(1)
t |

tξ(Z
(1)
t )

≤ rtgt

tξ
(kt )
rt gt

= O

(
gt

log t · log log t

)
= o(1)

by Lemma 4.1(f) and according to (12). Substituting this into (21) and using
Lemma 4.1(g) we obtain

logU(t) ≥ tξ
(
Z

(1)
t

)− ∣∣Z(1)
t

∣∣ log ξ
(
Z

(1)
t

)− 2dt + O(log t)

= t�t

(
Z

(1)
t

)− 2dt + O(rtgt )

on the event Ec(t). �

For all sufficiently large t , consider a set Mt ⊂ Z
d and a nonnegative function

ht = O(rtgt ) (which may both depend on ξ ). Denote by zt a point along the tra-
jectory of (X)s , s ∈ [0, t], where the value of the potential is maximal. Define

UM,h(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1
{

max
0≤s≤t

ξ(Xs) ≥ ξ (kt )
rt gt

, zt ∈ Mt,Jt ≥ ht

}]
.

In the sequel, UM,h(t) will correspond to U1(t) if we choose Mt = {Z(1)
t },

ht = |Z(1)
t |(1 + ρt ) and to U2(t) if we choose Mt = Z

d \ {Z(1)
t }, ht = 0.
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PROPOSITION 4.3. There is a constant c such that

logUM,h(t) ≤ max
{
t�t

(
Z

(2)
t

)
,

max
z∈Mt

{
t�t,c(z) − (ht − |z|)+

2

(
γ −1 − β

)
log log t

}

+ O(rtgt )

}

− 2dt

on the event Ec(t) eventually for all t .

PROOF. Consider the event Ec(t) and suppose that t is sufficiently large. Using
the notation from Section 2.2, for each n,p ∈ N ∪ {0} and t large enough, we
denote

Pn,p(t) = {
y ∈ Pn :y0 = 0,p(y) = p,q(y) > ξ(kt )

rt gt
, z(y) ∈ Mt

}
.

Observe that q(y) ≥ ξ
(kt )
rt gt implies by Lemma 4.1(h) that p(y) > tc1 , for some

c1 > 0. In particular,

log logp(y) ≥ log log t + log c1.(22)

We have

UM,h(t) = ∑
n≥ht

∑
tc1<p≤n

∑
y∈Pn,p(t)

U(t, y),

where U(t, y) has been defined in (15). Since the number of paths in the set Pn,p(t)

is bounded by (2d)n, we obtain

UM,h(t) ≤ ∑
p>tc1

∑
n≥p∨ht

(2d)−n max
y∈Pn,p(t)

{
(2d)2nU(t, y)

}

≤ 4 max
p>tc1

max
n≥p∨ht

max
y∈Pn,z(t)

{
(2d)2nU(t, y)

}
and so

logUM,h(t) ≤ max
p>tc1

max
n≥p∨ht

max
y∈Pn,z(t)

{
3n log(2d) + logU(t, y)

}
.(23)

Let p > tc1 , n ≥ p ∨ ht , and y ∈ Pn,p(t). Denote i(y) = min{i : ξ(yi) = q(y)} and

Q(p,y) = q(y) ∨ ξ (
pρ�)
p + μp,(24)

where the correction term μp has been defined in (11). Define

ξ
y
i =

{
ξ(yi), if i 
= i(y),
Q(p,y), if i = i(y).
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Since ξ
y
i ≥ ξ(yi) for all i, we have

U(t, y) ≤ (2d)−nE

[
exp

{
n−1∑
i=0

τiξ
y
i +

(
t −

n−1∑
i=0

τi

)
ξy
n

}

× 1

{
n−1∑
i=0

τi < t,

n∑
i=0

τi > t

}]
.

This expectation has been bounded from above in (4.16) and (4.17) of [17]. Sub-
stituting its bound, we obtain

U(t, y) ≤ exp
{
tξ

y
i(y) − 2dt

} ∏
i 
=i(y)

1

ξ
y
i(y) − ξ

y
i

= exp
{
tQ(p,y) − 2dt

} ∏
i 
=i(y)

1

Q(p,y) − ξ(yi)

and hence

logU(t, y) ≤ tQ(p,y) − 2dt − ∑
i 
=i(y)

log
(
Q(p,y) − ξ(yi)

)
.(25)

The set Gp consists of 
pσ � elements and is totally disconnected by Lem-
ma 4.1(e). Hence, by Lemma 2.3 we have

n+(y,Gp) ≤ n − p

2
+ pσ .(26)

In each point yi ∈ Gp we use (24) to estimate

log
(
Q(p,y) − ξ(yi)

)≥ logμp = −β log logp.(27)

On the other hand,

n−(y,Gp) = n + 1 − n+(y,Gp)
(28)

≥ n + 1 − n − p

2
− pσ = p − pσ + n − p

2
+ 1

and in each point yi /∈ Gp we obtain by Lemma 4.1(c)

log
(
Q(p,y) − ξ(yi)

)≥ log
(
ξ (
pρ�)
p − ξ (
pσ �)

p

)≥ γ −1 log logp + c2(29)

with some constant c2. Using (27) and (29) together with (25), we obtain

logU(t, y) ≤ tQ(p,y) − 2dt + n+(y,Gp)β log logp

− (
n−(y,Gp) − 1

)(
γ −1 log logp + c2

)
.
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Substituting (26) and (28) and using pσ log logp ≤ n, we obtain

3n log(2d) + logU(t, y)

≤ 3n log(2d) + tQ(p,y) − 2dt
(30)

+
[
n − p

2
+ pσ

]
β log logp −

[
p − pσ + n − p

2

](
γ −1 log logp + c2

)

≤ tQ(p,y) − p

γ
log logp − 2dt − n − p

2

(
γ −1 − β

)
log logp + c3n

with some constant c3.
Now we distinguish between the following two cases.
Case 1. Suppose q(y) ≥ ξ

(
pρ�)
p . Then Q(p,y) = ξ(z(y)) + μp and estimating

p ≥ |z(y)| we get

3n log(2d) + logU(t, y) ≤ tξ
(
z(y)

)+ tμp − |z(y)|
γ

log logp − 2dt

− n − |z(y)|
2

(
γ −1 − β

)
log logp + c3n.

Observe that tμp ≤ tμtc1 = t (c1 log t)−β = o(rtgt ) since β > 1 − 1/γ and ac-
cording to (12). Using monotonicity in n and n ≥ |z(y)| ∨ ht together with (22),
we obtain

3n log(2d) + logU(t, y)

≤ t�t

(
z(y)

)+ c
∣∣z(y)

∣∣− 2dt
(31)

− (ht − |z(y)|)+
2

(
γ −1 − β

)
log log t + cht + o(rtgt )

≤ max
z∈Mt

{
t�t,c(z) − (ht − |z|)+

2

(
γ −1 − β

)
log log t

}
− 2dt + O(rtgt )

with some constant c.
Case 2. Suppose q(y) < ξ

(
pρ�)
p . Then Q(p,y) = ξ

(
pρ�)
p + μp . Now (30) im-

plies

3n log(2d) + logU(t, y) ≤ tξ (
pρ�)
p + tμp − p

γ
log logp − 2dt

− n − p

2

(
γ −1 − β

)
log logp + c4n

with some constant c4. Using monotonicity in n and n ≥ p, we get

3n log(2d) + logU(t, y) ≤ tξ (
pρ�)
p + t (logp)−β − p

γ
log logp − 2dt + c4p.
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By Lemma 4.1(a) and using β ≥ 0, we obtain that the second term is dominated
by the first one, the fifth by the third one, and so

3n log(2d) + logU(t, y) ≤ t
(
(d − ρ/2) logp

)1/γ − c5p log logp − 2dt(32)

with some constant c5 > 0. Differentiating, we obtain the following equation for
the maximiser pt of the expression on the right-hand side of (32):

t (d − ρ/2)((d − ρ/2) logpt)
1/γ−1

γpt

− c5 log logpt − c5

logpt

= 0.

Resolving this asymptotics, we obtain

pt = rt (d − ρ/2)1/γ (1 + o(1)
)
.

Finally, substituting this into (32) yields

3n log(2d) + logU(t, y) ≤ t
(
(d − ρ/3) log rt

)1/γ − 2dt

≤ (
1 − ρ/(3d)

)1/γ
tart − 2dt(33)

≤ t�t

(
Z

(2)
t

)− 2dt(34)

on the event Ec(t). It remains to substitute (31) and (33) into (23) to complete the
proof. �

REMARK 8. Observe that the scaling function μp , being part of Q(p,y), ap-
pears both in the main and in the logarithmic term of (25). Being part of the main
term, tμp needs to be as small as O(rtgt ) in order to not imbalance the significant
terms. This leads to the restriction β > 1 − 1/γ . However, as a part of the loga-
rithmic term, μp needs to be large enough so that the contribution γ −1 log logp

of “good” points yi /∈ Gp dominates over the contribution β log logp of “bad”
points yi ∈ Gp . This imposes the restriction β < 1/γ . The combination of these
two conditions only allows to choose such β if 0 < γ < 2.

From now on, we assume that the constant c is fixed and chosen according to
Proposition 4.3.

LEMMA 4.4. Almost surely,

U1(t)

U(t)
1Ec(t) → 0 as t → ∞.

PROOF. We use Proposition 4.3 with Mt = {Z(1)
t } and ht = |Z(1)

t |(1 + ρt ).
Clearly ht = O(rtgt ) on the event Ec(t). By Lemma 4.1(f), we have Z

(1)
t ∈ Frtgt ,
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which implies UM,h(t) = U1(t) eventually for all t . Since |Z(1)
t | ≤ rtgt and so

t�t,c(Z
(1)
t ) = t�t (Z

(1)
t ) + O(rtgt ), we obtain

logU1(t) ≤ max
{
t�t

(
Z

(2)
t

)
, t�t

(
Z

(1)
t

)− |Z(1)
t |ρt

2
(1/γ − β) log log t + O(rtgt )

}
(35)

− 2dt.

In order to show that

logU1(t) − logU(t) → −∞(36)

we consider the terms under the maximum in (35) separately. Using the lower
bound for the total mass given by Lemma 4.2 and taking into account that
�t(Z

(1)
t ) − �t(Z

(2)
t ) > dtλt on the event Ec(t), we get for the first term

t�t

(
Z

(2)
t

)− 2dt − logU(t) ≤ t�t

(
Z

(2)
t

)− t�t

(
Z

(1)
t

)+ O(rtgt )
(37)

< −tdtλt + O(rtgt ) → −∞
according to (12). For the second term, we again use the lower bound from
Lemma 4.2 and take into account that |Z(1)

t | ≥ rtft on the event Ec(t). This implies

t�t

(
Z

(1)
t

)− |Z(1)
t |ρt

2
(1/γ − β) log log t + O(rtgt ) − 2dt − logU(t)

≤ −|Z(1)
t |ρt

2
(1/γ − β) log log t + O(rtgt )(38)

≤ −rtftρt

2
(1/γ − β) log log t + O(rtgt ) → −∞

by (12). Combining (37), (38) and (35) we get (36) on the event Ec(t). �

LEMMA 4.5. Almost surely,

U2(t)

U(t)
1Ec(t) → 0 as t → ∞.

PROOF. We use Proposition 4.3 with Mt = Z
d \{Z(1)

t } and ht = 0. In this case
UM,h(t) = U2(t), and we have

logU2(t) ≤ max
{
t�t

(
Z

(2)
t

)
, t max

z 
=Z
(1)
t

�t,c(z) + O(rtgt )
}

− 2dt.(39)

Since |Z(1,c)
t | ≤ rtgt and |Z(2,c)

t | ≤ rtgt on the event Ec(t), we have for i ∈ {1,2}
t�t,c

(
Z

(i,c)
t

)= t�t

(
Z

(i,c)
t

)+ c|Z(i,c)
t | = t�t

(
Z

(i,c)
t

)+ O(rtgt ).
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Substituting this into (39) and observing that z 
= Z
(1)
t , we obtain

logU2(t) ≤ t�t

(
Z

(2)
t

)+ O(rtgt ) − 2dt.

Using the lower bound for the total mass given by Lemma 4.2 and taking into
account that �t(Z

(1)
t ) − �t(Z

(2)
t ) > dtλt on the event Ec(t), we get

logU2(t) − logU(t) ≤ t�t

(
Z

(2)
t

)− t�t

(
Z

(1)
t

)+ O(rtgt )

≤ −tdtλt + O(rtgt ) → −∞
according to (12) on the event Ec(t). �

LEMMA 4.6. Almost surely,

U3(t)

U(t)
1Ec(t) → 0 as t → ∞.

PROOF. We can estimate the integral in the Feynman–Kac formula for U3(t)

by tξ
(kt )
rt gt and get

logU3(t) ≤ tξ (kt )
rt gt

∼ t
(
(d − ρ) log t

)1/γ ≤ (1 − δ)tart

with some δ > 0 eventually for all t by Lemma 4.1(b). Using the lower bound for
U(t) from Lemma 4.2, we have

logU3(t) − logU(t) ≤ (1 − δ)tart − t�t

(
Z

(1)
t

)+ 2dt + O(rtgt )

≤ −δtart + tdtgt + 2dt + O(rtgt ) → −∞
since �t(Z

(1)
t ) > art − dtgt on the event Ec(t). �

5. Localisation. The aim of this section is to prove Theorem 1.1. We assume
throughout this section that 0 < γ < 2 and we suppose that c is chosen according
to Proposition 4.3.

Let

Bt = {
z ∈ Z

d : |z| ≤ ∣∣Z(1)
t

∣∣(1 + ρt )
}
.

For any set A ⊂ Z
d denote by Ac = Z

d \A its complement and by τ(A) the hitting
time of A by the random walk (Xs), and we write τ(z) for τ({z}) for any point
z ∈ Z

d . Let us decompose the solution u into u = u1 + u2 according to the two
groups of paths (I) and (II) mentioned in the Introduction

u1(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}1{τ (Z(1)

t

)≤ t, τ
(
Bc

t

)
> t

}]
,

u2(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}1{τ (Z(1)

t

)
> t or τ

(
Bc

t

)≤ t
}]

.
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In Lemma 5.1 below, we use the results from Section 4 to prove that the to-
tal mass of u2 is negligible. In order to prove that u1 localises around Z

(1)
t , we

introduce the gap

gt = ξ
(
Z

(1)
t

)− max
{
ξ(z) : z ∈ Bt \ {Z(1)

t

}}
between the value of the potential ξ at the point Z

(1)
t and in the rest of the ball Bt .

In Lemma 5.2 we find a lower bound for gt . This bound tends to infinity for γ < 1
but is going to zero for 1 ≤ γ < 2. However, the lower bound turns out to be just
large enough to provide localisation of the principal eigenfunction of the Anderson
Hamiltonian �+ξ around Z

(1)
t , which is proved in Lemma 5.3. This easily implies

the localisation of u1 around Z
(1)
t and allows us to prove Theorem 1.1 in the end

of this section.

LEMMA 5.1. Almost surely,{
U(t)−1

∑
z∈Zd

u2(t, z)

}
1Ec(t) → 0 as t → ∞.

PROOF. We have

∑
z∈Zd

u2(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1
{
τ
(
Z

(1)
t

)
> t or τ

(
Bc

t

)≤ t
}]

.(40)

Observe that if a path belongs to the set in the indicator function above then either
it passes through Z

(1)
t and reaches the maximum of the potential there but leaves

the ball Bt thus belonging to E1(t), or it reaches the maximum of the potential not
in Z

(1)
t thus belonging to E2(t) or E3(t), depending on whether the maximum of

the potential over the path exceeds the value ξ
(kt )
rt gt . Hence, we have on the event

Ec(t)

∑
z∈Zd

u2(t, z) ≤ E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1E1(t)∪E2(t)∪E3(t)

]

= U1(t) + U2(t) + U3(t).

The statement of the lemma now follows from Lemmas 4.4, 4.5 and 4.6. �

LEMMA 5.2. On the event Ec(t), the gap gt is positive and, for any ε > 0,

loggt > (1/γ − 1 − ε) log log t

eventually for all t .
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PROOF. Let z ∈ Bt \ {Z(1)
t }. Then �t(z) ≤ �t(Z

(2)
t ) and we have on the event

Ec(t)

dtλt ≤ �t

(
Z

(1)
t

)− �t

(
Z

(2)
t

)≤ �t

(
Z

(1)
t

)− �t(z)

= ξ
(
Z

(1)
t

)− ξ(z) + |z| − |Z(1)
t |

γ t
log log t.

Since |Z(1)
t | < rtgt on the event Ec(t), the last term satisfies

|z| − |Z(1)
t |

γ t
log log t ≤ |Z(1)

t |ρt

γ t
log log t ≤ rtgtρt

γ t
log log t = O(dtgtρt ).

We obtain uniformly for all z ∈ Bt \ {Z(1)
t }

dtλt ≤ ξ
(
Z

(1)
t

)− ξ(z) + O(dtgtρt )

and so

gt ≥ dtλt + O(dtgtρt ) = dtλt + o(dtλt )

on according to (13). This estimate implies the statement of the lemma since
logdt ∼ ( 1

γ
− 1) log log t and λt is negligible according to (12). �

Let γt and vt be the principal eigenvalue and eigenfunction of � + ξ with zero
boundary conditions in the ball Bt . We extend vt by zero to the whole space Z

d

and we assume that vt is normalised so that vt (Z
(1)
t ) = 1. The eigenfunction vt has

the following probabilistic representation

vt (z) = Ez

[
exp

{∫ τ(Z
(1)
t )

0

(
ξ(Xs) − γt

)
ds

}
1
{
τ
(
Z

(1)
t

)
< τ

(
Z

d \ Bt

)}]
.

LEMMA 5.3. Almost surely,{
‖vt‖2

2

∑
z∈Bt\{Z(1)

t }
vt (z)

}
1Ec(t) → 0 as t → ∞.

PROOF. Consider the event Ec(t) and suppose that t is sufficiently large. For
each n,p ∈ N and z ∈ Bt \ {Z(1)

t } denote

Pn,p(t, z) = {
y ∈ Pn :y0 = z, yn = Z

(1)
t , yi ∈ Bt \ Z

(1)
t ∀i < n,p(y) = p

}
.

Integrating with respect to the waiting times (τi) of the random walk, which are
independent and exponentially distributed with parameter 2d and observing that
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the probability of the first n steps of the random walk to follow a given geometric
path is (2d)−n we get

vt (z) = ∑
n≥|z−Z

(1)
t |

∑
p≤n

∑
y∈Pn,p(t,z)

(2d)−nE

[
exp

{
n−1∑
i=0

(
ξ(yi) − γt

)
τi

}]

= ∑
n≥|z−Z

(1)
t |

∑
1≤p≤n

∑
y∈Pn,p(t,z)

n−1∏
i=0

∫ ∞
0

exp
{−(γt + 2d − ξ(yi)

)
t
}
dt.

The Rayleigh–Ritz formula implies

γt = sup
{〈
(� + ξ)ϕ,ϕ

〉
:ϕ ∈ 	2(Bt ), ϕ|∂Bt = 0,‖ϕ‖2 = 1

}
≥ 〈

(� + ξ)1{Z(1)
t },1{Z(1)

t }
〉= ξ

(
Z

(1)
t

)− 2d

and so for all i

γt + 2d − ξ(yi) ≥ ξ
(
Z

(1)
t

)− ξ(yi) ≥ gt .(41)

Since gt > 0 eventually on the event Ec(t) by Lemma 5.2, we use (41) to compute

vt (z) =
∞∑

n=|z−Z
(1)
t |

∑
p≤n

∑
y∈Pn,p(t,z)

n−1∏
i=0

1

γt + 2d − ξ(yi)

≤ ∑
p≥|z−Z

(1)
t |

∑
n≥p

∑
y∈Pn,p(t,z)

n−1∏
i=0

1

ξ(Z
(1)
t ) − ξ(yi)

(42)

≤ ∑
p≥|z−Z

(1)
t |

∑
n≥p

(2d)−n max
y∈Pn,p(t,z)

{
(2d)2n

n−1∏
i=0

1

ξ(Z
(1)
t ) − ξ(yi)

}

≤ ∑
p≥|z−Z

(1)
t |

exp max
n≥p

max
y∈Pn,p(t,z)

{
2n log(2d) −

n−1∑
i=0

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)}

since
∑

n≥p(2d)−n ≤ 1 for p ≥ 1. Fix some positive ε ∈ ( 1
γ

− 1, 1
γ

− 1
2). Notice

that this is possible since γ < 2 and so 1
γ

− 1
2 > 0. Let p ≥ |z − Z

(1)
t |, n ≥ p, and

y ∈ Pn,p(t, z). By Lemma 4.1(e), the set Grtgt is totally disconnected and so

n+(y,Grtgt ) ≤
⌈
n + 1

2

⌉
≤ n

2
+ 1.(43)

In each point yi ∈ Grtgt , we can estimate by Lemma 5.2

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)≥ loggt > (1/γ − 1 − ε) log log t.(44)
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On the other hand,

n−(y,Grtgt ) = n + 1 − n+(y,Grtgt ) ≥ n

2
(45)

and in each point yi /∈ Grtgt we get by Lemma 4.1(d)

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)= log

(
ξ (kt )
rt gt

− ξ (mt )
rt gt

)
> (1/γ − ε) log log t(46)

by Lemma 5.2. Using (44) and (46) and taking into account that the last point Z
(1)
t

of the path belongs to Grtgt but does not contribute to the sum, we obtain

2n log(2d) −
n−1∑
i=0

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)

≤ 2n log(2d) − (
n+(y,Grtgt ) − 1

)
(1/γ − 1 − ε) log log t

− n−(y,Grtgt )(1/γ − ε) log log t.

Since 1
γ

− 1 − ε < 0 and 1
γ

− ε > 0, we can estimate further using (43) and (45)

2n log(2d) −
n−1∑
i=0

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)

≤ 2n log(2d) − n

2
(1/γ − 1 − ε) log log t − n

2
(1/γ − ε) log log t

= 2n log(2d) − n(1/γ − 1/2 − ε) log log t.

Since 1
γ

− 1
2 − ε > 0, this function is decreasing in n and can be estimated by its

value at n = p. This implies

2n log(2d) −
n−1∑
i=0

log
(
ξ
(
Z

(1)
t

)− ξ(yi)
)

≤ 2p log(2d) − p(1/γ − 1/2 − ε) log log t ≤ −pδ log log t

with some δ > 0. Substituting this into (42), we obtain

vt (z) ≤ ∑
p≥|z−Z

(1)
t |

(log t)−pδ ≤ 2(log t)−δ|z−Z
(1)
t |.

Since vt (z) decays geometrically in distance of z from Z
(1)
t , (log t)−δ → 0, and

vt (Z
(1)
t ) = 1, the statement of the lemma is now obvious. �

REMARK 9. Observe that, similarly to the proof of Proposition 4.3, we have
a competition of the positive and negative terms in the sum in (42), and we
want the negative terms to dominate. The contribution of the positive terms is
of order (1/γ − 1) log log t and the contribution of the negative terms is roughly
(1/γ ) log log t . This leads to the condition 1 − 1/γ < 1/γ , which restricts our
proof to the case 0 < γ < 2.
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PROOF OF THEOREM 1.1. We have

1 − u(t,Z
(1)
t )

U(t)
= U(t)−1

∑
z 
=Z

(1)
t

u(t, z)

(47)
≤ U(t)−1

∑
z 
=Z

(1)
t

u1(t, z) + U(t)−1
∑
z∈Zd

u2(t, z).

The second term converges to zero on the event Ec(t) by Lemma 5.1. The first term
satisfies the conditions of [8], Theorem 4.1, with B = Bt , V = ξ , and � = {Z(1)

t },
which implies that, for all z ∈ Bt ,

u1(t, z) ≤ u1
(
t,Z

(1)
t

)‖vt‖2
2vt (z).

Observing that U(t) ≥ u1(t,Z
(1)
t ) and u1(t, z) = 0 for z /∈ Bt , we obtain

U(t)−1
∑

z 
=Z
(1)
t

u1(t, z) ≤ ‖vt‖2
2

∑
z∈Bt\{Z(1)

t }
vt (z),

which converges to zero on the event Ec(t) by Lemma 5.3. As both terms in (47)
converge to zero on the event Ec(t) and Prob{Ec(t)} → 1 by Proposition 3.2(b), we
obtain that

1 − u(t,Z
(1)
t )

U(t)
→ 0 as t → ∞

in probability. �

6. Ageing. In this section, we discuss the ageing behaviour of the parabolic
Anderson model. Throughout this section, we assume that γ > 0. As we pointed
out in the Introduction, although the results proved in this section hold for all
γ > 0, they only imply ageing of the parabolic Anderson model for 0 < γ < 2 as
otherwise the solution u may not be localised at Z

(1)
t .

We begin by showing that whenever the maximiser of � has moved from one
point to another, it cannot go back to the original point.

LEMMA 6.1. For s > 0, {Tt > s} = {Z(1)
t = Z

(1)
t+s} eventually for all t .

PROOF. If Tt > s, then Z
(1)
t = Z

(1)
t+s by the definition of Tt . Suppose Z

(1)
t =

Z
(1)
t+s but there is u ∈ (t, t +s) such that Z

(1)
t 
= Z

(1)
u . Consider an auxiliary function

ϕ : [t, t + s] → R given by

ϕ(x) = �x

(
Z

(1)
t

)− �x

(
Z(1)

u

)= ξ
(
Z

(1)
t

)− ξ
(
Z(1)

u

)− |Z(1)
t | − |Z(1)

u |
γ x

log logx.
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Observe that

ϕ′(x) = |Z(1)
t | − |Z(1)

u |
γ x2 logx

(logx log logx − 1)

and so ϕ′ does not change the sign on the interval [t, t + s] if t is large enough.
Hence, ϕ is strictly monotone on [t, t + s]. However, this contradicts the observa-
tion that ϕ(t) ≥ 0 (since Z

(1)
t is the maximiser of �t and Z

(1)
u 
= Z

(1)
t ), ϕ(u) ≤ 0

(since Z
(1)
u is the maximiser of �u and Z

(1)
t 
= Z

(1)
u ), and ϕ(t + s) ≥ 0 (since

Z
(1)
t = Z

(1)
t+s is the maximiser of �t+s and Z

(1)
u 
= Z

(1)
t ). �

Now we are going to compute the probability of {Z(1)
t = Z

(1)
t+wt}, w > 0, using

the point processes �t ≡ �t,0 studied in Section 3. However, we need to restrict
them to a finite box growing to infinity to justify integration and passing to the
limit. In order to do so, for each n ∈ N, we define the event

A(n,w, t) = {
Y

t,Z
(1)
t

≥ −n,�t+wt(z) ≤ �t+wt

(
Z

(1)
t

) ∀z ∈ Z
d s.t. Yt,z ≥ −n

}
and show that Prob{Z(1)

t = Z
(1)
t+wt} is captured by the probabilities of these events.

LEMMA 6.2. For any w > 0,

lim
t→∞ Prob

{
Z

(1)
t = Z

(1)
t+wt

}= lim
n→∞ lim

t→∞ Prob
{
A(n,w, t)

}
,

provided the limit on the right-hand side exists.

PROOF. To obtain an upper bound, observe that

Prob
{
Z

(1)
t = Z

(1)
t+wt

}≤ Prob
{
A(n,w, t)

}+ Prob{Y
t,Z

(1)
t

≤ −n}.(48)

By Proposition 3.2,

lim
n→∞ lim

t→∞ Prob{Y
t,Z

(1)
t

≤ −n} = lim
n→∞ Prob

{
Y (1) ≤ −n

}= 0.(49)

For a lower bound, we have

Prob
{
Z

(1)
t = Z

(1)
t+wt

}≥ Prob
{
A(n,w, t)

}− Prob{Y
t,Z

(1)
t+wt

≤ −n}.(50)

Observe that for all z we have, as t → ∞,

�t+wt(z) = ξ(z) − |z|
γ (t + wt)

log log(t + wt)

= �t(z) + w|z|
(1 + w)γ t

(
log log t + o(1)

)
(51)

= �t(z) + drt

wθ

1 + w

|z|
rt

(
1 + o(1)

)
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and so the condition Y
t,Z

(1)
t+wt

≤ −n is equivalent to

�t+wt (Z
(1)
t+wt) − art

drt

− wθ

1 + w

|Z(1)
t+wt |
rt

(
1 + o(1)

)≤ −n.(52)

It is easy to see that rt+wt ∼ (1 + w)rt . This implies that drt+wt ∼ drt and

art+wt − art ∼ drt γ
−1d log(1 + w).

Now condition (52) is equivalent to

[
�t+wt(Z

(1)
t+wt) − art+wt

drt+wt

+ γ −1d log(1 + w) − wθ
|Z(1)

t+wt |
rt+wt

](
1 + o(1)

)≤ −n

and by Proposition 3.2 we obtain

lim
n→∞ lim

t→∞ Prob{Y
t,Z

(1)
t+wt

≤ −n}

= lim
n→∞ lim

t→∞ Prob
{[

Y
t+wt,Z

(1)
t+wt

+ γ −1d log(1 + w) − wθ
|Z(1)

t+wt |
rt+wt

]
(53)

× (
1 + o(1)

)≤ −n

}

= lim
n→∞ Prob

{
Y (1) + γ −1d log(1 + w) − wθ

∣∣X(1)
∣∣≤ −n

}= 0.

Combining the bounds (48) and (50) with the convergence results (49) and (53),
we obtain the required statement. �

Now we show that the probabilities of the events A(n,w, t) converge to a finite
explicit integral.

LEMMA 6.3. For any w ≥ 0,

lim
n→∞ lim

t→∞ Prob
{
A(n,w, t)

}=
∫
Rd×R

exp
{−ν

(
Dw(x, y)

)}
ν(dx, dy) < ∞,

where Dw(x, y) has been defined in (8).

PROOF. We have

Prob
{
A(n,w, t)

}
=
∫
Rd×[−n,∞)

Prob
{(

Z
(1)
t r−1

t , Y
t,Z

(1)
t

) ∈ dx × dy,

�t+wt(z) ≤ �t+wt

(
Z

(1)
t

) ∀z ∈ Z
d s.t. Yt,z ≥ −n

}
.
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Observe that according to (51) the condition �t+wt (z) ≤ �t+wt (Z
(1)
t ) is equivalent

to

�t(z) + drt

wθ

1 + w

|z|
rt

(
1 + o(1)

)≤ �t

(
Z

(1)
t

)+ drt

wθ

1 + w

|Z(1)
t |
rt

(
1 + o(1)

)
,

that is, to

Yt,z + wθ

1 + w

|z|
rt

(
1 + o(1)

)≤ Y
t,Z

(1)
t

+ wθ

1 + w

|Z(1)
t |
rt

(
1 + o(1)

)
.

Consider the point process �t on Ĥ−α−n , where α ∈ (θ w
1+w

, θ). The requirement

{(
Z

(1)
t r−1

t , Y
t,Z

(1)
t

) ∈ dx × dy,�t+wt(z) ≤ �t+wt

(
Z

(1)
t

) ∀z ∈ Z
d s.t. Yt,z ≥ −n

}
means that �t has one point in dx × dy and no points in the domain

Dn,w,t (x, y) = (
R

d × [y,∞)
)

∪
{
(x̄, ȳ) ∈ R

d × [−n,∞) :

y + wθ |x|
1 + w

(
1 + o(1)

)≤ ȳ + wθ |x̄|
1 + w

(
1 + o(1)

)}
.

Hence, by Lemma 3.1,

lim
t→∞ Prob

{
A(n,w, t)

}
= lim

t→∞

∫
Rd×[−n,∞)

Prob
{
�t(dx × dy) = 1,�t

(
Dn,w,t (x, y)

)= 0
}

=
∫
Rd×[−n,∞)

Prob
{
�(dx × dy) = 1,�

(
Dn,w(x, y)

)= 0
}

=
∫
Rd×[−n,∞)

exp
{−ν

(
Dn,w(x, y)

)}
ν(dx, dy),

where

Dn,w(x, y) = Dw(x, y) ∩ (
R

d × [−n,∞)
)
.

Taking the limit in this way is justified as Ĥ−α−n is compact and contains R
d ×

[−n,∞).
It remains to show that

lim
n→∞

∫
Rd×[−n,∞)

exp
{−ν

(
Dn,w(x, y)

)}
ν(dx, dy)

(54)
=
∫
Rd×R

exp
{−ν

(
Dw(x, y)

)}
ν(dx, dy) < ∞.
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Observe that ν(Dn,w(x, y)) ≥ ν(Rd × (y,∞)) for all x ∈ R
d and y ≥ −n. Then

1Rd×[−n,∞)(x, y) exp
{−ν

(
Dn,w(x, y)

)}≤ exp
{−ν

(
R

d × (y,∞)
)}

.

It is easy to see that exp{−ν(Rd × (y,∞))} is integrable with respect to the mea-
sure ν on R

d ×R since using (18) and the substitution u = e−γy we get∫
Rd×R

exp
{−ν

(
R

d × (y,∞)
)}

ν(dx, dy)

=
∫ ∞
−∞

∫
Rd

γ exp
{−γy − γ θ |x| − 2d(γ θ)−de−γy}dx dy

(55)
= 2d(γ θ)−d

∫ ∞
−∞

γ exp
{−γy − 2d(γ θ)−de−γy}dy

= 2d(γ θ)−d
∫ ∞

0
exp

{−2d(γ θ)−du
}
du = 1.

Now (54) follows from the dominated convergence theorem. �

Finally, we combine all results of this section to prove ageing.

PROOF OF THEOREM 1.3. For any w > 0, we have by Lemmas 6.1, 6.2
and 6.3,

F(w) := lim
t→∞ Prob{Tt/t ≤ w} = 1 − lim

t→∞ Prob
{
Z

(1)
t = Z

(1)
t+wt

}
= 1 − lim

n→∞ lim
t→∞ Prob

{
A(n,w, t)

}
= 1 −

∫
Rd×R

exp
{−ν

(
Dw(x, y)

)}
ν(dx, dy).

Observe that exp{−ν(Dw(x, y))} ≤ exp{−ν(Rd × (y,∞))} which is integrable
with respect to the measure ν by (55). Since ν(Dw(x, y)) → ν(Dw0(x, y)) when-
ever w → w0 ∈ (0,∞) the function F is continuous.

If w → 0+ then ν(Dw(x, y) → ν(Rd × (y,∞)) and by (55) we obtain

lim
w→0+F(w) = 1 −

∫
Rd×R

exp
{−ν

(
R

d × (y,∞)
)}

ν(dx, dy) = 0.

Finally, if w → ∞ then ν(Dw(x, y)) → ν(D∞(x, y)), where

D∞(x, y) = {
(x̄, ȳ) ∈ R

d ×R :y + θ |x| ≤ ȳ + θ |x̄|}∪ (
R

d × [y,∞)
)
.

Compute

ν
(
D∞(x, y)

) ≥
∫
|x̄|>|x|

∫ ∞
y+θ |x|−θ |x̄|

γ exp
{−γ ȳ − γ θ |x̄|}dȳ dx̄

= exp
{−γy − γ θ |x|} ∫

|x̄|>|x|
dx̄ = ∞.

Hence, F(w) → 1 as w → ∞. �
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[3] BEN AROUS, G. and ČERNÝ, J. (2006). Dynamics of trap models. In Mathematical Statistical
Physics 331–394. Elsevier, Amsterdam. MR2581889

[4] BISKUP, M. and KÖNIG, W. (2001). Long-time tails in the parabolic Anderson model with
bounded potential. Ann. Probab. 29 636–682. MR1849173

[5] CARMONA, R. A. and MOLCHANOV, S. A. (1994). Parabolic Anderson problem and intermit-
tency. Mem. Amer. Math. Soc. 108 viii+125. MR1185878

[6] DEMBO, A. and DEUSCHEL, J.-D. (2007). Aging for interacting diffusion processes. Ann.
Inst. Henri Poincaré Probab. Stat. 43 461–480. MR2329512

[7] GÄRTNER, J. and KÖNIG, W. (2005). The parabolic Anderson model. In Interacting Stochastic
Systems 153–179. Springer, Berlin. MR2118574

[8] GÄRTNER, J., KÖNIG, W. and MOLCHANOV, S. (2007). Geometric characterization of inter-
mittency in the parabolic Anderson model. Ann. Probab. 35 439–499. MR2308585

[9] GÄRTNER, J. and MOLCHANOV, S. A. (1990). Parabolic problems for the Anderson model. I.
Intermittency and related topics. Comm. Math. Phys. 132 613–655. MR1069840

[10] GÄRTNER, J. and MOLCHANOV, S. A. (1998). Parabolic problems for the Anderson model.
II. Second-order asymptotics and structure of high peaks. Probab. Theory Related Fields
111 17–55. MR1626766

[11] GÄRTNER, J. and SCHNITZLER, A. (2011). Time correlations for the parabolic Anderson
model. Electron. J. Probab. 16 1519–1548. MR2827469

[12] KÖNIG, W., LACOIN, H., MÖRTERS, P. and SIDOROVA, N. (2009). A two cities theorem for
the parabolic Anderson model. Ann. Probab. 37 347–392. MR2489168

[13] LACOIN, H. and MÖRTERS, P. (2012). A scaling limit theorem for the parabolic Anderson
model with exponential potential. In Probability in Complex Physical Systems. In Honour
of J. Gärtner and E. Bolthausen. Springer Proc. Math. 11 247–271. Springer, Berlin.

[14] MOLCHANOV, S. (1994). Lectures on random media. In Lectures on Probability Theory (Saint-
Flour, 1992). Lecture Notes in Math. 1581 242–411. Springer, Berlin. MR1307415

[15] MÖRTERS, P., ORTGIESE, M. and SIDOROVA, N. (2011). Ageing in the parabolic Anderson
model. Ann. Inst. Henri Poincaré Probab. Stat. 47 969–1000. MR2884220

[16] VAN DER HOFSTAD, R., KÖNIG, W. and MÖRTERS, P. (2006). The universality classes in the
parabolic Anderson model. Comm. Math. Phys. 267 307–353. MR2249772

[17] VAN DER HOFSTAD, R., MÖRTERS, P. and SIDOROVA, N. (2008). Weak and almost sure
limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab.
18 2450–2494. MR2474543

[18] ZEL’DOVICH, YA. B., MOLCHANOV, S. A., RUZMAĬKIN, A. A. and SOKOLOV, D. D. (1987).
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