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THE TOP EIGENVALUE OF THE RANDOM TOEPLITZ MATRIX
AND THE SINE KERNEL

BY ARNAB SEN1 AND BÁLINT VIRÁG2

University of Minnesota and University of Toronto

We show that the top eigenvalue of an n × n random symmetric Toeplitz
matrix, scaled by

√
2n logn, converges to the square of the 2 → 4 operator

norm of the sine kernel.

1. Introduction. An n × n symmetric random Toeplitz matrix is given by

Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · an−2 an−1

a1 a0 a1 · · · an−2
... a1 a0

. . .
...

an−2
...

. . .
. . . a1

an−1 an−2 · · · a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (

(a|i−j |)
)
0≤i,j≤n,

where (ai)0≤i≤n−1 is a sequence of independent random variables. This article es-
tablishes the law of large numbers for the maximum eigenvalue of this matrix as
n → ∞. The study of deterministic Toeplitz operators has a rich theory. See the
classical book by Grenander and Szegő (1984) or more recent works by Böttcher
and Grudsky (2000) and Böttcher and Silbermann (1999, 2006). In contrast, the
study of random Toeplitz matrices is a relatively new field of research. The ques-
tion of establishing the limiting spectral distribution of random Toeplitz matrices
with independent entries was first posed in the review paper by Bai (1999). The
answer was given by Bryc, Dembo and Jiang (2006) using method of moments.
Since then the study of asymptotic distribution of eigenvalues of Toeplitz matri-
ces has attracted considerable attention; for example, see Bose and Sen (2008),
Chatterjee (2009), Hammond and Miller (2005), Kargin (2009) and the references
therein.

The problem of studying the maximum eigenvalue of random Toeplitz matri-
ces is raised in Bryc, Dembo and Jiang (2006), Remark 1.3. Bose and Sen (2007)
established the law of the large numbers for the spectral norm of Toeplitz ma-
trix when the entries are i.i.d. with some positive mean and finite variance. But
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pinpointing the exact limit for the spectral norm of the Toeplitz matrix when
there is no perturbation, that is, when the entries are mean zero, turned out to
be much more challenging. This is partly due to the fact that, unlike the Wigner
case where the limiting spectral distribution, the semicircular law has a compact
support, and the top eigenvalue converges to the right endpoint of the support [this
was proved by Bai and Yin (1988)], the limiting spectral distribution of Toeplitz
matrices has infinite support. As a result, there is no natural guess to begin with.
Another difficulty is that currently there are no useful estimates available for the
trace of high powers of the Toeplitz matrix tr(Tk

n) when k = k(n) goes to infin-
ity.

Meckes (2007) showed that if the entries have zero mean and uniformly sub-
gaussian tail, then the expected spectral norm of an n × n random Toeplitz
matrix is of the order of

√
n logn, a significant departure from the standard√

n scaling of the Wigner case. Adamczak (2010) showed concentration, and
more precisely, he proved that the spectral norm of random Toeplitz matrix
normalized by the expected spectral norm converges almost surely to 1 if the
entries are i.i.d. with zero mean and finite variance. Bose, Subhra Hazra and
Saha (2010) gave an upper bound and a lower bound for the right tail prob-
ability of the spectral norm of Toeplitz matrix scaled by n1/α when the en-
tries are i.i.d. heavy-tailed random variables satisfying the following condition.
There exist p,q ≥ 0 with p + q = 1 and a slowly varying function L(x) such
that

lim
x→∞

P{X > x}
P{|X| > x} = p, lim

x→∞
P{X ≤ −x}
P{|X| > x} = q

and

P
{|X| > x

}∼ x−αL(x) as x → ∞.

Throughout the paper, we will have the following standing assumption on the
entries of our random Toeplitz matrix.

ASSUMPTION. For each n, (ai)0≤i≤n−1 is an array of independent real ran-
dom variables (we suppress the dependence on n). There exists constants γ > 2
and C finite so that for each variable

Eai = 0, Ea2
i = 1 and E|ai |γ < C.

Define the integral operator corresponding to the sine kernel by

Sin(f )(x) :=
∫

R

sin(π(x − y))

π(x − y)
f (y) dy for f ∈ L2(R),
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and its 2 → 4 operator norm as

‖Sin‖2→4 := sup
‖f ‖2≤1

∥∥Sin(f )
∥∥

4,

where ‖f ‖p := (
∫
R |f (x)|p)1/p denotes the standard Lp-norm. ‖Sin‖2

2→4 is the
solution of the convolution optimization problem (see the Appendix),

sup
{‖f � f ‖2 :f even of L2-norm 1 supported on [−1/2,1/2]}.(1)

For a Hermitian matrix A, we denote by λ1(A) and λn(A) the maximum and
minimum eigenvalue of A, respectively. The following theorem is the main result
of our paper.

THEOREM 1. Let Tn be a sequence of n×n symmetric random Toeplitz matrix
as defined above with its entries satisfying the above assumption. Then

λ1(Tn)√
2n logn

Lγ→ ‖Sin‖2
2→4 = 0.8288 . . . as n → ∞.

Recall that a sequence of random variables converges in Lp to a constant c,

denoted by Xn
Lp→ c, if E|Xn − c|p → 0.

REMARK 2. Note that Lγ convergence is as best as we can hope for in Theo-
rem 1. This is because of the fact that maximum eigenvalue of a symmetric matrix
dominates the diagonal entries. So λ1(Tn) ≥ a0 and E|λ1(Tn)|p can be infinite for
any p > γ . Thus we cannot expect Lp convergence for p > γ .

By symmetry, the same theorem holds for −λn and so for the spectral norm
‖Tn‖sp = max(λ1,−λn) as well.

1.1. Connection between Toeplitz and circulant matrices. The starting point
our analysis of the maximum eigenvalue is a connection between a Toeplitz matrix
and a circulant matrix twice its size.

Observe that Tn is the n × n principal submatrix of a 2n × 2n circulant matrix
C2n = (bj−imod2n)0≤i,j≤2n−1, where bj = aj for 0 ≤ j < n and bj = a2n−j for
n < j < 2n (choice of bn is irrelevant at this point and it will be set later). We hope
to relate the spectrum of Toeplitz matrix to that of the present circulant matrix
twice its size, which can be easily diagonalized as follows:

(2n)−1/2C2n = U2nD†
2nU∗

2n,

where U2n is the discrete Fourier transform, that is, a unitary matrix given by

U2n(j, k) = 1√
2n

exp
(

2πijk

2n

)
, 0 ≤ j, k ≤ 2n − 1,
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and D†
2n is a diagonal matrix with

(
D†

2n

)
j,j

= 1√
2n

2n−1∑
k=0

bk exp
(

2πijk

2n

)
(2)

= 1√
2n

[
a0 + (−1)j bn + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
.

Clearly the j and 2n − j entries of D†
2n agree for all n < j < 2n. If we write

Q2n =
(

In 0n

0n 0n

)
,

then Tn and Q2nC2nQ2n have the same nonzero eigenvalues by our observation.
Moreover, the matrix (2n)−1/2Q2nC2nQ2n has the same eigenvalues as its conju-
gate

(2n)−1/2U∗
2nQ2nC2nQ2nU2n = P2nD†

2nP2n,

where

P2n := U∗
2nQ2nU2n.(3)

Consequently, we have a useful representation of the maximum eigenvalue of the
Toeplitz matrix

λ1
(
n−1/2Tn

)= √
2λ1

(
P2nD†

2nP2n

)
(4)

as long as the right-hand side is not zero. We point out here that the matrix
Q2nC2nQ2n (and so P2nD†

2nP2n) does not depend on the value of bn, so we may
replace it with an independent copy an of a0. In addition, as we will show in
Lemma 5 we can replace a0 by

√
2a0 in D2n without changing the asymptotics.

Dropping the subscript 2n, we will study the matrix PDP as before and the entries
of the diagonal matrix D = diag(d0, d1, . . . , d2n−1) given by

dj = 1√
2n

[√
2a0 + (−1)j

√
2an + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
, 0 ≤ j < 2n.

The reason for choosing the “right” variance for diagonal and the “right” aux-
iliary variable bn is that now the variables dj ,0 ≤ j ≤ n become uncorrelated;
see Lemma 18. Thus in the special case when {aj : 0 ≤ j ≤ n} are i.i.d. Gaussian
random variables with mean 0 and variance 1, it follows that {dj : 0 ≤ j ≤ n} are
again independent Gaussian with mean 0 and have variance 1 except for d0 and dn,
which have variance 2.

We have thus reduced our problem to studying the maximum eigenvalue of the
matrix PDP where P is a deterministic Hermitian projection operator, and D is a
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random multiplication operator with defined on C2n with uncorrelated entries. One
can view this representation as a discrete analogue for Toeplitz operators defined
on the Hardy space H2.

In the general case, to analyze the lower bound, we need to use an invariance
principle. The difficulty is that the top eigenvalue does not come from the usual
central limit theorem regime of D, but from moderate deviations. We overcome this
by extending the invariance principle of Chatterjee (2005) (based on Lindeberg’s
approach to the CLT) to the realm of moderate deviations.

1.2. Heuristics and conjectures. We first give a heuristic description of the
origin of the limiting constant. Since P is a convolution with a decaying function,
the matrix PDP in many ways behaves a like the diagonal matrix D itself. In par-
ticular, its top eigenvalue comes from a few nearby extreme values of D. We can
partition of the interval into short enough sections J , and show that the top eigen-
value is close to the maximum top eigenvalue of blocks P[J ]D[J ]P[J ]. This likes
to be large when the entries of D[J ] are large. By large deviations theory, the real
constraint on the best D[J ] is that the �2-norm the vector of entries is bounded by√

2 logn.
Now the top eigenvalue is an �2 optimization problem, but now we have another

�2 optimization over the entries of D[J ]. Thus an �4-norm appears, and that the
solution of these two problems together are asymptotically given by the 2 → 4
norm of the limiting operator of P2n, which we then relate to the well-known sine
kernel. The relation is natural, since P2n and the sine kernel are both projections
to an interval conjugated by a Fourier transform.

Before we prove Theorem 1, let us state some conjectures and open questions.
Each of these conjectures can be split into parts (a) the Gaussian case, and (b) the
general case where suitable moment conditions have to be imposed.

CONJECTURE 1. Let vn be the top eigenvector of PD†P. Then there exist ran-
dom integers Kn so that for each i ∈ Z, we have vn(Kn + i) → ĝ(i), where ĝ is
the Fourier transform of the function g(x) = √

2f (2x − 1/2), and f is the (unique)
optimizer in (1).

CONJECTURE 2. With high probability, all eigenvectors of PD†P are local-
ized: for each eigenvector, there exists a set of size no(1) that supports 1 − o(1)

proportion of the �2-norm.

QUESTION 3. What is the behavior of n−1/2λ1(Tn) − √
2 logn‖Sin‖2

2→4?

CONJECTURE 4. The top of the spectrum of Tn, suitably shifted, and normal-
ized, converges to a Poisson process with intensity ce−ηx for some c, η > 0.

Related to this, we have the following.
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CONJECTURE 5. The top eigenvalue of Tn, suitably shifted and normalized,
has a limiting Gumbel distribution.

CONJECTURE 6. The eigenvalue process of Tn, away from the edge, after
suitable normalization, converges to a standard Poisson point process on R.

1.3. The proof of Theorem 1. In this section, we break the proof of Theorem 1
into its components. This also serves as a guide to the rest of the paper.

PROOF OF THEOREM 1. Consider the discrete Fourier transform matrix,

U(j, k) = 1√
2n

exp
(

2πijk

2n

)
, 0 ≤ j, k ≤ 2n − 1

and D†, a 2n × 2n diagonal matrix so that for j = 0, . . . ,2n − 1

D†(j, j) = 1√
2n

2n−1∑
k=0

bk exp
(

2πijk

2n

)
(5)

= 1√
2n

[
a0 + (−1)j bn + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
.

Let

Q =
(

In 0n

0n 0n

)
, P := U∗QU.

Then, as argued in Section 1.1 we have the representation (4)

λ1
(
n−1/2Tn

)= √
2λ1

(
PD†P

)
as long as the right-hand side is positive. In formula (5) for diagonal entries of
D†, we replace a0 by

√
2a0 (this is legal via Lemma 5) and choose bn = √

2an

where an is an identical copy of a0 independent of (ai)0≤i<n (recall PD†P does
not depend on bn) to obtain a new diagonal matrix D = diag(d0, d1, . . . , d2n−1)

given by

dj = 1√
2n

[√
2a0 + (−1)j

√
2an + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
, 0 ≤ j < 2n.

The reason for choosing the “right” variance for diagonal and the “right” auxil-
iary variable bn is that now the variables dj ,0 ≤ j ≤ n become uncorrelated; see
Lemma 18. Thus in the special case when {aj : 0 ≤ j ≤ n} are i.i.d. Gaussian ran-
dom variables with mean 0 and variance 1, it follows that {dj : 0 ≤ j ≤ n} are again
independent Gaussian with mean 0 and have variance 1 except for d0 and dn who
have variance 2.
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In Lemma 5 we justify working with PD†P by showing that

E
∣∣λ1(PDP) − λ1

(
PD†P

)∣∣γ = o(
√

logn).

In Section 2, Corollary 6 we show that we can assume that the an are bounded
by n1/γ . In Lemma 7, we establish tightness, so it suffices to show convergence
in probability. In Section 3, equation (16) we introduce a sparse version Dε of the
diagonal matrix D, by considering the set

S = {
0 ≤ j ≤ 2n − 1 : |dj | ≥ ε

√
2 logn

}
,

and setting (Dε)jj = dj 1j∈S . Then we show that the eigenvalues are close,∣∣λ1(PDP) − λ1
(
PDεP

)∣∣≤ ε
√

2 logn.

The matrix Dε is sparse enough that the whole question can be reduced to a
block-diagonal version, where the blocks are determined by a random partition 


of {1, . . . ,2n}. This is done in Lemma 9: with high probability,∣∣∣λ1
(
PDεP

)− max
J∈
:J∩S �=∅

λ1
(
P[J ]Dε[J ]P[J ])∣∣∣= O(1),

where P[J ] refers to the minor of P corresponding to the subset of indices J . This
is guaranteed by a careful choice of partition 
, which ensures that the blocks
J with J ∩ S �= ∅ are sufficiently far apart, so that the interaction between them
is negligible. This interaction comes from off-diagonal elements of the matrix P,
whose entries decay with the distance from the diagonal.

The main idea of the last part of the proof is explained in Section 1.2. We pro-
ceed along those lines. In Propositions 10 and 14 (Sections 4, 5) we then establish
the asymptotic upper and lower bounds for the for the block diagonal version.
Together, they give that with high probability, there exists εn → 0 so that

max
J∈
:J∩S �=∅

λ1
(
P[J ]Dεn[J ]P[J ])=

√
2 logn

(‖�‖2
2→4 + o(1)

)
,

where � is the n → ∞ limit of P introduced in (14). Finally, in the Appendix,
Lemma 19, we identify ‖�‖2

2→4 = 1√
2
‖Sin‖2

2→4. This completes the proof of
Theorem 1. �

1.4. Notation. We write that a sequence of events (En)n≥1 occurs with high
probability when P{En} → 1. Let �2(C) [resp., �2(R)] be the space of square
summable sequences of complex (resp., real) numbers indexed by Z. For square
matrix A and a subset T of the index set, we denote by A[T ], the principal sub-
matrix of A which is obtained by keeping those rows and columns of A whose
indices belong to T . We consider n as an asymptotic parameter tending to infinity.
We will use the notation f (n) = �(g(n)) or g(n) = O(f (n)) to denote the bound
g(n) ≤ Cf (n) for all sufficiently large n and for some constant C. Notation such
as f (n) = ω(g(n)) or g(n) = o(f (n)) means that g(n)/f (n) → 0 as n → ∞. We
write f (n) = �(g(n)) if both f (n) = O(g(n)) and g(n) = O(f (n)) hold.
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2. Truncation and tightness.

2.1. Truncation and changing the diagonal term. Let n0 be sufficiently large
number. For n ≥ n0, define two arrays of truncated random variables by

ãi = ã
(n)
i =: ai1{|ai |≤n1/γ } − E[ai1{|ai |≤n1/γ }], 0 ≤ i ≤ n − 1

and

āi = ā
(n)
i := Var(ãi)

−1/2ãi , 0 ≤ i ≤ n − 1.

Note that to define ā
(n)
i , we need that Var(ã(n)

i ) > 0, which holds for sufficiently
large n.

We sometimes write Tn(a) for Tn to emphasize its dependence on the under-
lying sequence of random variables (ai)0≤i≤n−1. Thus Tn(ã) and Tn(ā) denote
the Toeplitz matrices built with random variables (ãi)0≤i≤n−1 and (āi)0≤i≤n−1,
respectively.

The next lemma says that the above truncation and the rescaling of the un-
derlying random variables has a negligible effect in the study of the maximum
eigenvalue of Toeplitz matrix.

LEMMA 3. We have, as n → ∞,
(a)

λ1(Tn(a)) − λ1(Tn(ã))√
n logn

Lγ→ 0,

(b)

λ1(Tn(ã)) − λ1(Tn(ā))√
n logn

Lγ→ 0.

PROOF. Define, for n ≥ n0,

âi := ai1{|ai |≤n1/γ }, 0 ≤ i ≤ n − 1.

Recall that for a matrix A, its spectral norm satisfies

‖A‖2
sp ≤ max

k

∑
l

∣∣A(k, l)
∣∣× max

l

∑
k

∣∣A(k, l)
∣∣.(6)

In the special case when A is Hermitian, the above bound reduces to

‖A‖sp ≤ max
k

∑
l

∣∣A(k, l)
∣∣.(7)

Then we have ∣∣∣∣λ1(Tn(a)) − λ1(Tn(â))√
n logn

∣∣∣∣≤ ‖Tn(a) − Tn(â)‖sp√
n logn

(8)

≤ 2
∑n−1

i=0 |ai |1{|ai |>n1/γ }√
n logn

,
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which follows from bound (7) and from the fact that the �1 norm of the each
row of the Toeplitz matrix Tn(a) − Tn(â) is bounded by 2

∑n
i=1 |ai |1{|ai |>n1/γ }.

We quote a standard moment bound for sum of independent nonnegative random
variables, commonly known as Rosenthal’s inequality in the literature [see, e.g.,
Latała (1997), Corollary 3] which says that if ξ1, . . . , ξn are independent nonneg-
ative random variables and p ≥ 1, then there exists a universal constant Cp such
that

E

[(
n∑

i=1

ξi

)p]
≤ Cp max

((
n∑

i=1

E[ξi]
)p

,

n∑
i=1

E
[
ξ

p
i

])
.

Clearly, E[|ai |γ 1{|ai |>n1/γ }] ≤ E[|ai |γ ] ≤ C. On the other hand, by Hölder’s in-
equality,

E
[|ai |1{|ai |>n1/γ }

]≤ (
E|ai |γ )1/γ · (P{|ai |γ > n

})1−1/γ
,

and by Markov’s inequality, this is bounded above by(
E|ai |γ )1/γ (E|ai |γ /n

)1−1/γ = E
[|ai |γ ]n−1+1/γ ≤ Cn−1+1/γ .(9)

Therefore, by Rosenthal’s inequality,

E

[
n−1∑
i=0

|ai |1{|ai |>n1/γ }

]γ

= O(n).(10)

Combining (8) and (10), we obtain

E
∣∣∣∣λ1(Tn(a)) − λ1(Tn(â))√

n logn

∣∣∣∣γ = O(n)

(n logn)γ/2 → 0.

Next we see that

E
∣∣∣∣λ1(Tn(â)) − λ1(Tn(ã))√

n logn

∣∣∣∣γ ≤ E[‖Tn(â) − Tn(ã)‖γ
sp]

(n logn)γ/2

≤ (2
∑n−1

i=0 E|ai |1{|ai |>n1/γ })γ

(n logn)γ/2 = O(n)

(n logn)γ/2 → 0,

which completes the proof of part (a).
For part (b) we want to bound∣∣∣∣λ1(Tn(ã)) − λ1(Tn(ā))√

n logn

∣∣∣∣≤ ‖Tn(ã) − Tn(ā)‖sp√
n logn

≤ √
2 · ‖P(D†(ã) − D(ā))P‖sp√

logn
.

Here we use representation (4). Since P, being Hermitian projection matrix, has
spectral norm equal to one, with a∗ = ã − ā we have∥∥P

(
D†(ã) − D(ā)

)
P
∥∥

sp = ∥∥PD†(a∗)P∥∥sp ≤ ∥∥D†(a∗)∥∥
sp = max

0≤j≤n

∣∣dj

(
a∗)∣∣.
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We have

1 − Var(ãi) = E
[
a2
i 1{|ai |>n1/γ }

]+ (
E[ai1{|ai |>n1/γ }]

)2
.

We apply (9), and the similarly derived

E
[
a2
i 1{|ai |>n1/γ }

]≤ Cn−1+2/γ

to get 1 − Var(ãi) = O(n−1+2/γ ) uniformly in i. Note that a∗
i = (1 −

Var(ãi)
−1/2)ãi which implies Ea∗

i = 0 and Var(a∗
i ) = (1 − Var(ãi)

1/2)2 =
O(n−2+4/γ ) and |a∗

i | ≤ 4n1/γ , for n ≥ n0.
Using the union bound and the identity E[X] = ∫∞

0 P{X > t}dt which holds
for any nonnegative random variable X, we can write

E
[

max
0≤j≤n

∣∣dj

(
a∗)∣∣γ ]≤ 1 +

∫ ∞
1

P
{

max
0≤j≤n

∣∣dj

(
a∗)∣∣γ > t

}
dt

(11)
≤ 1 + (n + 1) max

0≤j≤n

∫ ∞
1

P
{∣∣dj

(
a∗)∣∣> t1/γ }dt.

If ξ1, ξ2, . . . , ξn be independent mean zero random variables, uniformly bounded
by M , then the classical Bernstein inequality gives the following tail bound for
their sum:

P

{
n∑

k=1

ξk > t

}
≤ exp

(
− t2/2∑n

k=1 Var(ξk) + Mt/3

)
∀t > 0.

Using Bernstein’s inequality, we obtain

(11) ≤ 1 + (n + 1)

∫ ∞
1

2 exp
(
− t2/γ (

√
n)2

n · O(n−1+2/γ ) + t1/γ
√

nO(n1/γ )

)
dt

≤ 1 + 2(n + 1)

∫ ∞
1

exp
(−t1/γ · �(n1/2−1/γ ))dt

= 1 + n · n1/γ−1/2e−�(n1/2−1/γ ).

Hence, (logn)−1/2‖D(a∗)‖ Lγ→ 0 and so, |λ1(Tn(ã))−λ1(Tn(ā))√
n logn

| Lγ→ 0. This completes
the proof of part (b) of the lemma. �

DEFINITION 4. Let T◦
n be the symmetric Toeplitz matrix which has

√
2a0 on

its diagonal instead of a0.

LEMMA 5. We have, as n → ∞,

λ1(T◦
n) − λ1(Tn)√
n logn

Lγ→ 0.
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PROOF. The proof is immediate from the following fact:

E
∥∥T◦

n − Tn

∥∥γ
sp ≤ (

√
2 − 1)γ E

[|a0|γ ]= O(1). �

COROLLARY 6. It suffices to prove Theorem 1 for the symmetric random
Toeplitz matrix T◦

n defined in Definition 4 where the random variables ai are inde-
pendent mean zero, variance one and bounded by 2n1/γ .

PROOF. The proof is immediate from Lemmas 3 and 5. �

Following (4), we can write

λ1
(
n−1/2T◦

n

)= √
2λ1(PDP),(12)

with P as before and the entries of the diagonal matrix D = diag(d0, d1, . . . , d2n−1)

given by

dj = 1√
2n

[√
2a0 + (−1)j

√
2an + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
, 0 ≤ j < 2n,

where bn := √
2an, an being an independent copy of a0. The reason for choosing

the “right” variance for diagonal and the “right” auxiliary variable bn is that now
the variables dj ,0 ≤ j ≤ n become uncorrelated; see Lemma 18. Thus in the spe-
cial case when {aj : 0 ≤ j ≤ n} are i.i.d. Gaussian random variables with mean 0
and variance 1, it follows that {dj : 0 ≤ j ≤ n} are again independent Gaussian with
mean 0 and have variance 1 except for d0 and dn which have variance 2.

2.2. Tightness.

LEMMA 7. For each n ≥ 1, let a0, a1, . . . , an−1 be a sequence of independent
random variables that have mean zero, variance one and are bounded by n1/γ . For
any p > 0, we have

sup
n≥1

E
[(

λ1(T◦
n)√

2n logn

)p]
< ∞.

PROOF. The proof is a direct application of Bernstein’s inequality similar to
what we did in the proof of part (b) of Lemma 3. From representation (12), we
know that n−1/2λ1(T◦

n) is bounded above by
√

2 · max0≤j≤n |dj |. Therefore, for
any α > 0,

E
[(

λ1(T◦
n)√

2n logn

)p]
≤ E

[(
max0≤j≤n |dj |√

logn

)p]

≤ α + (n + 1) max
0≤j≤n−1

∫ ∞
α

P
{ |dj |√

logn
> t1/p

}
dt.
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By the Bernstein inequality, for n sufficiently large,

max
0≤j≤n

P
{ |dj |√

logn
> t1/p

}
≤ 2 exp

(
− (1/2) logn · t2/p

2 + (1/3)
√

2n1/γ−1/2
√

logn · t1/p

)
,

which implies that there exists a constant c > 0 such that for each n and each
0 ≤ j ≤ n,∫ ∞

α
P
{ |dj |√

logn
> t1/p

}
dt ≤

∫ tn

α
exp

(−ct2/p · logn
)
dt +

∫ ∞
tn

exp
(−ct1/p)dt,

where tn := np(1/2−1/γ )(logn)−p/2. This particular choice of tn is governed by the
fact that 2 + 1

3

√
2n1/γ−1/2√logn · t

1/p
n = O(1). The second integral above goes

to zero faster than any polynomial power of n, whereas by choosing α sufficiently
large we can make the first integral O(n−1). The claim of the lemma follows. �

3. Reduction to block diagonal form.

3.1. Some facts about P. By definition (3) P : C2n → C2n is a Hermitian pro-
jection matrix. The action of operator P can be described by the composition of the
following three maps: For x ∈ C2n, we first take discrete Fourier transform of x,
then project it to the first n Fourier frequencies and finally do the inverse discrete
Fourier transform.

The entries of P are given by

P(k, l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
, for k = l,

0, for k �= l, |k − l| is even,

1

n
× 1

1 − exp(−2πi(k − l)/(2n))
, for |k − l| is odd.

Note that P(k, l) is a function of (k − l) only and that∣∣P(k, l)
∣∣≤ C1/min

(|k − l|,2n − |k − l|), k �= l

for some constant C1. Hence, the maximum of �1 norms of the rows or the columns
of P has the following upper bound:

max
k

2n−1∑
l=0

∣∣P(k, l)
∣∣≤ C2 logn, max

l

2n−1∑
k=0

∣∣P(k, l)
∣∣≤ C2 logn,(13)

where C2 is some suitable constant.
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Limiting operator for P. Let T be unit circle parametrized by T = {e2πix :x ∈
(−1/2,1/2]} and L2(T) := {f : [−1/2,1/2] → C :f (−1/2) = f (1/2) and∫ 1/2
−1/2 |f (x)|2 dx < ∞}. We define an projection operator � :�2(C) → �2(C) as

the composition of the following operators:

� :�2(C)
ψ−→ L2(T)

χ[0,1/2]−→ L2(T)
ψ−1

−→ �2(C),(14)

where ψ :�2(C) → L2(T) is the Fourier transform which sends the coordinate
vector em,m ∈ Z to the periodic function x �→ e2πimx ∈ L2(T), ψ−1 is the inverse
map of ψ and χ[0,1/2] :L2(T) → L2(T) is the projection map given by f �→ f ×
1[0,1/2]. The operator � is Hermitian and is defined on the entire �2(C) and hence
is self-adjoint. It is easy to check that for any k, l ∈ Z,

〈ek,�el〉 =: �(k, l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
, if k = l,

0, if k �= l, |k − l| is even,

−i

π(k − l)
, if |k − l| is odd.

Here 〈·, ·〉 denotes the usual inner product on �2(C).
Define 2 → 4 operator norm of � as

‖�‖2→4 := sup
{‖�v‖4 : v ∈ �2(C),‖v‖2 ≤ 1

}
,

where for any vector v ∈ �2(C) and p ≥ 1, ‖v‖p denotes the standard �p norm
of v.

We claim that∣∣P2n(k, l) − �(k, l)
∣∣= O

(
n−1) as n → ∞ and |k − l| = o(n).(15)

There is nothing to prove if |k − l| is even. So assume that |k − l| is odd and
|k− l| = o(n). In this case we can write P2n(k, l)−�(k, l) as n−1 × 1

xn
[ xn

1−e−ixn
+ i]

where xn = π(k − l)/n = o(1). Now (15) easily follows from the following limit,
which is elementary:

lim
x→0

1

x

[
x

1 − e−ix
+ i

]
= lim

x→0

1 − sinx/x + i(1 − cosx)/x

(1 − cosx) + i sinx
= 1

2
.

We will make use of (15) when we prove the upper bound for the top eigenvalue
in Section 4.

3.2. Allowing ε room. As one might guess, the diagonal entries of D which
have small absolute value should not have too much influence on determining the
value of λ1(PDP). In this subsection, we will make this idea precise. For ε > 0,
consider the random set

S = {
0 ≤ j ≤ 2n − 1 : |dj | ≥ ε

√
2 logn

}
,
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let R := diag(1j∈S) and let Dε := DR. Then∣∣∣∣λ1(PDP)√
2 logn

− λ1(PDεP)√
2 logn

∣∣∣∣≤ ‖P(D − Dε)P‖sp√
2 logn

(16)

≤ ‖P‖sp‖D − Dε‖sp‖P‖sp√
2 logn

≤ ε.

3.3. Random partition of the interval. For a set B , we denote by #B the car-
dinality of B .

Set r = �logn�3, and let m = �n/2r�. Divide the interval {0,1,2, . . . ,2n −
1} into 2m + 1 consecutive disjoint subintervals (called bricks) L−m, . . . ,L−1,
L0,L1, . . . ,Lm in such a way that:

• 0 ∈ L−m and n ∈ L0,
• the length of each Li is between r and 4r and
• the subdivision is symmetric about n: Li = 2n − L−i for −m < i < m and

L−m \ {0} = 2n − Lm.

We define a block to be a (nonempty) union of consecutive bricks, say

J = Lj ∪ Lj+1 ∪ · · · ∪ Lk−1 ∪ Lk,

with −m ≤ j ≤ k ≤ m. We fix ε > 0, and set M = M(ε) := 4 + 12/ε2. We will
call a block J admissible if:

(a) either J ⊆ L−m+1 ∪ L−m+2 ∪ · · · ∪ L−1 or J ⊆ L1 ∪ L2 ∪ · · · ∪ Lm and
(b) the number 1 + k − j of bricks that make up the block J is at most M(ε).

The set of all admissible blocks will be denoted by L. We mention here that the
notion of admissible blocks depends on the fixed parameter ε. Notice that (a) is
equivalent to requiring L−m � J and L0 � J . Moreover, if L ∈ L, then size of L

is bounded below and above by r and 4Mr , respectively.
We define a brick Lk to be visible if L ∩ S �= ∅. Otherwise Lk is called in-

visible. Clearly, for 1 ≤ k < m, Lk is visible if and only if L−k is visible. Given
the random set S, partition {0,1,2, . . . ,2n − 1} into disjoint intervals J by sub-
dividing between each pair of consecutive invisible bricks. Clearly, each such J

is a block. Denote the collection of all those J ’s by 
. Note that the 
 and the
J ’s are at random. Note that in this random partition, each block J ∈ 
 starts and
ends with a “gap” of size at least (logn)3. More precisely, for any [a, b] ∈ 
, we
have [a, a + (logn)3]∩S = ∅ (unless a = 0) and [b− (logn)3, b]∩S = ∅ (unless
b = 2n − 1).

PROPOSITION 8. For each ε > 0 and each division L, the following holds
with high probability: For each J ∈ 
, if J ∩ S �= ∅, then:

(1) J ∈ L and
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(2) #(J ∩ S) ≤ M for all J ∈ L.

PROOF. For any fixed s ≥ 1 and 0 ≤ j1 < j2 < · · · < js ≤ n,

P
{|dji

| > ε
√

2 logn,1 ≤ i ≤ s
}

≤ ∑
βi∈{−1,+1}

P

{
s∑

i=1

βidji
> sε

√
2 logn

}
(17)

≤ 2s exp
(
− ε2s2 · logn

Var(
∑s

i=1 βidji
) + O(sn1/γ−1/2) · sε√2 logn

)
= O

(
n−sε2/3).

The second inequality in (17) is a consequence of Bernstein’s inequality once we
write

∑s
i=1 βidji

as the linear sum of ai ’s. Note that coefficient of each aj in
the sum is of the order of s × O(n−1/2), and on other hand, each aj is bounded
by n1/γ . For the third inequality above we used the fact that Var(

∑s
i=1 βidji

) =∑s
i=1 Var(dji

) ≤ (s + 2) (by Lemma 18).
Note that if (1) or (2) fails, then one of the following events holds:

(i) either of the bricks L0 and L−m is visible;
(ii) there exists a stretch of M consecutive bricks from L−m+1,L−m+2, . . . ,

L−1 such that at least �M/2� − 1 of them are visible;
(iii) there exists a stretch of M consecutive bricks (say, La,La+1, . . . ,La+M−1)

from L−m+1,L−m+2, . . . ,L−1 such that
∑M−1

i=0 #(La+i ∩ S) ≥ M .

By (17), we have P{event (i)} = O(n−ε2/3). We observe that events (ii) and (iii)
are both contained in the following event:

(iv) there exists a stretch of M consecutive bricks (say, La,La+1, . . . ,La+M−1)
from L−m+1,L−m+2, . . . ,L−1 such that

∑M−1
i=0 #(La+i ∩ S) ≥ �M/2� − 1.

Again by (17), if we fix a position of such M consecutive blocks La,La+1, . . . ,

La+M−1 and then fix s = �M/2� − 1 positions j1, j2, . . . within the blocks
La,La+1, . . . ,La+M−1, the probability that j1, j2, . . . , js ∈ S is bounded above by
O(n−sε2/3) = O(n−2). Hence by union bound, P{event (iv)} = O(n(logn)3M/2 ×
n−2). This is because we can choose the index a from the set {−m + 1,−m +
2, . . . ,−1} in at most m ≤ n ways and s positions j1, j2, . . . can be selected in the
blocks La,La+1, . . . ,La+M−1 in at most

(4Mr
s

)≤ O((logn)3M/2) ways.
This implies that the probability that either of the events (i) or (iv) happens goes

to 0 as n → ∞. This completes the proof. �
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3.4. Reduction to a block diagonal form. Let B be the following block diago-
nal form of the matrix P:

B(k, l) =
{

P(k, l), if k, l ∈ J for some J ∈ 
,

0, otherwise.

LEMMA 9. For each ε > 0, there exists K > 0 such that with high probability,∣∣∣λ1
(
PDεP

)− max
J∈
:J∩S �=∅

λ1
(
P[J ]Dε[J ]P[J ])∣∣∣≤ K.

PROOF. The maximum above equals λ1(BDεB), so the left-hand side is
bounded above by∥∥PDεP − BDεB

∥∥
sp ≤ ∥∥(P − B)DεP

∥∥
sp + ∥∥BDε(P − B)

∥∥
sp

≤ ∥∥(P − B)Dε
∥∥

sp‖P‖sp + ‖B‖sp
∥∥Dε(P − B)

∥∥
sp.

Note that since P is a projection matrix ‖P‖sp = 1 and by block-diagonality we
have ‖B‖sp = maxJ∈
 ‖P[J ]‖sp. The matrix P[J ] is just P conjugated by a coor-
dinate projection, so it has norm at most 1.

Since Dε = RD we first bound the spectral norm of (P − B)R. The maximal
column sum of this matrix is bounded above by the maximal absolute row sum
of P, which by (13) is at most C2 logn. Note that ((P − B)R)(k, l) = 0 unless k, l

are in different parts of 
. This gives the upper bound for the maximal absolute
row sum

max
J∈
,k∈J

∑
l /∈J

R(l, l)
∣∣P(k, l)

∣∣≤ C

#
−1∑
k=1

2M

k(logn)3 = O
(
(logn)−2),

which holds with high probability. We used the fact that with high probability each
part in 
 has at most M elements j where R(j, j) is nonzero (Proposition 8), and
different parts have gaps of size (logn)3 in between them. Since the spectral norm
is bounded above by the geometric mean of the maximal row and column sums,
we get ‖(P − B)R‖sp = O((logn)−1/2).

By Bernstein’s inequality, we can find a constant C3 such that with high proba-
bility ‖D‖sp = maxj |dj | is at most C3

√
logn. Therefore, ‖(P − B)Dε‖2

sp = O(1)

with high probability. Similarly, ‖Dε(P − B)‖2
sp = O(1) with high probability,

which yields the desired result. �

4. Proof of the upper bound. Assume that a0, a1, . . . , an are independent
mean zero, variance one random variables which are uniformly bounded by n1/γ .
This section consists of the proof of the upper bound.

PROPOSITION 10. For each ε > 0, there exists cn = o(1) such that with high
probability,

max
J∈
:J∩S �=∅

λ1(P[J ]Dε[J ]P[J ])√
2 logn

≤ ‖�‖2
2→4 + cn.
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LEMMA 11. Fix k ≥ 1 and δ1, δ2, . . . , δk ≥ 0. Let ‖δ‖2 := (δ2
1 + · · · + δ2

k )
1/2.

Then for sufficiently large n and for any 0 < j1 < j2 < · · · < jk < n,

P
{|dj1 | > δ1

√
2 logn, |dj2 | > δ2

√
2 logn, . . . , |djk

| > δk

√
2 logn

}≤ 2k+1n−‖δ‖2
2 .

PROOF. To avoid triviality, assume that ‖δ‖2 > 0. Clearly,

P
{|dj1 | > δ1

√
2 logn, . . . , |djk

| > δk

√
2 logn

}
≤ ∑

βi∈{±1}
P

{(
k∑

i=1

βiδidji

)/
‖δ‖2 > ‖δ‖2

√
2 logn

}
.

By Lemma 18, for any choice of βi ∈ {±1}, the sum (β1δ1dj1 +· · ·+βkδkdjk
)/‖δ‖2

has variance one and can be expressed as a linear combination independent ran-
dom variables as

∑n
i=0 θiai for suitable real coefficients θi with |θi | ≤ 2kn−1/2 and∑n

i=0 θ2
i = 1. Recall that |ai | ≤ n1/γ so that we can apply Bernstein’s inequality to

obtain

P

{(
k∑

i=1

βiδidji

)/
‖δ‖2 > ‖δ‖2

√
2 logn

}

≤ exp
(
− ‖δ‖2

2 logn

1 + ‖δ‖2
√

2 logn · 2kn1/γ−1/2/3

)
≤ 2n−‖δ‖2

2

for sufficiently large n. This completes the proof of the lemma. �

LEMMA 12. Fix η > 0, k ≥ 1. Then there exists a constant C4 = C4(η, k) such
that for sufficiently large n and for any 0 < j1 < j2 < · · · < jk < n, we have

P
{|dj1 | > δ1

√
2 logn, |dj2 | > δ2

√
2 logn, . . . , |djk

| > δk

√
2 logn

for some δ1, . . . , δk > 0 such that δ2
1 + δ2

2 + · · · + δ2
k ≥ 1 + η

}
≤ C4n

−(1+η/2).

PROOF. Construct an η
4(1+η)k

-net N for the interval [0,1 + η] by choos-

ing �4(1+η)2k
η

� + 1 equally spaced points in [0,1 + η] including both end-
points 0 and 1 + η. Therefore, given any δ1, . . . , δk ∈ [0,1 + η], we can find
α1, α2, . . . , αk ∈ N such that δi − η

4(1+η)k
≤ αi ≤ δi for each i. This implies that

α2
1 +α2

2 +· · ·+α2
k >

∑k
i=1(δ

2
i −2δi

η
4(1+η)k

) ≥ δ2
1 +δ2

2 +· · ·+δ2
k −η/2. Clearly, the

event {|dj1 | > δ1
√

2 logn, . . . , |djk
| > δk

√
2 logn for some δ1, . . . , δk ∈ [0,1 + η]

such that δ2
1 + δ2

2 + · · · + δ2
k ≥ 1 + η} is contained in the finite union of events
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{|dj1 | > α1
√

2 logn, . . . , |djk
| > αk

√
2 logn} where the union is taken over for all

possible choices of αi ∈ N for all i such that α2
1 + α2

2 + · · · + α2
k ≥ 1 + η/2. Now

we use the union bound and Lemma 11 to conclude the probability of the given
event is bounded by 2k+1(#N )kn−(1+η/2). On the other hand, it again follows from
Lemma 11 that the probability of the event {|dji

| > (1 + η)
√

2 logn for some 1 ≤
i ≤ k} is bounded by 2kn−(1+η)2 ≤ 2kn−(1+η/2).

We complete the proof by taking C4 = 2k+1(#N )k + 2k. �

COROLLARY 13. Let ε > 0, and let M = M(ε) be as defined in Section 3.3.
For every η > 0, with high probability, for all admissible blocks L ∈ L and all
distinct j1, . . . , jM ∈ L we have d2

j1
+ · · · + d2

jM
≤ (1 + η)

√
2 logn.

PROOF. For a fixed admissible block and points ji the probability that the
claim is violated is at most C4n

−(1+η/2) by the lemma. By union bound, the

probability that the claim is violated is at most n
(4M(logn)3

M

) · C4n
−(1+η/2) =

O((logn)3Mn−η/2). This is because there can be at most n admissible blocks, the
length of an admissible block can be at most 4M(logn)3 and the number of ways

M distinct indices can be chosen from an admissible block is at most
(4M(logn)3

M

)
.

�

By part (2) of Proposition 8, with high probability, Dε contains at most M

nonzero entries in every admissible block. Thus it follows that for each η > 0
with high probability for all L ∈ L,∑

j∈L

(
Dε

j,j

)2 ≤ 1 + η.

Therefore, we have

max
J∈
:J∩S �=∅

λ1(P[J ]Dε[J ]P[J ])√
2 logn

(18)

≤ sup

{
λ1
(
P[L]Diag(δ1, δ2, . . . , δ#L)P[L]) :L ∈ L,

#L∑
j=1

δ2
j ≤ 1 + η

}
,

which holds with high probability due to part (1) of Proposition 8. Now by (15), we

have maxL∈L ‖P[L] − �[L]‖sp = O(
(logn)3

n
). Therefore, if we take q = q(n) :=

4M�logn�3 and H = [1, q] ∩ Z, then (18) can be bounded by

(18) ≤ sup

{
λ1
(
�[L]Diag(δ1, δ2, . . . , δ#L)�[L]) :L ∈ L,

#L∑
j=0

δ2
j ≤ 1 + η

}

+ O

(
(logn)3

n

)
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≤ (1 + η)1/2 sup

{
λ1
(
�[H ]Diag(δ1, δ2, . . . , δq)�[H ]) :

q∑
j=1

δ2
j ≤ 1

}

+ O

(
(logn)3

n

)
.

By Rayleigh’s characterization of the maximum eigenvalue of Hermitian matrices,
the above supremum equals

sup

{〈
v,�[H ]Diag(δ1, δ2, . . . , δq)�[H ]v〉 : q∑

j=1

δ2
j ≤ 1,v ∈ Cq,‖v‖2 ≤ 1

}
.

Denote by δ the infinite dimensional vector (. . . , δ−1, δ0, δ1, . . .) in �2(R). Now
extending the range of optimization we get the upper bound

sup
{〈

v,�Diag(δ)�v
〉
: δ ∈ �2(R),‖δ‖2 ≤ 1,v ∈ �2(C),‖v‖2 ≤ 1

}
.(19)

Now note that (with � denoting coordinate-wise multiplication)〈
v,�Diag(δ)�v

〉= 〈
�v,Diag(δ)�v

〉= 〈δ,�v � �v〉,
so if we fix v, this is maximized when δ equals �v � �v divided by its length.
The maximum, for v fixed is ‖�v � �v‖2 = ‖�v‖2

4, so expression (19) equals
‖�‖2

2→4. This completes the proof of Proposition 10.

5. Proof of the lower bound. Assume that a0, a1, . . . , an are independent
mean zero, variance one random variables which are uniformly bounded by n1/γ .
This section consists of the proof of the lower bound.

PROPOSITION 14. For each τ > 0 and ε > 0, with high probability,

max
J∈
 : J∩S �=∅

λ1(P[J ]Dε[J ]P[J ])√
2 logn

≥ ‖�‖2
2→4 − 2τ.

Let G0,G1, . . . ,Gn be i.i.d. standard Gaussians independent of (ai)0≤i≤n. Re-
call

dj (a) = 1√
2n

[√
2a0 + (−1)j

√
2an + 2

n−1∑
k=1

ak cos
(

2πjk

n

)]
, 0 ≤ j < 2n.

We will use dj (G) to refer to the above sum with ai being replaced by Gi for each
0 ≤ i ≤ n. Suppose we are given some nonzero real numbers u1, u2, . . . , uk for
some fixed k ≥ 1 such that u2

1 + u2
2 + · · · + u2

k < 1. Fix any η > 0 small such that
η < |ui | for each i and if we set u′

s := |us | − η > 0 for 1 ≤ s ≤ k, then (u′
1)

2 +
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· · · + (u′
k)

2 < 1. Take p = p(n) := 100�logn�3, b = b(n) := 12�logn�3 and N =
N(n) := �n/2p�. For each 1 ≤ j ≤ N , define the intervals

Ij =
⎧⎪⎨⎪⎩

(−ε, ε), for − b + 1 ≤ j ≤ 0,

(uj − η,uj + η), for 1 ≤ j ≤ k,

(−ε, ε), for k + 1 ≤ j ≤ k + b,

and let Ai be the event that dip+j ∈ √
2 lognIj for all j = −b + 1, . . . , b + k.

PROPOSITION 15. Let Ai be as above. Then as n → ∞, the probability that
at least one of the events A1,A2, . . . ,AN happens converges to one.

PROOF. The proof is based on the second moment method. First of all, fix
any smooth function ψ : R → [0,1] such that ψ(x) = 0 for x ≤ 0 and ψ(x) =
1 for x ∈ [1,∞). For any reals a < b, the indicator function of the interval
(a

√
2 logn, b

√
2 logn) can be bounded below by the smooth function

1(a
√

2 logn,b
√

2 logn)(x) ≥ ζ(a,b)(x) := ψ(x − a
√

2 logn)ψ(b
√

2 logn − x).

For a fixed a < b, the first, second and third derivatives of the function ζ(a,b) are all
bounded by some constant in the supremum norm. Define, for each i in 1 ≤ i ≤ N ,

Wi =
b+k∏

j=−b+1

ζIj
(dip+j ).(20)

Clearly, for each i, Wi ≤ 1Ai
. Thus by the Paley–Zygmund inequality,

P

{
N∑

i=1

1Ai
≥ 1

}
≥ P

{
N∑

i=1

Wi > 0

}
≥ E[(∑N

i=1 Wi)
2]

(E
∑N

i=1 Wi)2
.

So, the proposition follows if we can show

E

[(
N∑

i=1

Wi

)2]
= (

1 + o(1)
)(

E
N∑

i=1

Wi

)2

.

The rest of the proof is devoted to establishing this.
We will write WG

i to denote the random variable corresponding to (20) with
dj (G) in place dj (a) for all j . Recall that (dj (G))0<j<n is a sequence of i.i.d.
standard Gaussian random variables. Using the following well-known Gaussian
tail estimates,

x

x2 + 1

e−x2/2
√

2π
≤ P{G0 > x} ≤ 1

x

e−x2/2
√

2π
, x > 0,
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we obtain, for all large n,

EWG
i =

b+k∏
j=−b+1

EζIj

(
dip+j (G)

)

= (
1 − O

(
n−ε2))2b

k∏
s=1

�

(
1√

logn · nu′2
s

)
(21)

= �
(
(logn)−k/2 · n−((u′

1)
2+···+(u′

k)
2)),

uniformly over 1 ≤ i ≤ N , which implies that
∑N

i=1 EWG
i → ∞ as n → ∞. Since

the random variables WG
i are bounded by 1, we have

N∑
i=1

VarWG
i ≤

N∑
i=1

E
[(

WG
i

)2]≤ N∑
i=1

EWG
i

(22)

= o

((
N∑

i=1

EWG
i

)2)
.

For any 1 ≤ i �= i ′ ≤ N , the two subsets of indices {ip −b+1, . . . , ip + k +b} and
{i ′p − b + 1, . . . , i′p + k + b} are disjoint. Hence, WG

i and WG
i′ are independent

of each other and therefore,

E
[
WG

i WG
i′
]= E

[
WG

i

]
E
[
WG

i′
]
.(23)

Now (22) and (23) yield

E

[(
N∑

i=1

WG
i

)2]
= (

1 + o(1)
)(

E
N∑

i=1

WG
i

)2

.(24)

Our next goal is to show that the differences EWi − EWG
i and E[WiWi′ ] −

E[WG
i WG

i′ ] are of smaller order for each i �= i′ using the invariance principle given
in Lemma 17.

We apply Lemma 17 with r = n + 1,m = k + 2b,X = (a0, . . . , an), Y =
(G0, . . . ,Gn), f = (dip−b+1, . . . , dip+k+b) and

g(z) =
b+k∏

j=−b+1

ζIj
(zb+j ),

where z = (z1, z2, . . . , z2b+k) to obtain

∣∣E[Wi] − E
[
WG

i

]∣∣≤ r∑
j=1

E[Rj ] +
r∑

j=1

E[Tj ],(25)
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where Rj and Tj are as defined in Lemma 17 with

hj (x) =
m∑

�,p,q=1

∂� ∂p ∂qg
(
f (x)

)
∂jf�(x) ∂jfp(x) ∂jfq(x)

+ 3
m∑

�,p=1

∂� ∂pg
(
f (x)

)
∂2
j f�(x) ∂jfp(x)(26)

+
m∑

�=1

∂�g
(
f (x)

)
∂3
j f�(x).

We will first find an upper bound for E[Rj ]. The bound for E[Tj ] will be similar.
Note that ‖∂�ft‖∞ ≤ 2n−1/2 for each � and t . Since each function ft is linear, its
higher derivatives all vanish and hence the second and the third term of hj in (26)
disappear. Also, ‖∂� ∂�′ ∂�′′g‖∞ = O(1) for each �, �′ and �′′ and ∂� ∂�′ ∂�′′g(z) �= 0
only if zb+j ∈ √

2 lognIj for j = 1, . . . , k. For x ∈ R, define a random vector
Z(j)(x) := (a0, . . . , aj−2, x,Gj , . . . ,Gn). Therefore, we have

ERj ≤ cm3

n3/2 E
[
|aj−1|3 sup

x:|x|≤|aj−1|
1
{
dip+s

(
Z(j)(x)

)
(27)

∈
√

2 lognIs,1 ≤ s ≤ k
}]

.

Note that dj depends on aj−1 linearly with absolute coefficient at most
√

2/n, and
that the random variable aj−1 is bounded by n1/γ . Thus the supremum above is at
most

1
{∣∣dip+s

(
Z(j)(0)

)∣∣≥ (|us | − η
)√

2 logn − √
2n1/γ−1/2,1 ≤ s ≤ k

}
,

which is independent of aj−1. Since Ea2
j−1 = 1, we have, with u′

s = |us | − η

(27) ≤ cm3

n3/2−1/γ
P
{∣∣dip+s

(
Z(j)(0)

)∣∣≥ u′
s

√
2 logn − √

2n1/γ−1/2,

(28)
1 ≤ s ≤ k

}
.

Note that if we truncate the random variables Gj, . . . ,Gn at level n1/γ , then we can
bound (28) using Bernstein’s inequality exactly as we did in proving Lemma 11.
Toward this end, we define

Ẑ(j) = (a0, . . . , aj−2,0,Gj 1{|Gj |≤n1/γ }, . . . ,Gn1{|Gn|≤n1/γ }).
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Then

(28) ≤ cm3

n3/2−1/γ

[
P
{∣∣dip+s

(
Ẑ(j))∣∣≥ u′

s

√
2 logn − √

2n1/γ−1/2,1 ≤ s ≤ k
}

+ P
{|G�| > n1/γ for some �

}]
(29)

≤ cm3

n1/2−1/γ

[
O
(
n−((u′

1)
2+···+(u′

k)
2))+ O

(
n exp

(−n2/γ /2
))]

.

Hence, by combining (27), (28) and (29), we obtain
r∑

j=1

E[Rj ] ≤ O
(
(logn)9n1/γ−1/2 · n−((u′

1)
2+···+(u′

k)
2)),

where the constant hidden inside the big-O notation above does not depend on i.
Similar computation yields the same asymptotic bound for

∑r
j=1 E[Tj ]. Therefore,

by (25) and (21), we have

E[Wi] = E
[
WG

i

]+ O
(
(logn)9n1/γ−1/2 · n−((u′

1)
2+···+(u′

k)
2))

(30)
= (

1 + o(1)
)
E
[
WG

i

]
,

which hold uniformly in 1 ≤ i ≤ N . By similar argument as above, we can also
show that

E[WiWi′ ] = E
[
WG

i WG
i′
]+ O

(
(logn)9n1/γ−1/2 · n−2((u′

1)
2+···+(u′

k))
2)

(31)
= (

1 + o(1)
)
E
[
WG

i WG
i′
]
,

uniformly in 1 ≤ i �= i′ ≤ N . From (30) arguing similarly as we did in (22), we
deduce

N∑
i=1

VarWi ≤ o

((
N∑

i=1

EWi

)2)
.(32)

Finally, combining (23), (31) and (32) together, we have

N∑
i,i′=1

E[WiWi′ ] = (
1 + o(1)

)( N∑
i=1

E[Wi]
)2

.

This implies that P{∑N
i=1 1Ai

≥ 1} = 1 − o(1) which completes the proof. �

For any finite k ≥ 1, we write �k as a shorthand for k × k matrix �[{1,2, . . . ,

k}]. Arguing along the line of the proof of the fact ‖�‖2
2→4 = sup{〈v,

�diag(δ)�v〉 : δ ∈ �2(R),‖δ‖2 ≤ 1,v ∈ �2(C),‖v‖2 ≤ 1}, we can also show that

‖�k‖2
2→4 = sup

{
λ1
(
�k diag(δ)�k

)
: δ ∈ Rk,‖δ‖2 ≤ 1

}
.(33)

Next we prove
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LEMMA 16. limk→∞ ‖�k‖2→4 = ‖�‖2→4.

PROOF. Since the operators ψ,ψ−1, χ[0,1/2] are all bounded and the inclusion
map ι :�2(C) → �4(C) is also a bounded operator, we have ‖�‖2→4 < ∞.

It will be convenient to think of �2k+1 as a linear operator acting on the space
�2(C) with the representation �2k+1(i, j) = �(i, j) for |i|, |j | ≤ k and 0 other-
wise. Clearly, ‖�k‖2→4 is increasing and bounded above by ‖�‖2→4.

For the other direction, consider a sequence of unit vectors vm ∈ �2(C) sup-
ported on [−m,m] so that ‖�vm‖4 → ‖�‖2→4. Then for k ≥ m we have

‖�vm‖4
4 − ‖�2k+1vm‖4

4 = ∑
i:|i|>k

∣∣(�vm)(i)
∣∣4 = ∑

i:|i|>k

∣∣∣∣ ∑
j :|j |≤m

�(i, j)vm(j)

∣∣∣∣4.
Since |�(i, j)| ≤ |i − j |−1 and |vm(j)| ≤ 1, the inside sum is bounded above by
(2m + 1)(|i| − m)−1. This gives the upper bound

(2m + 1)4
∑

�:|�|>k−m

1

�4 → 0 as k → ∞.

Letting k → ∞ and then m → ∞ completes the proof. �

Given τ > 0, by (33) and Lemma 16, we can find k ≥ 1 sufficiently large and
a vector u = (u1, u2, . . . , uk) ∈ Rk with ‖u‖2 < 1 such that λ1(�k diag(u)�k) >

‖�‖2
2→4 − τ/2. By perturbing the coordinates a little, if necessary, we can also

assume us �= 0 for each 1 ≤ s ≤ k. Now choose η > 0 sufficiently small such that:

(1) 0 /∈ (us − η,us + η) for each 1 ≤ s ≤ k.
(2) If v = (v1, v2, . . . , vk) ∈ [u1 − η,u1 + η] × · · · × [uk − η,uk + η], then

λ1(�k diag(v)�k) > ‖�‖2
2→4 − τ .

(3) sup{‖v‖2 : v ∈ [u1 − η,u1 + η] × · · · × [uk − η,uk + η]} < 1.

Finally choose ε > 0 small such that [−ε, ε] ∩ (us − η,us + η) = ∅ for each
1 ≤ s ≤ k.

By Proposition 15 we know that one of the events Ai,1 ≤ i ≤ N happens with
high probability. If Ai occurs, then the points ip − �logn�3, . . . , ip + k + �logn�3

are contained in a single partition block J ∈ 
. This is because when Ai occurs,
dip+j ∈ (us − η,us + η) and hence |dip+j | > ε for each j = 1, . . . , k and be-
cause of the property of our random partition which guarantees that each (ran-
dom) partition block always has a padding of two invisible bricks (of length
between �logn�3 and 4�logn�3) from each side. On the other hand, since two
consecutive invisible bricks cannot belong to the same partitioning block, J has
no other point from S except the k points ip + 1, ip + 2, . . . , ip + k. Write
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F := {ip + 1, ip + 2, . . . , ip + k}. Therefore, if Ai happens, then

λ1(P[J ]Dε[J ]P[J ])√
2 logn

≥ λ1(P[F ]Dε[F ]P[F ])√
2 logn

≥ inf
{
λ1
(
P[F ]diag(v)P[F ]) : v ∈ [u1 − η,u1 + η] × · · · × [uk − η,uk + η]}.

By the convergence (15) of P to � this equals

inf
{
λ1
(
�k diag(v)�k

)
: v ∈ [u1 − η,u1 + η] × · · · × [uk − η,uk + η]}− O

(
n−1)

≥ ‖�k‖2
2→4 − τ − O

(
n−1).

So, by Lemma 16 we get with high probability,

max
J∈
:J∩S �=∅

λ1(P[J ]Dε[J ]P[J ])√
2 logn

≥ ‖�k‖2
2→4 −τ −O

(
n−1)= ‖�‖2

2→4 −τ −o(1).

This yields the claim of Proposition 14.

APPENDIX

A.1. Invariance principle. Let X = (X1, . . . ,Xr) and Y = (Y1, . . . , Yr) be
two vectors of independent random variables with finite second moments, tak-
ing values in some open interval I and satisfying, for each i, E[Xi] = E[Yi] and
E[X2

i ] = E[Y 2
i ]. We shall also assume that X and Y are defined on the same prob-

ability space and are independent. The following lemma is an immediate gener-
alization of Theorem 1.1 of Chatterjee (2005) (based on Lindeberg’s approach to
the CLT). We need this more detailed version because we will use the invariance
principle under the moderate deviation regime.

LEMMA 17. Let f = (f1, f2, . . . , fm) : I r → Rm be thrice continuously dif-
ferentiable. If we set U = f (X) and V = f (Y), then for any thrice continuously
differentiable g : Rm → R,

∣∣E[g(U)
]− E

[
g(V)

]∣∣≤ r∑
i=1

E[Ri] +
r∑

i=1

E[Ti],

where

Ri := 1

6
|Xi |3 × sup

x∈[min(0,Xi),max(0,Xi)]
∣∣hi(X1, . . . ,Xi−1, x, Yi+1, . . . , Yr)

∣∣,
Ti := 1

6
|Yi |3 × sup

y∈[min(0,Yi),max(0,Yi)]
∣∣hi(X1, . . . ,Xi−1, y, Yi+1, . . . , Yr)

∣∣,
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hi(x) :=
m∑

�,p,q=1

∂� ∂p ∂qg
(
f (x)

)
∂if�(x) ∂ifp(x) ∂ifq(x)

+ 3
m∑

�,p=1

∂� ∂pg
(
f (x)

)
∂2
i f�(x) ∂ifp(x) +

m∑
�=1

∂�g
(
f (x)

)
∂3
i f�(x).

PROOF. The lemma can be proved by merely imitating the steps of Chatterjee
[(2005), Theorem 1.1], but we include a proof here for sake of completeness. Let
H : I r → R be the function H(x) := g(f (x)). It is a routine computation to verify
that ∂3

i H(x) = hi(x) for all i. For 0 ≤ i ≤ r , define the random vectors Zi :=
(X1,X2, . . . ,Xi−1,Xi, Yi+1, . . . , Yn) and Wi := (X1,X2, . . . ,Xi−1,0, Yi+1, . . . ,

Yn) with obvious meanings for i = 0 and i = r . For 1 ≤ i ≤ r , define

Error(1)
i = H(Zi ) − Xi ∂iH(Wi ) − 1

2X2
i ∂iH(Wi )

and

Error(2)
i = H(Zi−1) − Yi ∂iH(Wi ) − 1

2Y 2
i ∂iH(Wi ).

Hence, by Taylor’s remainder theorem and the above observation about the third
partial derivatives of H , it follows that∣∣Error(1)

i

∣∣≤ Ri and
∣∣Error(2)

i

∣∣≤ Ti.

For each i, Xi , Yi and Wi are independent. Hence,

E
[
Xi ∂iH(Wi )

]− E
[
Yi ∂iH(Wi )

]= E[Xi − Yi] · E
[
H(Wi )

]= 0.

Similarly, E[X2
i ∂iH(Wi )] = E[Y 2

i ∂iH(Wi )]. Combining all these ingredients,
we obtain

∣∣E[g(U)
]− E

[
g(V)

]∣∣= ∣∣∣∣∣
r∑

i=1

(
E
[
H(Zi )

]− E
[
H(Zi−1)

])∣∣∣∣∣
≤
∣∣∣∣∣

r∑
i=1

E
[
Xi ∂iH(Wi )

]+ 1

2
X2

i ∂iH(Wi ) + Error(1)
i

−
r∑

i=1

E
[
Yi ∂iH(Wi )

]+ 1

2
Y 2

i ∂iH(Wi ) + Error(2)
i

∣∣∣∣∣
≤

r∑
i=1

E[Ri] +
r∑

i=1

E[Ti],

which completes the proof. �
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A.2. Covariances between the eigenvalues of random circulant.

LEMMA 18. Let a0, a1, . . . , an be independent mean zero, variance one ran-
dom variables. Define

dj = 1√
2n

[√
2a0 + (−1)j

√
2an + 2

n−1∑
k=1

ak cos
(

2πjk

2n

)]
, 0 ≤ j < 2n.

Then dj = d2n−j for 0 < j < 2n. Moreover, the random variables dj ,0 ≤ j ≤ n

have mean 0, and their covariances are given by

E[djdk] =
⎧⎪⎨⎪⎩

2, if j = k ∈ {0, n},
1, if 0 < j = k < n,

0, if 0 ≤ j �= k ≤ n.

PROOF. The fact that dj = d2n−j for 0 < j < 2n and zero mean property
is immediate from the definition of dj . Since a0, a1, . . . , an be independent with
variance one,

E[djdk] = 1

2n

[
2 + 2(−1)j+k + 4

n−1∑
�=1

cos
(

2πj�

2n

)
cos

(
2πk�

2n

)]

= 1

2n

[
2 + 2(−1)j+k + 2

n−1∑
�=1

cos
(

2π(j − k)�

2n

)

+ 2
n−1∑
�=1

cos
(

2π(j + k)�

2n

)]
.

Plugging in x = 2πm
2n

,m = 0,1,2, . . . ,2n into the well-known Dirichlet kernel for-
mula,

1 + 2
n−1∑
�=1

cos(�x) = sin((n − 1/2)x)

sin(x/2)
,

we obtain

n−1∑
�=1

cos
(

2πm�

2n

)
= −1 + (−1)m

2
,

unless m = 0 or 2n when the sum equals to (n − 1). Using the above formula, the
covariances E[djdk] can be easily computed. �
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A.3. Optimization problem and connection to the sine kernel. For any δ >

0, let υδ be the indicator function 1[−δ/2,δ/2]. For a complex valued function f

defined on R, we define the involution f ∗ by f ∗(x) = f (−x). Given two functions
f and g on R their convolution f �g is defined as (f �g)(x) = ∫

R f (x −y)g(y) dy

provided the integral makes sense. Let f �T g(x) = ∫ 1/2
−1/2 f̃ (x − y)g̃(y) dy denote

the convolution of the two functions f and g are in L2(T) where f̃ and g̃ are the
periodic extension of f and g, respectively, on the whole real line. Let f̂ (t) =∫
R e−2πixtf (x) dx be the usual Fourier transform of f ∈ L2(R). Let ψ−1 be the

discrete Fourier transform of from L2(T) to �2(C). Below we collect some basic
facts of the usual and discrete Fourier transform which we will need later:

(1) ψ−1 :L2(T) → �2(C) andˆ:L2(R) → L2(R) are isometries.
(2) ψ−1(f ) = ψ−1(f ∗) and f̂ = f̂ ∗.
(3) ψ−1(f �T g)(k) = ψ−1(f )(k)ψ−1(g)(k) for all k ∈ Z and for all f,g ∈

L2(T). When f,g ∈ L2(T), then f̂ � g = f̂ · ĝ.
(4) If f and g are supported on [0,1/2], then f �T g = f � g.
(5) υ̂1(t) = sin(πt)

πt
.

Note that Sin(f )(x) = υ̂1 � f (x) for f ∈ L2(R). The next lemma establishes the
connection between the 2 → 4 norm of the operator � (defined in Section 3.1) and
the 2 → 4 norm of the integral operator Sin.

LEMMA 19. The following holds true:

‖�‖2
2→4 = 1√

2
‖Sin‖2

2→4.

Let us define for δ > 0,

Kδ := sup
{∥∥(f υδ)

∗ � (f υδ)
∥∥

2 :f ∈ L2(R),‖f ‖2 ≤ 1
}
.(34)

LEMMA 20. Let Kδ be as above. Then Kδ = δ1/2K1.

PROOF. For any f ∈ L2(R),∥∥(f υδ)
∗ � (f υδ)

∥∥2
2 =

∫ ∣∣∣∣∫ f υδ(x + t)f υδ(t) dt

∣∣∣∣2 dx.

After a change of variables s = t/δ and y = x/δ the above integral is same as

δ3
∫ ∣∣∣∣∫ f υδ

(
δ(s + y)

)
f υδ(δs) ds

∣∣∣∣2 dy.(35)

Keeping in mind that υδ(δs) = υ1(s) and replacing f by g(x) := δ1/2f (δx)

in (35), we obtain

(35) = δ

∫ ∣∣∣∣∫ gυ1
(
(s + y)

)
gυ1(s) ds

∣∣∣∣2 dy.
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Since ‖g‖2 = ‖f ‖2, it follows that K2
δ = δK2

1 which completes the proof of the
lemma. �

PROOF OF LEMMA 19. The proof consists of a series of elementary steps.
Let κ be the indicator function 1[0,1/2]. Applying the Fourier transform from �2(Z)

to L2(T), we get

‖�‖2
2→4 = sup

{‖�v � �v‖2 : v ∈ �2(Z),‖v‖2 ≤ 1
}

= sup
{∥∥ψ−1(f · κ) � ψ−1(f · κ)

∥∥
2 :f ∈ L2(T),‖f ‖2 ≤ 1

}
.

The properties of the Fourier transform further imply

ψ−1(f · κ)�ψ−1(f ·κ) = ψ−1((f ·κ)∗
)�ψ−1(f ·κ) = ψ−1((f ·κ)∗ �T (f ·κ)

)
,

and since we convolve functions supported on [0,1/2], we might as well do the
entire optimization on the real line to get

‖�‖2
2→4 = sup

{∥∥(f · κ)∗ � (f · κ)
∥∥

2 :f ∈ L2(R),‖f ‖2 ≤ 1
}
.

By translating the function f ∈ L2(R) via the map f �→ f (· + 1/4) in the
above optimization problem, we see that ‖�‖2

2→4 = K1/2. This equals K1/
√

2
by Lemma 20. Now note that∥∥(f υ1)

∗ � (f υ1)
∥∥

2 = ‖f̂ υ1 · f̂ υ1‖2 = ‖f̂ υ1‖2
4 = ∥∥Sin(f̂ )

∥∥2
4

and so

K1 = sup
{∥∥Sin(f̂ )

∥∥2
4 : f̂ ∈ L2(R),‖f̂ ‖2 ≤ 1

}= ‖Sin‖2
2→4.

This completes the proof of the lemma. �

As far as we know, the explicit value of constant K1 of (34) is not known in
the literature. However, the maximization problem given in (34) has been studied
in Garsia, Rodemich and Rumsey (1969). We list below some of the interesting
results from Garsia, Rodemich and Rumsey (1969):

• K1 = sup{(∫R(
∫
R f (x + t)f (t) dt)2 dx)1/2 :f ∈ F } where F is the class of

all real-valued functions f satisfying f (x) ≥ 0, f (x) = f (−x) for all x ∈
R, f (x) ≥ f (y) for 0 ≤ x ≤ y and f (x) = 0 for |x| ≥ 1/2 and

∫ 1/2
−1/2 f 2(x) dx =

1.
• There exists a unique f ∈ F such that (

∫
R(
∫
R f (x + t)f (t) dt)2 dx)1/2 = K1.

• K2
1 = 0.686981293033114600949413 . . .!
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