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VALUE IN MIXED STRATEGIES FOR ZERO-SUM STOCHASTIC
DIFFERENTIAL GAMES WITHOUT ISAACS CONDITION

BY RAINER BUCKDAHN1, JUAN LI2 AND MARC QUINCAMPOIX1

Université de Bretagne Occidentale and Shandong University, Shandong
University, Weihai, and Université de Bretagne Occidentale

In the present work, we consider 2-person zero-sum stochastic differ-
ential games with a nonlinear pay-off functional which is defined through a
backward stochastic differential equation. Our main objective is to study for
such a game the problem of the existence of a value without Isaacs condition.
Not surprising, this requires a suitable concept of mixed strategies which,
to the authors’ best knowledge, was not known in the context of stochastic
differential games. For this, we consider nonanticipative strategies with a de-
lay defined through a partition π of the time interval [0, T ]. The underlying
stochastic controls for the both players are randomized along π by a hazard
which is independent of the governing Brownian motion, and knowing the
information available at the left time point tj−1 of the subintervals gener-
ated by π , the controls of Players 1 and 2 are conditionally independent over
[tj−1, tj ). It is shown that the associated lower and upper value functions
Wπ and Uπ converge uniformly on compacts to a function V , the so-called
value in mixed strategies, as the mesh of π tends to zero. This function V

is characterized as the unique viscosity solution of the associated Hamilton–
Jacobi–Bellman–Isaacs equation.

1. Introduction. In our work, we investigate 2-person zero-sum stochastic
differential games which dynamics are defined by a doubly controlled stochastic
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differential equation (SDE)

dXt,x;u,v
s = b

(
s,Xt,x;u,v

s , us, vs

)
ds

+ σ
(
s,Xt,x;u,v

s , us, vs

)
dBs, s ∈ [t, T ],(1.1)

X
t,x;u,v
t = x ∈ Rd,

driven by a Brownian motion B , and endowed with pay-off functionals defined
through a doubly controlled backward stochastic differential equation (BSDE) (see
Section 2 for details) which, in the classical case, reduces to

I (t, x;u, v) = E

[
�
(
X

t,x;u,v
T

)+
∫ T

t
f
(
s,Xt,x;u,v

s , us, vs

)
ds

]
(1.2)

[see (3.21)]. The initial data (t, x) of the game belong to [0, T ] × Rd , and the
control processes u = (us) and v = (vs) used by Players 1 and 2, take their
values in compact metric spaces U and V , respectively. While the objective of
Player 1 is to maximize the pay-off I (t, x;u, v), that of Player 2 is to minimize
it: Indeed, for Player 2 I (t, x;u, v) represents a cost functional. However, apart
from rather strong assumptions on the coefficients, for example, that of indepen-
dence of the controls (u, v) and of strict ellipticity for the diffusion coefficient
σσ ∗(t, x) ≥ α · IRd , (t, x) ∈ [0, T ] × Rd , for some α > 0 (refer to Hamadene, Le-
peltier, and Peng [11]), if one wants to have a dynamic programming principle
(DPP) the players can, in general, not play a game of the type “control against
control”; they can play, for instance, games of the type “nonanticipative strategy
against control” (see, e.g., [3, 10]) or games of the type “NAD-strategy against
NAD-strategy”, where NAD stands for nonanticipativity with delay (see, e.g., [2]
and [1]).

However, a central question in the theory of 2-person zero-sum stochastic differ-
ential games is that of sufficient conditions, under which the game admits a value,
that is, under which the lower and the upper value functions of the stochastic dif-
ferential game coincide. In the literature, since the famous works by Isaacs [12]
for the case of deterministic differential games and that by Fleming and Sougani-
dis [10] for stochastic differential games (see also [9]), various authors have shown
the equality between the lower and the upper value functions under the so-called
Isaacs condition.

Let us be more precise: Generalizing the pioneering paper on stochastic dif-
ferential games by Fleming and Souganidis [10], Buckdahn and Li [3], and also
Buckdahn, Cardaliaguet and Quincampoix [1], associated the dynamics (1.1) with
nonlinear cost functionals defined through a BSDE, which was first introduced by
Pardoux and Peng [17]:{−dY t,x;u,v

s = f
(
s,Xt,x;u,v

s , Y t,x;u,v
s ,Zt,x;u,v

s , us, vs

)
ds − Zt,x;u,v

s dBs,

Y
t,x;u,v
T = �

(
X

t,x;u,v
T

)
, s ∈ [t, T ].(1.3)
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They considered as pay-off functional the random variable (measurable with re-
spect to the information available before the beginning of the game)

J (t, x;u, v) = Y
t,x;u,v
t ,(1.4)

and the lower and the upper value functions for the game over the time interval
[t, T ] were introduced, respectively, by putting

W(t, x) := ess sup
α

ess inf
β

J (t, x;α,β),

(1.5)
U(t, x) := ess inf

β
ess sup

α
J (t, x;α,β) (t, x) ∈ [0, T ] × Rd,

where α runs the NAD-strategies for Player 1 and β those for Player 2. Given
such a couple of admissible NAD-strategies, the cost functional J (t, x;α,β) is
defined through the unique couple of admissible controls (u, v) satisfying α(v) =
u,β(u) = v, by putting J (t, x;α,β) = J (t, x;u, v) (e.g., refer to [1]). We em-
phasize that in the above definition the classical case, where f (s, x, y, z, u, v) =
f (s, x,u, v) is independent of (y, z), can be obtained by replacing J (t, x;α,β)

by E[J (t, x;α,β)] = I (t, x;α,β) [see (1.2)] and the essential supremum and the
essential infimum over a family of random variables by the supremum and the in-
fimum, respectively; this does not change the upper and the lower value functions
(see Remark 3.4, [3]). The authors showed that, for the Hamiltonians

H(t, x, y,p,A,u, v) = 1

2
tr
(
σσ ∗(t, x, u, v)A

)+ b(t, x, u, v)p

+ f
(
t, x, y,pσ(t, x, u, v), u, v

)
,

(1.6)
H−(t, x, y,p,A) = sup

u∈U

inf
v∈V

H(t, x, y,p,A,u, v),

H+(t, x, y,p,A) = inf
v∈V

sup
u∈U

H(t, x, y,p,A,u, v),

(t, x, y,p,A) ∈ [0, T ] × Rd × R × Rd × Sd (Sd denotes the space of symmetric
real matrices of the size d × d), W and U are the unique viscosity solutions of
the following Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations in the class of
continuous functions with polynomial growth, respectively:

∂

∂t
W(t, x) + H−(t, x,

(
W,∇W,D2W

)
(t, x)

) = 0, W(T , x) = �(x),

(1.7)
∂

∂t
U(t, x) + H+(t, x,

(
U,∇U,D2U

)
(t, x)

) = 0, U(T , x) = �(x).

Isaacs condition says that

H−(t, x, y,p,A) = H+(t, x, y,p,A)
(1.8)

(t, x, y,p,A) ∈ [0, T ] × Rd × R × Rd × Sd,
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and under it the both above PDEs coincide and the uniqueness of the solution
implies that W(t, x) = U(t, x), (t, x) ∈ [0, T ] × Rd , that is, the game has a value.

But how to get a value, when Isaacs condition is not assumed? Recently, in [4]
the authors studied deterministic differential games without assuming Isaacs con-
dition. They considered an adequate notion of mixed strategies related with a suit-
able randomization, and were thus able to prove that such defined upper and lower
value functions coincide, and that this value function defined through mixed strate-
gies satisfies a Hamilton–Jacobi–Isaacs equation. We also refer to the works of
Chentsov, Krasovskii and Subbotin for the existence of the value of deterministic
differential games [14, 20]: They studied the problems of deterministic differential
games without Isaacs condition through positional strategies but with techniques
which differ from those in [4]. To the authors’ best knowledge, there does not exist
any work on the existence of the value of stochastic differential games without as-
suming Isaacs condition, it has been an open problem until now. However, there are
also different recent works studying stochastic differential games without Isaacs’
condition, but without the objective to show the existence of a value of the game.
For instance, Krylov [15, 16] studied regularity properties and the dynamic pro-
gramming principle for the upper value function of a stochastic differential game
over a domain, by starting from the Isaacs equation; for this he used the idea of
Świȩch [21] that the viscosity solutions of nondegenerate Isaacs equations have
some regularity properties which can be used for the approach.

In the present work, our objective is to solve this open problem, that is, to extend
the results of [4] from deterministic differential games without Isaacs condition to
stochastic differential games. Since this work was heavily inspired by [4], we con-
sider the game of the type “NAD-straegies against NAD-strategies”. The delay of
the nonanticipative strategies is defined through a partition π = {0 = t0 < t < t1 <

· · · < tn = T } of the time interval [0, T ]. The underlying stochastic controls for the
both players are randomized along the partition π by a hazard which is indepen-
dent of the governing Brownian motion, and knowing all information available at
the left time point tj−1 of the subintervals generated by π , the controls of Players 1
and 2 are conditionally independent over [tj−1, tj ).

While the dynamics are defined by (1.1), the BSDE defining the pay-off func-
tional has to take into account that, first, the controls of the both players are ran-
domized by a hazard independent of the governing Brownian motion, and second,
the both players make the randomization of their controls conditionally indepen-
dent of each other and reveal the information related with only at the end of each
subinterval generated by the partition π . This has as consequence that the BSDE
has to be considered under a filtration F̃π which is smaller than the filtration Fπ

(but larger than the Brownian one) for the dynamics (1.1); see BSDE (2.3).
With the help of the cost functional defined through our BSDE we introduce

the lower and the upper value functions along a partition π , Wπ and Uπ . For
these, a priori, random fields we prove that they are deterministic and satisfy along
the partition π , at its points, the dynamic programming principle. This dynamic
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programming principle combined with Peng’s BSDE method, refer to Peng [18],
which we have to redevelop for our settings here is crucial for the proof that Wπ

and Uπ converge uniformly on compacts, as the mesh of π tends to zero, and their
limit V , the so-called value in mixed strategies can be characterized as the unique
viscosity solution of the Hamilton–Jacobi–Bellman–Isaacs equation

∂

∂t
V (t, x) + sup

μ∈P(U)

inf
ν∈P(V )

H
(
t, x,

(
V,∇V,D2V

)
(t, x),μ, ν

) = 0,

(1.9)
V (T , x) = �(x),

where

H(t, x, y,p,A,μ, ν)

=
∫
U×V

(
1

2
tr
(
σσ ∗(t, x, u, v)A

)+ b(t, x, u, v)p(1.10)

+ f
(
t, x, y,pσ(t, x, u, v), u, v

))
μ ⊗ ν(dudv),

(t, x, y,p,A) ∈ [0, T ] × Rd × R × Rd × Sd . Here P(U) denotes the space of
all probability measures on U , P(V ) all on V . Since both control state spaces U

and V are supposed to be compact and metric, P(U) and P(V ) are convex and
compact, and from the bi-linearity of H(t, x, y,p,A,μ, ν) in (μ, ν) we have that
for PDE (1.9) the following Isaacs condition is automatically satisfied:

sup
μ∈P(U)

inf
ν∈P(V )

H(t, x, y,p,A,μ, ν)

(1.11)
= inf

ν∈P(V )
sup

μ∈P(U)

H(t, x, y,p,A,μ, ν).

Of course, PDE (1.9) could have been also derived by considering weak controls,
that is, controls with values in P(U) and P(U), but our objective has been to
work with controls taking values in U and V , respectively, even for the price of a
randomization.

Let us point out that the fact that, in our approach, the dynamics and the BSDE
have to be studied under different filtration, means that unlike in [3] and [1] we
are not anymore in a Markovian framework here for our BSDE. This requires
new approaches, not only for the redevelopment of Peng’s BSDE method [18]
in our settings (Section 4), but also for the proof that the upper and the lower
value functions are deterministic and Hölder continuous with respect to the time
parameter.

Let us explain the organization of the paper. In Section 2, we introduce the set-
tings for our stochastic differential games, we define for both players the space of
admissible controls along a partition π as well as the notion of NAD-strategies
with respect to π . Moreover, we introduce the dynamics, the pay-off functional
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defined through a BSDE, as well as the upper and the lower value functions Wπ

and Uπ along π . In Section 3, we study properties of Wπ and Uπ . We show,
in particular, that they are deterministic continuous functions which, with respect
to the points of the partition π , satisfy the dynamic programming principle. In
Section 4, finally, it is shown that, as the mesh of π tends to zero, Wπ and Uπ

converge uniformly on compacts to the unique viscosity solution of the associ-
ated Hamilton–Jacobi–Bellman–Isaacs equation. For this, Peng’s BSDE method
is redeveloped for our settings.

2. Preliminaries. Settings of the stochastic differential games. Let us begin
with introducing the probability space

(	1,F1,P1) := ((
R2)N,B

(
R2)⊗N

,Q⊗N
2

)
,

where Q2 denotes the two-dimensional standard Normal distribution on the real
plane R2 endowed with its Borel σ -field B(R2), and N is the set of all positive
integers. Then, by the above definition, 	1 = (R2)N is the space of all R2-valued
sequences ρ = (ρj = (ρj,1, ρj,2))j≥1, and F1 = B(R2)⊗N is the product Borel σ -
field taken over the sequence of σ -fields, which all elements coincide with B(R2),
and P1 = Q⊗N

2 is the product measure over (	1,F1). Let us denote the coordinate
mappings on 	1 by ζj = (ζj,1, ζj,2) :	1 → R2, j ≥ 1:

ζj (ρ) = (
ζj,1(ρ), ζj,2(ρ)

) = (ρj,1, ρj,2), ρ = (
(ρj,1, ρj,2)

)
j≥1 ∈ 	1.

We observe that F1 coincides with the smallest σ -field on 	1, with respect to
which all coordinate mappings ζj , j ≥ 1, are measurable.

However, for the study of our stochastic differential games we also need the
classical Wiener space (	2,F2,P2), where 	2 is the set of all continuous func-
tions from [0, T ] with values in Rd and starting from zero, endowed with the
supremum norm [i.e., 	2 = C0([0, T ];Rd)], and F2 is the Borel σ -field on 	2
completed with respect to the Wiener measure P2 under which the coordinate pro-
cess Bt(ω

′) = ω′(t), t ∈ [0, T ],ω′ ∈ 	2, is a Brownian motion.
Let us denote by (	,F,P ) the product probability space

(	,F,P ) = (	1,F1,P1) ⊗ (	2,F2,P2),

which we complete with respect to the probability measure P , and let us extend the
coordinate mappings ζ and B in a canonical way from 	1 and 	2, respectively,
to 	:

ζj (ω) := ζj (ρ), Bt (ω) := Bt

(
ω′) = ω′(t),

ω = (
ρ,ω′) ∈ 	 = 	1 × 	2, j ≥ 1, t ∈ [0, T ].

Let us now introduce the filtration with which we work on our probability space
(	,F,P ). By FB = (FB

t )t∈[0,T ] we denote the filtration generated by the Brown-
ian motion B and completed by all P -null sets. In addition to the filtration FB , we
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also need larger ones, defined along a partition π = {0 = t0 < t1 < · · · < tn = T } of
the interval [0, T ]. Given such a partition π , we define Fπ,i = (Fπ,i

t )t∈[0,T ], with

Fπ,i
t = FB

t ∨ σ
{
ζ
 = (ζ
,1, ζ
,2)(1 ≤ 
 ≤ j − 1), ζj,i

}
,

t ∈ [tj−1, tj ), 1 ≤ j ≤ n, i = 1,2, and we put Fπ,i
T = Fπ,i

T −, i = 1,2. Notice that,

for j = 1, that is, on the time interval [t0, t1), by convention, Fπ,i
t = FB

t ∨
σ {ζ1,i}, i = 1,2. We shall also introduce the filtration Fπ = Fπ,1 ∨ Fπ,2 = (Fπ

t =
Fπ,1

t ∨Fπ,2
t )t∈[0,T ], and we remark that, for t ∈ [tj−1, tj ),

Fπ
t =FB

t ∨Hj where Hj := σ
{
ζ
 = (ζ
,1, ζ
,2)(1 ≤ 
 ≤ j)

}
.

Finally, we will also need a smaller filtration, F̃π = (F̃π
t )t∈[0,T ] with F̃π

t :=
FB

t ∨Hj−1, for t ∈ [tj−1, tj ),1 ≤ j ≤ n. Observe that, for all t ∈ [tj−1, tj ), know-
ing F̃π

t =FB
t ∨Hj−1, the σ -fields Fπ,1

t and Fπ,2
t are conditionally independent.

Let us consider two compact metric spaces U and V as control state spaces used
by the Players 1 and 2, respectively. By P(U) and P(V ), we denote the space of
all probability measures over U and V , endowed with its Borel σ -field B(U) and
B(V ), respectively. We also observe that it is an immediate consequence of Skoro-
hod’s Representation theorem that the set P(U) [resp., P(V )] coincides with the
set of the laws of all U -valued (resp., V -valued) random variables defined over
([0,1],B([0,1]), λ1) [λ1 denotes the Lebesgue measure on ([0,1],B([0,1]))].
But this latter set coincides with that of the laws of all random variables de-
fined over (R,B(R),Q1), where Q1 denotes the standard Normal distribution over
(R,B(R)). Indeed, denoting by

�0,1(x) = 1√
2π

∫ x

−∞
exp

{
−y2

2

}
dy, x ∈ R,

we have that, for any random variable ξ over ([0,1],B([0,1]), λ1), the law of ξ

with respect to λ1 coincides with that of ξ(�0,1(·)) :R → R under Q1. A conse-
quence is that

P(U) = {
Pξ : ξ is U -valued random variable over

(
	,σ {ζj,1},P )}

and

P(V ) = {
Pξ : ξ is V -valued random variable over

(
	,σ {ζj,2},P )}

for all j ≥ 1.

Let us now introduce the admissible controls for both players along a given
partition π = {0 = t0 < t1 < · · · < tn = T } of the time interval [0, T ].

DEFINITION 2.1 (Admissible controls). Given a partition π of the time inter-
val [0, T ] and an initial time t ∈ [0, T ], the space of admissible controls along the
partition π for Player 1 for a game over the time interval [t, T ] is the totality of
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all U -valued Fπ,1-predictable processes u = (us)s∈[t,T ] defined over the probabil-
ity space (	,F,P ); it is denoted by Uπ

t,T . For Player 2 the space of admissible
controls along the partition π Vπ

t,T is defined similarly: It is the collection of all
V -valued Fπ,2-predictable processes v = (vs)s∈[t,T ] defined over (	,F,P ).

After having introduced the spaces of admissible controls, we describe now the
dynamics of our stochastic differential games. For this, we consider the coefficients

b : [0, T ] × Rd × U × V → Rd and σ : [0, T ] × Rd × U × V → Rd×d

which we suppose throughout our work to be bounded, jointly continuous and
Lipschitz in x ∈ Rd , uniformly with respect to (t, u, v) ∈ [0, T ]×U ×V . Let π be
a partition of the time interval [0, T ]. Then, given arbitrary initial data t ∈ [0, T ]
and ϑ ∈ L2(	,Fπ

t ,P ;Rd) as well as admissible control processes u ∈ Uπ
t,T and

v ∈ Vπ
t,T , we consider the SDE

dXt,ϑ;u,v
s = b

(
s,Xt,ϑ;u,v

s , us, vs

)
ds + σ

(
s,Xt,ϑ;u,v

s , us, vs

)
dBs

(2.1)
s ∈ [t, T ],Xt,ϑ;u,v

t = ϑ.

Under our assumptions on the coefficients b and σ , this SDE has a unique strong
solution Xt,ϑ;u,v = (Xt,ϑ;u,v

s )s∈[t,T ] in the space of Rd -valued, Fπ -adapted con-
tinuous processes. Moreover, we have the following estimates which are by now
standard.

For all p ≥ 2, there exists some constant Cp ∈ R (only depending on p, on the
Lipschitz constants and the bounds of b and σ ) such that, for all partitions π of
[0, T ], for all t ∈ [0, T ], ϑ,ϑ ′ ∈ L2(	,Fπ

t ,P ;Rd) and all u ∈ Uπ
t,T , v ∈ Vπ

t,T , it
holds, P -a.s.,

E
[

sup
s∈[t,T ]

∣∣Xt,ϑ;u,v
s − Xt,ϑ ′;u,v

s

∣∣p|Fπ
t

]
≤ Cp

∣∣ϑ − ϑ ′∣∣p,

(2.2)
E
[

sup
s∈[t,T ]

∣∣Xt,ϑ;u,v
s

∣∣p|Fπ
t

]
≤ Cp

(
1 + |ϑ |p).

Let us now come to the pay-off functional which we associate with the above
dynamics of our game. The pay-off functional is a nonlinear, recursive one, that is,
we define it through a backward stochastic differential equation. For this, we con-
sider the terminal pay-off function � :Rd → R which we suppose to be bounded
and Lipschitz, as well as the running pay-off function f : [0, T ] × Rd × R × Rd ×
U × V → R which we assume to be jointly continuous and such that

(i) f (t, x, y, z, u, v) is Lipschitz in (x, y, z) ∈ Rd × R × Rd , uniformly in
(s, u, v) ∈ [0, T ] × U × V ;

(ii) f (t, x, y, z, u, v) is uniformly continuous on [0, T ] × Rd × R × BK(0) ×
U × V , for all K > 0, where BK(0) denotes the closed ball in Rd centered at 0
with diameter K ;
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(iii) (t, x, y,u, v) → f (t, x, y,0, u, v) is bounded.

Given a partition π of the interval [0, T ], initial data t ∈ [0, T ], ϑ ∈ L2(	,Fπ
t ,

P ;Rd) and admissible controls u ∈ Uπ
t,T , v ∈ Vπ

t,T , we consider the following
BSDE governed by the solution Xt,ϑ;u,v of SDE (2.1):⎧⎪⎨⎪⎩

dY t,ϑ;u,v
s = −E

[
f
(
s,Xt,ϑ;u,v

s , Y t,ϑ;u,v
s ,Zt,ϑ;u,v

s , us, vs

)|F̃π
s

]
ds

+ Zt,ϑ;u,v
s dBs + dMt,ϑ;u,v

s ,

Y
t,ϑ;u,v
T = E

[
�
(
X

t,ϑ;u,v
T

)|F̃π
T

]
,

(2.3)

where (E[γs |F̃π
s ])s∈[0,T ] is understood as F̃π -optional projection of integrable,

measurable processes γ = (γs)s∈[0,T ].
We say that (Y t,ϑ;u,v,Zt,ϑ;u,v,Mt,ϑ;u,v) is a solution of this BSDE, if

(i) Y t,ϑ;u,v ∈ S2
F̃π (t, T ;R), that is, Y t,ϑ;u,v = (Y t,ϑ;u,v

s )s∈[t,T ] is an F̃π -

adapted càdlàg process which is square integrable: E[sups∈[t,T ] |Y t,ϑ;u,v
s |2] <

+∞;
(ii) Zt,ϑ;u,v ∈ L2

F̃π (t, T ;Rd), that is, Zt,ϑ;u,v = (Zt,ϑ;u,v
s )s∈[t,T ] is an Rd -

valued, F̃π -predictable process such that E[∫ T
t |Zt,ϑ;u,v

s |2 ds] < +∞;
(iii) Mt,ϑ;u,v ∈ M2

F̃π (t, T ;R), that is, Mt,ϑ;u,v = (Mt,ϑ;u,v
s )s∈[t,T ] is a square

integrable F̃π -martingale with M
t,ϑ;u,v
t = 0. Moreover, Mt,ϑ;u,v is supposed to be

orthogonal to the driving Brownian motion B , that is, their joint quadratic variation
process satisfies [B,Mt,ϑ;u,v]s = 0, s ∈ [t, T ]. For the proof of the existence and
the uniqueness of the solution of such BSDE (2.3) it is similar to the classical case,
see also [5] and references inside.

We have to emphasize here that since the filtration F̃π is not the Brownian one,
but contains it strictly, we cannot expect to have a solution of the above BSDE
with vanishing Mt,ϑ;u,v . It is by now well known that, under our assumptions
on the coefficients f and �, a BSDE of the above type has a unique solution
(Y t,ϑ;u,v,Zt,ϑ;u,v,Mt,ϑ;u,v). Moreover, considering the special form of the filtra-
tion F̃π , we can characterize this solution as follows.

REMARK 2.1. We first observe that on each of the subintervals [tj−1, tj ),
1 ≤ j ≤ n, formed by the partition π = {0 = t0 < t1 < · · · < tn = T }, the filtration
F̃π coincides with the Brownian one (FB

s )s∈[tj−1,tj ) augmented by the independent
σ -field Hj−1. Hence, on the interval [tj−1, tj ) we have the martingale represen-
tation property for random variables from L2(	, F̃π

tj−,P ) with respect to the F̃π -
Brownian motion B . This has as consequence that BSDE (2.3) can be solved over
the time intervals [tj−1, tj ) with dMt,ϑ;u,v

s = 0, s ∈ [tj−1, tj ). However, for this

Y
t,ϑ;u,v
tj− has to be determined by backward iteration. In order to compute Y

t,ϑ;u,v
tn− ,
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we determine from BSDE (2.3) the jump of the càdlàg process Y t,ϑ;u,v at time tn:


Y
t,ϑ;u,v
tn

(:= Y
t,ϑ;u,v
tn − Y

t,ϑ;u,v
tn−

) = 
M
t,ϑ;u,v
tn

that is Y
t,ϑ;u,v
tn− = Y

t,ϑ;u,v
tn − 
M

t,ϑ;u,v
tn .

Taking into account that Mt,ϑ;u,v is an F̃π -martingale, this yields

Y
t,ϑ;u,v
tn− = E

[
Y

t,ϑ;u,v
tn |F̃π

tn−
]

and 
M
t,ϑ;u,v
tn = Y

t,ϑ;u,v
tn − E

[
Y

t,ϑ;u,v
tn |F̃π

tn−
]
.

Having now Y
t,ϑ;u,v
tn− ∈ L2(	, F̃π

tn−,P ), we can consider BSDE (2.3) over the
time interval [tn−1, tn) like a classical one, with dMt,ϑ;u,v

s = 0, s ∈ [tn−1, tn). By
slving this BSDE over [tn−1, tn), we get, in particular, Y

t,ϑ;u,v
tn−1

. Iterating this argu-
ment, we see that

Y
t,ϑ;u,v
tj− = E

[
Y

t,ϑ;u,v
tj

|F̃π
tj−

]
and 
M

t,ϑ;u,v
tj

= Y
t,ϑ;u,v
tj

− E
[
Y

t,ϑ;u,v
tj

|F̃π
tj−

]
,

for all tj > t , and Mt,ϑ;u,v is constant in the intervals [tj−1 ∨ t, tj ), 1 ≤ j ≤ n.

REMARK 2.2. In the classical case, where the running payoff function
f (s, x, y, z, u, v) does not depend on y and on z, the solution Y t,ϑ;u,v of
BSDE (2.3) takes the simple, well-known form

Y t,ϑ;u,v
s = E

[
�
(
X

t,ϑ;u,v
T

)+
∫ T

s
f
(
r,Xt,ϑ;u,v

r , ur, vr

)
dr|F̃π

s

]
,

s ∈ [t, T ], x ∈ Rd.

From standard estimates for BSDEs of the type of equation (2.3) we get, for all
p ≥ 2, the existence of some constant Cp depending only p and on the Lipschitz
constants and the bounds of the coefficients, such that, for all partitions π , all initial
data t ∈ [0, T ], ϑ,ϑ ′ ∈ L2(	,Fπ

t ,P ;Rd) and all u ∈ Ut,T , v ∈ Vt,T it holds, P -
a.s.,

(i)
∣∣Y t,ϑ;u,v

s

∣∣ ≤ Cp, s ∈ [t, T ];

(ii) E

[(∫ T

t

∣∣Zt,ϑ;u,v
s

∣∣2 ds

)p/2∣∣∣F̃π
t

]
≤ Cp;

(iii) E

[
sup

s∈[t,T ]
∣∣Y t,ϑ;u,v

s − Y t,ϑ ′;u,v
s

∣∣p(2.4)

+
(∫ T

t

∣∣Zt,ϑ;u,v
s − Zt,ϑ ′;u,v

s

∣∣2 ds

)p/2∣∣∣F̃π
t

]
≤ CpE

[∣∣ϑ − ϑ ′∣∣p|F̃π
t

];
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from where, in particular, for some constant C ∈ R,

(i)
∣∣Y t,ϑ;u,v

t

∣∣ ≤ C, P -a.s.;
(2.5)

(ii)
∣∣Y t,ϑ;u,v

t − Y
t,ϑ ′;u,v
t

∣∣ ≤ C
(
E
[∣∣ϑ − ϑ ′∣∣2|F̃π

t

])1/2
, P -a.s.

For a game, in which the both Players 1 and 2 play along a partition π over
a time interval [t, T ] and use the admissible controls u ∈ Uπ

t,T and v ∈ Vπ
t,T , we

consider the following pay-off functional:

Jπ(t, x;u, v) = Y
t,x;u,v
t , (t, x) ∈ [0, T ] × Rd, (u, v) ∈ Uπ

t,T × Vπ
t,T .

However, if we want to study the stochastic differential game in a general frame,
we can not consider games of the type “control against control”, but we shall study
games with nonanticipative strategies with delay; for a more detailed discussion
the reader is referred to, for example, [1].

Let us introduce the notion of nonanticipative strategies with delay (NAD-
strategies). They differ from the definitions given in [2] and in [1] and follow rather
the spirit of the definition given in [4], but now extended to the stochastic case.

DEFINITION 2.2 (NAD-strategies along the partition π ). Let π = {0 = t0 <

t1 < · · · < tn = T } (n ≥ 1) an arbitrary partition of the time interval [0, T ] and
t ∈ [0, T ]. We say that a mapping β :Uπ

t,T −→ Vπ
t,T is an NAD-strategy for Player 2

for the game over the time interval [t, T ] along the partition π , if:

(i) For all F̃π -stopping times τ :	 → π = {t0, t1, . . . , tn} it holds: Whenever
two controls u,u′ ∈ Uπ

t,T coincide ds dP -a.e. on the stochastic interval [[t, τ ]],
then also β(u)s = β(u′)s, ds dP -a.e. on [[t, τ ]].

(ii) For all 0 ≤ j ≤ n−1, it holds that, whenever two controls u,u′ ∈ Uπ
t,T coin-

cide ds dP -a.e. on [t, tj ] × 	, then also β(u)s = β(u′)s, ds dP -a.e. on [t, tj+1] ×
	.

The set of all NAD-strategies for Player 2 over [t, T ] along the partition π is
denoted by Bπ

t,T .
In an obvious symmetric way we define for Player 1 his set Aπ

t,T of NAD-
strategies α :Vπ

t,T −→ Uπ
t,T over the interval [t, T ] along the partition π .

Unlike the definitions in [2] and [1], the delays for which we have this NAD-
property (ii) in the above definition is not considered as arbitrarily small for a given
partition π , but they are defined by the partition π . But, however, in what follows
we will study our game as the mesh of the partition π tends to zero.

The following result is crucial and it links our games defined through a couple
of admissible controls with those defined through NAD-strategies.
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LEMMA 2.1. Let π be any partition of the interval [0, T ] and t ∈ [0, T ]. Then,
for all couples of NAD-strategies (α,β) ∈ Aπ

t,T ×Bπ
t,T , there is a unique couple of

admissible controls (u, v) ∈ Uπ
t,T ×Vπ

t,T such that α(v) = u and β(u) = v, ds dP -
a.e. on [t, T ] × 	.

In the above cited references [1, 2] and [4] different definitions of NAD-
strategies were given, but the idea of the proof of the above lemma remains similar.
However, let us give it for the convenience of the reader.

PROOF. Let π = {0 = t0 < t1 < · · · < tn = T } be a partition of the interval
[0, T ], and (α,β) ∈ Aπ

t,T × Bπ
t,T . Let t ∈ [ti , ti+1). Then, due to our definition

of NAD strategies, α(v),β(u) restricted to [t, ti+1] depend only on v ∈ Vπ
t,T and

u ∈ Uπ
t,T restricted to the interval [t, ti]. But this interval is empty or a singleton,

so that α(v),β(u) restricted to the [t, ti+1] do not depend on v and u, respectively.
Thus, putting for arbitrary u0 ∈ Uπ

t,T , v0 ∈ Vπ
t,T , u1 := α(v0), v1 := β(u0), we get

α
(
v1) = u1, β

(
u1) = v1 ds dP -a.s. on [t, ti+1].

Let us suppose now that we have constructed, for j ≥ 2, (uj−1, vj−1) ∈ Uπ
t,T ×V�

t,tl

such that α(vj−1) = uj−1 and β(uj−1) = vj−1, ds dP -a.s. on [t, ti+j−1]. Then we
set uj := α(vj−1), vj := β(uj−1), and, obviously, (uj , vj ) ∈ Uπ

t,T × Vπ
t,T is such

that (uj , vj ) = (uj−1, vj−1), ds dP -a.s. on [t, ti+j−1]. Thus, because of the NAD
property [see Definition 2.2(ii)] of α,β , uj = α(vj ), vj = β(uj ), ds dP -a.s. on
[t, ti+j ]. Consequently, iterating this argument we obtain the existence of a couple
(u, v) ∈ Uπ

t,T × Vπ
t,T which satisfies the statement of the lemma. Its uniqueness is

an immediate consequence of the above construction. �

Given a couple of NAD-strategies (α,β) ∈Aπ
t,T ×Bπ

t,T of the both players, the
above lemma allows to define the corresponding dynamics and the corresponding
pay-off functional through those of the associated admissible control processes.
More precisely, for (u, v) ∈ Uπ

t,T × Vπ
t,T such that α(v) = u and β(u) = v, ds dP -

a.e. on [t, T ] × 	, we define, for all ϑ ∈ L2(	,Fπ
t ,P ;Rd) and x ∈ Rd ,

Xt,ϑ;α,β := Xt,ϑ;u,v,(
Y t,ϑ;α,β,Zt,ϑ;α,β,Mt,ϑ;α,β) := (

Y t,ϑ;u,v,Zt,ϑ;u,v,Mt,ϑ;u,v),
J π (t, x;α,β) := Jπ(t, x;u, v).

After the above preliminary discussion, we are now able to introduce the upper
and the lower value functions for the game over the time interval [t, T ] along a
partition π . We define the lower value function along a partition π as

Wπ(t, x) := ess sup
α∈Aπ

t,T

ess inf
β∈Bπ

t,T

J π (t, x;α,β)(2.6)
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and the upper one as follows:

Uπ(t, x) := ess inf
β∈Bπ

t,T

ess sup
α∈Aπ

t,T

J π (t, x;α,β).(2.7)

Let us emphasize that the above lower and the upper value functions are defined
as a combination of essential supremum and essential infimum over a bounded
family of F̃π

t -measurable random variables Jπ(t, x;α,β). Indeed, due to (2.5)(i),∣∣Jπ(t, x;α,β)
∣∣= ∣∣Y t,ϑ;α,β

t

∣∣ ≤ C, P -a.s., for all (α,β) ∈ Aπ
t,T ×Bπ

t,T .

Consequently, with the definitions of the essential infimum and the essential
supremum over families of random variables, given in [7] and [8] (see also [13] for
a more detailed discussion), the upper and the lower value functions Wπ(t, x) and
Uπ(t, x) are, a priori, themselves also bounded, F̃π

t -measurable random variables.
But, combining arguments from [3] and [4], we will be able to prove that they are
deterministic. However, for this proof we will have first to establish a dynamic
programming principle.

Let us finish this section with the following estimates for the lower and the
upper value functions, which are an immediate consequence of the corresponding
uniform estimates (2.5) for the solution of BSDE (2.3).

LEMMA 2.2. Under our standard assumptions on the coefficients b,σ,f and
� there exists a constant L ∈ R such that, for all partitions π of [0, T ] and all
t ∈ [0, T ], x, x′ ∈ Rd ,

(i)
∣∣Wπ(t, x)

∣∣+ ∣∣Uπ(t, x)
∣∣ ≤ L,

(ii)
∣∣Wπ(t, x) − Wπ (t, x′)∣∣+ ∣∣Uπ(t, x) − Uπ (t, x′)∣∣ ≤ L

∣∣x − x′∣∣,(2.8)

P -a.s.

3. Lower and upper value functions along a partition. This section is de-
voted to the study of properties of the lower and the upper value functions Wπ and
Uπ defined along a partition π of the interval [0, T ]. The main objectives in this
section are to prove that both functions, characterized in the preceding section as
random fields, are in fact deterministic, and they satisfy a dynamic programming
principle along the partition π .

THEOREM 3.1. For any partition π of the interval [0, T ] and for all (t, x) ∈
[0, T ] × Rd , we have Wπ(t, x) = E[Wπ(t, x)],Uπ(t, x) = E[Uπ(t, x)], P -a.s.

REMARK 3.1. A consequence of this theorem is that, by identifying Wπ(t,

x) := E[Wπ(t, x)],Uπ(t, x) := E[Uπ(t, x)], (t, x) ∈ [0, T ] × Rd , the lower and
the upper value functions along a partition π Wπ and Uπ can be regarded as
deterministic functions.
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The proof of the above theorem is strongly inspired by that of Proposi-
tion 3.1 in [3] and uses heavily the structure of our underlying probability
space (	,F,P ). We only give the proof for Wπ(t, x), for some arbitrarily fixed
(t, x) ∈ [0, T ] × Rd . The proof for Uπ(t, x) is analogous and won’t be given
here.

Let the partition π of the interval [0, T ] be of the form π = {0 = t0 <

t1 < · · · < tn = T } and let 1 ≤ j ≤ n be such that t ∈ [tj−1, tj ). Recalling
that Wπ(t, x) is an F̃π

t -measurable random variable, it follows from the def-
inition of the σ -field F̃π

t that, Wπ(t, x) P -a.s. coincides with a measurable
functional Wπ(t, x)(ζ (j−1),B(t)) of ζ (j−1) = (ζ1, . . . , ζj−1) of the first j − 1
components of the coordinate process ζ = (ζ
)
≥1 on 	1 and the Brownian
motion B(t) = (Bs)s∈[0,t] defined over 	2 and restricted to the time interval
[0, t].

Let Ht be the Cameron–Martin space of all absolutely continuous functions
h ∈ C([0, T ];Rd) which derivative ḣ is square integrable and satisfies ḣs = 0, ds-
a.e. on [t, T ], and let us denote by 	

(j−1)
1 the set of all sequences ρ = (ρ
 =

(ρ
,1, ρ
,2))
≥1 ∈ 	1, such that ρ
 = 0, 
 ≥ j . Given any (a,h) ∈ 	
(j−1)
1 ×Ht , we

define the transformation τa,h :	 → 	 by putting τa,h(ρ,ω′) := (ρ +a,ω′ +h)(=
((ρ
 + a
)
≥1,ω

′ + h)), (ρ,ω′) ∈ 	 = 	1 × 	2. Such defined transformation
is bijective, τ−1

a,h = τ−a,−h, (a,h) ∈ 	
(j−1)
1 × Ht , and its law P ◦ [τa,h]−1 is

equivalent to P . Indeed, the law P ◦ [τa,h]−1 has with respect to P the den-
sity

La,h = exp
{
〈a, ζ 〉 +

∫ t

0
ḣs dBs − 1

2

(
|a|2 +

∫ t

0
|ḣs |2 ds

)}
,

where

〈a, ζ 〉 := ∑

≥1

a
ζ
 =
j−1∑

=1

a
ζ


(
= ∑

1≤
≤j−1,i=1,2

a
,iζ
,i

)
and

|a|2 = ∑

≥1

|a
|2 =
j−1∑

=1

|a
|2
(
= ∑

1≤
≤j−1,i=1,2

|a
,i |2
)
,

a = (a
 = (a
,1, a
,2))
≥1 ∈ 	
(j−1)
1 . We observe that the density La,h is F̃π

t -
measurable and belongs to Lp(	,F,P ), for all p ≥ 1.

The following lemma is essential for the proof that W(t, x) is deterministic.

LEMMA 3.1. Let ξ ∈ L0(	, F̃π
t ,P ) be a random variable which, for all

(a,h) ∈ 	
(j−1)
1 ×Ht , is invariant with respect to all transformations τa,h :	 → 	,
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that is, ξ ◦ τa,h = ξ , P -a.s. Then, there exists some deterministic real number
c ∈ R, such that ξ = c,P -a.s.

PROOF. Let ξ ∈ L0(	, F̃π
t ,P ) be invariant with respect to all transformations

τa,h :	 → 	, (a,h) ∈ 	
(j−1)
1 × Ht . Then, for all (a,h) ∈ 	

(j−1)
1 × Ht and all

bounded Borel functions g :R → R,

E
[
g(ξ)

]
= E

[
g(ξ ◦ τa,h)

]
(3.1)

= E

[
g(ξ) exp

{
〈a, ζ 〉 +

∫ t

0
ḣs dBs

}]
· exp

{
−1

2

(
|a|2 +

∫ t

0
|ḣs |2 ds

)}
,

that is,

E

[
g(ξ) exp

{j−1∑

=1

a
ζ
 +
∫ t

0
ḣs dBs

}]

= E
[
g(ξ)

] · exp
{

1

2

(
|a|2 +

∫ t

0
|ḣs |2 ds

)}
(3.2)

= E
[
g(ξ)

] · E
[

exp

{j−1∑

=1

a
ζ
 +
∫ t

0
ḣs dBs

}]

for all a
 ∈ R2,1 ≤ 
 ≤ j − 1, and all h ∈ Ht , from where we deduce that ξ

is independent of (ζ (j−1) = (ζ1, . . . , ζj−1),B
(t) = (Bs)s∈[0,t]) and, hence also of

F̃π
t = σ {ζ (j−1),B(t)}. But this means that ξ as an F̃π

t -measurable random variable
is independent of itself. The statement of the lemma follows now easily. �

PROOF OF THEOREM 3.1. In order to be able to conclude our theorem form
the above lemma, we only have to show that the random variable Wπ(t, x)

is invariant with respect to the transformations τa,h :	 → 	, for all (a,h) ∈
	

(j−1)
1 × Ht . For showing this, we fix arbitrarily (a,h) ∈ 	

(j−1)
1 × Ht and we

proceed in an analogous spirit as that in the proof of Proposition 3.1 in [3]. But,
however, the framework is different here.

Step 1. Given a couple of admissible controls (u, v) ∈ Uπ
t,T × Vπ

t,T , we notice
that also the transformed couple (u ◦ τa,h, v ◦ τa,h) belongs to Uπ

t,T ×Vπ
t,T . Indeed,

having t ∈ [tj−1, tj ),

us = uj

(
s, (ζ1, . . . , ζj−1, ζj,1,B·∧s)

)
I[t,tj )(s)

+
n∑


=j+1

u


(
s, (ζ1, . . . , ζ
−1, ζ
,1,B·∧s)

)
I[t
−1,t
)(s) ds dP -a.e.,



VALUE IN MIXED STRATEGIES FOR ZERO-SUM SDGS 1739

for measurable functionals u
,1 ≤ 
 ≤ n, the transformed control process u ◦ τa,h

takes the form

us ◦ τa,h

= uj

(
s, (ζ1 + a1, . . . , ζj−1 + aj−1, ζj,1,B·∧s + h·∧t )

)
I[t,tj )(s)

(3.3)

+
n∑


=j+1

u


(
s, (ζ1 + a1, . . . , ζj−1 + aj−1, ζj , . . . , ζ
−1, ζ
,1,

B·∧s + h·∧t )
)
I[t
−1,t
)(s),

ds dP -a.e., from where we see that also u ◦ τa,h is an admissible control for
Player 1; the symmetric argument shows that v ◦ τa,h ∈ Vπ

t,T . Applying now
the transformation to the forward equation (2.1) and taking into account that
the increments of the Brownian motion after t are not changed by the transfor-
mation: (Bs − Bt) ◦ τa,h = Bs − Bt, s ∈ [t, T ] (Indeed, recall that ḣs = 0, ds-
a.e. on [t, T ]), we obtain from the uniqueness of the solution of SDE (2.1) that

Xt,x;u,v
s ◦ τa,h = X

t,x;u(τa,h),v(τa,h)
s , s ∈ [t, T ], P -a.s. Let us now apply the transfor-

mation τa,h to BSDE (2.3). With the argument already used for its application to
the forward SDE we see that BSDE (2.3) becomes

dY t,x;u,v
s ◦ τa,h

= −E
[
f
(
s,X

t,x;u(τa,h),v(τa,h)
s , Y t,x;u,v

s ◦ τa,h,Z
t,x;u,v
s ◦ τa,h,

us(τa,h), vs(τa,h)
)|F̃π

s

]
ds(3.4)

+ Zt,x;u,v
s ◦ τa,h dBs + dMt,x;u,v

s ◦ τa,h,

Y
t,x;u,v
T ◦ τa,h = E

[
�
(
X

t,x;u(τa,h),v(τa,h)

T

)|F̃π
T

]
.

We remark that (i) (Y t,x;u,v ◦ τa,h,Z
t,x;u,v ◦ τa,h) ∈ S2

F̃π (t, T ;R) × L2
F̃π (t, T ;

Rd). Indeed, the F̃π -adaptedness of the transformed process can be proved directly,
and the square integrability follows from standard Lp-estimates for the solutions
of BSDEs:

E

[
sup

s∈[t,T ]
∣∣Y t,x;u,v

s ◦ τa,h

∣∣2 +
∫ T

t

∣∣Zt,x;u,v
s ◦ τa,h

∣∣2 ds

]

= E

[(
sup

s∈[t,T ]
∣∣Y t,x;u,v

s

∣∣2 +
∫ T

t

∣∣Zt,x;u,v
s

∣∣2 ds

)
La,h

]

≤ C
(
E
[
L2

a,h

])1/2
(
E

[
sup

s∈[t,T ]
∣∣Y t,x;u,v

s

∣∣4 +
(∫ T

t

∣∣Zt,x;u,v
s

∣∣2 ds

)2])1/2

< +∞.
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On the other hand, the fact La,h ∈ L2(	, F̃π
t ,P ) has as consequence that also

the transformed (F̃π ,P )-martingale Mt,x;u,v ◦ τa,h = (Mt,x;u,v
s ◦ τa,h)s∈[t,T ] is

again an (F̃π ,P )-martingale. Indeed, for t ≤ s ≤ T and ξ ∈ L∞(	, F̃π
s ,P ), also

ξ ◦ τ−a,−h ∈ L∞(	, F̃π
s ,P ), and

E
[(

M
t,x;u,v
T − Mt,x;u,v

s

) ◦ τa,h · ξ ]
= E

[(
M

t,x;u,v
T − Mt,x;u,v

s

) · ξ ◦ τ−a,−h · La,h

]
(3.5)

= E
[
E
[
M

t,x;u,v
T − Mt,x;u,v

s |F̃π
s

] · ξ ◦ τ−a,−hLa,h

] = 0.

Consequently, Mt,x;u,v ◦ τa,h is an (F̃π ,P )-martingale; its square integrability
follows from an argument similar to that for (Y t,x;u,v ◦ τa,h,Z

t,x;u,v ◦ τa,h), (recall
the explicit representation of Mt,x;u,v in terms of Y t,x;u,v , which implies the Lp-
integrability of Mt,x;u,v for all p ≥ 1.) and its orthogonality to B stems from the
fact that it is a pure jump martingale.

This shows that (Y t,x;u,v ◦ τa,h,Z
t,x;u,v ◦ τa,h,M

t,x;u,v ◦ τa,h) is a solution of
BSDE (2.3) with the couple of admissible controls (u(τa,h), v(τa,h)). From the
uniqueness of the solution of this BSDE it then follows that(

Y t,x;u,v ◦ τa,h,Z
t,x;u,v ◦ τa,h,M

t,x;u,v ◦ τa,h

)
(3.6)

= (
Y t,x;u(τa,h),v(τa,h),Zt,x;u(τa,h),v(τa,h),Mt,x;u(τa,h),v(τa,h)),

and, in particular, it follows that

Jπ(t, x;u, v) ◦ τa,h = Jπ (t, x;u(τa,h), v(τa,h)
)
, P -a.s.

Step 2. Let us translate in this step the result of step 1 to couples of NAD strate-
gies. For β ∈ Bπ

t,T we define βa,h(u) := β(u(τ−a,−h))(τa,h), u ∈ Uπ
t,T . For such

defined mapping βa,h :Uπ
t,T → Vπ

t,T it can be verified in a straight-forward manner
that it belongs to Bπ

t,T . We also observe that (β−a,−h)a,h = β . A symmetric defini-
tion allows to introduce αa,h ∈ Aπ

t,T , for α ∈Aπ
t,T and to get (α−a,−h)a,h = α.

Given a couple of NAD-strategies (α,β) ∈ Aπ
t,T ×Bπ

t,T , let us denote by (u, v) ∈
Uπ

t,T ×Vπ
t,T the couple of admissible controls associated with through Lemma 2.1.

Then

αa,h

(
v(τa,h)

) = α(v)(τa,h) = u(τa,h) and

βa,h

(
u(τa,h)

) = β(u)(τa,h) = v(τa,h).

Consequently, the couple (u(τa,h), v(τa,h)) ∈ Uπ
t,T × Vπ

t,T is associated with
(αa,h, βa,h) through Lemma 2.1, and from step 1 we get

Jπ(t, x;α,β) ◦ τa,h = Jπ(t, x;u, v) ◦ τa,h = Jπ (t, x;u(τa,h), v(τa,h)
)

(3.7)
= Jπ(t, x;αa,h, βa,h), P -a.s.
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Step 3. Using the definition of the esssup and the essinf over a family of random
variables as well as the fact that the transformation τa,h is invertible and its law
P ◦ [τa,h]−1 is equivalent to P , we show that

Wπ(t, x) ◦ τa,h

= (
ess sup
α∈Aπ

t,T

ess inf
β∈Bπ

t,T

J π (t, x;α,β)
) ◦ τa,h(3.8)

= ess sup
α∈Aπ

t,T

ess inf
β∈Bπ

t,T

(
Jπ(t, x;α,β) ◦ τa,h

)
, P -a.s.

Consequently, by combining the results of the previous steps and by considering
that, thanks to step 2, {αa,h, α ∈ Aπ

t,T } = Aπ
t,T and {βa,h, β ∈ Bπ

t,T } = Bπ
t,T , we

obtain

Wπ(t, x) ◦ τa,h = ess sup
α∈Aπ

t,T

ess inf
β∈Bπ

t,T

(
Jπ(t, x;α,β) ◦ τa,h

)
= ess sup

α∈Aπ
t,T

ess inf
β∈Bπ

t,T

J π (t, x;αa,h, βa,h)(3.9)

= Wπ(t, x), P -a.s.

By combining this result with Lemma 3.1, we complete the proof. �

As an immediate consequence of Lemma 2.2 and the above result that the lower
and the upper value functions along a partition are deterministic, we have the fol-
lowing result.

LEMMA 3.2. There exists a constant L ∈ R which does not depend on the
partition π of the interval [0, T ], such that, for all t ∈ [0, T ], x, x′ ∈ Rd ,

(i)
∣∣Wπ(t, x)

∣∣+ ∣∣Uπ(t, x)
∣∣ ≤ L,

(3.10)
(ii)

∣∣Wπ(t, x) − Wπ (t, x′)∣∣+ ∣∣Uπ(t, x) − Uπ (t, x′)∣∣ ≤ L
∣∣x − x′∣∣.

After having proved that the lower and the upper value functions along a par-
tition π are deterministic, our objective is now to show that, with respect to the
points of the partition they satisfy the DPP. A key role will be played here by the
notion of backward stochastic semigroup, introduced by Peng in [18].

Given a partition π = {0 = t0 < t1 < · · · < tn = T } of the interval [0, T ],
initial data (t, x) ∈ [0, T ) × Rd , a positive δ < T − t and a couple of admis-
sible control processes (u, v) ∈ Uπ

t,t+δ × Vπ
t,t+δ as well as a random variable

η ∈ L2(	,Fπ
t+δ,P ), we define the backward stochastic semigroup

G
t,x;u,v
s,t+δ (η) := Y

u,v

s , s ∈ [t, t + δ],
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through the BSDE with time horizon t + δ,⎧⎪⎪⎨⎪⎪⎩
dY

u,v

s = −E
[
f
(
s,Xt,ϑ;u,v

s , Y
u,v

s ,Z
u,v

s , us, vs

)|F̃π
s

]
ds

+ Z
u,v

s dBs + dM
u,v

s ,

Y
u,v

T = E
[
η|F̃π

t+δ

]
,

(3.11)

and its unique solution (Y
u,v

,Z
u,v

,M
u,v

) ∈ S2
F̃π (t, t +δ;R)×L2

F̃π (t, t +δ;Rd)×
M2

F̃π (t, t + δ;R) with [B,M
u,v]s = 0, s ∈ [t, T ] and M

u,v

t = 0, where Xt,ϑ;u,v is
the solution of SDE (2.1).

From the discussion made in the frame of Remark 2.1 it becomes clear that if,
for some point tj of the partition π = {0 = t0 < t1 < · · · < tn = T }, tj−1 ≤ t <

t + δ = tj and η is F̃π
tj−-measurable, then M

u,v

s = 0, s ∈ [t, tj ].
The properties of the backward stochastic semigroup follow directly from those

of the BSDE through which it is defined, so that we won’t discuss separately here
(refer to [18], or [3]). The notion of backward stochastic semigroup now allows to
study the DPP along a partition π of the time interval [0, T ].

THEOREM 3.2. Let π = {0 = t0 < t1 < · · · < tn = T } be a partition of the
interval [0, T ], and let t ∈ [ti , ti+1) and x ∈ Rd . Then, for all i + 1 ≤ j ≤ n, P -
a.s.,

Wπ(t, x) = ess sup
α∈Aπ

t,tj

ess inf
β∈Bπ

t,tj

G
t,x;α,β
t,tj

(
Wπ (tj ,Xt,x;α,β

tj

))
,

(3.12)
Uπ(t, x) = ess inf

β∈Bπ
t,tj

ess sup
α∈Aπ

t,tj

G
t,x;α,β
t,tj

(
Uπ (tj ,Xt,x;α,β

tj

))
.

REMARK 3.2. The space Uπ
t,tj

of admissible controls for Player 1 for games
over the time interval [t, tj ] along the partition π is defined as the set of all control
processes u ∈ Uπ

t,T restricted to the time interval [t, tj ]; the space Vπ
t,tj

of admissi-
ble controls for Player 2 is defined analogously. The NAD-strategies for Player 2,
β ∈ Bπ

t,tj
:Uπ

t,tj
→ Vπ

t,tj
, are defined in the same manner as the NAD-strategies

in Bπ
t,T , with the only difference that we consider tj instead T = tn as terminal

horizon. The same is done in the definition of the set Aπ
t,tj

of NAD-strategies for
Player 1.

The proof split into two lemmas for the lower value function along the parti-
tion π ; it is similar for the upper value function along the partition π . Let us fix
arbitrarily a partition π = {0 = t0 < t1 < · · · < tn = T } of the interval [0, T ], and
let t ∈ [ti , ti+1), i + 1 ≤ j ≤ n and x ∈ Rd . We put

W̃π
tj

(t, x) = ess sup
α∈Aπ

t,tj

ess inf
β∈Bπ

t,tj

G
t,x;α,β
t,tj

(
Wπ (tj ,Xt,x;α,β

tj

))
.

Obviously, W̃π
tj

(t, x) is a bounded, F̃π
t -measurable random variable.
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LEMMA 3.3. Under the standard assumptions, we have made on the coeffi-
cients it holds that W̃π

tj
(t, x) ≤ Wπ(t, x), P -a.s.

PROOF. Step 1. Let us fix an arbitrary ε > 0. Then, we can find αε
1 ∈ Aπ

t,tj

such that

W̃π
tj

(t, x) ≤ ess inf
β∈Bπ

t,tj

G
t,x;αε

1,β
t,tj

(
Wπ (tj ,Xt,x;αε

1,β
tj

))+ ε, P -a.s.

In order to verify this latter relation, we put

I (α) := ess inf
β∈Bπ

t,tj

G
t,x;α,β
t,tj

(
Wπ (tj ,Xt,x;α,β

tj

))
, α ∈ Aπ

t,tj
,

and we note that, due to the properties of the essential supremum over a family of
random variables, there is some sequence (αk)k≥1 ⊂ Aπ

t,tj
such that

W̃π
tj

(t, x) = ess sup
α∈Aπ

t,tj

I (α) = sup
k≥1

I
(
αk), P -a.s.

Thus, putting 
k := {W̃π
tj

(t, x) ≤ I (αk) + ε, W̃π
tj

(t, x) > I (α
) + ε(1 ≤ 
 ≤
k − 1)} ∈ F̃π

t , k ≥ 1, we define a partition of 	, and putting

αε
1(·) := ∑

k≥1

I
k
αk(·) :Vπ

t,tj
→ Uπ

t,tj
,

we check easily that αε
1 is an NAD-strategy in Aπ

t,tj
and that W̃π

tj
(t, x) ≤∑

k≥1 I
k
I (αk) + ε ≤ ∑

k≥1 I
k
G

t,x;αk,β1
t,tj

(Wπ(tj ,X
t,x;αk,β1
tj

)) + ε, P-a.s., for

all β1 ∈ Bπ
t,tj

. Given an arbitrary β1 ∈ Bπ
t,tj

, we let (uk, vk) ∈ Uπ
t,tj

× Vπ
t,tj

be

such that αk(vk) = uk,β1(u
k) = vk, ds dP -a.e. on [t, tj ] × 	, and we introduce

(u1, v1) := ∑
k≥1 I
k

(uk, vk) ∈ Uπ
t,tj

× Vπ
t,tj

. Then, since for the F̃π -stopping time

τk = tj I
k
+ tI
c

k
the processes u1 and uk coincide, ds dP -a.e. on [[t, τk]], also

β1(u
k) = β1(u1), ds dP -a.e. on [[t, τk]]. Thus,

β1(u1) = ∑
k≥1

I
k
β1

(
uk) = ∑

k≥1

I
k
vk = v1, ds dP -a.e. on[t, tj ] × 	,

and with a symmetric argument we also have

αε
1(v1) = ∑

k≥1

I
k
αk(v1) = ∑

k≥1

I
k
αk(vk) = u1, ds dP -a.e. on [t, tj ] × 	.

This shows that the couple (u1, v1) ∈ Uπ
t,tj

× Vπ
t,tj

is associated with (αε
1, β1) ∈

Aπ
t,tj

× Bπ
t,tj

by Lemma 2.1. Consequently, from the uniqueness of the solution of
SDE (2.1) we conclude with a standard argument that∑

k≥1

I
k
Xt,x;αk,β1 = ∑

k≥1

I
k
Xt,x;uk,vk = Xt,x;u1,v1 = Xt,x;αε

1,β1

on [t, tj ],P -a.s.
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Similarly, using now the uniqueness of the solution of BSDE defining the back-
ward stochastic semigroup, we show that∑

k≥1

I
k

(
Ỹ t,x;αk,β1, Z̃t,x;αk,β1, M̃t,x;αk,β1

) = (
Ỹ t,x;αε

1,β1, Z̃t,x;αε
1,β1, M̃t,x;αε

1,β1
)
,

and recalling the definition of the backward stochastic semigroup, we see that∑
k≥1

I
k
G

t,x;αk,β1
t,tj

(
Wπ (tj ,Xt,x;αk,β1

tj

)) = G
t,x;αε

1,β1
t,tj

(
Wπ (tj ,Xt,x;αε

1,β1
tj

))
.

Consequently, for all β1 ∈ Bπ
t,tj

,

W̃π
tj

(t, x) ≤ ∑
k≥1

I
k
I
(
αk)+ ε

≤ ∑
k≥1

I
k
G

t,x;αk,β1
t,tj

(
Wπ (tj ,Xt,x;αk,β1

tj

))+ ε(3.13)

= G
t,x;αε

1,β1
t,tj

(
Wπ (tj ,Xt,x;αε

1,β1
tj

))+ ε, P -a.s.

Let us make now a special choice of β1 ∈ Bπ
t,tj

. Given an arbitrary β ∈ Bπ
t,T

and any u2 ∈ Uπ
tj ,T , we define for any u1 ∈ Uπ

t,tj
the process u1 ⊕ u2 := u1I[t,tj ] +

u2I(tj ,T ] ∈ Uπ
t,T , and we put

β1(u1) := β(u1 ⊕ u2)|[t,tj ], u1 ∈ Uπ
t,tj

,

the restriction of β(u1 ⊕u2) to the time interval [t, tj ]. It can be easily verified that
such defined mapping β1 :Uπ

t,tj
→ Vπ

t,tj
belongs to Bπ

t,tj
, and thanks to its nonan-

ticipativity property it does not depend on the special choice of u2. Let us denote
by (uε

1, v
ε
1) ∈ Uπ

t,tj
× Vπ

t,tj
the unique couple of control processes associated with

(αε
1, β1) through Lemma 2.1.
Step 2. After having proven in step 1 that

W̃π
tj

(t, x) ≤ G
t,x;αε

1,β1
t,tj

(
Wπ (tj ,Xt,x;αε

1,β1
tj

))+ ε, P -a.s.,

let us now estimate the expression Wπ(tj ,X
t,x;αε

1,β1
tj

) to which the backward
stochastic semigroup is applied at the right-hand side of the above estimate. For
this we consider a Borel partition Ok, k ≥ 1, of Rd , consisting of nonempty Borel
sets Ok with diameter less or equal to ε, and we fix arbitrarily in each of this sets
Ok an element xk . With the arguments already developed in step 1 we show that,
for every k ≥ 1, there is some αk

2 ∈Aπ
tj ,T such that

Wπ(tj , xk) = ess sup
α2∈Aπ

tj ,T

ess inf
β2∈Bπ

tj ,T

J π (tj , xk;α2, β2)

≤ ess inf
β2∈Bπ

tj ,T

J π (tj , xk;αk
2, β2

)+ ε, P -a.s.,
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and putting αε
2(·) := ∑

k≥1 I {Xt,x;αε
1,β1

tj
∈ Ok}αk

2(·) :Vπ
tj ,T → Uπ

tj ,T we obtain an

NAD-strategy from Aπ
tj ,T . Indeed, the sets {Xt,x;αε

1,β1
tj

∈ Ok}, k ≥ 1, forming a
partition of 	, belong to

Fπ
tj− = FB

tj
∨Hj = F̃π

tj
.

(We remark that the relation Fπ
s− = F̃π

s only holds for points of the partition π ;
this is also the reason, why we do not have a DPP which does not use the points
of the partition π ). Thus, by combining the arguments developed in step 1 with
the Lipschitz property of Wπ(tj , ·) and Jπ(tj , ·;α,β) we can show that, for all
β2 ∈ Bπ

tj ,T ,

Wπ (tj ,Xt,x;αε
1,β1

tj

)
≤ ∑

k≥1

I
{
X

t,x;αε
1,β1

tj
∈ Ok

}
Wπ(tj , xk) + Lε

≤ ∑
k≥1

I
{
X

t,x;αε
1,β1

tj
∈ Ok

}
Jπ (tj , xk;αk

2, β2
)+ (L + 1)ε(3.14)

≤ ∑
k≥1

I
{
X

t,x;αε
1,β1

tj
∈ Ok

}
Jπ (tj ,Xt,x;αε

1,β1
tj

;αk
2, β2

)+ (2L + 1)ε

= Jπ (tj ,Xt,x;αε
1,β1

tj
;αε

2, β2
)+ (2L + 1)ε, P -a.s.

For our arbitrarily chosen β ∈ Bπ
t,T we put βε

2(u2) := β(uε
1 ⊕ u2)|[tj ,T ] ∈ Vπ

tj ,T ,
u2 ∈ Uπ

tj ,T . Obviously, βε
2 ∈ Bπ

tj ,T . Let us denote by (uε
2, v

ε
2) ∈ Uπ

tj ,T × Vπ
tj ,T the

unique couple of control processes associated with (αε
2, β

ε
2) through Lemma 2.1.

Then, defining αε ∈Aπ
t,T by setting

αε(v) := αε
1(v|[t,tj ]) ⊕ αε

2(v|(tj ,T ]), v ∈ Vπ
t,T ,

we see that, for (uε, vε) := (uε
1 ⊕ uε

2, v
ε
1 ⊕ vε

2) ∈ Uπ
t,T × Vπ

t,T ,

αε(vε) = αε
1
(
vε

1
)⊕ αε

2
(
vε

2
) = uε

1 ⊕ uε
2 = uε,

βε(uε) = βε(uε
1 ⊕ uε

2
) = β1

(
uε

1
)⊕ βε

2
(
uε

2
) = vε

1 ⊕ vε
2 = vε.

Consequently, with the choice β2 = βε
2 , we have

Wπ (tj ,Xt,x;αε
1,β1

tj

) ≤ Jπ (tj ,Xt,x;αε
1,β1

tj
;αε

2, β
ε
2
)+ (2L + 1)ε

= Jπ (tj ,Xt,x;uε
1,v

ε
1

tj
;uε

2, v
ε
2
)+ (2L + 1)ε

= Y
tj ,X

t,x;uε
1,vε

1
tj

;uε
2,v

ε
2

tj
+ (2L + 1)ε(3.15)
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= Y
tj ,X

t,x;uε,vε

tj
;uε,vε

tj
+ (2L + 1)ε

= Y
t,x;uε,vε

tj
+ (2L + 1)ε, P -a.s.

Indeed, the fact that X
t,x;uε

1,v
ε
1

tj
is Fπ

tj− = F̃π
tj

-measurable, allows to substitute

this random variable at the place of x′ in the BSDE for (Y
tj ,x′;uε

1,v
ε
1

s ,Z
tj ,x′;uε

1,v
ε
1

s ,

M
tj ,x′;uε

1,v
ε
1

s )s∈[tj ,T ]. The uniqueness of the solution of the resulting BSDE then

yields Y
tj ,Xt,x;uε,vε ;uε,vε

s = Y t,x;uε,vε

s , s ∈ [tj , T ].
Combining the above result with that of step 1, and taking into account the

monotonicity and the Lipschitz properties of the backward stochastic semigroup,
which are a direct consequence of the corresponding properties of the solutions of
BSDEs (the proof of them is similar to the classical case (e.g., refer to Peng [18]),
also refer to [5]) we obtain

W̃π
tj

(t, x) ≤ G
t,x;αε

1,β1
t,tj

(
Wπ (tj ,Xt,x;αε

1,β1
tj

))+ ε

≤ G
t,x;αε

1,β1
t,tj

(
Y

t,x;uε,vε

tj
+ (2L + 1)ε

)+ ε

≤ G
t,x;uε

1,v
ε
1

t,tj

(
Y

t,x;uε,vε

tj

)+ Cε
(3.16)

= G
t,x;uε,vε

t,tj

(
Y

t,x;uε,vε

tj

)+ Cε

= Y
t,x;uε,vε

t + Cε

= Jπ (t, x;αε,β
)+ Cε, P -a.s., for all β ∈ Bπ

t,T .

Therefore,

W̃π
tj

(t, x) ≤ ess sup
α∈Aπ

t,T

ess inf
β∈Bπ

t,T

J π (t, x;α,β) + Cε

(3.17)
= Wπ(t, x) + Cε, P -a.s.,

and considering the arbitrariness of the choice of ε > 0 we can conclude the proof.
�

In order to complete the proof of the DPP, we need still the following lemma.

LEMMA 3.4. Under our standard assumptions it holds that W̃π
tj

(t, x) ≥
Wπ(t, x), P -a.s.

PROOF. The proof of this lemma uses mainly arguments which have been al-
ready developed in the frame of the proof of the preceding lemma. For this reason,
we give here rather a sketch than a detailed proof.
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Let us begin with fixing an arbitrary α ∈ Aπ
t,T . Given any v2 ∈ Vπ

tj ,T we define
α1 ∈ Aπ

t,tj
by setting α1(v1) := α(v1 ⊕ v2)|[t,tj ] ∈ Uπ

t,tj
, for v1 ∈ Vπ

t,tj
. Thanks to

the nonanticipativity property of the elements of Aπ
t,tj

, α1 does not depend on the

particular choice of v2. From the definition of W̃π
tj

(t, x), it follows that

W̃π
tj

(t, x) ≥ ess inf
β1∈Bπ

t,tj

G
t,x;α1,β1
t,tj

(
Wπ (tj ,Xt,x;α1,β1

tj

))
,

P -a.s., for all α1 ∈ Aπ
t,tj

, and from the argument developed in step 1 of the proof
of Lemma 3.3 we know that, for an arbitrarily given ε > 0 there exists βε

1 ∈ Bπ
t,tj

(depending on α1 ∈ Aπ
t,tj

) such that

W̃π
tj

(t, x) ≥ G
t,x;α1,β

ε
1

t,tj

(
Wπ (tj ,Xt,x;α1,β

ε
1

tj

))− ε, P -a.s.

In analogy to step 2 of the proof of Lemma 3.3, we estimate the expression

Wπ(tj ,X
t,x;α1,β

ε
1

tj
) to which the backward stochastic semigroup is applied in the

above estimate. For this, we let (uε
1, v

ε
1) ∈ Uπ

t,tj
×Vπ

t,tj
be the unique control couple

associated with (α1, β
ε
1) through Lemma 2.1, and we define αε

2(v2) := α(vε
1 ⊕

v2)[tj ,T ], v2 ∈ Vπ
tj ,T . Such defined mapping αε

2 :Vπ
tj ,T → Uπ

tj ,T belongs to Aπ
tj ,T ,

and using an adaptation of the argument with the Borel partition Ok, k ≥ 1, of Rd ,
from step 2 of the proof of Lemma 3.3, which leads to (3.14), we construct an
NAD-strategy βε

2 ∈ Bπ
tj ,T such that

Wπ (tj ,Xt,x;α1,β
ε
1

tj

) ≥ ess inf
β2∈Bπ

tj ,T

J π (tj ,Xt,x;α1,β
ε
1

tj
;αε

2, β2
)

(3.18)
≥ Jπ (tj ,Xt,x;α1,β

ε
1

tj
;αε

2, β
ε
2
)− ε, P -a.s.

Letting (uε
2, v

ε
2) ∈ Uπ

tj ,T × Vπ
tj ,T be the unique control couple associated with

(αε
2, β

ε
2) through Lemma 2.1, we observe that, for βε ∈ Bπ

t,T defined by the re-
lation βε(u) := βε

1(u|[t,tj ]) ⊕ βε
2(u|(tj ,T ]), u ∈ Uπ

t,T , we have the couple of con-
trols uε := uε

1 ⊕ uε
2 ∈ Uπ

t,T , vε := vε
1 ⊕ vε

2 ∈ Vπ
t,T associated with (α,βε) through

Lemma 2.1:

α
(
vε) = α

(
vε

1 ⊕ vε
2
) = α1

(
vε

1
)⊕ αε

2
(
vε

2
) = uε

1 ⊕ uε
2 = uε,

βε(uε) = βε
1
(
uε

1
)⊕ βε

2
(
uε

2
) = vε

1 ⊕ vε
2 = vε.

Consequently, thanks to the monotonicity and Lipschitz properties of the back-
ward stochastic semigroup, we have

W̃π
tj

(t, x) ≥ G
t,x;α1,β

ε
1

t,tj

(
Wπ (tj ,Xt,x;α1,β

ε
1

tj

))− ε

≥ G
t,x;α1,β

ε
1

t,tj

(
Jπ (tj ,Xt,x;α1,β

ε
1

tj
;αε

2, β
ε
2
)− ε

)− ε(3.19)
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≥ G
t,x;uε

1,v
ε
1

t,tj

(
Y

tj ,X
t,x;uε

1,vε
1

tj
;uε

2,v
ε
2

tj

)− Cε

= G
t,x;uε,vε

t,tj

(
Y

tj ,X
t,x;uε,vε

tj
;uε,vε

tj

)− Cε

= G
t,x;uε,vε

t,tj

(
Y

t,x;uε,vε

tj

)− Cε

= Y
t,x;uε,vε

t − Cε

= Y
t,x;α,βε

t − Cε, P -a.s.

We take in the latter estimate first the essential infimum over β ∈ Bπ
t,T , and then

the essential supremum over all α ∈ Aπ
t,T . Thus, by considering the arbitrariness

of ε > 0, we get the statement of the lemma. �

As a consequence of the proof of the DPP, we get the following proposition.

PROPOSITION 3.1. Under our standard assumptions, for all (t, x) ∈ [0, T ] ×
Rd , it holds

Wπ(t, x) = sup
α∈Aπ

t,T

inf
β∈Bπ

t,T

E
[
Jπ(t, x;α,β)

]
,

(3.20)
Uπ(t, x) = inf

β∈Bπ
t,T

sup
α∈Aπ

t,T

E
[
Jπ(t, x;α,β)

]
.

By combining the above lemma with Remark 2.2, we get the following re-
sult under the classical assumption of a running payoff function not depending
on (y, z):

COROLLARY 3.1. Let us suppose in addition to our standard assumptions
that the coefficient f (s, x, y, z, u, v) does not depend on (y, z). Then, for all
(t, x) ∈ [0, T ] × Rd ,

Wπ(t, x) = sup
α∈Aπ

t,T

inf
β∈Bπ

t,T

E

[
�
(
X

t,x;u,v
T

)

+
∫ T

t
f
(
s,Xt,x;u,v

s , us, vs

)
ds

]
,

(3.21)

Uπ(t, x) = inf
β∈Bπ

t,T

sup
α∈Aπ

t,T

E

[
�
(
X

t,x;u,v
T

)

+
∫ T

t
f
(
s,Xt,x;u,v

s , us, vs

)
ds

]
.
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Now we prove the above Proposition 3.1.

PROOF. Let (t, x) ∈ [0, T )×Rd , and tj ∈ π be such that tj ≤ t < tj+1. As we
have shown in the proof of the DPP that W̃π

tj
(t, x) and Wπ(t, x) coincide, we see

from (3.16) that, for every ε > 0, there exists αε ∈ Aπ
t,T such that, for all β ∈ Bπ

t,T ,

Wπ(t, x) ≤ Jπ (t, x;αε,β
)+ ε, P -a.s.

Consequently, taking into account that Wπ(t, x) is deterministic, we get Wπ(t,

x) ≤ E[Jπ(t, x;αε,β)] + ε. By taking first the infimum over all β ∈ Bπ
t,T and

after the supremum over α ∈Aπ
t,T , we obtain

Wπ(t, x) ≤ sup
α∈Aπ

t,T

inf
β∈Bπ

t,T

E
[
Jπ(t, x;α,β)

]
.

To get the converse relation, we observe that, due to (3.19), for every ε > 0 and all
α ∈ Aπ

t,T , there exists some βε ∈ Bπ
t,T such that

Wπ(t, x) ≥ Jπ (t, x;α,βε)− ε, P -a.s.

By taking the expectation on both sides of this inequality, after the infimum with
respect to βε ∈ Bπ

t,T and, at the end, the supremum over α ∈ Aπ
t,T , we obtain that

Wπ(t, x) ≥ sup
α∈Aπ

t,T

inf
β∈Bπ

t,T

E
[
Jπ(t, x;α,β)

]
.

This proves the statement for Wπ(t, x); that for Uπ(t, x) can be proved similarly.
�

At the end of this section, let us still consider the Hölder continuity of the lower
and the upper value functions along the partition with respect to the time.

PROPOSITION 3.2. Under our standard assumptions there exists a constant C

which is independent of the underlying partition π of the interval [0, T ], such that∣∣Wπ(t, x) − Wπ(s, x)
∣∣+ ∣∣Uπ(t, x) − Uπ(s, x)

∣∣ ≤ C|t − s|1/2,
(3.22)

s, t ∈ [0, T ], x ∈ Rd.

PROOF. We restrict ourselves to the proof for Wπ ; that for Uπ is analogous.
Step 1. Given a partition π of the interval [0, T ], let us suppose that 0 ≤ t < s ≤

T and fix arbitrarily ε > 0. From the proof of Proposition 3.1, we know that there
exists αε ∈ Aπ

t,T such that, for all β ∈ Bπ
t,T ,

Wπ(t, x) ≤ E
[
Jπ (t, x;αε,β

)]+ ε.(3.23)

For any fixed v0 ∈ V we let v0
1 := v0I[t,s). Then, for v2 ∈ Vπ

s,T , v0
1 ⊕v2 := v0I[t,s)+

v2I[s,T ] ∈ Vπ
t,T , and α̃ε(v2) := αε(v0

1 ⊕ v2)|[s,T ] ∈ Uπ
s,T . Moreover, it can be easily
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checked that such defined mapping α̃ε belongs to Aπ
s,T . Again from the proof of

Proposition 3.1, it follows that there is β̃ε ∈ Bπ
s,T such that

Wπ(s, x) ≥ E
[
Jπ (s, x; α̃ε, β̃ε)]− ε.(3.24)

Let (uε
2, v

ε
2) ∈ Uπ

s,T × Vπ
s,T be associated with (α̃ε, β̃ε) through Lemma 2.1:

α̃ε(vε
2) = uε

2, β̃
ε(uε

2) = vε
2, ds dP -a.e. on [s, T ] × 	.

On the other hand, let us define βε(u) := v0
1 ⊕ β̃ε(u|[s,T ]), u ∈ Uπ

t,T . Obviously,

βε ∈ Bπ
t,T . Putting uε := αε(v0

1 ⊕ vε
2) ∈ Uπ

t,T , we deduce from the fact uε|[s,T ] =
αε(v0

1 ⊕ vε
2)|[s,T ] = α̃ε(vε

2) = uε
2, that (uε, vε := v0

1 ⊕ vε
2) ∈ Uπ

t,T × Vπ
t,T satisfies

αε(vε) = uε and
(3.25)

βε(uε) = v0
1 ⊕ β̃ε(uε

2
) = v0

1 ⊕ vε
2 = vε,

over the interval [t, T ], while over the smaller interval [s, T ] it holds

α̃ε(vε|[s,T ]
) = α̃ε(vε

2
) = uε

2 = uε|[s,T ] and
(3.26)

β̃ε(uε|[s,T ]
) = β̃ε(uε

2
) = vε

2 = vε|[s,T ].
Consequently, from the relation (3.23) and (3.24) it follows that

Wπ(t, x) ≤ E
[
Jπ (t, x;uε, vε)]+ ε,

(3.27)
Wπ(s, x) ≥ E

[
Jπ (s, x;uε, vε)]− ε,

from where

Wπ(t, x) − Wπ(s, x)

≤ E
[
Jπ (t, x;uε, vε)− Jπ (s, x;uε, vε)]+ 2ε(3.28)

≤ E
[∣∣Y t,x;uε,vε

s − Y s,x;uε,vε

s

∣∣]+ ∣∣E[
Y

t,x;uε,vε

t − Y t,x;uε,vε

s

]∣∣+ 2ε.

We emphasize that, if s /∈ π , unlike the classical Markovian case we do not have

here that Y t,x;uε,vε

s = Y
s,X

t,x;uε,vε

s ;uε,vε

s = Jπ(s,Xt,x;uε,vε

s ;uε, vε). Indeed, here,
if s ∈ (tj−1, tj ), then Xt,x;uε,vε

s is Fπ
s−-measurable, where Fπ

s− = FB
s ∨ Hj �

FB
s ∨ Hj−1 = F̃π

s−, where the BSDE is considered with respect to the filtration
F̃π . However, from the both BSDEs⎧⎪⎨⎪⎩

dY t,x;u,v
r = −E

[
f
(
r,Xt,x;u,v

r , Y t,x;u,v
r ,Zt,x;u,v

r , ur , vr

)|F̃π
r

]
dr

+ Zt,x;u,v
r dBr + dMt,x;u,v

r ,

Y
t,x;u,v
T = E

[
�
(
X

t,x;u,v
T

)|F̃π
T −

](3.29)

and ⎧⎪⎨⎪⎩
dY s,x;u,v

r = −E
[
f
(
r,Xs,x;u,v

r , Y s,x;u,v
r ,Zs,x;u,v

r , ur, vr

)|F̃π
r

]
dr

+ Zs,x;u,v
r dBr + dMs,x;u,v

r ,

Y
s,x;u,v
T = E

[
�
(
X

s,x;u,v
T

)|F̃π
T −

]
,

(3.30)
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both studied over the time interval [s, T ], we deduce with standard BSDE esti-
mates that (or, refer to [5])

E
[∣∣Y t,x;uε,vε

s − Y s,x;uε,vε

s

∣∣2]
≤ CE

[
sup

r∈[s,T ]
∣∣Xt,x;uε,vε

r − Xs,x;uε,vε

r

∣∣2](3.31)

≤ CE
[∣∣Xt,x;uε,vε

s − x
∣∣2] ≤ C(s − t)

(Recall that the coefficients σ and b are bounded and Lipschitz). Thus, from
BSDE (2.3), the boundedness of f (s, x, y,0, u, v), the Lipschitz continuity of
f (s, x, y, z, u, v) in z as well as (2.4),

Wπ(t, x) − Wπ(s, x)

≤ E
[∣∣Y t,x;uε,vε

s − Y s,x;uε,vε

s

∣∣]+ ∣∣E[
Y

t,x;uε,vε

t − Y t,x;uε,vε

s

]∣∣+ 2ε

≤ C(s − t)1/2 + 2ε
(3.32)

+ (s − t)1/2
(
E

[∫ s

t

∣∣f (
r,Xt,x;uε,vε

r , Y t,x;uε,vε

r ,Zt,x;uε,vε

r ,

uε
r , v

ε
r

)∣∣2 dr

])1/2

≤ C|s − t |1/2 + 2ε,

for some constant C not depending on π and on ε. Thus, in virtue of the arbitrari-
ness of ε > 0 we have

Wπ(t, x) − Wπ(s, x) ≤ C|s − t |1/2.

Step 2. Now, for the same partition π , and the case 0 ≤ t < s ≤ T , we make
a lower estimate for Wπ(t, x) − Wπ(s, x). For this we notice that, for arbitrarily
given ε > 0 we can find α̃ε ∈ Aπ

s,T such that, for all β̃ ∈ Bπ
s,T ,

Wπ(s, x) ≤ E
[
Jπ (s, x; α̃ε, β̃

)]+ ε.(3.33)

For any fixed u0 ∈ U we put u0
1 := u0I[t,s), and we define αε ∈ Aπ

t,T by setting

αε(v) := u0
1 ⊕ α̃ε(v|[s,T ]), v ∈ Vπ

t,T . Let βε ∈ Bπ
t,T such that

Wπ(t, x) ≥ E
[
Jπ (t, x;αε,βε)]− ε,(3.34)

and let (uε, vε) ∈ Uπ
t,T × Vπ

t,T be associated with (αε, βε) through Lemma 2.1. On

the other hand, by defining β̃ε ∈ Bπ
s,T by putting β̃ε(u2) = βε(u0

1 ⊕ u2)|[s,T ], u2 ∈
Uπ

s,T , it can be easily verified that (uε|[s,T ], vε|[s,T ]) ∈ Uπ
s,T × Vπ

s,T is associated with
(α̃ε, β̃ε) in the sense of Lemma 2.1. Consequently,

Wπ(s, x) ≤ E
[
Jπ (s, x;uε, vε)]+ ε,

(3.35)
Wπ(t, x) ≥ E

[
Jπ (t, x;uε, vε)]− ε,
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and we can proceed now in analogy to step 1 to deduce that

Wπ(t, x) − Wπ(s, x) ≥ −C|s − t |1/2.

Combining this result with that of step 1 we complete the proof. �

4. Value in mixed strategies and associated HJB–Isaacs equation. The ob-
jective of this section is to study the limit of the lower and the upper value functions
Wπ and Uπ along a partition π , when the mesh of the partition π tends to zero,
and to show that both Wπ and Uπ converge uniformly on compacts to the same
limit function V which is the unique viscosity solution of the following Hamilton–
Jacobi–Bellman–Isaac equation⎧⎨⎩

∂

∂t
V (t, x) + H

(
t, x,

(
V,DV,D2V

)
(t, x)

) = 0 (t, x) ∈ [0, T ) × Rd ,

V (T , x) = �(x), x ∈ Rd ,
(4.1)

with Hamiltonian

H(t, x, y,p,A)

= sup
μ∈P(U)

inf
ν∈P(V )

(4.2)

×
∫
U×V

(
1

2
tr
(
σσT (t, x, u, v)A

)+ b(t, x, u, v)p

+ f
(
t, x, y,p · σ(t, x, u, v), u, v

))
μ ⊗ ν(dudv),

(t, x, y,p,A) ∈ [0, T ] × Rd × R × Rd × Sd , where Sd denotes the space of sym-
metric matrices from Rd×d . For this we need the following supplementary as-
sumption which is coherent with our standard assumptions on the coefficients σ, b

and f .

CONDITION 4.1. We suppose that either

• σ(s, x,u, v) = σ(s, x), (s, x, u, v) ∈ [0, T ]×Rd ×U ×V is independent of the
controls; or

• f (s, x, y, z, u, v) is linear in z:

f (s, x, y, z, u, v) = f0(s, x, y,u, v) + f1(s)z,

(s, x, y, z, u, v) ∈ [0, T ]×Rd ×R×Rd ×U ×V , where f0 = (f0(s, x, y,u, v)) :
[0, T ] × Rd × R × U × V → R bounded, jointly continuous and Lipschitz in
(x, y), uniformly with respect to (s, u, v), and f1 : [0, T ] → Rd is continuous.

More precisely, we have the following theorem.
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THEOREM 4.1. Under our standard assumptions on the coefficients σ, b, f

and � as well as Condition 4.1, we have the existence of a bounded, continuous
function V : [0, T ]×Rd → R such that, for every sequence of partitions πn, n ≥ 1,
of the interval [0, T ] with mesh |πn| → 0, as n → +∞, Wπn → V , and Uπn →
V , uniformly on compacts, as n → +∞. Moreover, V is the viscosity solution of
PDE (4.1), unique in the class of continuous functions with polynomial growth.

For the convenience of the reader, we recall briefly the definition of a viscosity
solution, which we give directly for PDE (4.1). The reader interested in a more
detailed description of the concept of viscosity solution is referred to the overview
paper by Crandall, Ishii and Lions [6].

DEFINITION 4.1. A function V ∈ C([0, T ] × Rd) is said to be:
(i) a viscosity subsolution of PDE (4.1), if, first, V (T , x) ≤ �(x), x ∈ Rd , and

if, second, for any (t, x) ∈ [0, T )×Rd and any test function ϕ ∈ C1,2([0, T ]×Rd)

such that V − ϕ achieves a local maximum at (t, x), it holds

∂

∂t
ϕ(t, x) + H

(
t, x,

(
ϕ,∇ϕ,D2ϕ

)
(t, x)

) ≥ 0;(4.3)

(ii) a viscosity supersolution of PDE (4.1), if, first, V (T , x) ≥ �(x), x ∈ Rd , and
if, second, for any (t, x) ∈ [0, T )×Rd and any test function ϕ ∈ C1,2([0, T ]×Rd)

such that V − ϕ achieves a local minimum at (t, x), it holds

∂

∂t
ϕ(t, x) + H

(
t, x,

(
ϕ,∇ϕ,D2ϕ

)
(t, x)

) ≤ 0;(4.4)

(iii) a viscosity solution of (4.1) if it is both a viscosity sub- but also a viscosity
supersolution of (4.1).

REMARK 4.1. Let us point out that in Definition 4.1 the space C1,2([0, T ] ×
Rd) of the test functions can be replaced by any subspace containing C∞([0, T ]×
Rd), as long as one can show the uniqueness with the help of C∞-test functions, as,
for instance, done in [6]. Thus, our uniqueness results allows to restrict to a class
of test functions, more adapted for our computations, the space C3([0, T ] × Rd)

of functions which are three times continuous differentiable with respect to (t, x).
On the other hand, taking into account the uniform boundedness of the functions
Wπ,Uπ and, hence, also of V , the standard argument of changing a test function
ϕ ∈ C3([0, T ] × Rd) such that V − ϕ achieves a local extremum at (t, x), at the
exterior of a small ball around (t, x), allows to consider only test functions ϕ ∈
C3


,b([0, T ] × Rd), that is, C3-functions with bounded derivatives of orders 1, 2
and 3 (and which themselves have, consequently, a linear growth).

Following the arguments developed, for example, in Strömberg [19] Theorem 5,
we have the following comparison principle.
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PROPOSITION 4.1. Let us suppose our standard assumptions on the coef-
ficients σ, b, f and �, and let V1,V2 : [0, T ] × Rd → R be continuous func-
tions having a growth not exceeding that of exp{γ |x|}, for some γ > 0. Then, if
V1 is a viscosity subsolution and V2 a viscosity supersolution of (4.1), we have
V1(t, x) ≤ V2(t, x), (t, x) ∈ [0, T ] × Rd .

REMARK 4.2. Let us emphasize that the condition of exponential growth is
optimal for the uniqueness of the continuous viscosity solution, as long as σ is
bounded; this is the case due to our assumptions. However, the assumption of
bounded coefficients and so, in particular, that of σ , has been imposed in order to
simplify our argument. Our approach can be extended without major difficulties
to coefficients σ of linear growth. In this case the class of continuous functions V

within which one has the uniqueness of the viscosity solution is smaller than that
of the above Proposition 4.1; it’s that of V such that, for some γ > 0,

lim|x|→+∞V (t, x) exp
{−γ

(
log

(|x| + 1
))2} = 0

(4.5)
uniformly with respect to t ∈ [0, T ];

see, for example, [3].

As a direct consequence of this comparison principle, we have the following
corollary.

COROLLARY 4.1. PDE (4.1) has at most one continuous viscosity solution
V : [0, T ]×Rd → R with exponential growth, that is, satisfying the condition that,
for suitable γ > 0,

lim|x|→+∞V (t, x) exp{−γ |x|} = 0

(4.6)
uniformly with respect to t ∈ [0, T ].

In particular, uniqueness holds within the class of continuous functions with poly-
nomial growth.

All what follows will be devoted to the proof of Theorem 4.1. The proof will be
given through a sequel of auxiliary results.

Let us begin by choosing an arbitrary sequence of partitions πn := {0 = tn0 <

tn1 < · · · < tnNn
= T }, n ≥ 1, of the interval [0, T ] such that |πn| := sup1≤i≤Nn

(ti −
ti−1) → 0, as n → +∞. Then, from Lemma 3.2 and Proposition 3.2, we see that
the family of functions (Wπn,Uπn), n ≥ 1, is uniformly Lipschitz in x, uniformly
with respect to t , and Hölder continuous in t , uniformly with respect to x. Con-
sequently, the following result follows from the Arzelà–Ascoli theorem combined
with a standard diagonalization argument.
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LEMMA 4.1. There exists a subsequence of partitions, which we denote again
by (πn)n≥1, as well as bounded continuous functions W,U : [0, T ]×Rd → R such
that (Wπn,Uπn) → (W,U), uniformly on compacts in [0, T ] × Rd . Moreover,∣∣W(t, x) − W

(
t ′, x′)∣∣+ ∣∣U(t, x) − U

(
t ′, x′)∣∣ ≤ C

(∣∣t − t ′
∣∣1/2 + ∣∣x − x′∣∣),(4.7)

(t, x), (t ′, x′) ∈ [0, T ] × Rd , where C is a constant which does not depend on the
choice of the sequence of partitions πn,n ≥ 1.

Although the functions W,U given by the above lemma depend a priori on the
choice of the sequence of partitions πn,n ≥ 1, as well as on the subsequence with
respect to which (Wπn,Uπn) converges, we will show later that W,U are universal
and coincide even.

Inspired by the approach in [3] we put, for some arbitrarily chosen but fixed
ϕ ∈ C3


,b([0, T ] ×Rd),

F(s, x, y, z, u, v) = f
(
s, x, y + ϕ(s, x), z + Dϕ(s, x) · σ(s, x,u, v), u, v

)
(4.8)

+Lϕ(s, x,u, v),

(s, x, y, z, u, v) ∈ [0, T ] ×Rd ×R×Rd × U × V , where

Lϕ(s, x,u, v)
(4.9)

:= ∂

∂s
ϕ(s, x) + 1

2
tr
(
σσT (s, x, u, v)D2ϕ

)+ Dϕ · b(s, x,u, v).

Let us now fix arbitrarily (t, x) ∈ [0, T ) × Rd . Given an arbitrary partition
π = {0 = t0 < t1 < · · · < tn = T }, we let 1 ≤ j ≤ n be such that t < tj . Let us
investigate the following BSDE defined on the interval [t, tj ] :

dY 1,u,v
s = −E

[
Lϕ

(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
ds

− E
[
f
(
s,Xt,x;u,v

s , Y 1,u,v
s + E

[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

]
,Z1,u,v

s

+ E
[∇ϕ

(
s,Xt,x;u,v

s

)
σ
(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
, us, vs

)|F̃π
s

]
ds(4.10)

+ Z1,u,v
s dBs + dM1,u,v

s ,

Y
1,u,v
tj

= 0,M1,u,v martingale orthogonal to B,M
1,u,v
t = 0,

where the process Xt,x;u,v is the unique solution of SDE (2.1) and (u, v) ∈ Uπ
t,tj

×
Vπ

t,tj
.

It can be easily verified that (or, refer to [5]), under our standard assump-
tions on the coefficients σ, b and f , the above BSDE has a unique solution
(Y 1,u,v,Z1,u,v,M1,u,v) over the time interval [t, tj ].

We have the following relation between the solution Y 1,u,v and the backward
stochastic semigroup G

t,x;u,v
s,tj

[ϕ(tj ,X
t,x;u,v
tj

)]:
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LEMMA 4.2. For every s ∈ [t, tj ], it holds

Y 1,u,v
s = G

t,x;u,v
s,tj

[
ϕ
(
tj ,X

t,x;u,v
tj

)]− E
[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

]
, P -a.s.,(4.11)

and in particular, for s = t ,

Y
1,u,v
t = G

t,x;u,v
t,tj

[
ϕ
(
tj ,X

t,x;u,v
tj

)]− ϕ(t, x), P -a.s.(4.12)

PROOF. Recall that G
t,x;u,v
s,tj

[ϕ(tj ,X
t,x;u,v
tj

)] is defined through the BSDE⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dYu,v

s = −E
[
f
(
s,Xt,x;u,v

s , Y u,v
s ,Zu,v

s , us, vs

)|F̃π
s

]
ds

+ Zu,v
s dBs + dMu,v

s ,

Y
u,v
tj

= E
[
ϕ
(
tj ,X

t,x;u,v
tj

)|F̃π
tj

]
, s ∈ [t, tj ],

Mu,v square integrable martingale, orthogonal to B,M
u,v
t = 0,

(4.13)

by the relation:

G
t,x;u,v
s,tj

[
ϕ
(
tj ,X

t,x;u,v
tj

)] = Yu,v
s , s ∈ [t, tj ].(4.14)

We notice that, since Xt,x;u,v is Fπ -adapted, we have

E
[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

] = E
[
ϕ
(
s,Xt,x;u,v

s

)|FB
T ∨H
−1

]
,(4.15)

s ∈ [t ∨ t
−1, t ∨ t
),1 ≤ 
 ≤ j . Hence, with the help of the Itô formula we obtain
on each interval [t ∨ t
−1, t ∨ t
),1 ≤ 
 ≤ j ,

dE
[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

]
= E

[
Lϕ

(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
ds(4.16)

+ E
[∇ϕ

(
s,Xt,x;u,v

s

)
σ
(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
dBs.

Let us put

Ms := ∑

 : t<t
≤s


E
[
ϕ
(
t
,X

t,x;u,v
t


)|F̃π
t


]
, s ∈ [t, tj ],

with


E
[
ϕ
(
t
,X

t,x;u,v
t


)|F̃π
t


] = E
[
ϕ
(
t
,X

t,x;u,v
t


)|F̃π
t


]− E
[
ϕ
(
t
,X

t,x;u,v
t


)|F̃π
t
−

]
.

Obviously, M is a pure jump martingale with respect to the filtration FB and,
hence, orthogonal to B , and

dE
[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

]
= E

[
Lϕ

(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
ds

(4.17)
+ E

[∇ϕ
(
s,Xt,x;u,v

s

)
σ
(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
dBs + dMs,

s ∈ [t, tj ].
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Consequently, (Y u,v
s − E[ϕ(s,Xt,x;u,v

s )|F̃π
s ],Zu,v

s − E[∇ϕ(s,Xt,x;u,v
s )σ (s,

Xt,x;u,v
s , us, vs)|F̃π

s ],Mu,v
s − Ms), t ≤ s ≤ tj , is a solution of BSDE (4.10). From

its uniqueness, we can conclude the statement of the lemma. �

Let us now simplify the preceding BSDE (4.10) by replacing the process
Xt,x;u,v by its initial value x. Then BSDE (4.10) takes the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dY 2,u,v
s = −E

[
F
(
s, x, Y 2,u,v

s ,Z2,u,v
s , us, vs

)|F̃π
s

]
ds

+ Z2,u,v
s dBs + dM2,u,v

s ,

Y
2,u,v
tj

= 0, s ∈ [t, tj ],
Mu,v square integrable martingale, orthogonal to B,M

u,v
t = 0,

(4.18)

where (u, v) ∈ Uπ
t,tj

× Vπ
t,tj

. As in the discussion of BSDE (4.10) we see that the
above BSDE has a unique solution. From the BSDEs (4.10) and (4.18), we have
the following lemma.

LEMMA 4.3. For every (u, v) ∈ Uπ
t,tj

× Vπ
t,tj

we have∣∣Y 1,u,v
t − Y

2,u,v
t

∣∣ ≤ C(tj − t)3/2, P -a.s.,(4.19)

where C is independent of the control processes u and v, but also independent of
the partition π .

PROOF. Let (u, v) ∈ Uπ
t,tj

× Vπ
t,tj

. Then, for all s ∈ [t, tj ], thanks to Condi-
tion 4.1,

E
[
Lϕ(s, x,us, vs)

+ f
(
s, x, y + ϕ(s, x), z + E

[∇ϕ(s, x)σ (s, x, us, vs)|F̃π
s

]
, us, vs

)|F̃π
s

]
= E

[
Lϕ(s, x,us, vs)(4.20)

+ f
(
s, x, y + ϕ(s, x), z + ∇ϕ(s, x)σ (s, x, us, vs), us, vs

)|F̃π
s

]
= E

[
F(s, x, y, z, us, vs)|F̃π

s

]
, P -a.s.

Consequently, we have to compare the solution of BSDE (4.10)

dY 1,u,v
s

= −E
[
Lϕ

(
s,Xt,x;u,v

s , us, vs

)
+ f

(
s,Xt,x;u,v

s , Y 1,u,v
s + E

[
ϕ
(
s,Xt,x;u,v

s

)|F̃π
s

]
,Z1,u,v

s(4.21)

+ E
[∇ϕ

(
s,Xt,x;u,v

s

)
σ
(
s,Xt,x;u,v

s , us, vs

)|F̃π
s

]
, us, vs

)|F̃π
s

]
ds

+ Z1,u,v
s dBs + dM1,u,v

s , Y
1,u,v
tj

= 0,
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with that of BSDE (4.18) which can be rewritten as

dY 2,u,v
s = −E

[
Lϕ(s, x,us, vs)

+ f
(
s, x, Y 2,u,v

s + E
[
ϕ(s, x)|F̃π

s

]
,Z2,u,v

s
(4.22)

+ E
[∇ϕ(s, x)σ (s, x, us, vs)|F̃π

s

]
, us, vs

)|F̃π
s

]
ds

+ Z2,u,v
s dBs + dM2,u,v

s , Y
2,u,v
tj

= 0,

and from BSDE standard estimates we deduce∣∣Y 1,u,v
t − Y

2,u,v
t

∣∣2 + E

[∫ tj

t

∣∣Z1,u,v
r − Z2,u,v

r

∣∣2 dr
∣∣∣F̃π

t

]
+ E

[ ∑

≤j ;t<t


∣∣
M
1,u,v
t


− 
M
2,u,v
t


∣∣2∣∣∣F̃π
t

]
(4.23)

≤ CE

[(∫ tj

t

∣∣Xt,x;u,v
r − x

∣∣dr

)2∣∣∣F̃π
t

]
≤ C(tj − t)3, P -a.s.,

where the constant C depends only on the boundedness and Lipschitz constants of
the coefficients and the derivatives of ϕ, but not on j nor the considered partition π .

�

Let us now state the following crucial lemma which, although inspired by
Lemma 4.3 in [3], differs heavily because of the different framework studied here.

LEMMA 4.4. Let Y 0 = (Y 0
s )s∈[t,tj ] denote the unique solution of the following

ordinary backward differential equation:{−Ẏ 0
s = F0

(
s, x, Y 0

s ,0
)
, s ∈ [t, tj ],

Y 0
tj

= 0,
(4.24)

where, for (s, y, z) ∈ [t, tj ] × R × Rd ,

F0(s, x, y, z) := sup
μ∈P(U)

(
inf
v∈V

F (s, x, y, z,μ, v)
)

= sup
μ∈P(U)

(
inf

ν∈P(V )
F (s, x, y, z,μ, ν)

)
(4.25)

×
(
= inf

ν∈P(V )
sup

μ∈P(U)

F (s, x, y, z,μ, ν)
)
.

Then, for all s ∈ [t, tj ], P -a.s.,

Y 0
s = ess sup

u∈Uπ
t,tj

ess inf
v∈Vπ

t,tj

Y 2,u,v
s = ess inf

v∈Vπ
t,tj

ess sup
u∈Uπ

t,tj

Y 2,u,v
s .(4.26)
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PROOF. Step 1. Given (u, v) ∈ Uπ
t,tj

× Vπ
t,tj

, let (Y 2,u,v,Z2,u,v,M2,u,v) be the
unique solution of BSDE (4.18). We recall that, for all s ∈ [t ∨ t
−1, t
), (1 ≤ 
 ≤
j), (Y 2,u,v

s ,Z2,u,v
s ,M2,u,v

s ) is F̃π
s (= FB

s ∨H
−1)-measurable, us is Fπ,1
s (= FB

s ∨
H
−1 ∨ σ {ζ
,1})-measurable and vs is Fπ,2

s (= FB
s ∨H
−1 ∨ σ {ζ
,2})-measurable.

Consequently, knowing F̃π
s , us and vs are conditionally independent, and defining

μu
s (A) := P

{
us ∈ A|F̃π

s

}
, νv

s (B) := P
{
vs ∈ B|F̃π

s

}
,

A ∈ B(U),B ∈ B(V ),

we have

E
[
F
(
s, x, Y 2,u,v

s ,Z2,u,v
s , us, vs

)|F̃π
s

]
= F

(
s, x, Y 2,u,v

s ,Z2,u,v
s ,μu

s , ν
v
s

)
(4.27)

×
(
:=

∫
U×V

F
(
s, x, Y 2,u,v

s ,Z2,u,v
s , u′, v′)μu

s ⊗ νv
s

(
du′ dv′)).

Indeed, this relation can be easily checked by considering first instead of
F(s, x,Y 2,u,v

s ,Z2,u,v
s , us, vs) integrands of the form ξsf1(us)f2(vs), ξs ∈ L∞(	,

F̃π
s ,P ) and f1, f2 bounded Borel functions over U and V , respectively, and ap-

plying later a Monotonic Class theorem.
Hence, with the notation F(s, x, y, z,μ, v) := ∫

U F(s, x, y, z, u′, v)μ(du′),
μ ∈ P(U), and with putting

F1(s, x, y, z,μ) := inf
v∈V

F (s, x, y, z,μ, v)
(
= inf

ν∈P(V )
F (s, x, y, z,μ, ν)

)
,

(s, y, z,μ) ∈ [0, T ] × R × Rd ×P(U), we obtain

E
[
F
(
s, x, Y 2,u,v

s ,Z2,u,v
s , us, vs

)|F̃π
s

]
=

∫
V

F
(
s, x, Y 2,u,v

s ,Z2,u,v
s ,μu

s , v
′)νv

s

(
dv′)(4.28)

≥ F1
(
s, x, Y 2,u,v

s ,Z2,u,v
s ,μu

s

)
, ds dP -a.e.

Consequently, denoting by (Y 3,u,Z3,u,M3,u) ∈ S2
F̃π (t, tj ;R) × L2

F̃π (t, tj ;
Rd) ×M2

F̃π (t, tj ;R) the unique solution of the BSDE⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dY 3,u

s = −F1
(
s, x, Y 3,u

s ,Z3,u
s ,μu

s

)
ds

+ Z3,u
s dBs + dM3,u

s , s ∈ [t, tj ],
Y

3,u
tj

= 0,

M3,u square integrable martingale, orthogonal to B,M
3,u
t = 0,

(4.29)

we deduce from the comparison theorem for BSDEs (refer to [5], for classical
case it can be referred to [18], or [3]) that Y 2,u,v

s ≥ Y 3,u
s , s ∈ [t, tj ], P -a.s., for all

v ∈ Vπ
t,tj

. For this, we observe that F1(s, x, y, z,μ) is a jointly continuous function
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over [0, T ] × Rd × R × Rd ×P(U), which is Lipschitz in (y, z), uniformly with
respect to (s, x,μ). Thus, taking into account the arbitrariness of v ∈ Vπ

t,tj
, we

deduce

Y 3,u
s ≤ ess inf

v∈Vπ
t,tj

Y 2,u,v
s , P -a.s, s ∈ [t, tj ].(4.30)

Let us show that we have even equality in the above inequality. For this we
observe that, since the function F is continuous over [t, tj ] × Rd × R × Rd ×
P(U)×V , there exists a Borel measurable function v∗ : [t, tj ]×R×Rd ×P(U) →
V such that

F1(s, x, y, z,μ) = inf
v∈V

F (s, x, y, z,μ, v) = F
(
s, x, y, z,μ, v∗(s, y, z,μ)

)
,

(s, y, z,μ) ∈ [t, tj ] × R × Rd ×P(U). With the help of this measurable function,
we introduce the control process v∗

s := v∗(s, Y 3,u
s ,Z3,u

s ,μu
s ), s ∈ [t, tj ]. We notice

that v∗ = (v∗
s )s∈[t,tj ] belongs to Vπ

t,tj
and is even F̃π -adapted. Thus,

E
[
F
(
s, x, Y 3,u

s ,Z3,u
s , us, v

∗
s

)|F̃π
s

]
= F

(
s, x, Y 3,u

s ,Z3,u
s ,μu

s , v
∗
s

)
(4.31)

= F1
(
s, x, Y 3,u

s ,Z3,u
s ,μu

s

)
, ds dP -a.e.,

from where we see that (Y 3,u,Z3,u,M3,u) is a solution of BSDE (4.18) driven by
the couple (u, v∗) ∈ Uπ

t,tj
×Vπ

t,tj
of admissible controls. Consequently, the unique-

ness of the solution of BSDE (4.18) yields that Y 2,u,v∗
s = Y 3,u

s , s ∈ [t, tj ], and
from (4.30) we obtain:

Y 3,u
s = ess inf

v∈Vπ
t,tj

Y 2,u,v
s , P -a.s, s ∈ [t, tj ], u ∈ Uπ

t,tj
.(4.32)

Step 2. We begin with showing the latter relation in (4.25). For this end
we remark that, for all (s, y, z), the function (μ, ν) → F(s, x, y, z,μ, ν) =∫
U

∫
V F (s, x, y, z, u, v)ν(dv)μ(du), (μ, ν) ∈ P(U) × P(V ), is bi-linear and,

hence, concave-convex in (μ, ν) belonging to the cross product P(U) × P(V )

of two convex compact spaces. Consequently, this mapping admits a saddle point,
and it follows in particular that the order of supμ∈P(U) and infν∈P(V ) is exchange-
able without changing the value of F0(s, x, y, z).

Let us now consider an arbitrary u ∈ Uπ
t,tj

. From the definition of the function
F0(s, x, y, z) and that of F1(s, x, y, z,μ), we have

F0(s, x, y, z)

= sup
μ∈P(U)

F1(s, x, y, z,μ)(4.33)

≥ F1
(
s, x, y, z,μu

s

)
, (s, y, z) ∈ [t, tj ] × R × Rd,u ∈ Uπ

t,tj
.
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Consequently, since (Y 0,0) can be regarded as the solution of the BSDE

dY 0
s = −F0

(
s, x,Y 0

s ,0
)
ds + 0 · dBs, s ∈ [t, tj ], Y 0

tj
= 0,

we get from the comparison theorem for BSDEs that Y 0
s ≥ Y 3,u

s , s ∈ [t, tj ],P -a.s.
Hence, in view of the arbitrariness of the choice of u ∈ Uπ

t,tj
, it follows that

Y 0
s ≥ ess sup

u∈Uπ
t,tj

Y 3,u
s , P -a.s., s ∈ [t, tj ].(4.34)

It remains to prove that we have even equality in this latter relation. For this
end, we notice that thanks to the uniform continuity of the function (s, y,μ) →
F1(s, x, y,0,μ) over [t, tj ] × R × P(U) [we note that x in F1(s, x, y, 0,μ) is
fixed], and the compactness of P(U) endowed with the topology generated by the
weak convergence, we have the existence of a Borel measurable selection μ∗ =
(μ∗(s, y)) : [t, tj ] × R → P(U) such that

F0(s, x, y,0) = F1
(
s, x, y,0,μ∗(s, y)

)
, (s, y) ∈ [t, tj ] × R.

Again from the uniform continuity of (s, y,μ) → F1(s, x, y,0,μ), we get that,
for arbitrarily given ε > 0 there is some δ(= δε) > 0 such that |F1(s, x, y,0,μ) −
F1(s

′, x, y′,0,μ)| ≤ ε, for all μ ∈ P(U) and all (s, y), (s′, y′) with |(s, y) −
(s′, y′)| ≤ δ. Let (�
)
≥1 be a Borel partition of the set [t, tj ] × R, composed
of nonempty sets �
 with diameter less than or equal to δ. For every 
 ≥ 1,
let us fix arbitrarily an element (s
, y
) of �
, and let us put μ
 := μ∗(s
, y
).
Moreover, let us consider an independent sequence of random variables ξ
 ∈
L0(	,σ {ζj,1},P ;U) such that, for all 
 ≥ 1, the law P ◦[ξ
]−1 coincides with μ
.

With the above introduced quantities, we define the control process

u∗
s := ∑


≥1

I
{(

s, Y 0
s

) ∈ �


} · ξ
, s ∈ [t, tj ].

Such defined process belongs, obviously, to Uπ
t,tj

. Moreover, we observe that,

for all s ∈ [t, tj ], u∗
s is σ {ζj,1}-measurable and, consequently, independent of F̃π

s .
Hence, for all A ∈ B(U),

μu∗
s (A) = P

{
u∗

s ∈ A|F̃π
s

} = P
{
u∗

s ∈ A
}

(4.35)
= ∑


≥1

I
{(

s, Y 0
s

) ∈ �


}
μ
(A).

It follows that μu∗
s = ∑


≥1 I {(s, Y 0
s ) ∈ �
}μ
. Hence, due to our choice of the

partition �
, 
 ≥ 1,

F0
(
s, x,Y 0

s ,0
) ≤ ε + ∑


≥1

I
{(

s, Y 0
s

) ∈ �


}
F0(s
, x, y
,0)

= ε + ∑

≥1

I
{(

s, Y 0
s

) ∈ �


}
F1(s
, x, y
,0,μ
)(4.36)
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= ε + ∑

≥1

I
{(

s, Y 0
s

) ∈ �


}
F1

(
s
, x, y
,0,μu∗

s

)
≤ 2ε + F1

(
s, x, Y 0

s ,0,μu∗
s

)
, s ∈ [t, tj ].

Let us compare now Y 0 with the solution (Y 3,u∗
,Z3,u∗

) of BSDE (4.29) con-
trolled by u∗ ∈ Uπ

t,tj
. Obviously,

d
(
Y 0

s − Y 3,u∗
s

) = −(
F0

(
s, x, Y 0

s ,0
)− F1

(
s, x, Y 3,u∗

s ,Z3,u∗
s ,μu∗

s

))
ds

− Z3,u∗
s dBs − dM3,u∗

s ,

s ∈ [t, tj ], Y 0
tj

− Y
3,u∗
tj

= 0, and from the Itô formula,

d
((

Y 0
s − Y 3,u∗

s

)+)2

= −2
(
Y 0

s − Y 3,u∗
s

)+(
F0

(
s, x, Y 0

s ,0
)− F1

(
s, x, Y 3,u∗

s ,Z3,u∗
s ,μu∗

s

))
ds

(4.37)
+ ∣∣Z3,u∗

s

∣∣2I{Y 0
s − Y 3,u∗

s > 0
}
ds − 2

(
Y 0

s − Y 3,u∗
s

)+
Z3,u∗

s dBs

+ I
{
Y 0

s − Y 3,u∗
s > 0

}
d
[
M3,u∗]

s − 2
(
Y 0

s − Y 3,u∗
s

)+
dM3,u∗

s ,

and from standard estimates combined with (4.36) we get

((
Y 0

s − Y 3,u∗
s

)+)2 + E

[∫ tj

s

∣∣Z3,u∗
r

∣∣2I{Y 0
r − Y 3,u∗

r > 0
}
dr

+
∫
(s,tj ]

I
{
Y 0

r − Y 3,u∗
r > 0

}
d
[
M3,u∗]

r

∣∣∣F̃π
s

]

= 2E

[∫ tj

s

(
Y 0

r − Y 3,u∗
r

)+(
F0

(
r, x, Y 0

r ,0
)

− F1
(
r, x, Y 3,u∗

r ,Z3,u∗
r ,μu∗

r

))
dr

∣∣∣F̃π
s

]
≤ 2E

[∫ tj

s

(
Y 0

r − Y 3,u∗
r

)+(2ε + F1
(
r, x, Y 0

r ,0,μu∗
r

)
(4.38)

− F1
(
r, x, Y 3,u∗

r ,Z3,u∗
r ,μu∗

r

))
dr

∣∣∣F̃π
s

]
≤ 2E

[∫ tj

s

(
Y 0

r − Y 3,u∗
r

)+(2ε + C
∣∣Y 0

r − Y 3,u∗
r

∣∣+ C
∣∣Z3,u∗

r

∣∣)dr
∣∣∣F̃π

s

]
≤ ε2 + CE

[∫ tj

s

((
Y 0

r − Y 3,u∗
r

)+)2
dr

∣∣∣F̃π
s

]
+ 1

2
E

[∫ tj

s

∣∣Z3,u∗
r

∣∣2I{Y 0
r − Y 3,u∗

r > 0
}
dr

∣∣∣F̃π
s

]
.
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Hence, from Gronwall’s lemma, we see that, for some constant C independent
of ε, (Y 0

s − Y 3,u∗
s )+ ≤ Cε, s ∈ [t, tj ], that is,

Y 0
s ≤ Y 3,u∗

s + Cε, s ∈ [t, tj ], P -a.s.

This latter relation together with (4.34) yields

Y 0
s = ess sup

u∈Uπ
t,tj

Y 3,u
s , P -a.s., s ∈ [t, tj ].

Recalling the result of step 1 we can conclude the first relation of the lemma.
The second one follows by a symmetric argument. �

After the above auxiliary lemmas, we are now able to characterize the func-
tions W and U introduced by Lemma 4.1 as viscosity solution of PDE (4.1).

LEMMA 4.5. The functions W,U : [0, T ] × Rd → R coincide and solve
PDE (4.1) in viscosity sense.

PROOF. Step 1. Let us show in this step that the function W introduced in
Lemma 4.1 as the uniform limit on compacts of a suitable sequence of lower value
functions Wπn,n ≥ 1, is a viscosity supersolution of (4.1).

For this, we fix arbitrarily (t, x) ∈ [0, T )×Rd and we let ϕ ∈ C3

,b([0, T ]×Rd)

be such that W −ϕ ≥ W(t, x)−ϕ(t, x) = 0 on [0, T )×Rd . Let ρ > 0 be arbitrarily
small and K > 0 sufficiently large. Since Wπn,n ≥ 1, converges uniformly on
compacts to W , there is some nρ,K ≥ 1 such that, for all n ≥ nρ,K , |W(s, x′) −
Wπn(s, x′)| ≤ ρ, for every (s, x′) ∈ [0, T ]×Rd with |x′ − x| ≤ K . Then it follows
from the DPP (Theorem 3.2) that, for all n ≥ nρ,K and every tnj ∈ πn with t < tnj ≤
T ,

ϕ(t, x) + ρ = W(t, x) + ρ

≥ Wπn(t, x)(4.39)

= ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

G
t,x;α,β

t,tnj

(
Wπn

(
tnj ,X

t,x;α,β

tnj

))
.

On the other hand, taking into account that the functions Wπn,n ≥ 1, are
bounded, uniformly with respect to n ≥ 1 and W is bounded, we have, for some
constant C0 (independent of n),

Wπn
(
tnj ,X

t,x;α,β

tnj

)
≥ W

(
tnj ,X

t,x;α,β

tnj

)− ρ − 2C0I
{∣∣Xt,x;α,β

tnj
− x

∣∣ > K
}

(4.40)

≥ ϕ
(
tnj ,X

t,x;α,β

tnj

)− ρ − 2C0I
{∣∣Xt,x;α,β

tnj
− x

∣∣ > K
}
,
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for all α ∈ Aπn

t,tnj
, β ∈ Bπn

t,tnj
, and from the comparison theorem as well as BSDE

standard estimates (refer to [5]) applied to the BSDE defining our backward
stochastic semigroup we obtain

ϕ(t, x) + ρ ≥ ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

G
t,x;α,β

t,tnj

(
Wπn

(
tnj ,X

t,x;α,β

tnj

))
≥ ess sup

α∈Aπn
t,tn

j

ess inf
β∈Bπn

t,tn
j

× G
t,x;α,β

t,tnj

(
ϕ
(
tnj ,X

t,x;α,β

tnj

)− ρ − 2C0I
{∣∣Xt,x;α,β

tnj
− x

∣∣ > K
})

(4.41)
≥ ess sup

α∈Aπn
t,tn

j

ess inf
β∈Bπn

t,tn
j

G
t,x;α,β

t,tnj

(
ϕ
(
tnj ,X

t,x;α,β

tnj

))
− ess sup

α∈Aπn
t,tn

j
,β∈Bπn

t,tn
j

× L
(
E
[(

ρ + 2C0I
{∣∣Xt,x;α,β

tnj
− x

∣∣ > K
})2|F̃πn

t

])1/2
,

where the constant L depends only on the coefficient f . However, since

E
[(

ρ + 2C0I
{∣∣Xt,x;α,β

tnj
− x

∣∣ > K
})2|F̃πn

t

]
≤ 2ρ2 + 8C2

0
1

K2 E
[∣∣Xt,x;α,β

tnj
− x

∣∣2|F̃πn
t

]
(4.42)

≤ 2ρ2 + C

K2 (α,β) ∈ Aπn

t,tnj
×Bπn

t,tnj
, n ≥ 1

(Recall that the coefficients σ and b of the dynamics of the game are bounded), we
get for K := 1/ρ, for all n ≥ nρ := nρ,K ,

ϕ(t, x) + Cρ ≥ ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

G
t,x;α,β

t,tnj

(
ϕ
(
tnj ,X

t,x;α,β

tnj

))
,(4.43)

where C ∈ R is a constant independent of ρ, n and tnj . From the latter estimate, we
deduce with the help of Lemmas 4.2 and 4.3 that

Cρ ≥ ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

(
G

t,x;α,β

t,tnj

(
ϕ
(
tnj ,X

t,x;α,β

tnj

))− ϕ(t, x)
)

= ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

Y
1,α,β
t(4.44)

≥ ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

Y
2,α,β
t − C

(
tnj − t

)3/2
, P -a.s.
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Of course, as before, the quantities Y
1,α,β
t , Y

2,α,β
t have to be understood as

Y
1,u,v
t , Y

2,u,v
t for (u, v) ∈ Uπn

t,tnj
× Vπn

t,tnj
associated with (α,β) ∈ Aπn

t,tnj
× Bπn

t,tnj

through Lemma 2.1. Moreover, they are defined by Lemmas 4.2 and 4.3 for tj = tnj ,
that is, they depend on the choice of tnj ∈ πn and so, in particular, n ≥ nρ . Obvi-
ously, since Uπn

t,tnj
can be regarded as a subset of Aπn

t,tnj
by identifying u ∈ Uπn

t,tnj
with

the NAD strategy αu(v) := u, v ∈ Vπn

t,tnj
,

Cρ + C
(
tnj − t

)3/2 ≥ ess sup
α∈Aπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

Y
2,α,β
t

≥ ess sup
u∈Uπn

t,tn
j

ess inf
β∈Bπn

t,tn
j

Y
2,u,β(u)
t

(4.45)
≥ ess sup

u∈Uπn
t,tn

j

ess inf
v∈Vπn

t,tn
j

Y
2,u,v
t

= Y 0
t , P -a.s., n ≥ nρ,

where the latter equality was stated in Lemma 4.4. Remark that here, of course, Y 0

is defined by Lemma 4.4 for tnj . Since

Y 0
s =

∫ tnj

s
F0

(
r, x, Y 0

r ,0
)
dr, s ∈ [

t, tnj
]

and F0(r, x, y,0) is bounded, continuous, and Lipschitz in y, uniformly with re-
spect to r , it follows that |Y 0

s | ≤ C(tnj − t), s ∈ [t, tnj ], and

1

tnj − t
Y 0

t = 1

tnj − t

∫ tnj

t
F0

(
r, x, Y 0

r ,0
)
dr

≥ 1

tnj − t

∫ tnj

t

(
F0(r, x,0,0) − L

∣∣Y 0
r

∣∣)dr(4.46)

≥ 1

tnj − t

∫ tnj

t
F0(r, x,0,0) dr − C

(
tnj − t

)
.

Let ρ ≤ (T − t)3/2. Since the mesh |πn| of the partition πn converges to zero
as n → +∞, we can find for n ≥ nρ large enough some tnj ∈ πn, t

n
j > t , such that

(tnj − t)3/2/2 ≤ ρ ≤ (tnj − t)3/2. Consequently, for n ≥ nρ large enough we can
conclude from (4.45) and (4.46) that

C
(
tnj − t

)1/2 ≥ 1

tnj − t
Y 0

t ≥ 1

tnj − t

∫ tnj

t
F0(r, x,0,0) dr − C

(
tnj − t

)
.
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Thus, taking the limit as ρ → 0 (and, hence, n → +∞ and tnj − t → 0), we obtain
F0(t, x,0,0) ≤ 0. But recalling the definition of F0 from Lemma 4.4, we see that

0 ≥ F0(t, x,0,0) = sup
μ∈P(U)

inf
ν∈P(V )

F (t, x, y, z,μ, ν)

= sup
μ∈P(U)

inf
ν∈P(V )

×
∫
U×V

(
∂

∂t
ϕ(t, x) + 1

2
tr
(
σσT (t, x, u, v)D2ϕ

)
(4.47)

+ Dϕ.b(t, x, u, v)

+ f
(
t, x, ϕ(t, x),Dϕ(t, x) · σ(t, x, u, v), u, v

))
μ ⊗ ν(dudv)

= ∂

∂t
ϕ(t, x) + H

(
t, x,

(
ϕ,Dϕ,D2ϕ

)
(t, x)

)
.

Therefore, W is a viscosity supersolution of PDE (4.1).
Step 2. With an argument symmetric to that developed in step 1 we show that

U is a viscosity subsolution of PDE (4.1). Since both W and U are bounded con-
tinuous solutions, W is a viscosity supersolution and U is a viscosity subsolution
of (4.1), it follows from the comparison principle (Proposition 4.1) that W ≥ U on
[0, T ] × Rd . On the other hand, (W,U) is the pointwise limit over the sequence
(Wπn,Uπn), n ≥ 1, where the lower value function Wπn along the partition πn is
less than or equal to the upper one Uπn , for all n ≥ 1. Consequently, W and U

coincide, and both are viscosity solutions of PDE (4.1). Again from the compari-
son principle it follows that this viscosity solution W = U = V is the unique one
inside the class of continuous unions with at most polynomial growth. �

The above lemma allows now to prove Theorem 4.1.

PROOF. From our above discussion, we have seen that for any arbitrary se-
quence of partitions πn,n ≥ 1, with |πn| → 0, as n → +∞, there is a subsequence
which, abusing notation, we have also denoted by πn,n ≥ 1, such that Wπn as
well as Uπn converge uniformly on compacts to the unique viscosity solution V

of PDE (4.1) (uniqueness in the class of continuous functions with polynomial
growth); see Lemma 4.5. Consequently, the limit V does not depend on the spe-
cial choice of the sequence of partitions πn,n ≥ 1. Consequently, Wπn as well as
Uπn converge uniformly on compacts to the unique viscosity solution V , for all
sequence of partitions πn,n ≥ 1 with mesh |πn| → 0, as n → +∞. The proof is
complete. �
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[14] KRASOVSKIĬ, N. N. and SUBBOTIN, A. I. (1988). Game-Theoretical Control Problems.
Springer, New York. MR0918771

[15] KRYLOV, N. V. (2012). On the dynamic programming principle for uniformly non-degenerate
stochastic differential games in domains. Available at http://arxiv.org/abs/1205.0048.

[16] KRYLOV, N. V. (2012). On the dynamic programming principle for uniformly non-degenerate
stochastic differential games in domains and the Isaacs equations. Available at http://arxiv.
org/abs/1205.0050.

[17] PARDOUX, É. and PENG, S. G. (1990). Adapted solution of a backward stochastic differential
equation. Systems Control Lett. 14 55–61. MR1037747

[18] PENG, S. (1997). BSDE and Stochastic Optimizations; Topics in Stochastic Analysis (J. Yan,
S. Peng, S. Fang and L. Wu, eds.). Science Press, Beijing.

[19] STRÖMBERG, T. (2008). Exponentially growing solutions of parabolic Isaacs’ equations.
J. Math. Anal. Appl. 348 337–345. MR2449351

[20] SUBBOTIN, A. I. and CHENTSOV, A. G. (1981). Optimizatsiya Garantii v Zadachakh Up-
ravleniya. Nauka, Moscow. MR0640268

http://www.ams.org/mathscinet-getitem?mr=2800786
http://www.ams.org/mathscinet-getitem?mr=2086176
http://www.ams.org/mathscinet-getitem?mr=2373477
http://www.ams.org/mathscinet-getitem?mr=3111671
http://www.ams.org/mathscinet-getitem?mr=1118699
http://www.ams.org/mathscinet-getitem?mr=2814482
http://www.ams.org/mathscinet-getitem?mr=0997385
http://www.ams.org/mathscinet-getitem?mr=1752678
http://www.ams.org/mathscinet-getitem?mr=0210469
http://www.ams.org/mathscinet-getitem?mr=1640352
http://www.ams.org/mathscinet-getitem?mr=0918771
http://arxiv.org/abs/1205.0048
http://arxiv.org/abs/1205.0050
http://www.ams.org/mathscinet-getitem?mr=1037747
http://www.ams.org/mathscinet-getitem?mr=2449351
http://www.ams.org/mathscinet-getitem?mr=0640268
http://arxiv.org/abs/1205.0050


1768 R. BUCKDAHN, J. LI AND M. QUINCAMPOIX
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