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RANDOM ATTRACTORS FOR STOCHASTIC POROUS MEDIA
EQUATIONS PERTURBED BY SPACE–TIME LINEAR

MULTIPLICATIVE NOISE

BY BENJAMIN GESS1

Humboldt-Universität zu Berlin

Unique existence of solutions to porous media equations driven by con-
tinuous linear multiplicative space–time rough signals is proven for initial
data in L1(O) on bounded domains O. The generation of a continuous,
order-preserving random dynamical system on L1(O) and the existence of
a random attractor for stochastic porous media equations perturbed by linear
multiplicative noise in space and time is obtained. The random attractor is
shown to be compact and attracting in L∞(O) norm. Uniform L∞ bounds
and uniform space–time continuity of the solutions is shown. General noise
including fractional Brownian motion for all Hurst parameters is treated and
a pathwise Wong–Zakai result for driving noise given by a continuous semi-
martingale is obtained. For fast diffusion equations driven by continuous lin-
ear multiplicative space–time rough signals, existence of solutions is proven
for initial data in Lm+1(O).

1. Introduction. The qualitative study of stochastic dynamics induced by
stochastic partial differential equations (SPDE) especially in the case of non-
Markovian noise is based on the theory of random dynamical systems (RDS); cf.,
for example, [2]. Since the foundational work [17, 18, 43] the long-time behav-
ior of several quasilinear SPDE has been investigated by means of the existence
of random attractors. However, all these results are restricted to simple models of
the noise (e.g., additive or real multiplicative2) not including the important case of
linear multiplicative space–time noise. This is mainly due to the difficulty to even
define an associated RDS for more general SPDE. The generation of an RDS is
usually shown by use of a transformation of the SPDE into a random PDE. De-
pending on the structure of the noise monotonicity and coercivity properties of
the drift are preserved under this transformation. For example, this is the case for
additive, real linear multiplicative and for certain transport noise [23]. For linear
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multiplicative space–time noise, however, this is not the case, thus making the anal-
ysis of the random PDE much harder. The generation of an RDS and the existence
of random attractors for stochastic porous media equations (SPME) with additive
noise has been obtained in [11, 28]. A first approach to tackle the generation of an
RDS for SPME with linear multiplicative space–time noise, that is, for equations
of the form

dXt = �
(|Xt |m sgn(Xt)

)
dt +

N∑
k=1

μkekXtdβ
(k)
t , 1 < m < ∞,(1.1)

has been given in [9] by proving the unique existence of pathwise solutions to a
corresponding random PDE for essentially bounded initial conditions x ∈ L∞(O).
The existence and uniqueness of probabilistically strong solutions to (1.1), even
including 0 < m < 1 and all initial conditions x ∈ (H 1

0 (O))∗, has been obtained
in [40]. However, this does not yield the existence of an RDS. The pathwise so-
lutions to the transformed equation constructed in [9] form an RDS ϕ on L∞(O).
However, neither continuity of x �→ ϕ(t,ω)x nor continuity of t �→ ϕ(t,ω)x has
been obtained. These properties of RDS are crucial to obtain the existence of ran-
dom attractors. Due to the strong norm on the state space L∞(O) especially the
continuity in the initial condition is not clear. In this paper we prove the genera-
tion of an RDS corresponding to SPME driven by multiplicative space–time rough
signals for all initial conditions X0 ∈ L1(O), that is to equations of the form

dXt = �
(|Xt |m sgn(Xt)

)
dt +

N∑
k=1

fkXt ◦ dz
(k)
t on OT ,

(1.2)
X(0) = X0 on O,

with 1 < m < ∞, homogeneous Dirichlet boundary conditions, rough driving
signals z(k) ∈ C([0, T ];R) and with fk ∈ C∞(Ō). We assume the number of
signals N to be finite and high regularity for fk for simplicity only. In fact,
most of the proofs only require

∑∞
k=1 fk(ξ)zk

t ∈ C([0, T ];C2(Ō)). The stochas-
tic Stratonovich integral occurring in (1.2) is informal, and the rigorous justifica-
tion of this notation is part of our results. The resulting stochastic flow is proven
to be an RDS ϕ on L1(O) which is continuous in the initial condition and in
time. Generalizing the notion of quasi-continuity of RDS we show that ϕ is quasi-
weakly-continuous on Lp(O) for all p ∈ [1,∞) and quasi-weakly∗-continuous
on L∞(O). Moreover, we prove the existence of an absorbing random set F ⊆ X

which even is bounded in L∞(O), as well as asymptotic compactness of ϕ on each
Lp(O), p ∈ [1,∞] (requiring a uniform convexity condition for O if p = ∞).
Generalizing an existence result for random attractors of quasi-continuous RDS,
we deduce the existence of a random attractor A for ϕ [as an RDS on L1(O)],
which is compact and attracting in each Lp(O) with p ∈ [1,∞]. For semilin-
ear SPDE with linear multiplicative space–time noise, a construction of stochastic
flows and invariant manifolds can be found in [38].
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We obtain new spatial and temporal regularity properties for solutions to (1.2)
analogous to those proved for deterministic porous media type equations by De
Giorgi–Nash–Moser type iteration techniques in [22]. More precisely, we prove
that the solution X is locally equicontinuous on OT (i.e., continuous on each
compact set K ⊆ (0, T ] × O with a modulus of continuity independent of the
initial condition). Under appropriate assumptions on the boundary ∂O (on the
initial data X0, resp.), also equicontinuity up to the boundary (continuity up to
initial time t = 0, resp.) is obtained. Applied to driving signals given by inde-
pendent Brownian motions this implies a new regularity result for the variational
stochastic solution X corresponding to (1.2), namely P-a.s. local equicontinuity
on OT . This complements the regularity results given in [26], where it is shown
that |X|m sgn(Xt) ∈ L2([0, T ] × �;H 1

0 (O)) and X ∈ L∞([0, T ];Lm+1(� × O))

if the initial condition is regular enough.
We consider (1.2) driven by rough signals z(k) ∈ C([0, T ];R) which do not nec-

essarily need to be given as paths of a continuous semimartingale. The construction
proceeds by a Wong–Zakai approximation of the driving noise, proving the exis-
tence of a limit solution independent of the chosen approximating sequence. This
is reminiscent of the rough paths approach to SPDE developed in [13–15, 30, 31,
36, 37], where SPDE driven by rough paths are treated by transformation to a ran-
dom PDE; cf. (1.4) below. We note, however, that due to the form of perturbation
considered in this paper, no rough paths techniques such as rough paths topologies
on augmented paths spaces are required. If the driving signal is given by a con-
tinuous semimartingale, we prove that this limit solution solves the corresponding
SPDE, and we thereby obtain a pathwise Wong–Zakai result for SPME driven by
linear multiplicative space–time semimartingale noise.

The long-time behavior of SPDE can be analyzed in terms of the associated
Markovian semigroup and its ergodicity or in terms of the associated RDS and
its random attractor. As soon as the driving noise lacks the Markov property, the
SPDE does not induce a Markovian semigroup anymore. In contrast, analyzing
the associated RDS merely requires the noise to have stationary increments and
some path regularity; cf., for example, [28]. In particular, RDS can be used to
study long-time behavior of SPDE driven by fractional Brownian Motion (fBm).
The characteristic long-range dependence of fBm makes an investigation of the
induced stochastic dynamics especially intriguing. In this paper we only assume
that the noise has stationary increments and continuous paths, thus including fBm
for all Hurst parameters.

Concerning the theory of RDS and random attractors, we slightly generalize
the concept of quasi-weakly continuous RDS in order to show that the constructed
RDS is quasi-weakly∗-continuous on L∞(O) and has a random attractor with re-
spect to the L∞-norm. Since the equicontinuity of the solutions only holds locally,
that is, on every compact set K ⊆ O, the notion of compact absorption has to be
replaced by asymptotic compactness (cf., e.g., [12] and the references therein),
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a concept usually needed in order to treat unbounded domains. This application of
asymptotic compactness seems to be new.

Our methods to prove the existence of solutions to (1.2) for initial conditions
X0 ∈ Lm+1(O) also apply in the case of fast diffusions (i.e., for 0 < m < 1) driven
by continuous signals. In particular, this generalizes results given in [9] since no
restrictions on the dimension d nor on the exponent 0 < m < 1 are assumed. In
order not to overload the presentation, the case of fast diffusion equations is treated
as a remark only (Remark 2.5, below).

SPME and stochastic fast diffusion equations (SFDE) have been intensively
investigated in recent years; cf., for example, [4–6, 19, 20, 26, 32, 40, 41] and
references therein. The long-time behavior of SPME with Brownian additive noise
in terms of the existence of a random attractor has first been treated in [11] which
then has been partially extended to more generally distributed additive noise in
[27, 28]. The SFDE (0 < m < 1) with linear multiplicative space–time noise has
been first solved in [27, 40]. Subsequently, extinction in finite time with positive
probability has been shown in [7] and in a more singular case which is used as
model to study self-organized criticality in [8].

A concise announcement of the results presented here has appeared in [25].

1.1. Survey of the construction of the RDS and of the proofs of its properties.
Let 1 < m < ∞ and 	 ∈ C(R) be given by

	(r) := |r|m sgn(r).

First part: In the first part we construct “pathwise” solutions to the rough partial
differential equation (1.2). Step by step we will allow rougher signals z(k) and ini-
tial conditions X0 at the expense of weaker notions of solutions. The construction
of solutions to (1.2) for signals of bounded variation proceeds by first transform-
ing the equation into a PDE and then constructing solutions to this transformed
equation. Let

μt(ξ) := −
N∑

k=1

fk(ξ)z
(k)
t .(1.3)

Defining Y = eμX, we obtain the transformed equation (which was first studied
in [8, 9])

∂tYt = eμt �	
(
e−μt Yt

)
on OT ,

(1.4)
Y(0) = Y0 on O,

with homogeneous Dirichlet boundary conditions. This transformation is rigor-
ous for driving signals of bounded variation (Theorem 2.2) as well as for signals
given by paths of a continuous semimartingale (Theorem 2.18). Next, we prove
uniqueness of essentially bounded solutions to (1.4) (Theorem 2.3). Equation (1.4)
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does not fall into any class of equations for which unique existence of solutions is
known. In particular, (1.4) does not satisfy the structural assumptions required in
[1, 21, 29, 42].

For continuous driving signals, we construct weak solutions to (1.4) as lim-
its of solutions to a nondegenerate, smooth approximation; that is, we approxi-
mate 	 by 	(δ) with 0 < C(δ) ≤ 	̇(δ) and the signal z by z(δ) ∈ C∞([0, T ];RN).
Solutions to these nondegenerate approximations are obtained via classical ex-
istence results for quasilinear equations. Passing to the limit δ → 0 in order to
obtain weak solutions to (1.4) requires uniform L∞(O) bounds for the approx-
imating solutions Y (δ). Such bounds are obtained by constructing bounded su-
persolutions to (1.4). Thereby, the existence of weak solutions to (1.4) satisfying
analogous L∞(O) bounds is obtained for essentially bounded initial conditions
(Theorem 2.4). In case of signals of bounded variation this yields weak solutions
to (1.2) by transformation.

Next, we approximate general continuous driving signals z by continuous sig-
nals of bounded variation z(ε) and prove that the corresponding weak solutions
X(ε) converge to a limit X independent of the chosen approximating sequence
z(ε). We call the limit X a rough weak solution to (1.2) and observe X = e−μY ,
where Y denotes the weak solution to (1.4) for the continuous driving signal z

(Theorem 2.7).
In order to construct solutions for general initial data X0 ∈ L1(O) we prove

Lipschitz continuity of X in the initial condition with respect to the L1(O) norm.
For X0 ∈ L1(O) solutions are then obtained as limit solutions by approximation
of X0 by essentially bounded initial conditions (Theorem 2.9). Using an L1 − L∞
regularizing property of the flow, these limit solutions are characterized as unique
generalized weak solutions to (1.4) (Theorem 2.17). This regularization property
also builds the foundation of the proof of bounded absorption. The key idea is to
combine an interval splitting technique as used in [9], Lemma 3.3, with the known
uniform supersolution (i.e., a supersolution independent of the initial condition)
from the deterministic case

U(t) := At−1/(m−1)(R2 − |ξ |2)1/m
.

Combining these ideas we construct a new uniform supersolution for (1.4). The
resulting construction is quite different from the one given in [9].

Based on continuity results presented in [22] we then prove that the limit so-
lutions are uniformly continuous on each compact set K ⊆ (0, T ] × O (Theo-
rem 2.12). This finishes the treatment of the pathwise case.

Second part: In the second part we consider SPME driven by signals given as
paths of stochastic processes

dXt = �	(Xt) dt +
N∑

k=1

fkXt ◦ dz
(k)
t on OT ,

X(0) = X0 on O,
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with homogeneous Dirichlet boundary conditions, where z is an R
N -valued

stochastic process with stationary increments and continuous paths. Defining

ϕ(t,ω)x = X(t,0;ω)x

yields an order-preserving RDS on L1(O) (Theorem 2.30), where X(t,0;ω)x is
the solution obtained in the first part driven by the signal z = z(ω). The uniform
L∞(O) bound and the regularity results obtained for the rough PDE (1.2) continue
to hold for ϕ, which induces asymptotic compactness of ϕ in each Lp(O), p ∈
[1,∞]. The existence of a random attractor in L1(O) follows. In order to deduce
the attraction property in higher Lp-norms and in particular with respect to the
L∞-norm, we slightly generalize the notion of quasi-weakly-continuous RDS for
not necessarily reflexive subspaces and thereby obtain the existence of a random
attractor with respect to every Lp-norm, p ∈ [1,∞] (Theorem 2.31).

In Section 2 we introduce the detailed setup and present the main results. Proofs
of the pathwise results are given in Section 3 while the ones for the stochastic case
and the RDS ϕ are given in Section 4.

As usual in probability theory we denote the time-dependency of functions by a
subscript Xt rather than by X(t) in order to keep the equations at a bearable length.
We would like to apologize to the readers with a more analytical background for
this maybe unfamiliar notation.

2. Setup and main results. Let O ⊆R
d be a smooth, bounded domain, T > 0

and OT := [0, T ]×O. By PO[s,t] we denote the (time-inverted) parabolic bound-
ary [s, t] × ∂O ∪ {t} × O, and we set POT := PO[0,T ]. Let C(O) be the set
of continuous functions on O, Cm,n(ŌT ) ⊆ C(ŌT ) be the set of all continu-
ous functions on OT having m continuous derivatives in time and n continuous
derivatives in space. By C1−var([0, T ];H) we denote the set of all continuous
functions of bounded variation and by Cw([0, T ];H) the weakly continuous func-
tions taking values in H . As usual, Wm,p(O) denotes the Sobolev space of order
m in Lp(O), W

m,p
0 (O) the subspace of functions vanishing on ∂O, and we set

H 1
0 (O) := W

1,2
0 (O), H := (H 1

0 (O))∗. For a subset K of a Banach space X we
define ‖K‖X := supk∈K ‖k‖X .

2.1. Porous medium equation driven by rough signals. Let us first define what
we mean by a solution to (1.2) and (1.4). Setting B(x)(z) := ∑N

k=1 fkxz(k) for
x ∈ L1(O) and z ∈R

N we can rewrite

B(Xt) ◦ dzt =
N∑

k=1

fkXt ◦ dz
(k)
t .

As outlined in the Introduction, we will introduce several notions of solutions
to (1.2) and (1.4), corresponding to the intermediate steps in the construction of
the solution for initial values in L1(O) and continuous driving signals. The final
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result will be the unique existence of a function X ∈ L1(OT ) such that the transfor-
mation Y = eμX is a generalized weak solution of (1.4) (cf. Definition 2.15 below)
as well as its continuity properties (cf. Theorem 2.12 below). Defining X to be a
solution to (1.2) is further justified by the construction since X is obtained as the
unique limit of solutions to approximating equations, independent of the chosen
approximating sequence. In order to underline this fact, to explain the structure of
the construction and to point out the higher regularity of solutions for more regular
initial data and driving signals, we explicitly formulate the intermediate existence
and uniqueness results. We will use the usual notation for (very) weak solutions as
in [22].

DEFINITION 2.1 (Weak and very weak solutions). (i) Let Y0 ∈ L1(O). A func-
tion Y ∈ L1(OT ) with 	(e−μY ) ∈ L1(OT ) is called a very weak solution to (1.4)
if

−
∫
OT

Yr∂rη dξ dr −
∫
O

Y0η0 dξ =
∫
OT

	
(
e−μr Yr

)
�

(
eμr ηr

)
dξ dr(2.1)

for all η ∈ C1,2(ŌT ) with η = 0 on POT . If in addition 	(e−μY ) ∈ L1([0, T ];
W

1,1
0 (O)), then Y is said to be a weak solution to (1.4).
(ii) Let z ∈ C1−var([0, T ];RN) and X0 ∈ L1(O). A function X ∈ L1(OT ) such

that t �→ (
∫
O B(Xt)ηt dξ) is continuous and 	(X) ∈ L1(OT ) is called a very weak

solution to (1.2) if

−
∫
OT

Xr∂rη dξ dr −
∫
O

X0η0 dξ

=
∫
OT

	(Xr)�ηr dξ dr +
∫ T

0

(∫
O

B(Xr)ηr dξ

)
dzr

for all η ∈ C1,2(ŌT ) with η = 0 on POT . If in addition 	(X) ∈ L1([0, T ];
W

1,1
0 (O)), then X is said to be a weak solution to (1.2).

Note that in the case of (very) weak solutions to (1.2) we implicitly assume
z ∈ C1−var([0, T ];RN).

A function Y ∈ L1(OT ) ∩ C([0, T ];H) with 	(e−μY ) ∈ L1([0, T ];H 1
0 (O)) is

a weak solution to (1.4) if and only if

dYt

dt
= eμt �	

(
e−μt Yt

)

for a.e. t ∈ [0, T ] as an equation in H . Similarly, X ∈ L1(OT )∩C([0, T ];H) with
	(X) ∈ L1([0, T ];H 1

0 (O)) is a weak solution to (1.2) if and only if

Xt = X0 +
∫ t

0
�	(Xr) dr +

∫ t

0
B(Xr) dzr
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for all t ∈ [0, T ] as an equation in H . If we replace H by some weaker
space H−k ⊇ L1(O), then similar equivalences hold for very weak solutions in
Cw([0, T ];L1(O)).

For very weak solutions we will prove that equations (1.2) and (1.4) are indeed
in one-to-one correspondence under the transformation Y = eμX.

THEOREM 2.2. Let X0 ∈ L1(O), z ∈ C1−var([0, T ];RN) and X ∈ L1(OT )

such that t �→ (
∫
O B(Xt)ηt dξ) is continuous for all η ∈ C0,2(ŌT ) with η = 0 on

POT . Then X is a very weak solution to (1.2) if and only if Y := eμX is a very
weak solution to (1.4).

As an immediate consequence we obtain that X is a weak solution to (1.2) if
and only if Y := eμX is a weak solution to (1.4). We will prove the following
uniqueness of very weak solutions:

THEOREM 2.3. Essentially bounded very weak solutions to (1.2) and (1.4)
are unique.

By Theorem 2.2, uniqueness of (1.2) follows from uniqueness of (1.4). The
proof relies on the duality method. We give a short, informal idea of the proof.
For two solutions Y (1), Y (2) with the same initial condition let Y = Y (1) − Y (2).
Then Y satisfies∫

OT

Yr∂rη dξ dr = −
∫
OT

(
	

(
e−μr Y (1)

r

) − 	
(
e−μr Y (2)

r

))
�

(
eμr ηr

)
dξ dr

= −
∫
OT

arYr�
(
eμr ηr

)
dξ dr

for all admissible testfunctions η, where

at :=
⎧⎪⎨
⎪⎩

	(e−μt Y
(1)
t ) − 	(e−μt Y

(2)
t )

Y
(1)
t − Y

(2)
t

, for Y
(1)
t �= Y

(2)
t ,

0, otherwise.

We may rewrite this to get∫
OT

Yr

(
∂rηr + ar�

(
eμr ηr

))
dξ dr = 0

for all admissible η. The proof is then concluded by choosing η as a solution to

∂rηr + ar�
(
eμr ηr

) − θ = 0 on OT ,
(2.2)

η = 0 on POT

for an arbitrary, smooth test-function θ . Since solutions to (2.2) are not known to
satisfy sufficient regularity be used as testfunctions, further approximation argu-
ments are required. These rely on nondegenerate, smooth approximation of ar,μr
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and on an interval splitting method required in order to control the perturbing fac-
tors eμr .

As outlined in the Introduction by a nondegenerate approximation of (1.4), we
obtain:

THEOREM 2.4. Let 1 < m < ∞. Then:

(i) Let Y0 ∈ L∞(O) and z ∈ C([0, T ];RN). Then there exists a unique
weak solution Y ∈ C([0, T ];H) ∩ L∞(OT ) to (1.4) satisfying 	(e−μY ) ∈
L2([0, T ];H 1

0 (O)). There is a function U : [0, T ] × O → R̄ (taking the value ∞
at t = 0) that is piecewise smooth on (0, T ] such that for all Y0 ∈ L∞(O)

Yt ≤ Ut a.e. in O and ∀t ∈ [0, T ].
(U is more explicitly defined in the proof below).

(ii) Let z ∈ C1−var([0, T ];RN) and X0 ∈ L∞(O). Then there exists a unique
weak solution X ∈ C([0, T ];H) ∩ L∞(OT ) to (1.2) satisfying 	(X) ∈ L2([0, T ];
H 1

0 (O)) and Xt ≤ Ut a.e. in O, ∀t ∈ [0, T ] with a function U as in (i).

The existence of such an upper bound Ut that is independent of the initial con-
dition is due to the nonlinearity (1 < m < ∞) of the porous medium operator and
is well known in the deterministic case (cf. [45] and references therein) with Ut

being of the form Ut = At−1/(m−1)(R2 − |ξ |2)1/m.

REMARK 2.5. For the case of fast diffusion equations, that is, for 0 < m < 1
we obtain:

(i) For Y0 ∈ Lm+1(O) and z ∈ C([0, T ];RN), there exists a weak solution Y ∈
C([0, T ];H) to (1.4) satisfying 	(e−μY ) ∈ L2([0, T ];H 1

0 (O)). If Y0 ∈ L∞(O),
then

Yt ≤ Kt a.e. in O and ∀t ∈ [0, T ],
with K = K(‖Y0‖L∞(O)) : [0, T ] × O → R+ being a piecewise smooth function
on [0, T ]. The map t �→ Yt is weakly continuous in each Lp(O), p ∈ [1,∞).

(ii) Let z ∈ C1−var([0, T ];RN) and X0 ∈ Lm+1(O). Then there exists a weak
solution X ∈ C([0, T ];H) to (1.2) which satisfies 	(X) ∈ L2([0, T ];H 1

0 (O)). If
X0 ∈ L∞(O) then Xt ≤ Kt a.e. in O, ∀t ∈ [0, T ] with a function K as in (i). The
map t �→ Xt is weakly continuous in each Lp(O), p ∈ [1,∞).

No uniqueness is obtained for the fast diffusion case.

So far we can solve (1.4) for driving signals being merely continuous while
for (1.2) we require continuous signals of bounded variation. Since we aim to
include rough signals (as they occur, e.g., as sample paths of fractional Brownian
motion) we need to allow rougher signals z ∈ C([0, T ];RN) for (1.2) as well.
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Such solutions will be constructed as limits of solutions to smoothed signals z(ε) ∈
C1−var([0, T ];RN) with zε → z in C([0, T ];RN). We prove that the solutions
X(ε) to (1.2) driven by these smoothed signals converge to X := e−μY , that is, to
a limit not depending on the chosen approximating sequence. In other words, X is
the limit obtained by any Wong–Zakai approximation of (1.2).

DEFINITION 2.6. Let z ∈ C([0, T ];RN). We call X ∈ C([0, T ];H) a rough
weak solution to (1.2) if X(0) = X0 and for all approximations z(ε) ∈
C1−var([0, T ];RN) of the driving signal z with z(ε) → z in C([0, T ];RN) and
corresponding weak solutions X(ε) to (1.2) driven by z(ε), we have

X
(ε)
t → Xt in H and ∀t ∈ [0, T ].(2.3)

THEOREM 2.7. Let X0 ∈ L∞(O) and z ∈ C([0, T ];RN). Then there exists
a unique rough weak solution X to (1.2) with 	(X) ∈ L2([0, T ];H 1

0 (O)) given
by X = e−μY , where Y is the corresponding weak solution to (1.4). X satisfies
Xt ≤ Ut a.e. in O for all t ∈ [0, T ], with U as in Theorem 2.4.

The convergence of the approximations X(ε) = e−μ(ε)
Y (ε) is proven via conver-

gence of Y (ε). The main point of the proof of Theorem 2.7 is the realization that
the a priori bounds derived in the construction of weak solutions in Theorem 2.4
rely on the driving signal z only via its sup-norm and its modulus of continuity.
Therefore, the bounds are uniform for every approximating sequence z(ε) as in
Definition 2.6. The convergence of Y (ε) is then obtained by similar methods as
used in the construction of weak solutions.

Since the weak solutions to (1.2) obtained in Theorem 2.4 are also given by X =
e−μY , the notions of rough weak solutions and weak solutions to (1.2) coincide
for continuous driving signals of bounded variation and essentially bounded initial
conditions.

DEFINITION 2.8. Let X0 ∈ L1(O) and z ∈ C([0, T ];RN). A function X ∈
Cw([0, T ];L1(O)) is said to be a limit solution to (1.2) if X(0) = X0 and for
all approximations X

(δ)
0 ∈ L∞(O) with X

(δ)
0 → X0 in L1(O) and corresponding

rough weak solutions X(δ) to (1.2), we have X
(δ)
t → Xt in L1(O) uniformly in

time.

These limit solutions play an important role for allowing initial conditions in
L1(O). In Lemma 3.6 below we will establish uniform L1(O) continuity in the
initial condition for rough weak solutions. This will allow to construct limit solu-
tions for initial values in L1(O) by approximation in the initial condition.
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THEOREM 2.9. Let z ∈ C([0, T ];RN). For each X0 ∈ L1(O) there is a
unique limit solution X satisfying 	(X) ∈ L1(OT ). For X

(i)
0 ∈ L1(O), i = 1,2

the corresponding limit solutions satisfy

sup
t∈[0,T ]

∥∥(
X

(1)
t − X

(2)
t

)+∥∥
L1(O) + ∥∥(

	
(
X(1)) − 	

(
X(2)))+∥∥

L1(OT )

≤ C
∥∥(

X
(1)
0 − X

(2)
0

)+∥∥
L1(O)

and

sup
t∈[0,T ]

∥∥X(1)
t − X

(2)
t

∥∥
L1(O) + ∥∥	(

X(1)) − 	
(
X(2))∥∥

L1(OT )

≤ C
∥∥X(1)

0 − X
(2)
0

∥∥
L1(O).

We further have Xt ≤ Ut a.e. in O for all t ∈ [0, T ], where U is as in Theorem 2.4.

We present an informal argument justifying the L1 stability proved in Theo-
rem 2.9 above at least for small times T . Let ϕ ∈ C2(Ō) be the unique classical
solution to

�ϕ = −1 in O,

ϕ = 1 on ∂O.

Using partial integration twice we obtain (informally)

∂t

∫
O

∣∣Y (1) − Y (2)
∣∣ϕ dξ

=
∫
O

sgn
(
Y (1) − Y (2))�(

	
(
e−μY (1)) − 	

(
e−μY (2)))eμϕ dξ

≤ −
∫
O

sgn
(
	

(
e−μY (1)) − 	

(
e−μY (2)))

× ∇(
	

(
e−μY (1)) − 	

(
e−μY (2))) · ∇(

eμϕ
)
dξ

=
∫
O

∣∣	(
e−μY (1)) − 	

(
e−μY (2))∣∣�(

eμϕ
)
dξ.

For small times T we note �(eμϕ) ≤ −1
2 , which yields the result. For large

times T this method is applied by using an interval splitting technique in order
to compensate the growth of the perturbing factor eμ.

As a special case we obtain the following comparison principle

COROLLARY 2.10. Let X
(1)
0 ,X

(2)
0 ∈ L1(O) with X

(1)
0 ≤ X

(2)
0 a.e. in O. Then

X
(1)
t ≤ X

(2)
t

for all t ∈ [0, T ], a.e. in O. In particular, if 0 ≤ X0, then 0 ≤ X.
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Let X be a limit solution. By Theorem 2.9 there are rough weak solutions with
X(δ) → X in L∞([0, T ];L1(O)) and 	(X(δ)) → 	(X) in L1(OT ). Hence, there
are weak solutions Y (δ) = eμX(δ) converging in L∞([0, T ];L1(O)) to Y := eμX

and 	(e−μY (δ)) → 	(e−μY ) in L1(OT ). Passing to the limit δ → 0 in (2.1) yields

REMARK 2.11. Let X0 ∈ L1(O) and X be the corresponding limit solution.
Then Y := eμX is a very weak solution of (1.4).

The limit solution X turns out to be in fact more regular. The proof proceeds by
choosing the approximations used in the construction of weak solutions in a way
that allows to apply the regularity results presented in [22]. We say that a quantity
depends only on the data if it is a function of d , m, T .

THEOREM 2.12. Let z ∈ C([0, T ];RN), X0 ∈ L1(O) and X be the corre-
sponding limit solution. Then:

(i) X is uniformly continuous on every compact set K ⊆ (0, T ] ×O, with modu-
lus of continuity depending only on the data and dist(K, ∂OT ).

(ii) If X0 ∈ L∞(O) is continuous on a compact set K ⊆ O, then X is uni-
formly continuous on [0, T ] × K ′ for every compact set K ′ ⊆ ◦

K , with mod-
ulus of continuity depending only on the data, ‖X0‖L∞(O), dist(K, ∂O),
dist(K ′, ∂K) and the modulus of continuity of X0 on K .

(iii) Assume:
(O1) There exist θ∗ > 0,R0 > 0 such that ∀x0 ∈ ∂O and every R ≤ R0∣∣O ∩ BR(x0)

∣∣ <
(
1 − θ∗)∣∣BR(x0)

∣∣.
Then for every τ > 0, X is uniformly continuous on [τ, T ] × Ō with modulus
of continuity depending only on the data, θ∗ and τ .

By dominated convergence we obtain:

COROLLARY 2.13. Let z ∈ C([0, T ];RN).

(i) If X0 ∈ L1(O), then X ∈ C([0, T ];L1(O)) ∩ C((0, T ];Lp(O)) for every
p ∈ [1,∞).

(ii) If X0 ∈ L∞(O), then X ∈ C([0, T ];Lp(O)) for every p ∈ [1,∞).

The continuity obtained in Theorem 2.12 together with the L∞-bounds from
Theorem 2.4 imply that the convergence of the various approximating solutions
used to construct limit solutions driven by rough signals in fact holds locally uni-
formly. For example we obtain

COROLLARY 2.14. Let z ∈ C([0, T ];RN), X0 ∈ L1(O). Then the conver-
gence in (2.3) holds uniformly on compact sets K ⊆ (0, T ] ×O.
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In Remark 2.11 we have shown that the limit solutions X are solutions to (1.2)
in the sense that their transformations Y := eμX are very weak solutions to (1.4).
However, since uniqueness of very weak solutions has only been obtained in the
essentially bounded case, this does not yield a characterization of limit solutions.
To overcome this problem we recall that the limit solutions constructed in Theo-
rem 2.9 enjoy an L1 − L∞ regularizing property. This regularization can be used
in order to characterize the transformation Y := eμX of limit solutions X as gen-
eralized weak solutions, in the following sense:

DEFINITION 2.15. Let z ∈ C([0, T ];RN). A map Y ∈ C([0, T ];L1(O)) is
said to be a generalized weak solution to (1.4) if Y is an essentially bounded weak
solution to (1.4) on each interval [τ, T ] with τ > 0; that is, Y ∈ L∞([τ, T ] × O),
	(e−μY ) ∈ L1([τ, T ];W 1,1

0 (O)) and

−
∫
[τ,T ]×O

Yr∂rη dξ dr −
∫
O

Yτητ dξ = −
∫
[τ,T ]×O

∇	
(
e−μr Yr

) · ∇(
eμr ηr

)
dξ dr

for all η ∈ C1([τ, T ] × Ō) with η = 0 on PO[τ,T ].
X ∈ C([0, T ];L1(O)) is said to be a generalized weak solution to (1.2) if Y =

eμX is a generalized weak solution to (1.4).

Using the continuity X ∈ C([0, T ];L1(O)) of generalized weak solutions and
Lipschitz continuity of weak solutions in the initial condition (Theorem 2.9) we
obtain

PROPOSITION 2.16 (Uniqueness of generalized weak solutions). Let X(i) be
generalized weak solutions with initial conditions X

(i)
0 , i = 1,2. Then

sup
t∈[0,T ]

∥∥X(1)
t − X

(2)
t

∥∥
L1(O) ≤ C

∥∥X(1)
0 − X

(2)
0

∥∥
L1(O).

In Theorem 2.9 we have obtained that every limit solution X is essentially
bounded on [τ, T ] × O for all τ > 0. By uniqueness of limit solutions this im-
plies that X is a rough weak solution on [τ, T ]. Thus Y = eμX is a generalized
weak solution.

THEOREM 2.17. Let X0 ∈ L1(O), and let X be the corresponding limit solu-
tion to (1.2). Then X is the unique generalized weak solution to (1.4).

2.2. Stochastic porous medium equation and RDS. So far we did not require
the driving signal to be given by a stochastic process. We aim to study the long-
time behavior of solutions to PME driven by rough noise. If the rough signal is
given by a process with (strictly) stationary increments this additional structure
can be used to significantly simplify this task. This approach is nicely captured by
the theory of RDS.
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For signals given by the paths of a continuous semimartingale stochastic calcu-
lus may be used to give meaning to the integral over the rough signal occurring
in (1.2). This allows to further justify the notion of a rough weak solution which
was based on a Wong–Zakai approximation of the noise (Definition 2.6).

THEOREM 2.18. Let z : [0, T ] × � → R
N be a continuous semimartingale

on a normal filtered probability space (�,F,Ft ,P), X0 ∈ L0(�,F0;L1(O)) and
X(ω) be the corresponding (pathwise) limit solution to (1.2). Then∫

O
Xtϕ dξ =

∫
O

Xsϕ dξ +
∫ t

s

∫
O

	(Xr)�ϕ dξ dr

(2.4)

+
∫ t

s

(∫
O

B(Xr)ϕ dξ

)
◦ dzr

for all ϕ ∈ C2
0(Ō) and all 0 ≤ s ≤ t ≤ T , P-almost surely.

As a part of Theorem 2.18 we obtain that t �→ ∫
O B(Xt)ϕ dξ is a continuous

semimartingale with respect to the filtration generated by z for all ϕ ∈ C2
0(Ō).

Hence, the stochastic integral in (2.4) is well defined.

REMARK 2.19. By Theorem 2.7 we know that for any approximation
z(ε) ∈ C1−var([0, T ];RN) with z(ε) → z in C([0, T ];RN) (pathwise) we have
X

(ε)
t (ω) → Xt(ω) in H for all t ∈ [0, T ] and all ω ∈ �. Since X is a solution

to (2.4), this yields a pathwise Wong–Zakai result.

2.2.1. Quasi-continuity of random dynamical systems. In this section we will
first recall basic notions from the theory of RDS and then develop an existence
result for random attractors based on weakened continuity assumptions for RDS
and asymptotic compactness. This generalized result is needed since the RDS cor-
responding to (1.2), while being continuous on L1(O), is only continuous in a
weaker sense on Lp(O) for p ∈ (1,∞]. For more details on the theory of RDS
and random attractors we refer to [2, 17, 18, 43].

In the following let ((�,F,P), (θt )t∈R) be a metric dynamical system, that is,
(�,F,P) is a probability space, (t,ω) �→ θt (ω) is (B(R) ⊗ F,F) measurable,
θ0 = id, θt+s = θt ◦ θs and θt is P-preserving, for all s, t ∈ R.

DEFINITION 2.20. Let (X,d) be a complete and separable metric space.
A random dynamical system (RDS) over (θt )t∈R is a measurable map ϕ :R+ ×
X × � → X, such that ϕ(0,ω) = id and

ϕ(t + s,ω) = ϕ(t, θsω) ◦ ϕ(s,ω) (cocycle property)

for all t, s ∈ R+ and ω ∈ �. ϕ is said to be a continuous RDS if x �→ ϕ(t,ω)x is
continuous for all t ∈ R+ and ω ∈ �.
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We now recall the stochastic generalization of notions of absorption, attraction
and �-limit sets.

DEFINITION 2.21. (i) A set-valued map D :� → 2X is called measurable if
ω �→ D(ω) takes values in the closed subsets of X and for all x ∈ X the map
ω �→ d(x,D(ω)) is measurable, where for nonempty sets A,B ∈ 2X we set

d(A,B) := sup
x∈A

inf
y∈B

d(x, y)

and d(x,B) = d({x},B). A measurable set-valued map is also called a (closed)
random set.

(ii) A set universe D is a collection of families of subsets (D(ω))ω∈� of X such
that if D ∈ D and D̂(ω) ⊆ D(ω) for all ω ∈ �, then D̂ ∈D. A universe of random
sets is a set universe consisting of random closed sets.

(iii) Let A, B be random sets. A is said to absorb B if there exists an absorption
time tB(ω) such that for all t ≥ tB(ω),

ϕ(t, θ−tω)B(θ−tω) ⊆ A(ω).

A is said to attract B if

d
(
ϕ(t, θ−tω)B(θ−tω),A(ω)

) →
t→∞ 0 ∀ω ∈ �.

(iv) Let D be a universe of random sets and D ∈ D. Then D is said to be a
D-absorbing set for ϕ if D absorbs every set D̃ ∈ D. D-attracting sets are defined
analogously.

We require absorption and attraction to hold for all ω ∈ � in order to state our
results in their full strength. This is stronger than usual in the theory of RDS where
an exceptional P-zero set is allowed.

DEFINITION 2.22. Let D be a universe of random sets. Then ϕ is said to be
D-asymptotically compact in X if the sequence ϕ(tn, θ−tnω)xn has a convergent
subsequence in X, for all ω ∈ �, tn → ∞, xn ∈ D(θ−tnω) and D ∈ D.

DEFINITION 2.23. Let D be a universe of random sets. A D-random attractor
for an RDS ϕ is a compact random set A ∈ D satisfying:

(i) A is invariant, that is, ϕ(t,ω)A(ω) = A(θtω) for all t > 0.
(ii) A is D-attracting.

Since we require A ∈ D the random attractor for an RDS is uniquely deter-
mined.

In [34] the assumption of continuity of RDS has been weakened while pre-
serving sufficient criteria for the existence of random attractors. This allowed the
authors to study RDS on subspaces of their “original” state spaces. We prove gen-
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eralizations of these results and identify some underlying structures, which will
allow to prove the existence of random attractors for ϕ as an RDS on Lp(O) for
all p ∈ [1,∞). If condition (O1) is satisfied we will also obtain the existence of a
random attractor with respect to the L∞ norm.

DEFINITION 2.24. An RDS ϕ on a Banach space X endowed with some
topology τ is said to be quasi-τ -continuous if ϕ(tn,ω)xn →τ ϕ(t,ω)x, whenever
(tn, xn) ∈ R+ × X is a sequence such that ϕ(tn,ω)xn is bounded and (tn, xn) →
(t, x) for n → ∞. Here “→τ ” denotes convergence with respect to τ -topology.

In [34] a general result proving quasi-continuity for restrictions of continuous
RDS to subspaces of the state space has been proven. More precisely:

[34], Proposition 3.3: Let Y , X be Banach spaces such that i :Y ↪→ X and
i∗ :X∗ ↪→ Y ∗ are dense and continuous. If ϕ is an RDS on X, Y (resp.) and ϕ is
(norm-weak) continuous on X, then ϕ is quasi-weakly-continuous on Y , that is,
quasi-τ -continuous for τ being the weak topology on Y .

If Y is a reflexive space, then continuity and density of i :Y ↪→ X implies the
same for i∗ :X∗ ↪→ Y ∗. For nonreflexive spaces the situation may be more in-
volved, and, in general, one may only conclude the existence of the continuous map
i∗ :X∗ ↪→ Y ∗. However, even in the nonreflexive case Y ∗〈·, ·〉Y : i∗(X∗) × Y → R

defines a duality mapping, that is:

(i) Y ∗〈i∗(x∗), y〉Y = 0 for all y ∈ Y implies i∗(x∗) = 0,
(ii) Y ∗〈i∗(x∗), y〉Y = 0 for all x∗ ∈ X∗ implies y = 0.

Since i∗(X∗) ⊆ Y ∗ is a linear subspace and Y ∗〈·, ·〉Y : i∗(X∗) × Y →R is a duality
mapping, the corresponding weak topology σ(Y, i∗(X∗)) on Y is Hausdorff, where
i∗(X∗) denotes the closure of i∗(X∗) with respect to ‖·‖Y ∗ . Norm-weak continuity
of ϕ in X just means continuity of (t, x) �→X∗ 〈x∗, ϕ(t,ω)x〉X for all x∗ ∈ X∗, ω ∈
�. Hence, norm-weak continuity of ϕ in X implies norm-σ(Y, i∗(X∗)) continuity
on Y . On bounded sets B ⊆ Y we have σ(Y, i∗(X∗))∩B = σ(Y, i∗(X∗))∩B . This
is the precise idea of quasi-continuity. We obtain:

PROPOSITION 2.25. Let X,Y be Banach spaces such that i :Y ↪→ X is dense
and continuous. If ϕ is an RDS on X, Y and ϕ is (norm-weak) continuous on X,
then ϕ is quasi-σ(Y, i∗(X∗))-continuous on Y .

In the following let D be a universe of random sets and κ be the Kuratowski
measure of noncompactness. We will prove that in the proof of existence of ran-
dom attractors the assumption of omega-limit-compactness can be replaced by
asymptotic compactness. This indeed weakens the assumptions since every D-
omega-limit compact RDS ϕ, that is, satisfying

lim
T →∞κ

( ⋃
t≥T

ϕ(t, θ−tω)D(θ−tω)

)
= 0
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for all ω ∈ � and D ∈ D is D-asymptotically compact.
For a topology τ on a Banach space X and a random set B we define the �-limit

set

�τ(B,ω) = {
y ∈ X|∃tn → ∞, xn ∈ B(θ−tnω),ϕ(tn, θ−tnω)xn →τ y

}
.

�-limit sets with respect to the norm topology are simply denoted by �(B,ω).
One of the ideas in [34] in order to allow quasi-weak-continuity of ϕ is to consider
�-limit sets with respect to the weak topology replacing the usual norm topology.
For asymptotically compact RDS these notions actually coincide:

LEMMA 2.26. Let ϕ be a D-asymptotically compact RDS on the Banach
space X endowed with a Hausdorff topology τ that is weaker than the norm topol-
ogy. Then

�(B,ω) = �τ(B,ω) ∀B ∈ D.

In the proof of existence of random attractors we can replace D-omega-limit-
compactness by D-asymptotic compactness due to the following observation

LEMMA 2.27. Let ϕ be a D-asymptotically compact, quasi-τ -continuous
RDS on the Banach space X endowed with a Hausdorff topology τ that is weaker
than the norm topology. Further assume that there is a bounded D-attracting
set F . Then �(B,ω) is a nonempty, compact, invariant set for each B ∈ D, B �= ∅,
ω ∈ �.

If we work with the weaker notion of absorption occurring only P-a.s., then
invariance in Lemma 2.27 is satisfied only crudely. That is ϕ(t,ω)�(B,ω) =
�(B, θtω) on a P-zero that may depend on t . In the proof of the existence of
random attractors this obstacle can be resolved by a “perfection” result proving
that there is an indistinguishable, perfectly invariant modification of �(B,ω).

With these preparations it is easy to see that the proof of [34], Theorem 4.1,
can be modified so that only quasi-τ -continuity and asymptotic compactness with
respect to the universe of all bounded deterministic sets has to be assumed.

In our case the universe of absorbed sets will be much larger than just deter-
ministic bounded sets. This allows us to drop the assumption of ergodicity of the
underlying metric dynamical system. In conclusion we obtain the following:

THEOREM 2.28. Let ϕ be a quasi-τ -continuous RDS on a Banach space X,
where τ is a Hausdorff topology that is weaker than the norm topology. Then ϕ

has a D-random attractor if and only if:

(i) ϕ has a bounded D-attracting random set F ∈ D.
(ii) ϕ is D-asymptotically compact in X.
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2.3. RDS and random attractors for (1.2). Let (�,F,Ft ,P) be a filtered
probability space, (zt )t∈R be an R

N -valued adapted stochastic process and
((�,F,P), (θt )t∈R) be a metric dynamical system. We assume

(S1) (Strictly stationary increments).3 For all t, s ∈R, ω ∈ �

zt(ω) − zs(ω) = zt−s(θsω).

We assume z0 = 0 for notational convenience only.
(S2) (Regularity). zt has continuous paths.

Adaptedness and (S2) imply joint measurability of z, that is, z :R × � → R
N

is (B(R) ⊗F,B(RN)) measurable. Note

μt(ω) − μs(ω) =
N∑

k=1

fk

(
zk
t (ω) − zk

s (ω)
) = μt−s(θsω),

and recall that fk are functions depending on the space variable.
By [28], Lemma 3.1, for each R

N valued process z̃t with z̃0 = 0 a.s., station-
ary increments and a.s. continuous paths there exists a metric dynamical system
((�,F,P), (θt )t∈R) and a version zt of z̃t on ((�,F,P), (θt )t∈R) such that zt sat-
isfies (S1), (S2). In particular, applications include fractional Brownian motion
with arbitrary Hurst parameter.

Using the pathwise results obtained in Section 2.1, we define the RDS ϕ on
X := L1(O) associated to (1.2). For t ≥ s, ω ∈ � and x ∈ L1(O) let X(t, s;ω)x

denote the unique limit solution to (1.2) on [s,∞) with Xs = x and driving signal
z = z(ω).

DEFINITION 2.29. For t ≥ s, ω ∈ � and x ∈ L1(O) define

ϕ(t − s, θsω)x := X(t, s;ω)x.

THEOREM 2.30. The map ϕ from Definition 2.29 is a continuous RDS on X =
L1(O) and thus a quasi-weakly-continuous RDS on each Lp(O), p ∈ [1,∞). In
addition, ϕ is a quasi-weakly∗-continuous RDS on L∞(O). ϕ satisfies comparison,
that is, for x1, x2 ∈ X with x1 ≤ x2 a.e. in O

ϕ(t,ω)x1 ≤ ϕ(t,ω)x2 a.e. in O.

Moreover, ϕ satisfies ϕ(t,ω)0 = 0 and:

(i) x �→ ϕ(t,ω)x is Lipschitz continuous on X, locally uniformly in t .
(ii) t �→ ϕ(t,ω)x is continuous in X.

(iii) ϕ(t,ω)x ≤ Ut(ω) a.e. in O for all t ≥ 0, ω ∈ �, with U as in Theorem 2.4.

3This property is also called “perfect helix property” [3].
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(iv) ϕ satisfies the same regularity properties as for the pathwise solutions ob-
tained in Theorem 2.12.

For the general theory of order preserving, continuous RDS we refer to [16] and
the references therein.

Let D be the universe of all random closed sets in X. Using the uniform L∞
bound obtained in Theorem 2.30 we obtain the existence of a D-absorbing set F

which is bounded even in L∞(O). In fact, the absorption time tD(ω) can be chosen
independently of ω and D; cf. Proposition 4.1 below.

If the domain O satisfies condition (O1) by combining the uniform L∞(O)

estimate and Theorem 2.30(iii), we will conclude that the set ϕ(δ,ω)F (ω) with
δ > 0 is compact in C0(Ō) and D-absorbing in D. By Theorem 2.28 this implies
the existence of a D-random attractor. If the domain O does not necessarily satisfy
condition (O1) we only get inner continuity, that is, equicontinuity of ϕ(δ,ω)F (ω)

on each compact set K ⊆ O. In this case we cannot conclude the existence of a
compact D-absorbing set, but we can still prove D-asymptotic compactness for ϕ.
By Theorem 2.28 we arrive at the following:

THEOREM 2.31. Let D be the universe of all random closed sets in L1(O).
The RDS ϕ has a D-random attractor A [as an RDS on L1(O)]. A is compact in
each Lp(O) and attracts all sets in D in Lp-norm, p ∈ [1,∞).

Moreover, A(ω) is a bounded set in L∞(O) and the functions in A(ω) are
equicontinuous on every compact set K ⊆ O.

If (O1) is satisfied, then A(ω) is a compact set in C0(Ō) and attracts all sets in
D in L∞-norm.

3. Porous medium equation driven by rough signals.

3.1. Transformation for signals of bounded variations. In this section we
prove Theorem 2.2. Let z ∈ C1−var([0, T ];RN), η ∈ C1,2(ŌT ) with η = 0 on
POT , and let X be a very weak solution to (1.2). We prove that Y := eμX is
a very weak solution to (1.4). Let zε ∈ C1([0, T ];RN) such that z(ε) → z in
C([0, T ];RN) with uniformly bounded variation, that is, supε>0 ‖z(ε)‖C1−var < ∞.
Define με as in (1.3). Then

−
∫
OT

Yr∂rηr dξ dr = − lim
ε→0

∫
OT

Xre
μ

(ε)
r ∂rηr dξ dr

and

−
∫
OT

Xre
μ

(ε)
r ∂rηr dξ dr

= −
∫
OT

Xr∂r

(
eμ

(ε)
r ηr

)
dξ dr +

∫
OT

Xrηr∂re
μ

(ε)
r dξ dr
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=
∫
O

X0e
μ

(ε)
0 η0 dξ +

∫
OT

	(Xr)�
(
eμ

(ε)
r ηr

)
dξ dr

+
∫ T

0

(∫
O

B(Xr)
(
eμ

(ε)
r ηr

)
dξ

)
dzr −

∫
OT

Xrηre
μ

(ε)
r ∂rμ

(ε) dξ dr

=
∫
O

X0e
μ

(ε)
0 η0 dξ +

∫
OT

	(Xr)�
(
eμ

(ε)
r ηr

)
dξ dr

+
∫ T

0

(∫
O

B(Xr)
(
eμ

(ε)
r ηr

)
dξ

)
dzr −

∫ T

0

(∫
O

B(Xr)
(
ηre

μ
(ε)
r

)
dξ

)
dz(ε)

r .

By continuity of the Riemann–Stieltjes integral with respect to the convergence
z(ε) → z specified above and uniform convergence of the integrands (cf. [24],
Proposition 2.7), we can take the limit ε → 0 to obtain the assertion. The other
implication follows by similar arguments.

3.2. Uniqueness of essentially bounded very weak solutions. We prove Theo-
rem 2.3. The proof uses ideas first developed in [10] combined with interval split-
ting techniques that have also been used in [9]. Let Y (1), Y (2) be two essentially
bounded very weak solutions to (1.4) with the same initial condition Y0 ∈ L1(O),
and let Y = Y (1) − Y (2). Then∫

OT

Yr∂rη dξ dr = −
∫
OT

(
	

(
e−μr Y (1)

r

) − 	
(
e−μr Y (2)

r

))
�

(
eμr ηr

)
dξ dr

= −
∫
OT

arYr�
(
eμr ηr

)
dξ dr

for all η ∈ C1,2(ŌT ) with η = 0 on POT , where

at :=
⎧⎪⎨
⎪⎩

	(e−μt Y
(1)
t ) − 	(e−μt Y

(2)
t )

Y
(1)
t − Y

(2)
t

, for Y
(1)
t �= Y

(2)
t ,

0, otherwise.

Let zε ∈ C∞([0, T ];RN) with z(ε) → z in C([0, T ];RN) such that for μ(ε) as

in (1.3) we have supt∈[0,T ] ‖eμ
(ε)
t − eμt ‖C2(O) ≤ ε2. By equicontinuity of z(ε) we

can choose a partition 0 = τ0 < · · · < τN = T such that

δ := ∥∥eμ(
2
∣∣∇(

μ(ε) − μτi

)∣∣4 + 2
∣∣�(

μ(ε) − μτi

)∣∣2
+ ∣∣∇(

μ(ε) − μτi

)∣∣2)∥∥
L∞([τi ,τi+1]×O)(3.1)

<
1

16C

for all i = 0, . . . ,N − 1, ε > 0, where C is a constant that will be speci-
fied below. Let γ = maxi{|τi+1 − τi |}. We prove Y = 0 a.e. via induction over
i = 0, . . . ,N − 1. Thus assume Y = 0 on [0, τi] ×O almost everywhere. We
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can modify τi so that (3.1) is preserved and Y(τi) = 0 a.e. in O. Define Oi :=
[τi, τi+1] ×O. Then ∫

Oi

Yr

(
∂rηr + ar�

(
eμr ηr

))
dξ dr = 0

for all η ∈ C1,2([τi, τi+1] × Ō) with η = 0 on PO[τi ,τi+1].
For Y

(1)
t �= Y

(2)
t we have at = e−μt 	̇(ζt ) with ζt ∈ [e−μt Y

(1)
t , e−μt Y

(2)
t ] and

thus ‖a‖L∞(OT ) < ∞ by essential boundedness of Y (i). We consider a nondegen-
erate, smooth approximation of a. Set âε := a ∨ ε and let aε,δ be a smooth approx-
imation of âε such that aε,δ ≥ ε and

∫
OT

|Y |2(âε − aε,δ)
2 dx dr ≤ δ. Then choose

aε = aε,ε2 .
Let η = e−μτi ϕ with ϕ being the classical solution to

∂tϕ + aεe
μτi �

(
eμ(ε)−μτi ϕ

) − θ = 0 on OT ,
(3.2)

ϕ = 0 on PO[τi ,τi+1],

where θ is an arbitrary smooth testfunction. Time inversion transforms (3.2) into
a uniformly parabolic linear equation with smooth coefficients. Thus, unique ex-
istence of classical solutions to (3.2) follows from [33], Theorem 6.2, page 457.
Then

0 =
∫
Oi

Yr

(
∂rη + ar�

(
eμr ηr

))
dξ dr

=
∫
Oi

Yr

(
∂rη + aε,r�

(
eμ

(ε)
r η

))
dξ dr +

∫
Oi

Yr (ar − aε,r )�
(
eμ

(ε)
r ηr

)
dξ dr

+
∫
Oi

Yrar�
((

eμr − eμ
(ε)
r

)
ηr

)
dξ dr(3.3)

=
∫
Oi

e−μτi Yrθr dξ dr +
∫
Oi

Yr (ar − aε,r )�
(
eμ

(ε)
r −μτi ϕr

)
dξ dr

+
∫
Oi

Yrar�
((

eμr − eμ
(ε)
r

)
e−μτi ϕr

)
dξ dr.

We need to prove that the last two terms vanish for ε → 0. For this we first de-

rive a bound for
∫
Oi

aε,r |�(eμ
(ε)
r −μτi ϕr)|2 dξ dr . Let ζ ∈ C∞(R) with ζ(τi) = 0,

ζ ≤ 1 on [0, T ] and ζ̇ ≥ c > 0 for some c ≤ 1
4γ

. Multiplying (3.2) by ζ�ϕ and
integrating yields∫

Oi

(∂rϕr)ζr�ϕr dξ dr

=
∫
Oi

(−aε,re
μτi �

(
eμ

(ε)
r −μτi ϕ

)
ζr�ϕr + θrζr�ϕr

)
dξ dr.
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Note that

�ϕ = �
(
e−(μ(ε)−μτi

)eμ(ε)−μτi ϕ
)

= ϕ
(−∣∣∇(

μ(ε) − μτi

)∣∣2 − �
(
μ(ε) − μτi

)) − 2∇(
μ(ε) − μτi

)∇ϕ

+ e−(μ(ε)−μτi
)�eμ(ε)−μτi ϕ.

Hence

1

2

∫
Oi

|∇ϕr |2ζ̇r dξ dr +
∫
Oi

aε,re
2μτi

−μ
(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2ζr dξ dr

=
∫
Oi

aε,rζre
μτi

∣∣ϕr�
(
eμ

(ε)
r −μτi ϕr

)∣∣

× (∣∣∇(
μ(ε)

r − μτi

)∣∣2 + ∣∣�(
μ(ε)

r − μτi

)∣∣)dξ dr

+
∫
Oi

2
(
aε,rζre

μτi
∣∣�(

eμ
(ε)
r −μτi ϕr

)∣∣∣∣∇(
μ(ε)

r − μτi

)∣∣|∇ϕr |

+ θrζr�ϕr

)
dξ dr.

The first term on the right-hand side is bounded by∫
Oi

aε,rζre
μτi

∣∣ϕr�
(
eμ

(ε)
r −μτi ϕr

)∣∣(∣∣∇(
μ(ε)

r − μτi

)∣∣2 + ∣∣�(
μ(ε)

r − μτi

)∣∣)dξ dr

≤
∫
OT

1

4
aε,rζre

2μτi
−μ

(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2 dξ dr + Cδ

∫
OT

ζ̇r |∇ϕr |2 dξ dr

and the second by∫
Oi

(
2aε,rζre

μτi
∣∣�(

eμ
(ε)
r −μτi ϕr

)∣∣∣∣∇(
μ(ε)

r − μτi

)∣∣|∇ϕr | + θrζr�ϕr

)
dξ dr

≤
∫
Oi

1

4
aε,rζre

2μτi
−μ

(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2 dξ dr

+
(
Cδ + 1

8

)∫
Oi

ζ̇r |∇ϕr |2 dξ dr + C

∫
Oi

|∇θr |2 dξ dr.

Using this we obtain

1

2

∫
Oi

|∇ϕr |2ζ̇r dξ dr +
∫
Oi

aε,re
2μτi

−μ
(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2ζr dξ dr

≤
∫
Oi

1

2
aε,rζre

2μτi
−μ

(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2 dξ dr

+
(

2Cδ + 1

8

)∫
Oi

ζ̇r |∇ϕr |2 dξ dr + C

∫
Oi

|∇θr |2 dξ dr,
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where C = C(‖Y (i)‖L∞([0,T ]×O), T ,‖eμ‖L∞(OT )) is a generic constant. Since C

is independent of the choice of ζ , using Fatou’s lemma and (3.1) we obtain∫
Oi

aε,re
2μτi

−μ
(ε)
r

∣∣�(
eμ

(ε)
r −μτi ϕr

)∣∣2 dξ dr ≤ C

∫
Oi

|∇θr |2 dξ dr.(3.4)

By the choice aε we have∫
Oi

|Yr |2 (ar − aε,r )
2

aε,r

dξ dr

≤ 1

ε

(∫
Oi

2|Yr |2(ar − âε,r )
2 dξ dr +

∫
Oi

2|Yr |2(âε,r − aε,r )
2 dξ dr

)

≤ 4ε

∫
Oi

|Yr |2 dξ dr.

For the second term in (3.3) we obtain∫
Oi

Yr (ar − aε,r )�
(
eμ

(ε)
r −μτi ϕr

)
dξ dr

≤
(∫

Oi

|aε,r |
∣∣�(

eμ
(ε)
r −μτi ϕr

)∣∣2 dξ dr

)1/2(∫
Oi

|Yr |2 (ar − aε,r )
2

aε,r

dξ dr

)1/2

≤ C
√

ε‖∇θ‖L2(Oi )
‖Y‖L2(Oi )

→ 0

for ε → 0. For the third term in (3.3) we use (3.4) and aε ≥ ε to get

‖ϕ‖H 2(O) ≤ C‖∇θ‖L2(Oi )

ε
.

Hence,
∫
Oi

Yrar�
((

eμr − eμ
(ε)
r

)
e−μτi ϕr

)
dξ dr ≤ C‖∇θ‖L2(Oi )

‖eμr − eμ
(ε)
r ‖C2(O)

ε

≤ εC‖∇θ‖L2(Oi )
→ 0

for ε → 0. Taking ε → 0 in (3.3) yields

0 =
∫
Oi

e−μτi Yrθr dξ dr

for any smooth testfunction θ . Thus Y = 0 in Oi = [τi, τi+1] × O almost every-
where. Induction now completes the proof.

REMARK 3.1. The method to prove uniqueness used above fails for fast dif-
fusion equations, since the difference quotient

at :=
⎧⎪⎨
⎪⎩

	(e−μt Y
(1)
t ) − 	(e−μt Y

(2)
t )

Y
(1)
t − Y

(2)
t

, for Y
(1)
t �= Y

(2)
t ,

0, otherwise
it not known to remain bounded.
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3.3. Weak solutions and uniform bounds. We will now prove Theorem 2.4. In
order to construct weak solutions to (1.4) several steps are needed. First we will
consider approximating equations, where the degenerate nonlinearity 	 is replaced
by nondegenerate functions 	(δ) and the driving signals z are approximated by
smooth signals z(δ) (Section 3.3.1). Existence of classical solutions to these equa-
tions follows from well-known existence results; cf., for example, [33]. Then we
will prove uniform L∞ bounds for these approximating solutions (Section 3.3.2)
which will be used in Section 3.3.3 to finally construct weak solutions to (1.4) by
monotonicity methods.

3.3.1. Nondegenerate, smooth approximation and classical solutions. For δ >

0 we choose an approximating function 	(δ) ∈ C∞(R) such that:

(i) 	(δ)(0) = 0 and 	(δ) is anti-symmetric in 0;
(ii) 	(δ)(r) = 	(r), for all δ ≤ |r| ≤ 1

δ
;

(iii) for all r ∈ R,

0 < C1(δ) ≤ 	̇(δ)(r) ≤ C2(δ) < ∞,

	̈(δ)(r) ≤ C2(δ) < ∞.

In particular 	(δ)(r) = ∫ r
0 	̇(δ)(s) ds ≤ C2(δ)r . We further choose smooth approx-

imations z(δ) ∈ C∞([0, T ];RN) of the driving signal z. Using the homogeneity of
	 we can rewrite (1.4) as

∂tYt = eμt �
(
	

(
e−μt

)
	(Yt )

)
on OT .(3.5)

One advantage of rewriting (1.4) in this form prior to approximating 	 by 	(δ)

is that the substitution Z(δ) := 	(δ)(Y (δ)) can still be used in the approximating
equation so that the continuity results obtained in [22] can be applied. We construct
a solution to (3.5) by considering approximating equations

∂tY
(δ)
t = eμt �

(
	

(
e−μt

)
	(δ)(Y (δ)

t

))
on OT ,

(3.6)
Y (δ)(0) = Y0 on O,

with homogeneous Dirichlet boundary conditions and smooth signals z ∈
C∞([0, T ];RN). Equation (3.6) is a quasilinear, uniformly parabolic equation
with smooth coefficients. From standard results the unique existence of a classical
solution follows; cf., for example, [33], Theorem 6.2, page 457.

3.3.2. Uniform L∞(OT ) bound for classical solutions to (3.6).

LEMMA 3.2. Let Y0 ∈ L∞(O), {z(ε) ∈ C∞([0, T ];RN)|ε > 0} be a compact
set in C([0, T ];RN) and Y (δ,ε) be a classical solution to (3.6) driven by z(ε). There
are constants σ0 = σ0(‖Y0‖L∞(O)) > 0, M > 0 depending only on ‖Y0‖L∞(O), the
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uniform bound and uniform modulus of continuity of {z(ε)}, piecewise smooth maps
K(σ0,ε) and a δ0 = δ0(supε>0 ‖z(ε)‖L∞(OT ),‖Y0‖L∞(O)) > 0 such that

Y (δ,ε) ≤ K(σ0,ε) ≤ M on [0, T ] ×O
for all δ ≤ δ0.

PROOF. We will construct a piecewise smooth (thus bounded) supersolution
to

∂tY
(δ,ε)
t = eμ

(ε)
t �

(
	

(
e−μ

(ε)
t

)
	(δ)

(
Y

(δ,ε)
t

))
on OT ,(3.7)

with initial condition Y0 and homogeneous Dirichlet boundary conditions. Let R >

0 such that Ō ⊆ BR(0). Since {z(ε)} is a set of equicontinuous functions, there
exists a γ > 0 and a partition 0 = τ0 < τ1 < · · · < τL = T with 1 > τi − τi−1 > γ

(hence L ≤ T
γ

) such that

1

2
≤

(
inf
ξ∈Ō

t∈[τi ,τi+1)

eμ
(ε)
t −μ

(ε)
τi 	

(
eμ

(ε)
τi

−μ
(ε)
t

))

×
(

1 − mR

d
sup

t∈[τi ,τi+1)

(
2
∥∥∇(

μ(ε)
τi

− μ
(ε)
t

)∥∥
L∞(O)

(3.8)

+ Rm

2

∥∥∇(
μ(ε)

τi
− μ

(ε)
t

)∥∥2
L∞(O)

+ R

2

∥∥�(
μ(ε)

τi
− μ

(ε)
t

)∥∥
L∞(O)

))

and
1

2
≤ inf

ξ∈Ō,

t∈[τi ,τi+1)

e(m−1)(μ
(ε)
t −μ

(ε)
τi

)

for all i = 0, . . . ,L − 1, ε > 0. Let A(m−1)/m := R2/m

(m−1)d
, C4 := infξ∈O(R2 − |ξ |2)

and consider the inverse β := 	−1. For σ > 0 we define

K
(σ,ε)
0 (t, ξ) := β

(
A(t + σ)−m/(m−1)(R2 − |ξ |2)

	
(
eμ

(ε)
τi

))

and choose σ0 = σ0(‖Y0‖L∞(O)) so that ‖Y0‖L∞(O) ≤ K
(σ0,ε)
0 (0). Then inductively

define σi+1 = 1
2(σi + γ ) for i = 0, . . . ,L − 1 (we can thus regard σi as a function

of σ0) and let

K
(σ0,ε)
i (t, ξ) := β

(
A(t − τi + σi)

−m/(m−1)(R2 − |ξ |2)
	

(
eμ

(ε)
τi

))
(3.9)

= A1/m(t − τi + σi)
−1/(m−1)(R2 − |ξ |2)1/m

eμ
(ε)
τi

for t ∈ [τi, τi+1], ξ ∈ O.



RANDOM ATTRACTORS FOR SPME 843

By the choice of σi , i = 1, . . . ,L − 1 we have K
(σ0,ε)
i (τi+1) ≤ K

(σ0,ε)
i+1 (τi+1).

We note

A1/m
(
1 + max

i=0,...,L−1
σi

)−1/(m−1)
C

1/m
4 e

− supε>0 ‖μ(ε)‖L∞(OT )

(3.10)

≤ K
(σ0,ε)
i (t) ≤ A1/m

(
min

i=0,...,L−1
σi

)−1/(m−1)
R2/me

supε>0 ‖μ(ε)‖L∞(OT )

for all t ∈ [τi, τi+1]. Hence, we can choose δ0 > 0 (depending only on σ0,
supε>0 ‖z(ε)‖L∞(OT )) such that

K
(σ0,ε)
i (t) ∈

[
δ,

1

δ

]

for all t ∈ [τi, τi+1] and δ ≤ δ0. Then 	(δ)(Ki(t)) = 	(Ki(t)), and we compute
(for simplicity we drop the ε dependencies and the σ0 dependency of Ki)

�
(
	

(
e−μt

)
	(δ)(Ki(t)

))
= �

(
A(t − τi + σi)

−m/(m−1)(R2 − |ξ |2)
	

(
eμτi

−μt
))

= A(t − τi + σi)
−m/(m−1)	

(
eμτi

−μt
)

× (−2d − 4mξ · ∇(μτi
− μt) + (

R2 − |ξ |2)

× (
m2∣∣∇(μτi

− μt)
∣∣2 + m�(μτi

− μt)
))

and

∂tKi(t) = −A1/m

m−1 (t − τi + σi)
−m/(m−1)

(
R2 − |ξ |2)1/m

eμτi .

In order to show that Ki(t) is a supersolution to (3.7) on [τi, τi+1], we thus have
to show

0 ≤ ∂tKi(t) − eμt �
(
	

(
e−μt

)
	(δ)(Ki(t)

))

= − A1/m

m − 1
(t − τi + σi)

−m/(m−1)(R2 − |ξ |2)1/m
eμτi

− A(t − τi + σi)
−m/(m−1)eμt 	

(
eμτi

−μt
)

× (−2d − 4mξ · ∇(μτi
− μt) + (

R2 − |ξ |2)

× (
m2∣∣∇(μτi

− μt)
∣∣2 + m�(μτi

− μt)
))

for all t ∈ [τi, τi+1]. Equivalently,

(R2 − |ξ |2)1/m

m − 1
≤ A(m−1)/meμt−μτi 	

(
eμτi

−μt
)

× (
2d + 4mξ · ∇(μτi

− μt) − (
R2 − |ξ |2)

× (
m2∣∣∇(μτi

− μt)
∣∣2 + m�(μτi

− μt)
))

.
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It is thus sufficient to show

R2/m

m − 1
≤ A(m−1)/m

(
inf
ξ∈Ō

t∈[τi ,τi+1]
eμt−μτi 	

(
eμτi

−μt
))

× (
2d − 4mR

∥∥∇(μτi
− μt)

∥∥
L∞(O)

− R2(
m2∥∥∇(μτi

− μt)
∥∥2
L∞(O) + m

∥∥�(μτi
− μt)

∥∥
L∞(O)

))
for all t ∈ [τi, τi+1], which is satisfied by the choice of A and τi in (3.8). In con-
clusion, K

(σ0,ε)
i (t) is a supersolution to (3.7) on [τi, τi+1] for each δ ≤ δ0. We

define

K(σ0,ε)(t) :=
L−1∑
i=0

1[τi ,τi+1)(t)K
(σ0,ε)
i (t).(3.11)

Since the comparison principle [35], Theorem 9.7, applies on each interval
[τi, τi+1], by induction we have

Y (δ,ε)(t, ξ) ≤ K(σ0,ε)(t, ξ) ∀t ∈ [0, T ], ξ ∈ O, δ ≤ δ0.

The upper bound in (3.10) yields a uniform bound M for K(σ0,ε). M depends on
σ0, supε ‖z(ε)‖L∞(O) and via the bound of the partition size γ and the definition of
σi , on the uniform modulus of continuity of {z(ε)}. �

3.3.3. Existence of weak solutions. We will now take the limit δ → 0 in (3.6)
in order to obtain weak solutions to (1.4) in the sense of Definition 2.1.

LEMMA 3.3. Let Y0 ∈ L∞(O), {z(ε) ∈ C∞([0, T ];RN)|ε > 0} ⊆ C([0, T ];
R

N) be compact and Y (δ,ε) be a classical solution to (3.6) driven by z(ε). Then

sup
t∈[0,T ]

(∥∥Y (δ,ε)
t

∥∥m+1
m+1 + ∥∥Y (δ,ε)

t

∥∥2
H

) + C1
∥∥∇(

	
(
e−μ(ε))

	δ(Y (δ,ε)))∥∥
L2(OT )

(3.12)
≤ C2

for all ε > 0, δ ≤ δ0 (with δ0 from Lemma 3.2) and for some constants 0 < C1,C2
independent of δ and ε. C2 may depend on ‖Y0‖L∞(O), the uniform bound and the
uniform modulus of continuity of {z(ε)}.

PROOF. Let �(δ) ∈ C1(R) so that �̇(δ) = 	(δ). We compute

∂t

∫
O

�(δ)(Y (δ,ε)
t

)
dξ

=
∫
O

	(e−μ
(ε)
t )

	(e−μ
(ε)
t )

	(δ)(Y (δ,ε)
t

)
∂tY

(δ,ε) dξ
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= −
∫
O

eμ
(ε)
t

	(e−μ
(ε)
t )

∇(
	

(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

))∇(
	

(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

))
dξ

(3.13)

−
∫
O

	
(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

)∇
(

eμ
(ε)
t

	(e−μ
(ε)
t )

)
∇(

	
(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

))
dξ

≤ sup
(t,ξ)∈ŌT

(
ε1

∣∣∣∣∇ eμ
(ε)
t

	(e−μ
(ε)
t )

∣∣∣∣
2

− eμ
(ε)
t

	(e−μ
(ε)
t )

)∫
O

∣∣∇	
(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

)∣∣2 dξ

+ Cε1

∫
O

(
	

(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

))2
dξ

for all ε1 > 0 and some Cε1 > 0. Choosing ε1 small enough and using the uniform
L∞ bound derived in Lemma 3.2, we conclude

sup
t∈[0,T ]

∫
O

�(δ)(Y (δ,ε)
t

)
dξ + C1

∫
OT

∣∣∇	
(
e−μ

(ε)
r

)
	(δ)(Y (δ,ε)

r

)∣∣2 dξ dr

≤
∫
O

�(δ)(Y0) dξ + C2

for all δ ≤ δ0 and for some constants C1,C2 > 0 independent of δ and ε, where
C2 may depend on ‖Y0‖L∞(O), the uniform bound and the uniform modulus of
continuity of {z(ε)}.

It remains to prove the bound of ‖Y (δ)‖2
H . By the chain rule we have

d

dt

∥∥Y (δ,ε)
t

∥∥2
H = 2

∫
O

(−�)−1(
Y

(δ,ε)
t

)
eμ

(ε)
t �

(
	

(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

))
dξ.

Since for f,g,h sufficiently smooth and h|∂O = 0 we have
∫
O

fg�hdξ =
∫
O

(
f �(gh) + 2h∇f · ∇g + f h�(g)

)
dξ.

We obtain

d

dt

∥∥Y (δ,ε)
t

∥∥2
H

= −2
∫
O

Y
(δ,ε)
t eμ

(ε)
t 	

(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

)
dξ

+ 2
∫
O

	
(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

)(
2∇(

(−�)−1(
Y

(δ,ε)
t

)) · ∇(
eμ

(ε)
t

))
dξ(3.14)

+ 2
∫
O

	
(
e−μ

(ε)
t

)
	(δ)(Y (δ,ε)

t

)(
(−�)−1(

Y
(δ,ε)
t

)
�

(
eμ

(ε)
t

))
dξ

≤ C
(
1 + ∥∥Y (δ,ε)

t

∥∥2
H

)
δ ≤ δ0,
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where 0 < C is a constant independent of δ, ε, possibly depending on ‖Y0‖L∞(O),
the uniform bound and the uniform modulus of continuity of {z(ε)}. Gronwall’s
inequality then yields the bound. �

PROOF OF THEOREM 2.4. We approximate the initial condition Y0 by
smooth functions Y

(δ)
0 ∈ C2(Ō) such that Y

(δ)
0 → Y0 almost everywhere and

‖Y (δ)
0 ‖L∞(O) ≤ ‖Y0‖L∞(O). The continuous driving signal z is approximated by

smooth signals z(δ) ∈ C∞([0, T ];RN) such that z(δ) → z in C([0, T ];RN). In
particular {z(δ)|δ > 0} is a compact set in C([0, T ];RN). Let Y (δ) be classical so-
lutions to (3.6) with initial condition Y

(δ)
0 and driving signal z(δ). In the following

let δ ≤ δ0 with δ0 as in Lemma 3.3.
By Lemma 3.3, Y (δ) is uniformly bounded in L∞([0, T ];Lm+1(O)) and in

L∞([0, T ];H). By Sobolev embedding, for k ≥ n
2 (1−m

1+m
) ∨ 1 we have Hk

0 (O) ↪→
L(m+1)/m(O). Consequently, Lm+1(O) ↪→ H−k := (Hk

0 (O))∗ and H ↪→ H−k .
Hence, weak∗ limits obtained in L∞([0, T ];Lm+1(O)) and L∞([0, T ];H) coin-
cide.

Moreover, 	(e−μ
(δ)
t )	(δ)(Y (δ)) is uniformly bounded in L2([0, T ];H 1

0 (O))

and boundedness of Y (δ) in L∞([0, T ];Lm+1(O)) implies boundedness of

	(e−μ
(δ)
t )	(δ)(Y (δ)) in L∞([0, T ];L(m+1)/m(O)).

Hence, we can choose a subsequence (again denoted by δ) such that

Y (δ) ⇀∗ Y in L∞([0, T ];Lm+1(O)
)

and in L∞([0, T ];H )
,

Z(δ) := 	
(
e−μ

(δ)
t

)
	(δ)(Y (δ)) ⇀ Z in L2([0, T ];H 1

0 (O)
)
,

Z(δ) ⇀∗ Z in L∞([0, T ];L(m+1)/m(O)
)
.

Since

−
∫
OT

Y (δ)
r ∂rηr dξ dr −

∫
O

Y
(δ)
0 η0 dξ

= −
∫
OT

∇(
	

(
e−μ

(δ)
r

)
	(δ)(Y (δ)

r

))∇(
eμ

(δ)
r ηr

)
dξ dr,

we obtain

−
∫
OT

Yr∂rη dξ dr −
∫
O

Y0η0 dξ = −
∫
OT

∇Zr∇(
eμr ηr

)
dξ dr

for all η ∈ C1(ŌT ) with η = 0 on POT .
First we will prove that Y

(δ)
t ⇀ Yt in H , for all t ∈ [0, T ]. We consider the

set K = {(Y (δ), h)H |h ∈ H,‖h‖H ≤ 1, δ > 0} ⊆ C([0, T ]). By Lemma 3.3, K is
bounded in C([0, T ]). Moreover,

(
Y

(δ)
t+s − Y

(δ)
t , h

)
H =

∫ t+s

t

(
dY (δ)

dr
, h

)
H

dr ≤ ‖h‖Hs1/2
∥∥∥∥dY (δ)

dr

∥∥∥∥
L2([0,T ];H)

≤ C‖h‖Hs1/2.
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Hence, K is a set of equibounded, equicontinuous functions and thus is rela-
tively compact in C([0, T ]). For every h ∈ H,‖h‖H ≤ 1 there is a subsequence
(again denoted by δ) such that (Y (δ), h)H → g in C([0, T ]). Since also Y (δ) ⇀ Y

in L2([0, T ];H) (thus (Y (δ), h)H ⇀ (Y,h)H in L2([0, T ])) we have g = (Y,h)

which implies Y
(δ)
t ⇀ Yt in H for all t ∈ [0, T ].

We need to prove Z = 	(e−μY ) almost everywhere. This will be done by con-
sidering the equation on H = (H 1

0 (O))∗. Since Y (δ) solves (3.6), we conclude that

dY (δ)

dt
⇀

dY

dt
in L2([0, T ];H )

and

dY

dt
= eμt �Z for a.e. t ∈ [0, T ],

Y (0) = Y0.

In particular, since also Y ∈ L∞([0, T ];H) we have Y ∈ C([0, T ];H). By the
chain rule we obtain

‖Yt‖2
H = ‖Y0‖2

H − 2
∫ t

0

∫
O

eμr ZrYr dξ dr

+ 2
∫ t

0

∫
O

Zr

(
2∇(

eμr
)∇(

(−�)−1(Yr)
)

(3.15)

+ �
(
eμr

)
(−�)−1(Yr)

)
dξ dr.

Applying the chain rule to (3.6) yields

∥∥Y (δ)
t

∥∥2
H = ∥∥Y (δ)

0

∥∥2
H − 2

∫ t

0

∫
O

eμ
(δ)
r Z(δ)

r Y (δ)
r dξ dr

+ 2
∫ t

0

∫
O

Z(δ)
r

(
2∇(

eμ
(δ)
r

)∇(
(−�)−1(

Y (δ)
r

))
(3.16)

+ �
(
eμ

(δ)
r

)
(−�)−1(

Y (δ)
r

))
dξ dr.

Since (−�)−1(Y (δ)) ∈ L2([0, T ];H 1
0 (O)) and

d(−�)−1(Y (δ))

dt
∈ L2([0, T ];H 1

0 (O)
) ⊆ L2([0, T ];L2(O)

)

are uniformly bounded and H 1
0 (O) ↪→↪→ L2(O), by the Aubin–Lions compact-

ness theorem we have (for a subsequence again denoted by δ)

(−�)−1(
Y (δ)) → (−�)−1(Y ) strongly in L2([0, T ];L2(O)

)
.
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Note that also Z(δ) ⇀ Z in L2([0, T ];H 1
0 (O)). Taking the limit δ → 0 in (3.16)

yields

‖Yt‖2
H ≤ ‖Y0‖2

H − lim sup
δ→0

2
∫ t

0

∫
O

eμ
(δ)
r Z(δ)

r Y (δ)
r dξ dr

+ 2
∫ t

0

∫
O

Zr

(
2∇(

eμr
)∇(

(−�)−1(Yr)
) + �

(
eμr

)
(−�)−1(Yr)

)
dξ dr.

Substracting (3.15) we arrive at

lim sup
δ→0

∫
OT

eμ
(δ)
r Z(δ)

r Y (δ)
r dξ dr ≤

∫
OT

eμr ZrYr dξ dr.(3.17)

By monotonicity of 	(δ) we have∫
OT

eμ
(δ)
r 	

(
e−μ

(δ)
r

)(
	(δ)(Y (δ)

r

) − 	(δ)(zr)
)(

Y (δ)
r − zr

)
dξ dr ≥ 0

for all z ∈ C1(ŌT ). Using (3.17) we can take δ → 0 to obtain∫
OT

eμr
(
Zr − 	

(
e−μr

)
	(zr)

)
(Yr − zr) dξ dr ≥ 0

for all z ∈ C1(ŌT ), hence by approximation for all z ∈ Lm+1(OT ). Taking z =
Y − εh with h ∈ C0(ŌT ), dividing by ε and letting ε → 0 yields∫

OT

eμr
(
Zr − 	

(
e−μr

)
	(Yr)

)
hdξ dr ≥ 0

for all h ∈ C0(OT ). This implies Z = 	(e−μ)	(Y ) almost everywhere.
It remains to prove that the uniform L∞ bound obtained in Lemma 3.2 remains

valid for weak solutions. We first note that by uniform continuity of {z(δ)|δ > 0} the
partition τi in (3.8) can be chosen independently of δ. Thus K

(σ0,δ)
i defined in (3.9)

only depends on δ via the factor eμ
(δ)
τi and converges uniformly to a piecewise

smooth function K
(σ0)
i given by (3.9) with μ(ε) = μ. We define K(σ0) as in (3.11).

By Lemma 3.2 we know that Y
(δ)
t ≤ K(δ,σ0)(t) for all t ∈ [0, T ] and all δ ≤ δ0.

Since the cone of nonnegative distributions in H is convex, closed and Y
(δ)
t ⇀ Yt

in H we conclude Yt ≤ K(σ0)(t) a.e. in O for all t ∈ [0, T ]. Note that K(σ0) is
increasing as σ0 decreases. Defining U := K(0) : [0, T ] → R̄ as in (3.9) with σ0 = 0
(with the convention 1

0 = ∞) yields a piecewise smooth function on (0, T ] (taking
the value ∞ at t = 0) with Yt ≤ K(σ0)(t) ≤ Ut a.e. in O and for all t ∈ [0, T ].

For later use we prove weak continuity of t �→ Yt in Lp(O). Let p ∈ (2,∞)

and tn → t ∈ [0, T ]. Then Yt is uniformly bounded in Lp(O) and thus there is a
weakly convergence subsequence Ytnk

. Since Y ∈ C([0, T ];H), the weak limit is
Yt and by arbitrarity of the sequence tn we obtain Ytn ⇀ Yt in Lp(O).

Assume that z ∈ C1−var([0, T ];RN), by Theorem 2.2 X = e−μY is a weak so-
lution to (1.2), and the bounds follow from the corresponding ones for Y . �
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PROOF OF REMARK 2.5. The proof of existence of weak solutions to (1.2)
and (1.4) proceeds with only minor modifications for the case of 0 < m < 1.
The statements of Lemma 3.2 remain true, however, with a modified upper bound
K(σ0,ε).

PROOF OF LEMMA 3.2 FOR FAST DIFFUSION EQUATIONS. Again we con-
struct a supersolution to (3.7) which is piecewise smooth (thus bounded) in ŌT .
Let R,β,C4 and τi , i = 0, . . . ,L − 1 as before and A(m−1)/m = R2/m

(1−m)d
. We in-

ductively define

K
(σ0,ε)
i (t, ξ) = A1/m(σi − t)1/(1−m)(R2 − |ξ |2)1/m

eμ
(ε)
τi , t ∈ [τi, τi+1], ξ ∈ O,

where σi > τi+1, i = 1, . . . ,L−1 are chosen (large enough) such that K
(σ0,ε)
0 (0) ≥

Y0 and Ki(τi+1) ≤ Ki+1(τi+1), which is satisfied if σi+1 ≥ 2σi +τi+1. The remain-
ing calculations and arguments are similar to those of the degenerate case. Note,
however, the changing signs due to the changing sign of 1 − m. �

We now return to the proof of Remark 2.5. We continue by proving a priori
estimates for the approximating classical solutions analogous to those given in
Lemma 3.3. Here we can allow Y0 ∈ Lm+1(O) since in (3.13) and (3.14) the term∫
O(	(e−μt )	(δ)(Y (δ)))2 dξ can be bounded by C

∫
O �(δ)(Y (δ)) dξ . Thus, the L∞

bound is not needed to prove (3.12). The same proof as for Theorem 2.4 can then
be used to construct weak solutions for all initial conditions Y0 ∈ Lm+1(O) [but
without L∞(O) bound]. This finishes the proof of existence of weak solutions for
the case of fast diffusions. If Y0 ∈ L∞(O), then Lemma 3.2 yields L∞ bounded-
ness of Y .

In order to obtain a uniform upper bound independent of the initial condition as
in the degenerate case (m > 1), we would have to let σ0 → ∞ in K(σ0) implying
U ≡ ∞. Moreover, we do not have a uniqueness result for essentially bounded
weak solutions in the case of fast diffusion equations. Therefore, it is not known
whether each such weak solution is a limit of solutions to the nondegenerate ap-
proximating equations which will be needed for the proof of uniform continuity in
the initial condition with respect to the L1 norm. �

3.4. Rough weak solutions. We prove Theorem 2.7. Let Y0 ∈ L∞(O) and
z(ε) ∈ C1−var([0, T ];RN) such that z(ε) → z in C([0, T ];RN). In particular
{z(ε)|ε > 0} is compact in C([0, T ];RN). We require uniform bounds for the cor-
responding weak solutions Y (ε) to (1.4) driven by z(ε).

LEMMA 3.4. Let {z(ε)|ε > 0} ⊆ C([0, T ];RN) compact and Y (ε) the weak
solutions to (1.4) driven by z(ε). Then there exists a constant M > 0 (independent
of ε) such that

sup
t∈[0,T ]

∥∥Y (ε)
t

∥∥
L∞(O) + ∥∥	(

e−μ(ε)

Y (ε))∥∥2
L2([0,T ];H 1

0 (O))
≤ M.
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PROOF. For ε > 0 let {z(τ,ε) ∈ C∞([0, T ];RN)|τ > 0} be the sequence of
smooth functions obtained by convolution of z(ε) with a standard Dirac sequence.
Since {z(ε)|ε > 0} is a set of equicontinuous functions, there is a uniform modulus
of continuity ω :R+ → R+. Uniform boundedness and the modulus of continuity
are preserved under convolution with a Dirac sequence. Thus, the set {z(τ,ε)|ε >

0, τ > 0} is compact in C([0, T ];RN).
Let now Y

(δ)
0 be a smooth approximation of Y0 as in the proof of Theorem 2.4,

and let Y (δ,ε) be the corresponding smooth solution to (3.6) driven by z(δ,ε).
By Lemmas 3.2 and 3.3 there is a uniform constant M > 0 (depending only on
‖Y0‖L∞(O)) such that

∥∥Y (δ,ε)
∥∥
L∞(O) + ∥∥	(

e−μ(δ,ε))
	(δ)(Y (δ,ε))∥∥2

L2([0,T ];H 1
0 (O)) ≤ M.

By weak lower semicontinuity of the L∞ norm on Lm+1, the convergence
Y (δ,ε) ⇀∗ Y in L∞([0, T ];Lm+1(O)) and the convergence

	
(
e−μ(δ,ε))

	(δ)(Y (δ,ε)) ⇀ 	
(
e−μ(ε)

Y (ε)) in L2([0, T ];H 1
0 (O)

)

obtained in the proof of Theorem 2.4, these bounds continue to hold for Y (ε).
�

By Theorem 2.4 there is a weak solution Y to (1.4) driven by z. Let X := e−μY

and X(ε) := e−μ(ε)
Y (ε). Then X(ε) solves (1.2), and we need to prove X

(ε)
t → Xt

in H for all t ∈ [0, T ]. For this it is enough to prove Y
(ε)
t → Yt in H for all t ∈

[0, T ].
Lemma 3.4 implies that Y (ε) is uniformly bounded in L∞(OT ), hence also

in L∞([0, T ];H). Moreover, Z(ε) = 	(e−μ(ε)
Y (ε)) is uniformly bounded in

L∞(OT ) and in L2([0, T ];H 1
0 (O)). By the same argument as in Theorem 2.4

we obtain the weak convergence Y
(ε)
t ⇀ Yt in H for all t ∈ [0, T ] and Z(ε) ⇀

Z = 	(e−μY ) in L2([0, T ];H 1
0 (O)). Hence, X

(ε)
t ⇀ Xt := e−μt Yt in H for all

t ∈ [0, T ]. Since Y is the unique weak solution to (1.4) the uniform bounds for X

follow from Theorem 2.4.
It remains to prove that the convergence X

(ε)
t ⇀ Xt is strong in H . As in (3.15)

and (3.16), we have

‖Yt‖2
H = ‖Ys‖2

H − 2
∫ t

s

∫
O

eμr ZrYr dξ dr

+ 2
∫ t

s

∫
O

Zr

(
2∇(

eμr
)∇(

(−�)−1(Yr)
)

(3.18)

+ �
(
eμr

)
(−�)−1(Yr)

)
dξ dr
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and
∥∥Y (ε)

t

∥∥2
H = ∥∥Y (ε)

s

∥∥2
H − 2

∫ t

s

∫
O

eμ
(ε)
r Z(ε)

r Y (ε)
r dξ dr

+ 2
∫ t

s

∫
O

Z(ε)
r

(
2∇(

eμ
(ε)
r

)∇(
(−�)−1(

Y (ε)
r

))
(3.19)

+ �
(
eμ

(ε)
r

)
(−�)−1(

Y (ε)
r

))
dξ dr.

Since Y (ε) ∈ L2([0, T ];L2(O)) and dY (ε)

dt
∈ L2([0, T ];H) are uniformly bounded

and L2(O) ↪→↪→ H , by the Aubin–Lions compactness theorem we have

Y (ε) → Y strongly in L2([0, T ];H )
.

Integrating (3.18) and (3.19) over s ∈ [0, t] and subtracting yields

t lim sup
ε→0

(∥∥Y (ε)
t

∥∥2
H − ‖Yt‖2

H

) ≤ 0,

which implies strong convergence Y
(ε)
t → Yt in H .

3.5. Limit solutions and dynamics on L1(O).

3.5.1. L1-continuity and a comparison principle. We will now prove uniform
L1 continuity in the initial condition for weak solutions to (1.4). Using this uniform
continuity we can then construct limit solutions to (1.4).

LEMMA 3.5. Let Y ∈ L∞([0, T ];L1(O)) such that t �→ Yt (ξ) is continuously
differentiable on [0, T ] for almost all ξ ∈ O and ∂tY ∈ L1(OT ). Then∫

O
Y+

t dξ −
∫
O

Y+
s dξ =

∫ t

s

∫
O

∂rYr sgn+(Yr) dξ dr,

where (·)+ = max(·,0) and sgn+(·) = max(sgn(·),0).

PROOF. Let t ∈ [0, T ]. Since Y ∈ L∞([0, T ];L1(O)), there is a sequence
tn → t and a constant M > 0 such that ‖Ytn‖L1(O) ≤ M . By continuity of t �→
Yt (ξ) for almost all ξ ∈ O we have Ytn(ξ) → Yt (ξ) almost everywhere. Fatou’s
lemma yields ‖Yt‖L1(O) ≤ lim infn→∞ ‖Ytn‖L1(O) ≤ M . Thus, Yt ∈ L1(O) for all
t ∈ [0, T ]. Let σ (τ) ∈ C∞(R) be such that

σ (τ)(r) :=
{

0, for r ≤ 0,

r, for r ≥ τ,

with 0 ≤ σ̇ (τ ) ≤ 1 and 0 ≤ σ̈ (τ ) ≤ C
τ

. For 0 ≤ s < t ≤ T we obtain∫
O

σ (τ)(Yt ) dξ −
∫
O

σ (τ)(Ys) dξ =
∫ t

s

∫
O

∂rσ
(τ)(Yr) dξ dr

=
∫ t

s

∫
O

σ̇ (τ )(Yr)∂rYr dξ dr.
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By dominated convergence this yields the assertion. �

LEMMA 3.6. Let Y i
0 ∈ L∞(O), i = 1,2 and Y (i) be the corresponding es-

sentially bounded weak solution to (1.4). Then there exists a constant C > 0 such
that

sup
t∈[0,T ]

∥∥(
Y

(1)
t − Y

(2)
t

)+∥∥
L1(O) + ∥∥(

	
(
e−μY (1)) − 	

(
e−μY (2)))+∥∥

L1(OT )

≤ C
∥∥(

Y
(1)
0 − Y

(2)
0

)+∥∥
L1(O)

and

sup
t∈[0,T ]

∥∥Y (1)
t − Y

(2)
t

∥∥
L1(O) + ∥∥	(

e−μY (1)) − 	
(
e−μY (2))∥∥

L1(OT )

≤ C
∥∥Y (1)

0 − Y
(2)
0

∥∥
L1(O).

PROOF. Let σ (τ) be as in the proof of Lemma 3.5, and let ϕ ∈ C2(Ō) be the
unique classical solution to

�ϕ = −1 in O,

ϕ = 1 on ∂O.

By the maximum principle we have ϕ ≥ 1. By Theorem 2.3 the weak solutions
Y (i) coincide with the weak solutions constructed in the proof of Theorem 2.4 by
approximation with classical solutions Y (i,δ) to (3.6). Let z(δ) ∈ C∞([0, T ];RN)

be the corresponding smooth approximation of the driving signal z. By equicon-
tinuity of z(δ) we can find a partition 0 = τ0 < τ1 < · · · < τN = T of [0, T ] such
that (

inf
ξ∈Ō,

t∈[τi ,τi+1]
eμ

(δ)
t (ξ)−μ

(δ)
τi

(ξ)
)

× (−1 + 2‖ϕ‖C1(O)

(∥∥∇(
μ

(δ)
t − μ(δ)

τi

)∥∥
C0(O) + ∥∥∇(

μ
(δ)
t − μ(δ)

τi

)∥∥2
C0(O)

+ ∥∥�(
μ

(δ)
t − μ(δ)

τi

)∥∥
C0(O)

))

≤ −1

2

for all t ∈ [τi, τi+1], all i = 0, . . . ,N − 1 and all δ > 0. Let now δ > 0 be arbi-
trary, fixed. For simplicity we drop the δ dependency of the signal in the following
calculation. Define

ηt (ξ) := ϕ(ξ)

N−1∑
i=0

1[τi ,τi+1)(t)e
−μτi

(ξ).
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For τi ≤ s < t < τi+1, by Lemma 3.5, we have∫
O

(
Y

(1,δ)
t − Y

(2,δ)
t

)+
ηt dξ −

∫
O

(
Y (1,δ)

s − Y (2,δ)
s

)+
ηs dξ

=
∫ t

s

∫
O

∂r

(
Y (1,δ) − Y (2,δ)) sgn+(

Y (1,δ)
r − Y (2,δ)

r

)
ηr dξ dr.

Let Y (δ) := Y (1,δ) − Y (2,δ) and w(δ) = 	(e−μr )(	(δ)(Y (1,δ)) − 	(δ)(Y (2,δ))). We
observe ∫ t

s

∫
O

∂rY
(δ) sgn+(

Y (δ)
r

)
ϕe−μτi dξ dr

=
∫ t

s

∫
O

(
�w(δ)

r

)
sgn+(

w(δ)
r

)
eμr−μτi ϕ dξ dr

(3.20)

= lim
τ→0

(
−

∫ t

s

∫
O

∇w(δ)
r ∇(

σ̇ (τ )(w(δ)
r

))
eμr−μτi ϕ dξ dr

−
∫ t

s

∫
O

∇w(δ)
r ∇(

eμr−μτi ϕ
)
σ̇ (τ )(w(δ)

r

)
dξ dr

)
.

Since ∇σ̇ (τ )(w
(δ)
r ) = σ̈ (τ )(w

(δ)
r )∇w

(δ)
r , the first term has negative sign. Partial in-

tegration of the second term gives

−
∫
O

∇w(δ)∇(
eμr−μτi ϕ

)
σ̇ (τ )(w(δ))dξ

=
∫
O

w(δ)�
(
eμr−μτi ϕ

)
σ̇ (τ )(w(δ))dξ +

∫
O

w(δ)∇(
eμr−μτi ϕ

)∇σ̇ (τ )(w(δ))dξ.

For the second term on the right-hand side, we note∫
O

w(δ)∇(
eμr−μτi ϕ

)∇σ̇ (τ )(w(δ))dξ

=
∫
O∩{0<w(δ)<τ }

w(δ)σ̈ (τ )(w(δ))∇(
eμr−μτi ϕ

) · ∇w(δ) dξ → 0

for τ → 0, by σ̈ (τ ) ≤ C
τ

and dominated convergence. Using dominated conver-
gence we can take the limit τ → 0 in (3.20) to get∫ t

s

∫
O

∂rY
(δ) sgn+(

Y (δ)
r

)
ϕe−μτi dξ dr ≤

∫ t

s

∫
O

w(δ)
r �

(
eμr−μτi ϕ

)
sgn+(

w(δ)
r

)
dξ dr.

We note

�
(
eμr−μτi ϕ

)

= eμr−μτi
(
�ϕ + 2∇ϕ · ∇(μr − μτi

) + ϕ
(∣∣∇(μr − μτi

)
∣∣2 + �(μr − μτi

)
))

≤ −1

2
,
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by the choice of ϕ and τi . Thus
∫ t

s

∫
O

∂rY
(δ) sgn+(

Y (δ)
r

)
ϕe−μτi dξ dr + 1

2

∫ t

s

∫
O

(
w(δ)

r

)+
dξ dr ≤ 0.

In conclusion,
∫
O

(
Y

(1,δ)
t − Y

(2,δ)
t

)+
ηt dξ −

∫
O

(
Y (1,δ)

s − Y (2,δ)
s

)+
ηs dξ + 1

2

∫ t

s

∫
O

(
w(δ)

r

)+
dξ dr

=
∫ t

s

∫
O

∂rY
(δ) sgn+(

Y (δ)
r

)
ηr dξ dr + 1

2

∫ t

s

∫
O

(
w(δ)

r

)+
dξ dr ≤ 0

for all τi ≤ s < t < τi+1 and hence for all 0 ≤ s < t ≤ T . We have
∥∥(

Y
(1,δ)
t − Y

(2,δ)
t

)+∥∥
L1(O) + ∥∥	(

e−μ(δ))(
	(δ)(Y (1,δ)) − 	(δ)(Y (2,δ)))+∥∥

L1(OT )

≤ C
∥∥(

Y
(1,δ)
0 − Y

(2,δ)
0

)+∥∥
L1(O)

for all t ∈ [0, T ], where the constant C does not depend on δ (using uniform bound-
edness of z(δ)). By the proof of Theorem 2.4 we know that Y

(i,δ)
t ⇀ Y

(i)
t in L1(O)

and 	(e−μ(δ)
)	(δ)(Y (i,δ)) ⇀ 	(e−μY (i)) in L2([0, T ];H 1

0 (O)). By weak lower
semicontinuity of ‖(·)+‖L1(O) and ‖(·)+‖L1(OT ), taking the limit δ → 0 we obtain

∥∥(
Y

(1)
t − Y

(2)
t

)+∥∥
L1(O) + ∥∥(

	
(
e−μY (1)) − 	

(
e−μY (2)))+∥∥

L1(OT )

≤ C
∥∥(

Y
(1)
0 − Y

(2)
0

)+∥∥
L1(O).

Since Z(i) := −Y (i) again is an essentially bounded weak solution of (1.4), the
same assertion follows for ‖(Y (1)

t − Y
(2)
t )−‖L1(O). Adding both inequalities yields

∥∥Y (1)
t − Y

(2)
t

∥∥
L1(O) + ∥∥	(

e−μY (1)) − 	
(
e−μY (2))∥∥

L1(OT )

≤ C
∥∥Y (1)

0 − Y
(2)
0

∥∥
L1(O). �

REMARK 3.7. Following the same argument, but with �ϕ = −1 with homo-
geneous Dirichlet boundary conditions, the same result can be established in the
weighted L1-space L1

ϕ . This then allows us to construct limit solutions even for
initial conditions in L1

ϕ .

Using this uniform L1 continuity in the initial condition, we can now construct
limit solutions for all initial conditions in L1.

PROOF OF THEOREM 2.9. Let Y0 := eμ0X0 ∈ L1(O) and Y
(δ)
0 → Y0 in L1(O)

with Y
(δ)
0 ∈ L∞(O). Let Y (δ) be the essentially bounded weak solution correspond-
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ing to Y
(δ)
0 . By Lemma 3.6 we have

sup
t∈[0,T ]

∥∥Y (δ1)
t − Y

(δ2)
t

∥∥
L1(O) + ∥∥	(

e−μY (δ1)
) − 	

(
e−μY (δ2)

)∥∥
L1(OT )

≤ C
∥∥Y (δ1)

0 − Y
(δ2)
0

∥∥
L1(O)

for all δ1, δ2 > 0. Hence, Y
(δ)
t is a Cauchy sequence in L1(O) and thus uniformly

convergent to some limit Yt ∈ L1(O). Since 	(e−μY (δ1)) is a Cauchy sequence in
L1(OT ), and 	 is continuous, we obtain 	(e−μY (δ1)) → 	(e−μY ) in L1(OT ).

By Theorem 2.7, X(δ) = e−μY (δ) are rough weak solutions, and we conclude
X

(δ)
t → Xt := e−μt Yt uniformly in L1(O) and 	(X(δ)) → 	(X) in L1(OT ). In

the proof of Theorem 2.4, we have proven weak continuity of t �→ Y
(δ)
t in Lp(O).

Hence t �→ X
(δ)
t is weakly continuous in L1(O) and thus is t �→ Xt . The bound

Xt ≤ Ut follows immediately. �

3.6. Equicontinuity of solutions.

PROOF OF THEOREM 2.12. We only prove (i). The proofs of (ii) and (iii)
are analogous. Let X0 ∈ L1(O) and X be the corresponding limit solution. Since
K ⊆ (0, T ] ×O is compact, there is a τ > 0 such that K ⊆ [τ, T ] ×O. By Theo-
rem 2.9 we know that Y = eμX ∈ L∞([τ, T ]×O), and by Remark 2.11 Y is a very
weak solution of (1.4). By Theorems 2.3 and 2.4 this implies that Y is an essen-
tially bounded weak solution to (1.4) on [τ, T ] ×O with initial condition Yτ . Due
to the uniform L∞ bound U established in Theorem 2.9, ‖Yτ‖L∞(O) is bounded
independent of the initial condition Y0. It is thus sufficient to prove the claimed
regularity for weak solutions Y of (1.4) with a modulus of continuity depending
only on the data and ‖Y0‖L∞(O).

Let Y (δ) be the sequence of approximating solutions with initial condition Y
(δ)
0

and driving signal z(δ) used in Theorem 2.4. By Theorem 2.4 and Lemma 3.2, Y

and Y (δ) are uniformly bounded, that is,

‖Y‖L∞(OT ),
∥∥Y (δ)

∥∥
L∞(OT ) ≤ M for all δ ≤ δ0

for some constant M > 0 depending on ‖Y0‖L∞(O). We aim to apply the continu-
ity results for porous media type PDE given in [22] to the approximating equa-
tion (3.6). In [22] equations of the form

d

dt
β(v) = diva(t, ξ, v,∇v) + b(t, ξ, v,∇v) on OT(3.21)

with homogeneous Dirichlet boundary conditions and initial value v0 are consid-
ered. We first rewrite the approximating equations in the form of (3.21). The ap-
proximating equation (3.6) (driven by z(δ)) is equivalent to

∂tY
(δ)
t = diva(δ)(t, ξ,	(δ)(Y (δ)

t

)
,∇	(δ)(Y (δ)

t

))
+ b(δ)(t, ξ,	(δ)(Y (δ)

t

)
,∇	(δ)(Y (δ)

t

))
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with

a(δ)(t, ξ, z,p) = e(1−m)μ
(δ)
t (ξ)p,

b(δ)(t, ξ, z,p) = eμ
(δ)
t (ξ)�

(
	

(
e−μ

(δ)
t (ξ)))z − (m + 1)e(1−m)μ

(δ)
t (ξ)∇μ

(δ)
t (ξ) · p.

Let β(δ) := (	δ)−1. For the approximating solutions Y (δ) we define Z(δ) :=
	δ(Y (δ)). Then Z(δ) satisfies

∂tβ
(δ)(Z(δ)

t

) = diva(δ)(t, ξ,Z
(δ)
t ,∇Z

(δ)
t

) + b(δ)(t, ξ,Z
(δ)
t ,∇Z

(δ)
t

)
.(3.22)

The continuity of solutions to equations of this type has been shown in [22]
under the assumption of an a priori L∞([0, T ] × O)-bound and a growth bound
for b (among other assumptions). The growth bound on b used in [22] is not sat-
isfied by (3.22). However, using the a priori L∞ bound on Y (δ), we can cut-off b

in the z variable without changing the solution property of Y (δ), thus guaranteeing
that the growth condition is satisfied. We modify 	(δ) on R \ [−M,M] to obtain
	̇(δ,M) ≤ C2 uniformly in δ [while preserving properties (i)–(iii) in (3.3.1)], and
we modify b by

b(M,δ)(t, ξ, z,p)

= eμ
(δ)
t (ξ)�

(
	

(
e−μ

(δ)
t (ξ)))z1|z|≤M − (m + 1)e(1−m)μ

(δ)
t (ξ)∇μ

(δ)
t (ξ) · p.

Let β(δ,M) := (	(δ,M))−1. Using the L∞ bound we realize that Z(δ) is a solution
of

∂tβ
(δ,M)(Z(δ)

t

) = diva(δ)(t, ξ,Z
(δ)
t ,∇Z

(δ)
t

) + b(M,δ)(t, ξ,Z
(δ)
t ,∇Z

(δ)
t

)
,

Z(δ)(0) = Z
(δ)
0 := 	(δ)(Y (δ)

0

)
on O

for M large enough. By [22], we obtain that Z(δ) and thus Y (δ) are equicontin-
uous on K with modulus of continuity depending only on the data, ‖Y0‖L∞(O)

and dist(K, ∂OT ). Hence, the set {Y (δ)|δ > 0} is a compact subset of C(K), and
we can choose a uniformly convergent subsequence. By the proof of existence of
weak solutions we know that Y (δ) ⇀ Y in Lm+1(OT ). Consequently Y (δ) → Y

uniformly on K . This implies Y ∈ C(K) with the same modulus of continuity. �

PROOF OF COROLLARY 2.13. Let X0 ∈ L1(O) and X be the correspond-
ing limit solution. By Theorem 2.12, t �→ Xt(ξ) is continuous on (0, T ] for each
ξ ∈ O. By Theorem 2.9 X is uniformly bounded on [τ, T ] × O for all τ > 0.
Dominated convergence implies X ∈ C((0, T ];Lp(O)). We can approximate X0

by X
(δ)
0 ∈ C(Ō) such that X

(δ)
0 → X0 in L1(O). Let X(δ) be the weak solution

corresponding to X
(δ)
0 . By Theorem 2.12(ii), t �→ X

(δ)
t (ξ) is continuous on [0, T ]

for each ξ ∈ O and by Theorem 2.4 X(δ) is uniformly bounded in [0, T ] × O.
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Dominated convergence implies X(δ) ∈ C([0, T ];L1(O)). By Theorem 2.9 we
have supt∈[0,T ] ‖X(δ)

t − Xt‖L1(O) → 0, hence also X ∈ C([0, T ];L1(O)). If X0 ∈
L∞(O), then by uniqueness of essentially bounded weak solutions and Theo-
rem 2.4, X is uniformly bounded in [0, T ] ×O. Since also X ∈ C([0, T ];L1(O))

this implies X ∈ C([0, T ];Lp(O)) by dominated convergence. �

4. Generation of an RDS and random attractors.

4.1. Transformation in the semimartingale case.

PROOF OF THEOREM 2.18. Let z be a continuous semimartingale in R
N ,

X be the limit solution to (1.2) and Y := eμX. By Remark 2.11, Y is a very weak
solution to (1.4). We will now prove that X satisfies (2.4).

We consider the Sobolev spaces H 2k
0 (O) with the norm ‖ · ‖H 2k

0 (O) :=
‖(−�)k · ‖2. By Sobolev embeddings there is a k ∈ N (w.l.o.g. k odd) such
that H 2k

0 (O) ↪→ C0(O) continuously. Hence L1(O) ↪→ (H 2k
0 (O))∗ =: H−2k and

Y ∈ C([0, T ];L1(O)) ⊆ C([0, T ];H−2k). Let ϕ ∈ H
2(k+1)
0 (O) and ẽj be an or-

thonormal basis of H 2k
0 given by ẽj = ej

λk
j

= (−�)−kej , where ej is an orthonor-

mal basis of eigenvectors of −� on L2(O) with homogeneous Dirichlet boundary
conditions and λk are the corresponding eigenvalues. Further, let PM :H−2k →
span{e1, . . . , eM} be the orthogonal projection. Then PM |L2(O), PM |H 2k

0 (O) are the

orthogonal projections onto span{e1, . . . , eM} in L2(O), H 2k
0 (O), respectively. We

have ∫
O

Xtϕ dξ = H−2k

〈
Yt , e

−μt ϕ
〉
H 2k

0

=
∞∑

j=1

(∫
O

Ytej dξ

)(
ej , e

−μt ϕ
)
2.

By the very weak solution property and continuity in L1(O),
∫
O

Ytej dξ =
∫
O

Ysej dξ +
∫ t

s

∫
O

	
(
e−μr Yr

)
�

(
eμr ej

)
dξ dr ∀s ≤ t,

and hence t �→ ∫
O Ytej dξ is an absolutely continuous map with derivative∫

O 	(e−μt Yt )�(eμt ej ) dξ for a.e. t ∈ [0, T ]. By Theorem 2.7, Yt is adapted. As
in [8], page 22, by use of the stochastic Fubini theorem (cf., e.g., [44]), we prove

(
ej , e

−μt ϕ
)
2 = (

ej , e
−μ0ϕ

)
2 +

N∑
k=1

∫ t

0

(
ej , fke

−μr ϕ
)
2 ◦ dz(k)

r .
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In particular (ej , e
−μt ϕ)2 is a real-valued continuous semimartingale. Hence, we

can apply the Itô product rule (cf. [39], page 83) to get(∫
O

Ytej dξ

)(
ej , e

−μt ϕ
)
2

=
(∫

O
Ysej dξ

)(
ej , e

−μsϕ
)
2

(4.1)

+
∫ t

s

(
ej , e

−μr ϕ
)
2

(∫
O

	(Xr)�
(
eμr ẽj

)
dξ

)
dr

+
N∑

k=1

∫ t

s

(∫
O

Yrej dξ

)(
ej , fke

−μr ϕ
)
2 ◦ dz(k)

r

for all 0 ≤ s ≤ t ≤ T , P-almost surely. Note∫
O

	(Xr)�
(
eμr ẽj

)
dξ =

∫
O

	(Xr)
(
ẽj�eμr + 2∇eμr · ∇ ẽj + eμr �ẽj

)
dξ.

We aim to sum over j in (4.1). For this we have to rewrite the second summand on
the right-hand side of the equation above. Due to the lack of regularity of 	(X)

this requires an additional approximation,∫
O

	(Xr)∇eμr · ∇ ẽj dξ

= − lim
M→∞

∫
O

(∇PM	(Xr) · ∇eμr + PM	(Xr)�
(
eμr

))
ẽj dξ.

Hence,

K∑
j=1

(
ẽj , e

−μr ϕ
)
H 2k

0

∫
O

	(Xr)2∇eμr · ∇ ẽj dξ

= −2 lim
M→∞

(∫
O

(∇PM	(Xr) · ∇eμr
)
PK

(
e−μr ϕ

)
dξ

+
∫
O

(
PM	(Xr)�

(
eμr

))
PK

(
e−μr ϕ

)
dξ

)
.

We obtain
∞∑

j=1

(
ẽj , e

−μr ϕ
)
H 2k

0

∫
O

	(Xr)�
(
eμr ẽj

)
dξ

= H−2k

〈
	(Xr)�eμr , e−μr ϕ

〉
H 2k

0
+ H−2k

〈
	(Xr)e

μr ,�
(
e−μr ϕ

)〉
H 2k

0

+ 2H−2k

〈
	(Xr),∇eμr · ∇(

e−μr ϕ
)〉

H 2k
0

= H−2k

〈
	(Xr),�ϕ

〉
H 2k

0
.
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Summing up j = 1, . . . ,∞ in (4.1) yields∫
O

Xtϕ dξ

=
∫
O

Xsϕ dξ +
∫ t

s

∫
O

	(Xr)�ϕ dξ dr +
∫ t

s

(∫
O

B(Xr)ϕ dξ

)
◦ dzr

for all 0 ≤ s ≤ t ≤ T and all ϕ ∈ H
2(k+1)
0 (O) [thus by approximation for all ϕ ∈

C2
0(Ō)] P-almost surely. �

4.2. Quasi-continuous random dynamical systems.

PROOF OF LEMMA 2.26. Since τ is weaker than the norm topology, we have
�(B,ω) ⊆ �τ(B,ω). Let now y ∈ �τ(B,ω). Then there are tn → ∞ and xn ∈
B(θ−tnω) such that ϕ(tn, θ−tnω)xn →τ y. By D asymptotic compactness there is a
convergent subsequence ϕ(tnk

, θ−tnk
ω)xnk

. Since τ is weaker than norm topology
and Hausdorff, we conclude ϕ(tnk

, θ−tnk
ω)xnk

→ y � �(B,ω). �

PROOF OF LEMMA 2.27. Without loss of generality we may assume that F

is a bounded D-absorbing set by augmenting F to some ε-neighborhood of F for
some ε > 0.

Let tn → ∞ and xn ∈ B(θ−tnω). Then there is a convergent subsequence
ϕ(tnl

, θtnl
ω)xtnl

→ x ∈ �(B,ω). Hence, �(B,ω) is nonempty.
Compactness: Let xn ∈ �(B,ω). For every n ∈ N there are sequences tk(n) →

∞ and yk(n) ∈ B(θ−tk(n)
ω) such that ϕ(tk(n), θ−tk(n)

ω)yk(n) → xn for k(n) → ∞.
Therefore, we can find sequences tn → ∞, yn ∈ B(θ−tnω) such that
‖ϕ(tn, θ−tnω)yn − xn‖X < 1

n
. By D-asymptotic compactness there is a convergent

subsequence ϕ(tnl
, θ−tnl

ω)ynl
→ x � �(B,ω). Hence, xnl

→ x � �(B,ω).
Invariance: First let x ∈ �(B,ω). We need to prove ϕ(t,ω)x ∈ �(B, θtω).

Since x ∈ �(B,ω) there are sequences tn → ∞, xn ∈ B(θ−tnω) such that
ϕ(tn, θ−tnω)xn → x. By the cocycle property ϕ(t + tn, θ−tnω)xn =
ϕ(t,ω)ϕ(tn, θ−tnω)xn and by bounded absorption ϕ(t + tn, θ−tnω)xn = ϕ(t +
tn, θ−(t+tn)θtω)xn ∈ F(θtω) for n large enough. By quasi-τ -continuity we con-
clude ϕ(t + tn, θ−tnω)xn →τ ϕ(t,ω)x. Hence ϕ(t,ω)x ∈ �τ(B, θtω) =
�(B, θtω).

Let now z ∈ �(B, θtω), that is,

ϕ(tn, θ−tnθtω)xn → z(4.2)

for some tn → ∞ and xn ∈ B(θ−tnθtω). By D-asymptotic compactness of ϕ there
is a subsequence ϕ(tnl

− t, θ−(tnl
−t)ω)xnl

→ x � �(B,ω). By (4.2), quasi-τ -
continuity and the cocycle property, we have ϕ(tnl

, θ−tnl
θtω)xnl

= ϕ(t,ω)ϕ(tnl
−

t, θ−(tnl
−t)ω)xnl

→τ ϕ(t,ω)x. Since τ is weaker than norm topology and Haus-
dorff, we conclude z = ϕ(t,ω)x with x ∈ �(B,ω). �
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PROOF OF THEOREM 2.28. Necessity of the conditions follows from com-
pactness of A and its attraction property. To prove sufficiency we first observe that
by Lemma 2.27,

A(ω) := �(F,ω)

is compact and invariant. Since F ∈ D and F is D-attracting we have A(ω) ⊆
F(ω) for all ω ∈ � and thus A ∈ D. We only need to prove attraction. We first
observe that

�(D,ω) ⊆ �(F,ω) = A(ω) ∀D ∈D,ω ∈ �.

Indeed, by attraction we have �(B,ω) ⊆ F(ω). By Lemma 2.27 we know that
�(B,ω) = ϕ(t, θ−tω)�(B, θ−tω) ⊆ ϕ(t, θ−tω)F (θ−tω). Hence

�(B,ω) ⊆ ⋂
t≥0

ϕ(t, θ−tω)F (θ−tω) ⊆ �(F,ω) = A(ω).

Assume that A is not attracting. Then there is a set B ∈ D, an ω ∈ �, sequences
tn → ∞, xn ∈ B(θ−tnω) and a δ > 0 such that

d
(
ϕ(tn, θ−tnω)xn,A(ω)

) ≥ δ

for all n ∈ N. By asymptotic compactness, there is a convergent subsequence
ϕ(tnl

, θ−tnl
ω)xnl

→ x ∈ �(B,ω) ⊆ A(ω), which implies a contradiction. �

4.3. Construction of an RDS for (1.2).

PROOF OF THEOREM 2.30. By Theorem 2.9 the map x �→ X(t, s;ω)x is Lip-
schitz continuous in X = L1(O), locally uniformly in s, t . Uniqueness of essen-
tially bounded very weak solutions implies the flow property

X(t, s;ω)x = X(t, r;ω)X(r, s;ω)x ∀ω ∈ �,s ≤ r ≤ t

and cocycle property

X(t, s; θrω)x = X(t + r, s + r;ω)x ∀ω ∈ �,s ≤ t, r ∈ R

for all x ∈ L∞(O). By Lipschitz continuity in the initial condition, these properties
remain true for all x ∈ X = L1(O).

Next, we prove measurability of the map (t, s,ω, x) �→ X(t, s;ω)x. First let t ≥
s and x ∈ L∞(O). By Theorem 2.7 the map μ → Xt(μ) from C(R;RN) to H is
continuous. Since also ω �→ μ(ω) is a measurable map, this implies measurability
of ω �→ X(t, s;ω)x in H . Hence

ω �→
∫
O

(
X(t, s;ω)x

)
hdξ

is measurable for all h ∈ H 1
0 (O). Since X = L1(O) is separable, by the Pettis mea-

surability theorem, this implies measurability of X(t, s; ·)x. By approximation,
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this remains true for all x ∈ X. Since X(·, s;ω)x ∈ C([0, T ];X), for all ω ∈ �,
we deduce joint measurability of (t,ω) �→ X(t, s;ω)x in X. Using X(t, s;ω)x =
X(t − s,0; θsω)x and joint measurability of (s,ω) �→ (t − s, θsω) this implies
measurability of (s,ω) �→ X(t, s;ω)x. Hence, measurability of (t, s,ω, x) �→
X(t, s;ω)x follows, and ϕ defines a continuous RDS on L1(O).

By Theorem 2.9, ϕ(t,ω)x ∈ Lp(O) for all t ∈ R+ if x ∈ Lp(O), p ∈ [1,∞].
Since Lp(O) is reflexive for p ∈ (1,∞) this implies quasi-weak-continuity of
ϕ on Lp(O) for all p ∈ (1,∞) by Proposition 2.25. For p = ∞ we note
that σ(L∞, i∗(L∞)) is the weak∗ topology. By Proposition 2.25 quasi-weak∗-
continuity of ϕ on L∞(O) follows. �

4.4. Bounded absorption, asymptotic compactness and random attractors
for ϕ. In the following let D be the universe of all random closed sets.

PROPOSITION 4.1 (Bounded absorption). There is an L∞(O)-bounded (i.e.,
‖F(ω)‖L∞(O) < ∞) D-absorbing random set F ∈ D. The absorption time for
D ∈ D, ω ∈ � can be chosen independent of ω and D.

PROOF. Recall that by Theorem 2.30 we have ϕ(t,ω)x ≤ Ut(ω) a.e. in O for
all t ≥ 0 and all x ∈ X. For D ∈ D:

ϕ(t, θ−tω)D(θ−tω) = ϕ(1, θ−1ω)ϕ(t − 1, θ−tω)D(θ−tω) ≤ U1(θ−1ω),

a.e. in O for all t ≥ 1. Hence,

F(ω) = {
x ∈ L∞(O)|‖x‖L∞(O) ≤ ∥∥U1(θ−1ω)

∥∥
L∞(O)

}
is a D-absorbing set with absorption time t ≡ 1. �

LEMMA 4.2 (Asymptotic compactness).

(i) The RDS ϕ is D-asymptotically compact on each Lp(O), p ∈ [1,∞).
(ii) If (O1) is satisfied, then there exists a compact D-absorbing set K with

K(ω) ⊆ C0(Ō) compact for each ω ∈ �. In particular, ϕ is D-asymptotically com-
pact on L∞(O).

PROOF. (i): Let tn → ∞, D ∈ D and xn ∈ D(θ−tnω). In Proposition 4.1 we
have proved the existence of a D-absorbing random set F . Note

ϕ(tn, θ−tnω)xn = ϕ(1, θ−1ω)ϕ(tn − 1, θ−(tn−1)θ−1ω)xn

⊆ ϕ(1, θ−1ω)F(ω)

for all tn ≥ 2. Since F(ω) is bounded in L∞(O), by Theorem 2.30 ϕ(1, θ−1ω)F(ω)

is a set of uniformly continuous functions on each compact set K ⊆ O with
modulus of continuity depending only on m, dist(K, ∂O) and ‖F(ω)‖L∞(O). Let
{Kk|k ∈ N} be a sequence of compact sets in O, such that O = ⋃

k∈N Kk . For
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each k ∈ N we can choose a convergent subsequence of ϕ(tn, θ−tnω)xn ∈ C0(Kk).
Passing to a diagonal sequence, we can thus choose a subsequence (again denoted
by n) such that ϕ(tn, θ−tnω)xn is convergent in each C0(Kk) and in particular
pointwise convergent in all of O. By the uniform L∞(O) bound on ϕ(tn; θ−tnω)xn

this implies convergence of ϕ(tn; θ−tnω)xn in Lp(O), for each p ∈ [1,∞).
(ii): By Theorem 2.30(iii) the set K(ω) := ϕ(1, θ−1ω)F(ω) is uniformly

bounded and equicontinuous in C0(Ō). Since F(ω) is absorbing, so is the set
ϕ(1, θ−1ω)F(ω). �

PROOF OF THEOREM 2.31. Let Dp be the universe of all random sets in
Lp(O), p ∈ [1,∞].

The (unique) existence of a Dp-random attractor Ap in Lp(O) follows
from Dp-absorption, Dp-asymptotic compactness, quasi-weak-continuity of ϕ on
Lp(O) and Theorem 2.28 for each p ∈ [1,∞). Since F in Proposition 4.1 is an
L∞ bounded set absorbing all sets in D1, all these attractors coincide.

By the invariance property of the random attractor and Proposition 4.1 we have
A(ω) = ϕ(t, θ−tω)A(θ−tω) ⊆ F(ω), for all t ≥ 1 and thus L∞ boundedness of A.
Again by invariance of A, A(ω) = ϕ(1, θ−1ω)A(θ−1ω) ⊆ ϕ(1, θ−1ω)F(θ−1ω). In-
voking Theorem 2.30 yields equicontinuity on each compact set K ⊆O.

If (O1) is satisfied, then we can argue as above for p = ∞. �
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