LARGE DEVIATIONS FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT

By Olivier Garet and Régine Marchand
Université de Lorraine

Abstract

The asymptotic shape theorem for the contact process in random environment gives the existence of a norm μ on \mathbb{R}^{d} such that the hitting time $t(x)$ is asymptotically equivalent to $\mu(x)$ when the contact process survives. We provide here exponential upper bounds for the probability of the event $\left\{\frac{t(x)}{\mu(x)} \notin[1-\varepsilon, 1+\varepsilon]\right\}$; these bounds are optimal for independent random environment. As a special case, this gives the large deviation inequality for the contact process in a deterministic environment, which, as far as we know, has not been established yet.

1. Introduction. Durrett and Griffeath [8] proved that when the contact process on \mathbb{Z}^{d} starting from the origin survives, the set of sites occupied before time t satisfies an asymptotic shape theorem, as in first-passage percolation. In [11], we extended this result to the case of the contact process in a random environment.

The random environment is given by a collection $\left(\lambda_{e}\right)_{e \in \mathbb{E}^{d}}$ of positive random variables indexed by the set of edges of the grid \mathbb{Z}^{d}. Given a realization λ of this environment, the contact process $\left(\xi_{t}^{0}\right)_{t \geq 0}$ in the environment λ is a homogeneous Markov process taking its values in the set $\mathcal{P}\left(\mathbb{Z}^{d}\right)$ of subsets of \mathbb{Z}^{d}. If $\xi_{t}^{0}(z)=1$, we say that z is occupied at time t, while if $\xi_{t}^{0}(z)=0$, we say that z is empty at time t. The initial value of the process is $\{0\}$, and the process evolves as follows:

- an occupied site becomes empty at rate 1 ;
- an empty site z becomes occupied at rate $\sum_{\left\|z-z^{\prime}\right\|_{1}=1} \xi_{t}^{0}\left(z^{\prime}\right) \lambda_{\left\{z, z^{\prime}\right\}}$,
all these evolutions being independent. We study then the hitting time $t(x)$ of a site x

$$
t(x)=\inf \left\{t \geq 0: x \in \xi_{t}^{0}\right\}
$$

In [11], we proved that under good assumptions on the random environment, there exists an asymmetric norm μ on \mathbb{R}^{d} such that for almost every environment, the family $(t(x))_{x \in \mathbb{Z}^{d}}$ satisfies, when $\|x\|_{1}$ goes to $+\infty$,

$$
\lim _{\|x\|_{1} \rightarrow+\infty} \frac{t(x)}{\mu(x)}=1 \quad \text { in the event "the process survives." }
$$

[^0]We focus here on the large deviations of the hitting time $t(x)$ for the contact process in random environment. As far as we know, such inequalities for the classical contact process have not been studied yet. They will be contained in our results.

The assumptions we will require on the random environment are the ones we already needed in [11]. We denote by $\lambda_{c}\left(\mathbb{Z}^{d}\right)$ the critical intensity of the classical contact process on \mathbb{Z}^{d}, we fix $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ such that

$$
\lambda_{c}\left(\mathbb{Z}^{d}\right)<\lambda_{\min } \leq \lambda_{\max }
$$

and we set $\Lambda=\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]^{\mathbb{E}^{d}}$.
Assumption (E). The support of the law v of the random environment is included in $\Lambda=\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]^{\mathbb{E}^{d}}$; the law v is stationary, and if $\operatorname{Erg}(v)$ denotes the set of $x \in \mathbb{Z}^{d} \backslash\{0\}$ such that the translation along vector x is ergodic for v, then the cone generated by $\operatorname{Erg}(v)$ is dense in \mathbb{R}^{d}.

This last condition is obviously fulfilled if $\operatorname{Erg}(v)=\mathbb{Z}^{d} \backslash\{0\}$. We will sometimes require the stronger following assumptions:

ASSUMPTION $\left(\mathrm{E}^{\prime}\right)$. The law v of the random environment is a product measure: $v=v_{0}^{\otimes \mathbb{E}^{d}}$, where v_{0} is some probability measure on $\left[\lambda_{\min }, \lambda_{\max }\right]$.

By taking for v the Dirac mass $\left(\delta_{\lambda}\right)^{\otimes \mathbb{E}^{d}}$, with $\lambda>\lambda_{c}\left(\mathbb{Z}^{d}\right)$, which clearly fulfills these assumptions, we recover the case of the classical contact process in a deterministic environment.

For $\lambda \in \Lambda$, we denote by \mathbb{P}_{λ} the (quenched) law of the contact process in environment λ, and by $\overline{\mathbb{P}}_{\lambda}$ the (quenched) law of the contact process in environment λ conditioned to survive. We define then the annealed probability measures $\overline{\mathbb{P}}$ and \mathbb{P},

$$
\overline{\mathbb{P}}(\cdot)=\int_{\Lambda} \overline{\mathbb{P}}_{\lambda}(\cdot) d \nu(\lambda) \quad \text { and } \quad \mathbb{P}(\cdot)=\int_{\Lambda} \mathbb{P}_{\lambda}(\cdot) d \nu(\lambda)
$$

We will study separately the probabilities of the "upper large deviations" and the "lower large deviations," that is, respectively, of the events $\{t(x) \geq(1+\varepsilon) \mu(x)\}$ and $\{t(x) \leq(1-\varepsilon) \mu(x)\}$.

The most general result concerns the quenched "upper large deviations" for the hitting time $t(x)$ and the coupling time

$$
t^{\prime}(x)=\inf \left\{T \geq 0: \forall t \geq T, \xi_{t}^{0}(x)=\xi_{t}^{\mathbb{Z}^{d}}(x)\right\}
$$

where $\left(\xi_{t}^{\mathbb{Z}^{d}}\right)_{t \geq 0}$ is the contact process starting from \mathbb{Z}^{d}, and for the set of hit points H_{t} and the coupled region K_{t}^{\prime},

$$
\begin{array}{ll}
H_{t}=\left\{x \in \mathbb{Z}^{d}: t(x) \leq t\right\}, & \widetilde{H}_{t}=H_{t}+[0,1]^{d} \\
K_{t}^{\prime}=\left\{x \in \mathbb{Z}^{d}: t^{\prime}(x) \leq t\right\}, & \widetilde{K}_{t}^{\prime}=K_{t}^{\prime}+[0,1]^{d}
\end{array}
$$

We only require here Assumption (E).

ThEOREM 1. Let v be an environment law satisfying Assumption (E).
For every $\varepsilon>0$, there exist $B>0$ and a random variable $A(\lambda)$ such that for v almost every environment λ, for every $x \in \mathbb{Z}^{d}$,

$$
\begin{align*}
\overline{\mathbb{P}}_{\lambda}(t(x) \geq \mu(x)(1+\varepsilon)) & \leq A(\lambda) e^{-B\|x\|}, \tag{1}\\
\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x) \geq \mu(x)(1+\varepsilon)\right) & \leq A(\lambda) e^{-B\|x\|}, \tag{2}\\
\overline{\mathbb{P}}_{\lambda}\left(\forall t \geq T,(1-\varepsilon) t A_{\mu} \subset \widetilde{K}_{t}^{\prime} \cap \widetilde{H}_{t}\right) & \geq 1-A(\lambda) e^{-B T}, \tag{3}
\end{align*}
$$

where $A_{\mu}=\left\{x \in \mathbb{R}^{d} ; \mu(x) \leq 1\right\}$.
We can note that the random variable $A(\lambda)$ is almost surely finite, but that it could often be large. This question will be studied in a forthcoming paper about annealed upper large deviations [9]. The key point of the proof of Theorem 1, interesting on its own, is to control the times s when a site x is occupied and has infinite progeny. We will denote this event by $\{(0,0) \rightarrow(x, s) \rightarrow \infty\}$ by analogy with percolation.

THEOREM 2. There exist $C, \theta, A, B>0$ such that $\forall \lambda \in \Lambda \forall x \in \mathbb{Z}^{d}$

$$
\forall t \geq C\|x\| \quad \overline{\mathbb{P}}_{\lambda}(\operatorname{Leb}\{s \in[0, t]:(0,0) \rightarrow(x, s) \rightarrow \infty\} \leq \theta t) \leq A \exp (-B t)
$$

For the "lower large deviations," the subadditivity gives a nice setting and allows us to state a large deviations principle in the spirit of Hammersley [15].

THEOREM 3. Let v be an environment law satisfying Assumption (E).
Let $x \in \mathbb{Z}^{d}$. There exist a convex function Ψ_{x} and a concave function K_{x} taking their values in $[0,+\infty)$ such that for v almost every λ,

$$
\begin{aligned}
\forall u>0 & \lim _{n \rightarrow+\infty}-\frac{1}{n} \log \overline{\mathbb{P}}_{\lambda}(t(n x) \leq n u)=\Psi_{x}(u) \\
\forall \theta \geq 0 & \lim _{n \rightarrow+\infty}-\frac{1}{n} \log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta t(n x)}\right]=K_{x}(\theta) .
\end{aligned}
$$

The functions Ψ_{x} and K_{x} moreover satisfy the reciprocity relations

$$
\begin{aligned}
& \forall u>0, \forall \theta \geq 0 \\
& \Psi_{x}(u)=\sup _{\theta \geq 0}\left\{K_{x}(\theta)-\theta u\right\} \quad \text { and } \quad K_{x}(\theta)=\inf _{u>0}\left\{\Psi_{x}(u)+\theta u\right\} .
\end{aligned}
$$

To obtain effective large deviation inequalities, we moreover have to prove that $\Psi_{x}(u)>0$ if $u<\mu(x)$. More precisely, we have the following:

THEOREM 4. Let v be an environment law satisfying Assumption (E^{\prime}). For every $\varepsilon>0$, there exist $A, B>0$ such that for every $x \in \mathbb{Z}^{d}$, for every $t \geq 0$,

$$
\begin{align*}
\mathbb{P}(t(x) \leq(1-\varepsilon) \mu(x)) & \leq A \exp (-B\|x\|) \tag{4}\\
\mathbb{P}\left(\forall s \geq t, H_{s} \subset(1+\varepsilon) s A_{\mu}\right) & \geq 1-A \exp (-B t) \tag{5}
\end{align*}
$$

Note that in the previous theorems, the particular choice for the norm $\|\cdot\|$ does not matter because of the equivalence of norms.

The annealed large deviations inequalities imply the quenched ones: setting

$$
A(\lambda)=\sum_{x \in \mathbb{Z}^{d}} \exp (B\|x\| / 2) \mathbb{P}_{\lambda}(t(x) \leq(1-\varepsilon) \mu(x))
$$

we see that $A(\lambda)$ is integrable with respect to v, and thus is v-almost surely finite. So

$$
\forall x \in \mathbb{Z}^{d} \quad \mathbb{P}_{\lambda}(t(x) \leq(1-\varepsilon) \mu(x)) \leq A(\lambda) \exp (-B / 2\|x\|)
$$

Unfortunately, we do not have a complete large deviation principle as Theorem 3 for the upper large deviations. However, we will see in Section 5 that when the environment is i.i.d., the exponential order given by these inequalities is optimal.

Asymptotic shape results for growth models are generally proved thanks to the subadditive processes theory initiated by Hammersley and Welsh [16], and especially with Kingman's subadditive ergodic theorem [19] and its extensions. Since Hammersley [15], we know that subadditive properties offer a proper setting to study the large deviation inequalities. See also the survey by Grimmett [13] and the Saint-Flour course by Kingman [20]. However, as noted by Seppäläinen and Yukich [25], the general theory of large deviations for subadditive processes is patchy. The best known case is first-passage percolation, studied by Grimmett and Kesten in 1984 [14]. This paper introduced some lines of proof for the large deviations of growth processes, that have been reused later, for instance, in the study of the large deviations for the chemical distance in Bernoulli percolation [10]. For more recent results concerning first-passage percolation, see Chow and Zhang [4], Cranston, Gauthier and Mountford [6] and Théret et al. [1-3, 2224, 26, 27].

The renormalization techniques used by Grimmett and Kesten are well known now: static renormalization for "upper large deviations" (control of a too slow growth), dynamic renormalization for "lower large deviations" (control of a too fast growth). However, the possibility for the contact process to die gives rise to extra difficulties that do not appear in the case of first-passage percolation or even of Bernoulli percolation. To our knowledge, the only growth process with possible extinction for which large deviations inequalities have been established is oriented percolation in dimension 2; see Durrett [7]. Note also that Proposition 20.1 in the PhD thesis of Couronné [5] rules out the possibility of a too fast growth for oriented percolation in dimension d.

In Section 2, we construct the model, give the notation and state previous results, mainly from [11]. Section 3 is devoted to the proof of the upper large deviation inequalities, Theorem 1, while lower large deviations-Theorems 3 and 4-are proved in Section 4. Finally, the optimality of the exponential decrease given by these results is briefly discussed in Section 5.

2. Preliminaries.

2.1. Definition of the model. Let $\lambda_{\min }$ and $\lambda_{\max }$ be fixed such that $\lambda_{c}\left(\mathbb{Z}^{d}\right)<$ $\lambda_{\min } \leq \lambda_{\max }$, where $\lambda_{c}\left(\mathbb{Z}^{d}\right)$ is the critical parameter for the survival of the classical contact process on \mathbb{Z}^{d}. In the following, we restrict ourselves to the study of the contact process in random environment with birth rates $\lambda=\left(\lambda_{e}\right)_{e \in \mathbb{E}^{d}}$ in $\Lambda=\left[\lambda_{\min }, \lambda_{\max }\right]^{\mathbb{E}^{d}}$. An environment is thus a collection $\lambda=\left(\lambda_{e}\right)_{e \in \mathbb{E}^{d}} \in \Lambda$.

Let $\lambda \in \Lambda$ be fixed. The contact process $\left(\xi_{t}^{A}\right)_{t \geq 0}$ starting from $A \subset \mathbb{Z}^{d}$ in the environment λ is a homogeneous Markov process taking its values in the set $\mathcal{P}\left(\mathbb{Z}^{d}\right)$ of subsets of \mathbb{Z}^{d}, that we sometimes identify with $\{0,1\}^{\mathbb{Z}^{d}}$: for $z \in \mathbb{Z}^{d}$ we also use the random variable $\xi_{t}(z)=\mathbb{1}_{\left\{z \in \xi_{t}\right\}}$. If $\xi_{t}(z)=1$, we say that z is occupied or infected, while if $\xi_{t}(z)=0$, we say that z is empty or healthy. The initial configuration is given by $\xi_{0}^{A}=\mathbb{1}_{A}$. The evolution of the process is as follows:

- an occupied site becomes empty at rate 1 ;
- an empty site z becomes occupied at rate $\sum_{\left\|z-z^{\prime}\right\|_{1}=1} \xi_{t}\left(z^{\prime}\right) \lambda_{\left\{z, z^{\prime}\right\}}$.

These evolutions are mutually independent. In the following, we denote by \mathcal{D} the set of càdlàg functions from \mathbb{R}_{+}to $\mathcal{P}\left(\mathbb{Z}^{d}\right)$: it is the set of trajectories for Markov processes with state space $\mathcal{P}\left(\mathbb{Z}^{d}\right)$.

To define the contact process in the environment $\lambda \in \Lambda$, we use Harris's construction [17]. It allows us to make a coupling between contact processes starting from distinct initial configurations by building them from a single collection of Poisson measures on $[0,+\infty)$.

Graphical construction. We endow $[0,+\infty$) with the Borel σ-algebra $\mathcal{B}([0,+\infty)$), and we denote by M the set of locally finite counting measures $m=\sum_{i=0}^{+\infty} \delta_{t_{i}}$. We endow this set with the σ-algebra \mathcal{M} generated by the maps $m \mapsto m(B)$, where B describes the set of Borel sets in $[0,+\infty)$.

We then define the measurable space (Ω, \mathcal{F}) by setting

$$
\Omega=M^{\mathbb{E}^{d}} \times M^{\mathbb{Z}^{d}} \quad \text { and } \quad \mathcal{F}=\mathcal{M}^{\otimes \mathbb{E}^{d}} \otimes \mathcal{M}^{\otimes \mathbb{Z}^{d}}
$$

On this space, we consider the family $\left(\mathbb{P}_{\lambda}\right)_{\lambda \in \Lambda}$ of probability measures defined as follows: for every $\lambda=\left(\lambda_{e}\right)_{e \in \mathbb{E}^{d}} \in \Lambda$,

$$
\mathbb{P}_{\lambda}=\left(\bigotimes_{e \in \mathbb{E}^{d}} \mathcal{P}_{\lambda_{e}}\right) \otimes \mathcal{P}_{1}^{\otimes \mathbb{Z}^{d}}
$$

where, for every $\lambda \in[0,+\infty), \mathcal{P}_{\lambda}$ is the law of a Poisson point process on $[0,+\infty)$ with intensity λ. If $\lambda \in[0,+\infty)$, we write \mathbb{P}_{λ} (rather than $\mathbb{P}_{(\lambda)_{e \in \mathbb{E}^{d}}}$) for the law in deterministic environment with constant infection rate λ.

For every $t \geq 0$, we denote by \mathcal{F}_{t} the σ-algebra generated by the maps $\omega \mapsto$ $\omega_{e}(B)$ and $\omega \mapsto \omega_{z}(B)$, where e ranges over all edges in \mathbb{E}^{d}, z ranges over all points in \mathbb{Z}^{d}, and B ranges over all Borel sets in $[0, t]$.

We build the contact process in environment $\lambda \in \Lambda$ from this family of Poisson process, as detailed in Harris [17] for the classical contact process and in [11] for the random environment case. Note especially that the process is attractive

$$
(A \subset B) \Rightarrow\left(\forall t \geq 0, \xi_{t}^{A} \subset \xi_{t}^{B}\right)
$$

and Fellerian; then it enjoys the strong Markov property.

Time translations. For $t \geq 0$, we define the translation operator θ_{t} on a locally finite counting measure $m=\sum_{i=1}^{+\infty} \delta_{t_{i}}$ on $[0,+\infty)$ by setting

$$
\theta_{t} m=\sum_{i=1}^{+\infty} \mathbb{1}_{\left\{t_{i} \geq t\right\}} \delta_{t_{i}-t}
$$

The translation θ_{t} induces an operator on Ω, still denoted by θ_{t} : for every $\omega \in \Omega$, we set

$$
\theta_{t} \omega=\left(\left(\theta_{t} \omega_{e}\right)_{e \in \mathbb{E}^{d}},\left(\theta_{t} \omega_{z}\right)_{z \in \mathbb{Z}^{d}}\right)
$$

Spatial translations. The group \mathbb{Z}^{d} can act on the process and on the environment. The action on the process changes the observer's point of view: for $x \in \mathbb{Z}^{d}$, we define the translation operator T_{x} by

$$
\forall \omega \in \Omega \quad T_{x} \omega=\left(\left(\omega_{x+e}\right)_{e \in \mathbb{E}^{d}},\left(\omega_{x+z}\right)_{z \in \mathbb{Z}^{d}}\right)
$$

where $x+e$ the edge e translated by vector x. Besides, we can consider the translated environment $x . \lambda$ defined by $(x . \lambda)_{e}=\lambda_{x+e}$. These actions are dual in the sense that for every $\lambda \in \Lambda$, for every $x \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
\forall A \in \mathcal{F} \quad \mathbb{P}_{\lambda}\left(T_{x} \omega \in A\right)=\mathbb{P}_{x . \lambda}(\omega \in A) \tag{6}
\end{equation*}
$$

Consequently, the law of ξ^{x} under \mathbb{P}_{λ} coincides with the law of ξ^{0} under $\mathbb{P}_{x . \lambda}$.
Essential hitting times and associated translations. For a set $A \subset \mathbb{Z}^{d}$, we define the lifetime τ^{A} of the process starting from A by

$$
\tau^{A}=\inf \left\{t \geq 0: \xi_{t}^{A}=\varnothing\right\}
$$

For $A \subset \mathbb{Z}^{d}$ and $x \in \mathbb{Z}^{d}$, we also define the first infection time $t^{A}(x)$ of the site x from the set A by

$$
t^{A}(x)=\inf \left\{t \geq 0: x \in \xi_{t}^{A}\right\}
$$

If $y \in \mathbb{Z}^{d}$, we write $t^{y}(x)$ instead of $t^{\{y\}}(x)$. Similarly, we simply write $t(x)$ for $t^{0}(x)$.

In our previous paper [11], we introduced a new quantity $\sigma(x)$: it is a time when the site x is infected from the origin 0 and also has an infinite lifetime. This essential hitting time is defined from a family of stopping times as follows:
we set $u_{0}(x)=v_{0}(x)=0$, and we define recursively two increasing sequences of stopping times $\left(u_{n}(x)\right)_{n \geq 0}$ and $\left(v_{n}(x)\right)_{n \geq 0}$ with

$$
u_{0}(x)=v_{0}(x) \leq u_{1}(x) \leq v_{1}(x) \leq u_{2}(x) \cdots
$$

as follows:

- Assume that $v_{k}(x)$ is defined. We set $u_{k+1}(x)=\inf \left\{t \geq v_{k}(x): x \in \xi_{t}^{0}\right\}$.

If $v_{k}(x)<+\infty$, then $u_{k+1}(x)$ is the first time after $v_{k}(x)$ where site x is once again infected; otherwise, $u_{k+1}(x)=+\infty$.

- Assume that $u_{k}(x)$ is defined, with $k \geq 1$. We set $v_{k}(x)=u_{k}(x)+\tau^{x} \circ \theta_{u_{k}(x)}$.

If $u_{k}(x)<+\infty$, the time $\tau^{x} \circ \theta_{u_{k}(x)}$ is the lifetime of the contact process starting from x at time $u_{k}(x)$; otherwise, $v_{k}(x)=+\infty$.

We then set

$$
\begin{equation*}
K(x)=\min \left\{n \geq 0: v_{n}(x)=+\infty \text { or } u_{n+1}(x)=+\infty\right\} \tag{7}
\end{equation*}
$$

This quantity represents the number of steps before the success of this process: either we stop because we have just found an infinite $v_{n}(x)$, which corresponds to a time $u_{n}(x)$ when x is occupied and has infinite progeny, or we stop because we have just found an infinite $u_{n+1}(x)$, which says that after $v_{n}(x)$, site x is nevermore infected.

We proved that $K(x)$ is almost surely finite, which allows to define the essential hitting time $\sigma(x)$ by setting $\sigma(x)=u_{K(x)}$. It is of course larger than the hitting time $t(x)$ and can been seen as a regeneration time.

Note, however, that $\sigma(x)$ is not necessary the first time when x is occupied and has infinite progeny: for instance, such an event can occur between $u_{1}(x)$ and $v_{1}(x)$, being ignored by the recursive construction.

At the same time, we define the operator $\tilde{\theta}_{x}$ on Ω by

$$
\tilde{\theta}_{x}= \begin{cases}T_{x} \circ \theta_{\sigma(x)}, & \text { if } \sigma(x)<+\infty \\ T_{x}, & \text { otherwise },\end{cases}
$$

or, more explicitly,

$$
\left(\tilde{\theta}_{x}\right)(\omega)= \begin{cases}T_{x}\left(\theta_{\sigma(x)(\omega)} \omega\right), & \text { if } \sigma(x)(\omega)<+\infty \\ T_{x}(\omega), & \text { otherwise }\end{cases}
$$

We will mainly deal with the essential hitting time $\sigma(x)$ that enjoys, unlike $t(x)$, some good invariance properties in the survival-conditioned environment. Moreover, the difference between $\sigma(x)$ and $t(x)$ was controlled in [11]; this will allow us to transpose to $t(x)$ the results obtained for $\sigma(x)$.

Contact process in the survival-conditioned environment. For $\lambda \in \Lambda$, we define the probability measure $\overline{\mathbb{P}}_{\lambda}$ on (Ω, \mathcal{F}) by

$$
\forall E \in \mathcal{F} \quad \overline{\mathbb{P}}_{\lambda}(E)=\mathbb{P}_{\lambda}\left(E \mid \tau^{0}=+\infty\right)
$$

It is thus the law of the family of Poisson point processes, conditioned on the survival of the contact process starting from 0 . Let then v be a probability measure on the set of environments Λ. On the same space (Ω, \mathcal{F}), we define the corresponding annealed probabilities $\overline{\mathbb{P}}$ and \mathbb{P} by setting

$$
\forall E \in \mathcal{F} \quad \overline{\mathbb{P}}(E)=\int_{\Lambda} \overline{\mathbb{P}}_{\lambda}(E) d \nu(\lambda) \quad \text { and } \quad \mathbb{P}(E)=\int_{\Lambda} \mathbb{P}_{\lambda}(E) d \nu(\lambda)
$$

2.2. Previous results. We recall here the results established in [11] for the contact process in a random environment.

Proposition 5 (Lemma 8 and Corollary 9 in [11]). Let $x \in \mathbb{Z}^{d} \backslash\{0\}, \lambda \in \Lambda$, A in the σ-algebra generated by $\sigma(x)$ and $B \in \mathcal{F}$. Then

$$
\forall \lambda \in \Lambda \quad \overline{\mathbb{P}}_{\lambda}\left(A \cap\left(\tilde{\theta}_{x}\right)^{-1}(B)\right)=\overline{\mathbb{P}}_{\lambda}(A) \overline{\mathbb{P}}_{x . \lambda}(B)
$$

As consequences we have:

- The probability measure $\overline{\mathbb{P}}$ is invariant under the translation $\tilde{\theta}_{x}$.
- Let $y \in \mathbb{Z}^{d}$. Under $\overline{\mathbb{P}}_{\lambda}, \sigma(y) \circ \tilde{\theta}_{x}$ and $\sigma(x)$ are independent. Moreover, the law of $\sigma(y) \circ \tilde{\theta}_{x}$ under $\overline{\mathbb{P}}_{\lambda}$ is the same as the law of $\sigma(y)$ under $\overline{\mathbb{P}}_{x . \lambda}$.
- The random variables $\left(\sigma(x) \circ\left(\tilde{\theta}_{x}\right)^{j}\right)_{j \geq 0}$ are independent under $\overline{\mathbb{P}}_{\lambda}$.

Proposition 6 (Corollaries 20 and 21 in [11]). There exist $A, B, C>0$ and, for every $p \geq 1, a$ constant $C_{p}>0$ such that for every $x \in \mathbb{Z}^{d}$ and every $\lambda \in \Lambda$,

$$
\begin{gather*}
\overline{\mathbb{E}}_{\lambda}\left[\sigma(x)^{p}\right] \leq C_{p}(1+\|x\|)^{p} \tag{8}\\
\forall t \geq 0 \quad(\|x\| \leq t) \Longrightarrow \quad \Longrightarrow \quad\left(\overline{\mathbb{P}}_{\lambda}(\sigma(x)>C t) \leq A \exp \left(-B t^{1 / 2}\right)\right) . \tag{9}
\end{gather*}
$$

Proposition 7 (Theorem 2 in [11]). For every $x \in \operatorname{Erg}(v)$, the measurepreserving dynamical system $\left(\Omega, \mathcal{F}, \overline{\mathbb{P}}, \tilde{\theta}_{x}\right)$ is ergodic.

We then proved that $\overline{\mathbb{P}}$ almost surely, for every $x \in \mathbb{Z}^{d}, \frac{\sigma(n x)}{n}$ converges to a deterministic real number $\mu(x)$. The function $x \mapsto \mu(x)$ can be extended to a norm on \mathbb{R}^{d}, that characterizes the asymptotic shape. Let A_{μ} be the unit ball for μ. We define

$$
\begin{aligned}
H_{t} & =\left\{x \in \mathbb{Z}^{d}: t(x) \leq t\right\} \\
G_{t} & =\left\{x \in \mathbb{Z}^{d}: \sigma(x) \leq t\right\} \\
K_{t}^{\prime} & =\left\{x \in \mathbb{Z}^{d}: \forall s \geq t, \xi_{s}^{0}(x)=\xi_{s}^{\mathbb{Z}^{d}}(x)\right\}
\end{aligned}
$$

and we denote by $\widetilde{H}_{t}, \widetilde{G}_{t}, \widetilde{K}_{t}^{\prime}$ their "fattened" versions,

$$
\widetilde{H}_{t}=H_{t}+[0,1]^{d}, \quad \widetilde{G}_{t}=G_{t}+[0,1]^{d} \quad \text { and } \quad \widetilde{K}_{t}^{\prime}=K_{t}^{\prime}+[0,1]^{d}
$$

We can now state the asymptotic shape result.

Proposition 8 (Theorem 3 in [11]). For every $\varepsilon>0, \overline{\mathbb{P}}$-a.s., for every t large enough,

$$
\begin{equation*}
(1-\varepsilon) A_{\mu} \subset \frac{\widetilde{K}_{t}^{\prime} \cap \widetilde{G}_{t}}{t} \subset \frac{\widetilde{G}_{t}}{t} \subset \frac{\widetilde{H}_{t}}{t} \subset(1+\varepsilon) A_{\mu} \tag{10}
\end{equation*}
$$

In order to prove the asymptotic shape theorem, we established exponential estimates, that are uniform in $\lambda \in \Lambda$. We set

$$
B_{r}^{x}=\left\{y \in \mathbb{Z}^{d}:\|y-x\|_{\infty} \leq r\right\}
$$

and we write B_{r} instead of B_{r}^{0}.
Proposition 9 (Proposition 5 in [11]). There exist $A, B, M, c, \rho>0$ such that for every $\lambda \in \Lambda$, for every $y \in \mathbb{Z}^{d}$, for every $t \geq 0$

$$
\begin{align*}
\mathbb{P}_{\lambda}\left(\tau^{0}=+\infty\right) & \geq \rho, \tag{11}\\
\mathbb{P}_{\lambda}\left(H_{t}^{0} \not \subset B_{M t}\right) & \leq A \exp (-B t), \tag{12}\\
\mathbb{P}_{\lambda}\left(t<\tau^{0}<+\infty\right) & \leq A \exp (-B t), \tag{13}\\
\mathbb{P}_{\lambda}\left(t^{0}(y) \geq \frac{\|y\|}{c}+t, \tau^{0}=+\infty\right) & \leq A \exp (-B t), \tag{14}\\
\mathbb{P}_{\lambda}\left(0 \notin K_{t}^{\prime}, \tau^{0}=+\infty\right) & \leq A \exp (-B t) . \tag{15}
\end{align*}
$$

Lemma 10. There exist $A, B, C>0$ such that for every $x \in \mathbb{Z}^{d}$ and every $\lambda \in \Lambda$,

$$
\begin{equation*}
\forall t \geq 0 \quad(\|x\| \leq t) \quad \Longrightarrow \quad\left(\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)>C t\right) \leq A \exp \left(-B t^{1 / 2}\right)\right) \tag{16}
\end{equation*}
$$

Proof. For every $\lambda \in \Lambda$, for every $x \in \mathbb{Z}^{d}$,

$$
\begin{align*}
\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)>\sigma(x)+s\right) & =\overline{\mathbb{P}}_{\lambda}\left(x \notin K_{\sigma(x)+s}^{\prime} \cap G_{\sigma(x)+s}\right) \\
& =\overline{\mathbb{P}}_{\lambda}\left(x \notin K_{\sigma(x)+s}^{\prime}\right) \tag{17}\\
& \leq \overline{\mathbb{P}}_{\lambda}\left(x \notin x+\left(K_{s}^{\prime}\right) \circ \tilde{\theta}_{x}\right)=\overline{\mathbb{P}}_{x . \lambda}\left(0 \notin K_{s}^{\prime}\right) \\
& \leq A \exp (-B s)
\end{align*}
$$

with (11) and (15). With (9), this estimate gives the announced result.
2.3. An abstract restart procedure. We formalize here the restart procedure for Markov chains. Let E be the state space where our Markov chains $\left(X_{n}^{x}\right)_{n \geq 0}$ evolve, $x \in E$ being the starting point of the chain. We suppose that we have at our disposal a set $\widetilde{\Omega}$, an update function $f: E \times \widetilde{\Omega} \rightarrow E$, and a probability measure v on $\widetilde{\Omega}$ such that on the probability space $(\Omega, \mathcal{F}, \mathbb{P})=\left(\widetilde{\Omega}^{\mathbb{N}^{*}}, \mathcal{B}\left(\widetilde{\Omega}^{\mathbb{N}^{*}}\right), v^{\otimes \mathbb{N}^{*}}\right)$, endowed with the
natural filtering $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ given by $\mathcal{F}_{n}=\sigma\left(\omega \mapsto \omega_{k}: k \leq n\right)$, the chains $\left(X_{n}^{x}\right)_{n \geq 0}$ starting from the different states enjoy the following representation:

$$
\left\{\begin{array}{l}
X_{0}^{x}(\omega)=x \\
X_{n+1}^{x}(\omega)=f\left(X_{n}^{x}(\omega), \omega_{n+1}\right)
\end{array}\right.
$$

As usual, we define $\theta: \Omega \rightarrow \Omega$ which maps $\omega=\left(\omega_{n}\right)_{n \geq 1}$ to $\theta \omega=\left(\omega_{n+1}\right)_{n \geq 1}$. We assume that for each $x \in E$, we have defined a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-adapted stopping time T^{x},
 interested in the following quantities:

$$
\left.\begin{array}{rl}
T_{0}^{x} & =0 \quad \text { and } \quad T_{k+1}^{x}=\left\{\begin{array}{ll}
+\infty, & \text { if } T_{k}^{x}=+\infty \\
T_{k}^{x}+T^{x_{k}}\left(\theta_{T_{k}^{x}}\right), & \text { with } x_{k}=X_{\theta_{T_{k}^{x}}^{x}}^{x}
\end{array}\right. \text { otherwise; }
\end{array}\right\} \begin{aligned}
& K^{x}=\inf \left\{k \geq 0: T_{k+1}^{x}=+\infty\right\} \\
& M^{x}
\end{aligned}=\sum_{k=0}^{K^{x}-1} G^{x_{k}}\left(\theta_{T_{k}^{x}}\right)+F^{x_{K^{x}}}\left(\theta_{T_{K^{x}}^{x}}\right) . ~ l i
$$

We wish to control the exponential moments of the M^{x},s with the help of exponential bounds for G^{x} and F^{x}. In numerous applications to directed percolation or to the contact process, T^{x} is the extinction time of the process (or of some embedded process) starting from the smallest point (in lexicographic order) in the configuration x.

Lemma 11 (Lemma 4.1 in [12]). We suppose that there exist real numbers $A>0, c<1, p>0, \beta>0$ such that the real-valued functions $\left(G^{x}\right)_{x \in E},\left(F^{x}\right)_{x \in E}$ defined above satisfy

$$
\forall x \in E \quad\left\{\begin{array}{l}
\mathbf{G}(x)=\mathbb{E}\left[\exp \left(\beta G^{x}\right) \mathbb{1}_{\left\{T^{x}<+\infty\right\}}\right] \leq c \\
\mathbf{F}(x)=\mathbb{E}\left[\mathbb{1}_{\left\{T^{x}=+\infty\right\}} \exp \left(\beta F^{x}\right)\right] \leq A \\
\mathbf{T}(x)=\mathbb{P}\left(T^{x}=+\infty\right) \geq p
\end{array}\right.
$$

Then, for each $x \in E, K^{x}$ is \mathbb{P}-almost surely finite and

$$
\mathbb{E}\left[\exp \left(\beta M^{x}\right)\right] \leq \frac{A}{1-c}<+\infty
$$

2.4. Oriented percolation. We work, for $d \geq 1$, on the following graph:

- The set of sites is $\mathbb{V}^{d+1}=\left\{(z, n) \in \mathbb{Z}^{d} \times \mathbb{N}\right\}$.
- We put an oriented edge from $\left(z_{1}, n_{1}\right)$ to $\left(z_{2}, n_{2}\right)$ if and only if $n_{2}=n_{1}+1$ and $\left\|z_{2}-z_{1}\right\|_{1} \leq 1$; the set of these edges is denoted by $\overrightarrow{\mathbb{E}}_{\text {alt }}^{d+1}$.

Define $\overrightarrow{\mathbb{E}}^{d}$ in the following way: in $\overrightarrow{\mathbb{E}}^{d}$, there is an oriented edge between two points z_{1} and z_{2} in \mathbb{Z}^{d} if and only if $\left\|z_{1}-z_{2}\right\|_{1} \leq 1$.

The oriented edge in $\overrightarrow{\mathbb{E}}_{\text {alt }}^{d+1}$ from $\left(z_{1}, n_{1}\right)$ to $\left(z_{2}, n_{2}\right)$ can be identified with the couple $\left(\left(z_{1}, z_{2}\right), n_{2}\right) \in \overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}$. Thus, we identify $\overrightarrow{\mathbb{E}}_{\text {alt }}^{d+1}$ and $\overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}$.

We consider $\Omega=\{0,1\}^{\overrightarrow{\mathbb{E}}_{\text {alt }}^{d+1}}$ endowed with its Borel σ-algebra: the edges e such that $\omega_{e}=1$ are said to be open, the other ones are closed. For v, w in $\mathbb{Z}^{d} \times \mathbb{N}$, we denote by $v \rightarrow w$ the existence of an oriented path from v to w composed of open edges. We denote by $\vec{p}_{c}^{\text {alt }}(d+1)$ the critical parameter for the Bernoulli oriented percolation on this graph (i.e., all edges are independently open with probability p). We set, for $n \in \mathbb{N}$ and $(x, 0) \in \mathbb{V}^{d+1}$,

$$
\begin{aligned}
& \bar{\xi}_{n}^{x}=\left\{y \in \mathbb{Z}^{d}:(x, 0) \rightarrow(y, n)\right\}, \\
& \bar{\tau}^{x}=\max \left\{n \in \mathbb{N}: \bar{\xi}_{n}^{x} \neq \varnothing\right\}
\end{aligned}
$$

We recall results from [12] for a class $\mathcal{C}_{d}(M, q)$ of dependent oriented percolation models on this graph. The parameter M controls the range of the dependence while the parameter q controls the probability for an edge to be open.

Definition 12 [Class $\left.\mathcal{C}_{d}(M, q)\right]$. Let $d \geq 1$ be fixed. Let M be a positive integer and $q \in(0,1)$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space endowed with a filtration $\left(\mathcal{G}_{n}\right)_{n \geq 0}$. We assume that, on this probability space, a random field $\left(W_{e}^{n}\right)_{e \in \overrightarrow{\mathbb{E}}^{d}, n \geq 1}$ taking its values in $\{0,1\}$ is defined. This field gives the states-open or closed-of the edges in $\overrightarrow{\mathbb{E}}_{\text {alt }}^{d+1}$. We say that the law of the field $\left(W_{e}^{n}\right)_{e \in \mathbb{E}^{d}, n \geq 1}$ is in $\mathcal{C}_{d}(M, q)$ if it satisfies the two following conditions:

- $\forall n \geq 1, \forall e \in \overrightarrow{\mathbb{E}}^{d}, W_{e}^{n} \in \mathcal{G}_{n}$;
- $\forall n \geq 0, \forall e \in \overrightarrow{\mathbb{E}}^{d}, \mathbb{P}\left[W_{e}^{n+1}=1 \mid \mathcal{G}_{n} \vee \sigma\left(W_{f}^{n+1}, d(e, f) \geq M\right)\right] \geq q$,
where $\sigma\left(W_{f}^{n+1}, d(e, f) \geq M\right)$ is the σ-field generated by the random variables W_{f}^{n+1}, with $d(e, f) \geq M$.

Note that if $0 \leq q \leq q^{\prime} \leq 1$, we have $\mathcal{C}_{d}\left(M, q^{\prime}\right) \subset \mathcal{C}_{d}(M, q)$.
We can control the probability of survival and also the lifetime for these dependent oriented percolations.

Proposition 13 (Corollary 3.1 in [12]). Let $\varepsilon>0$ and $M>1$. There exist $\beta>0$ and $q<1$ such that for each $\chi \in \mathcal{C}_{d}(M, q)$,

$$
\forall x \in \mathbb{Z}^{d} \quad \mathbb{E}_{\chi}\left[\mathbb{1}_{\left\{\bar{\tau}^{x}<+\infty\right\}} \exp \left(\beta \bar{\tau}^{x}\right)\right] \leq \varepsilon \quad \text { and } \quad \chi\left(\bar{\tau}^{x}=+\infty\right) \geq 1-\varepsilon
$$

A point $(y, k) \in \mathbb{Z}^{d} \times \mathbb{N}$ such that $(x, 0) \rightarrow(y, k) \rightarrow \infty$ is called an immortal descendant of x. We will need estimates on the density of immortal descendants of x above some given point y in oriented dependent percolation. So we define

$$
\begin{aligned}
\bar{G}(x, y) & =\{k \in \mathbb{N}:(x, 0) \rightarrow(y, k) \rightarrow \infty\}, \\
\bar{\gamma}(\theta, x, y) & =\inf \{n \in \mathbb{N}: \forall k \geq n,|\{0, \ldots, k\} \cap \bar{G}(x, y)| \geq \theta k\} .
\end{aligned}
$$

Proposition 14 (Corollary 3.3 in [12]). Let $M>1$. There exist $q_{0}<1$ and positive constants A, B, θ, α such that for each $\chi \in \mathcal{C}_{d}\left(M, q_{0}\right)$, we have

$$
\forall x, y \in \mathbb{Z}^{d}, \forall n \geq 0 \quad \chi\left(+\infty>\bar{\gamma}(\theta, x, y)>\alpha\|x-y\|_{1}+n\right) \leq A e^{-B n}
$$

3. Quenched upper large deviations. The aim is now to prove the quenched upper large deviations of Theorem 1. In order to exploit the subadditivity, we show that $\sigma(x)$ admits exponential moments uniformly in $\lambda \in \Lambda$:

THEOREM 15. There exist positive constants γ_{1}, β_{1} such that

$$
\begin{equation*}
\forall x \in \mathbb{Z}^{d}, \forall \lambda \in \Lambda \quad \overline{\mathbb{E}}_{\lambda}\left(e^{\gamma_{1} \sigma(x)}\right) \leq e^{\beta_{1}\|x\|_{1}} \tag{18}
\end{equation*}
$$

As an immediate consequence, we get the following:
Corollary 16. There exist positive constants A, B, c, such that for each $\lambda \in \Lambda$, each $x \in \mathbb{Z}^{d}$ and every $t \geq 0$

$$
\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x) \geq \frac{\|x\|}{c}+t\right) \leq A \exp (-B t) .
$$

Proof.

$$
\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x) \geq \frac{\|x\|}{c}+t\right) \leq \overline{\mathbb{P}}_{\lambda}\left(\sigma(x) \geq \frac{\|x\|}{c}+t / 2\right)+\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)-\sigma(x) \geq t / 2\right) .
$$

The second term is controlled by inequality (17), and Theorem 15 gives the desired result with $c=\frac{\gamma_{1}}{\beta_{1}}$.

The rest of this section is organized as follows. We first prove how the subadditive properties and the existence of exponential moments for σ given by Theorem 15 imply the large deviations inequalities of Theorem 1. Next we show how Theorem 2 gives Theorem 15. Finally, the last (and most important) part will be devoted to the proof of Theorem 2.
3.1. Proof of Theorem 1 from Theorem 15. Let $\varepsilon>0$. Let β_{1} and γ_{1} be the constants given by (18), and let

$$
\begin{equation*}
C>2 \beta_{1} / \gamma_{1} \tag{19}
\end{equation*}
$$

Theorem 8 gives the almost sure convergence of $\sigma(x) / \mu(x)$ to 1 when $\|x\|$ tends to $+\infty$, and Proposition 6 ensures that the family $(\sigma(x) / \mu(x))_{x \in \mathbb{Z}^{d}}$ is bounded in $L^{2}(\overline{\mathbb{P}})$, therefore uniformly integrable: then the convergence also holds in $L^{1}(\overline{\mathbb{P}})$.

Let then M_{0} be such that

$$
\begin{equation*}
\left(\mu(x) \geq M_{0}\right) \quad \Rightarrow \quad\left(\frac{\overline{\mathbb{E}}(\sigma(x))}{\mu(x)}\right) \leq 1+\varepsilon / 8 \tag{20}
\end{equation*}
$$

We assumed that $\left\{a y: a \in \mathbb{R}_{+}, y \in \operatorname{Erg}(v)\right\}$ is dense in \mathbb{R}^{d}.
Its range by $x \mapsto \frac{x}{\mu(x)}$ is therefore dense in $\left\{x \in \mathbb{R}^{d}: \mu(x)=1\right\}$; thus the set $\left\{\frac{y}{\mu(y)}: y \in \operatorname{Erg}(\nu), \mu(y) \geq M_{0}\right\}$ is also dense in $\left\{x \in \mathbb{R}^{d}: \mu(x)=1\right\}$.

By a compactness argument, one can find a finite subset F in $\left\{\frac{y}{\mu(y)}: y \in\right.$ $\left.\operatorname{Erg}(v), \mu(y) \geq M_{0}\right\}$ such that

$$
\forall \hat{x} \in \mathbb{R}^{d} \text { such that } \mu(\hat{x})=1 \exists y \in F,\left\|\frac{y}{\mu(y)}-\hat{x}\right\|_{1} \leq \varepsilon / C .
$$

We let $M=\max \{\mu(y): y \in F\}$.
For $y \in F$, we define $\tilde{\sigma}(y)=\sigma(y)-\left(1+\frac{\varepsilon}{4}\right) \mu(y)$. Since, with (18), $\tilde{\sigma}(y)$ admits exponential moments, the asymptotics $\overline{\mathbb{E}}\left[e^{t \tilde{\sigma}(y)}\right]=1+t \overline{\mathbb{E}}[\tilde{\sigma}(y)]+o(t)$ holds in a neighborhood of 0 . Since $\overline{\mathbb{E}}[\tilde{\sigma}(y)]<0$, we have $\overline{\mathbb{E}}\left[e^{t \tilde{\sigma}(y)}\right]<1$ when t is small enough. Since F is finite, we can find some constants $\alpha>0$ and $c_{\alpha}<1$ such that

$$
\begin{equation*}
\forall y \in F \quad \overline{\mathbb{E}}\left[\exp \left(\alpha\left[\sigma(y)-\left(1+\frac{\varepsilon}{4}\right) \mu(y)\right]\right)\right] \leq c_{\alpha} \tag{21}
\end{equation*}
$$

Let $x \in \mathbb{Z}^{d}$. We associate to x a point $y \in F$ and an integer n such that

$$
\begin{equation*}
\left\|\frac{x}{\mu(x)}-\frac{y}{\mu(y)}\right\|_{1} \leq \frac{\varepsilon}{C} \quad \text { and } \quad\left|n-\frac{\mu(x)}{\mu(y)}\right| \leq 1 \tag{22}
\end{equation*}
$$

The idea is to approximate x by $n y$. More precisely, define $c_{\mu}=\sup _{A_{\mu}}\|y\|_{1}$ and note that

$$
\begin{align*}
\|x-n y\|_{1} & \leq\left\|x-\frac{\mu(x)}{\mu(y)} y\right\|_{1}+\left|\frac{\mu(x)}{\mu(y)}-n\right|\|y\|_{1} \leq \frac{\varepsilon \mu(x)}{C}+c_{\mu} M \tag{23}\\
\left|\frac{\mu(x)}{n \mu(y)}-1\right| & \leq \frac{1}{n} \leq\left(\frac{\mu(x)}{M}-1\right)^{-1} \tag{24}
\end{align*}
$$

By the definition of $t(x)$, for each $\lambda \in \Lambda$, we have

$$
\begin{align*}
& \overline{\mathbb{P}}_{\lambda}(t(x) \geq(1+\varepsilon) \mu(x)) \\
& \leq \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i}+\sigma(x-n y) \circ \tilde{\theta}_{y}^{n} \geq(1+\varepsilon) \mu(x)\right) \\
& \leq \tag{25}\\
& \quad \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq\left(1+\frac{\varepsilon}{2}\right) \mu(x)\right) \\
& \quad+\overline{\mathbb{P}}_{\lambda}\left(\sigma(x-n y) \circ \tilde{\theta}_{y}^{n} \geq \frac{\varepsilon}{2} \mu(x)\right)
\end{align*}
$$

Let first consider the second term in (25). With Proposition 5 and estimate (18), it follows that

$$
\begin{aligned}
& \overline{\mathbb{P}}_{\lambda}\left(\sigma(x-n y) \circ \tilde{\theta}_{y}^{n} \geq \frac{\varepsilon}{2} \mu(x)\right) \\
& \quad=\overline{\mathbb{P}}_{n y \cdot \lambda}\left(\sigma(x-n y) \geq \frac{\varepsilon}{2} \mu(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \exp \left(-\frac{\gamma_{1} \varepsilon \mu(x)}{2}\right) \overline{\mathbb{E}}_{n y \cdot \lambda}\left(\exp \left(\gamma_{1} \sigma(x-n y)\right)\right) \\
& \leq \exp \left(-\frac{\gamma_{1} \varepsilon \mu(x)}{2}\right) \exp \left(\beta_{1}\|x-n y\|_{1}\right) \\
& \leq \exp \left(-\frac{\gamma_{1} \varepsilon \mu(x)}{2}\right) \exp \left(\beta_{1}\left(\frac{\varepsilon \mu(x)}{C}+c_{\mu} M\right)\right)
\end{aligned}
$$

where the last inequality follows from (23). Our choice (19) for C and the equivalence of norms give then the existence of two positive constants A_{1} and B_{1} such that for each $\lambda \in \Lambda$ and each $x \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
\overline{\mathbb{P}}_{\lambda}\left(\sigma(x-n y) \geq \frac{\varepsilon}{2} \mu(x)\right) \leq A_{1} \exp \left(-B_{1}\|x\|\right) \tag{26}
\end{equation*}
$$

Let us move to the first term of (25). With inequality (24), we can find T sufficiently large to have, for $\mu(x) \geq T$, that

$$
\frac{\mu(x)}{n \mu(y)} \geq \frac{1+\varepsilon / 4}{1+\varepsilon / 2}
$$

Suppose now that $\mu(x) \geq T$. Proposition 5 ensures that the variables $\sigma(y) \circ \tilde{\theta}_{y}^{i}$ are independent under $\overline{\mathbb{P}}_{\lambda}$ and moreover that the law of $\sigma(y) \circ \tilde{\theta}_{y}^{i}$ under $\overline{\mathbb{P}}_{\lambda}$ coincides with the law of $\sigma(y)$ under $\overline{\mathbb{P}}_{i y . \lambda}$: thus

$$
\begin{aligned}
& \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq\left(1+\frac{\varepsilon}{2}\right) \mu(x)\right) \\
& \quad \leq \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq\left(1+\frac{\varepsilon}{4}\right) n \mu(y)\right) \\
& \quad \leq \overline{\mathbb{P}}_{\lambda}\left(\prod_{i=0}^{n-1} \exp \left(\alpha\left[\sigma(y) \circ \tilde{\theta}_{y}^{i}-\left(1+\frac{\varepsilon}{4}\right) \mu(y)\right]\right) \geq 1\right) \\
& \quad \leq \prod_{i=0}^{n-1} \overline{\mathbb{E}}_{i y \cdot \lambda}\left[\exp \left(\alpha\left[\sigma(y)-\left(1+\frac{\varepsilon}{4}\right) \mu(y)\right]\right)\right] .
\end{aligned}
$$

Applying the Ergodic theorem to the system $(\Lambda, \mathcal{B}(\Lambda), v, y$.$) and to the function$ $\lambda \mapsto \log \mathbb{E}_{\lambda}(\exp [\alpha(\sigma(y)-(1+\varepsilon / 4) \mu(y))])$, we get that for v-almost every λ and for each $y \in F$,

$$
\begin{aligned}
& \varlimsup_{n \rightarrow+\infty} \frac{1}{n} \log \overline{\mathbb{P}}_{\lambda}\left(\frac{1}{n \mu(y)} \sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq 1+\frac{\varepsilon}{4}\right) \\
& \quad \leq \int_{\Lambda} \log \overline{\mathbb{E}}_{\lambda}\left(\exp \left[\alpha\left(\sigma(y)-\left(1+\frac{\varepsilon}{4}\right) \mu(y)\right)\right]\right) d \nu(\lambda) \\
& \quad \leq \log \int_{\Lambda} \overline{\mathbb{E}}_{\lambda}\left(\exp \left[\alpha\left(\sigma(y)-\left(1+\frac{\varepsilon}{4}\right) \mu(y)\right)\right]\right) d \nu(\lambda) \leq \log c_{\alpha}<0
\end{aligned}
$$

where c_{α} is defined in (21).
Fix B such that $0<B<-\log c_{\alpha}$. For v-almost every λ, there exists $A(\lambda) \in$ $(0,+\infty)$ such that for every $n \geq 1$,

$$
\begin{aligned}
& \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq\left(1+\frac{\varepsilon}{2}\right) \mu(x)\right) \\
& \quad \leq \overline{\mathbb{P}}_{\lambda}\left(\frac{1}{n \mu(y)} \sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq 1+\frac{\varepsilon}{4}\right) \\
& \quad \leq A(\lambda) e^{-B n}
\end{aligned}
$$

Note that inequality (24) implies that $n \geq \frac{\mu(x)}{M}-1$.
Using the equivalence of norms, there exists $B^{\prime}>0$ and for v-almost every λ, there exists $A^{\prime}(\lambda) \in(0,+\infty)$ such that

$$
\begin{equation*}
\forall x \in \mathbb{Z}^{d} \quad \overline{\mathbb{P}}_{\lambda}\left(\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i} \geq\left(1+\frac{\varepsilon}{2}\right) \mu(x)\right) \leq A^{\prime}(\lambda) \exp \left(-B^{\prime}\|x\|\right) \tag{27}
\end{equation*}
$$

Inequality (1) of Theorem 1 now follows from (26) and (27).
Let us move to the proof of inequality (2) of Theorem 1. Let

$$
T=\sum_{i=0}^{n-1} \sigma(y) \circ \tilde{\theta}_{y}^{i}+\sigma(x-n y) \circ \tilde{\theta}_{y}^{n}
$$

Using Proposition 5 repeatedly, the same reasoning as in the proof of Lemma 10 gives $\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)>T+\varepsilon \mu(x)\right) \leq \overline{\mathbb{P}}_{x . \lambda}\left(0 \notin K_{\varepsilon \mu(x)}^{\prime}\right) \leq A \exp (-B \mu(x))$. Thus, since $\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)>(1+2 \varepsilon) \mu(x)\right) \leq \overline{\mathbb{P}}_{\lambda}(T>(1+\varepsilon) \mu(x))+\overline{\mathbb{P}}_{\lambda}\left(t^{\prime}(x)>T+\varepsilon \mu(x)\right)$ and T has already been controlled, inequality (2) follows.

Let us prove inequality (3) of Theorem 1 . Since $t \mapsto K_{t}^{\prime} \cap H_{t}$ is nondecreasing, it is sufficient to prove that there exists a constant $B>0$ and, for v-almost every λ, there exists $A(\lambda)$ such that

$$
\forall n \in \mathbb{N} \quad \overline{\mathbb{P}}_{\lambda}\left((1-\varepsilon) n A_{\mu} \not \subset \widetilde{K}_{n}^{\prime} \cap \tilde{H}_{n}\right) \leq A(\lambda) \exp (-B n)
$$

The proof of the last inequality is classic. For points that have a small norm, we use inequality (14) and Corollary 16; for the others, we use inequalities (1) and (2).
3.2. Proof of Theorem 15 from Theorem 2. Theorem 2 ensures that with a probability exceeding $1-A \exp (-B t)$, the Lebesgue measure of the times $s \leq C\|x\|+t$ when $(0,0) \rightarrow(x, s) \rightarrow \infty$ is at least θt. If $\sigma(x) \geq C\|x\|+t$, it means that all these times are ignored by the recursive construction of $\sigma(x)$: those times necessarily belong to $\bigcup_{i=1}^{K(x)-1}\left[u_{k}(x), v_{k}(x)\right]$. Thus, we choose θ, C as in

Theorem 2 and get

$$
\begin{aligned}
& \overline{\mathbb{P}}_{\lambda}(\sigma(x) \geq C\|x\|+t) \\
& \quad \leq \overline{\mathbb{P}}_{\lambda}\left(\{s \leq C\|x\|+t:(0,0) \rightarrow(x, s) \rightarrow \infty\} \subset \bigcup_{i=1}^{K(x)-1}\left[u_{k}(x), v_{k}(x)\right]\right) \\
& \leq \\
& \quad \overline{\mathbb{P}}_{\lambda}(\operatorname{Leb}(\{s \leq C\|x\|+t:(0,0) \rightarrow(x, s) \rightarrow \infty\}) \leq \theta t) \\
& \quad+\overline{\mathbb{P}}_{\lambda}\left(\sum_{i=1}^{K(x)-1}\left(v_{k}(x)-u_{k}(x)\right)>\theta t\right)
\end{aligned}
$$

Lemma 2 allows us to control the first term. To control the second one with a Markov inequality, it is sufficient to prove the existence of exponential moments for $\sum_{i=1}^{K(x)-1}\left(v_{k}(x)-u_{k}(x)\right)$. To do so, we apply the abstract restart Lemma 11. We define, for each subset B in $\mathbb{Z}^{d}, F^{B}=0$ and

$$
\begin{aligned}
T^{B} & =\inf \left\{t>\tau^{x}: x \in \xi_{t}^{B}\right\}, \\
G^{B} & =\tau^{x} .
\end{aligned}
$$

Estimate (11) ensures that for each $\lambda \in \Lambda$,

$$
\mathbb{P}_{\lambda}\left(T^{B}=+\infty\right) \geq \mathbb{P}_{\lambda}\left(\tau^{x}=+\infty\right) \geq \rho>0
$$

and estimate (13) ensures the existence of $\alpha>0$ and $c<1$-that do not depend on B-such that for each $\lambda \in \Lambda$,

$$
\begin{aligned}
\mathbb{E}_{\lambda}\left[\exp \left(\alpha G^{B}\right) \mathbb{1}_{\left\{T^{B}<+\infty\right\}}\right] & \leq \mathbb{E}_{\lambda}\left[\exp \left(\alpha \tau^{x}\right) \mathbb{1}_{\left\{\tau^{x}<+\infty\right\}}\right] \\
& =\mathbb{E}_{x . \lambda}\left[\exp \left(\alpha \tau^{0}\right) \mathbb{1}_{\left\{\tau^{0}<+\infty\right\}}\right] \leq c .
\end{aligned}
$$

Then, with the notation of Lemma 11, we have

$$
\begin{aligned}
\mathbb{E}_{\lambda}\left[\exp \left(\alpha \sum_{i=1}^{K(x)-1}\left(v_{k}(x)-u_{k}(x)\right)\right)\right] & =\mathbb{E}_{\lambda}\left[\exp \left(\alpha \sum_{i=0}^{K(x)-1} \tau^{x} \circ T_{k}\right)\right] \\
& \leq \frac{1}{1-c}
\end{aligned}
$$

To conclude, we note, using (11), that $\overline{\mathbb{E}}_{\lambda}(\cdot) \leq \mathbb{E}_{\lambda}(\cdot) / \rho$.
3.3. Proof of Theorem 2. We will include in the contact process a block event percolation: sites will correspond to large blocks in $\mathbb{Z}^{d} \times[0, \infty)$, and the opening of the bonds will depend of the occurence of good events that we define now.

Fig. 1. The good event $A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)$.

3.3.1. Good events. Let $C_{1}>0$ and $M_{1}>0$ be fixed.

Let $I \in \mathbb{N}^{*}, L \in \mathbb{N}^{*}$ and $\delta>0$ such that $I \leq L$ and $\delta<C_{1} L$. For $\bar{n}_{0} \in \mathbb{Z}^{d}$, $x_{0}, x_{1} \in\left[-L, L\left[{ }^{d}\right.\right.$ and $u \in \mathbb{Z}^{d}$ such that $\|u\|_{1} \leq 1$, we define the following event (see Figure 1):

$$
\begin{aligned}
& A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right) \\
& \quad=A_{I, L, \delta}^{C_{1}, M_{1}\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)} \\
& \quad=\left\{\begin{array}{c}
\exists t \in\left[0, C_{1} L-\delta\right], 2 L \bar{n}_{0}+x_{1} \in \xi_{t}^{2 L \bar{n}_{0}+x_{0}+[-I, I]^{d}} \\
\omega_{2 L \bar{n}_{0}+x_{1}}([t, t+\delta])=0 \\
\exists s \in 2 L\left(\bar{n}_{0}+u\right)+[-L, L]^{d}, s+[-I, I]^{d} \subset \xi_{C_{1} L-t}^{2 L \bar{n}_{0}+x_{1}} \circ \theta_{t} \\
\bigcup_{t \in\left[0, C_{1} L\right]} \xi_{t}^{2 L \bar{n}_{0}+[-L-I, I+L]^{d}} \subset 2 L \bar{n}_{0}+\left[-M_{1} L, M_{1} L\right]^{d}
\end{array}\right\} .
\end{aligned}
$$

We let then $T=C_{1} L$. When the event $A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)$ occurs, we denote by $s\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)$ a point s satisfying the last condition that defines the event. Else, we let $s\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)=\infty$.

If this event occurs, then:

- Starting from an area of size I centered at a starting point $2 L \bar{n}_{0}+x_{0}$ in the box with spatial coordinate \bar{n}_{0}, the process at time T colonizes an area of size I centered around the exit point $2 L\left(\bar{n}_{0}+u\right)+s\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)$ in the box with spatial coordinate $\bar{n}_{0}+u$.
- Moreover, the point $2 L \bar{n}_{0}+x_{1}$ is occupied between time 0 and time T in a time interval with duration at least δ.
- The realization of this event only depends on what happens in the space-time box $\left(2 L \bar{n}_{0}+\left[-M_{1} L, M_{1} L\right]\right) \times[0, T]$.

Let us give a summary of the different parameters:

L	spatial scale of the macroscopic boxes		
$I \leq L$	size of the entrance area and of the exit area		
$T=C_{1} L$	temporal size of the macroscopic boxes		
δ	minimum duration for the infection of x_{1}		
\bar{n}_{0}	macroscopical spatial coordinate (of the big box)		
$u,\\|u\\|_{1} \leq 1$	direction of move		
$x_{0} \in\left[-L, L\left[^{d}\right.\right.$	relative position of the entrance area in the box		
$x_{1} \in\left[-L, L\left[^{d}\right.\right.$	relative position of the target point		
$s\left(\bar{n}_{0}, u, x_{0}, x_{1}\right) \in\left[-L, L\left[^{d}\right.\right.$	relative position of the exit area in the box with 		

LEMMA 17. We can find constants $C_{1}>0$ and $M_{1}>0$ such that we have the following property:

For each $\varepsilon>0$, we can choose, in that specific order, two integers $I \leq L$ large enough and $\delta>0$ small enough such that for every $\lambda \in \Lambda, \bar{n}_{0} \in \mathbb{Z}^{d}$, and each $u \in \mathbb{Z}^{d}$ with $\|u\|_{1} \leq 1$,

$$
\forall x_{0}, x_{1} \in\left[-L, L\left[^{d} \quad \mathbb{P}_{\lambda}\left(A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)\right) \geq 1-\varepsilon\right.\right.
$$

Moreover, as soon as $\left\|\bar{n}_{0}-\bar{n}_{0}^{\prime}\right\|_{\infty} \geq 2 M_{1}+1$, for every $u, u^{\prime}, x_{0}, x_{0}^{\prime}, x_{1}$, the events $A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)$ and $A\left(\bar{n}_{0}^{\prime}, u^{\prime}, x_{0}^{\prime}, x_{1}\right) \quad$ are independent.

Proof. Let us first note that

$$
\mathbb{P}_{\lambda}\left(A\left(\bar{n}_{0}, u, x_{0}, x_{1}\right)\right)=\mathbb{P}_{2 L \bar{n}_{0} \cdot \lambda}\left(A\left(0, u, x_{0}, x_{1}\right)\right),
$$

which permits us to assume that $\bar{n}_{0}=0$. Let $\varepsilon>0$ be fixed. We first choose I large enough to have

$$
\begin{equation*}
\forall x \in \mathbb{Z}^{d} \quad \mathbb{P}_{\lambda_{\min }}\left(\tau^{x+[-I, I]^{d}}=+\infty\right) \geq 1-\varepsilon / 4 \tag{28}
\end{equation*}
$$

We let $\varepsilon^{\prime}=\varepsilon /(2 I+1)^{d}$.
By the FKG inequality,

$$
\mathbb{P}_{\lambda_{\min }}\left(\forall y \in[-I, I]^{d}, \tau^{y}=+\infty\right) \geq \mathbb{P}_{\lambda_{\min }}\left(\tau^{0}=+\infty\right)^{\left|[-I, I]^{d}\right|}>0
$$

Translation invariance gives then

$$
\lim _{L \rightarrow+\infty} \mathbb{P}_{\lambda_{\min }}\left(\exists n \in[0, L]: \forall y \in n e_{1}+[-I, I]^{d}, \tau^{y}=+\infty\right)=1
$$

Let then L_{1} be such that for each $L \geq L_{1}$,

$$
\mathbb{P}_{\lambda_{\min }}\left(\exists n \in[0, L] ; \forall y \in n e_{1}+[-I, I]^{d}, \tau^{y}=+\infty\right)>1-\frac{\varepsilon^{\prime}}{12} \mathbb{P}_{\lambda_{\min }}\left(\tau^{0}=+\infty\right)
$$

By a time-reversal argument, we have for each $t>0$,

$$
\begin{aligned}
& \mathbb{P}_{\lambda_{\min }}\left(\exists n \in[0, L]: n e_{1}+[-I, I]^{d} \subset \xi_{t}^{\mathbb{Z}^{d}}\right) \\
& \quad=\mathbb{P}_{\lambda_{\min }}\left(\exists n \in[0, L]: \forall y \in n e_{1}+[-I, I]^{d}, \tau^{y} \geq t\right)>1-\frac{\varepsilon^{\prime}}{12} \mathbb{P}_{\lambda_{\min }}\left(\tau^{0}=+\infty\right) .
\end{aligned}
$$

We have for each $t \geq 0$ and each $\lambda \in \Lambda$,

$$
\begin{aligned}
\mathbb{P}_{x_{1} \cdot \lambda} & \left(\tau^{0}=+\infty, \forall n \in[0, L], 2 L u-x_{1}+n e_{1}+[-I, I]^{d} \not \subset \xi_{t}^{0}\right) \\
\leq & \mathbb{P}_{x_{1} \cdot \lambda}\left(\forall n \in[0, L], 2 L u-x_{1}+n e_{1}+[-I, I]^{d} \not \subset \xi_{t}^{\mathbb{Z}^{d}}\right) \\
& +\mathbb{P}_{x_{1} \cdot \lambda}\left(\tau^{0}=+\infty,[-(I+4 L),(I+4 L)]^{d} \not \subset K_{t}^{\prime}\right) \\
\leq & \mathbb{P}_{\lambda_{\min }}\left(\forall n \in[0, L], n e_{1}+[-I, I]^{d} \not \subset \xi_{t}^{\mathbb{Z}^{d}}\right) \\
& +\mathbb{P}_{x_{1} \cdot \lambda}\left(\tau^{0}=+\infty,[-(4 L+I),(4 L+I)]^{d} \not \subset K_{t}^{\prime}\right) .
\end{aligned}
$$

Let $C>0$ be large enough to satisfy properties (9) and (16). Then, with (16), we can find $L_{2} \geq L_{1}$ such that for $L \geq L_{2}$ and $t \geq 5 C L$, we have

$$
\overline{\mathbb{P}}_{x_{1} \cdot \lambda}\left(\exists n \in[0, L] ; 2 L u-x_{1}+n e_{1}+[-I, I]^{d} \subset \xi_{t}^{0}\right) \geq 1-\varepsilon^{\prime} / 6 .
$$

Let $\delta>0$ such that $1-e^{-\delta} \leq \mathbb{P}_{\lambda_{\text {min }}}\left(\tau^{0}=+\infty\right) \varepsilon^{\prime} / 6$ and $\delta<5 C L$: if we let

$$
F_{t}=\left\{\omega_{0}([0, \delta])=0 ; \exists n \in[0, L], 2 L u-x_{1}+n e_{1}+[-I, I]^{d} \subset \xi_{t}^{0}\right\}
$$

we also have, for each $\lambda \in \Lambda$ and each $t \geq 5 C L$, that $\overline{\mathbb{P}}_{x_{1} \cdot \lambda}\left(F_{t}\right) \geq 1-\varepsilon^{\prime} / 3$.
Then, with Proposition 5, one deduces that if $y \in x_{0}+[-I, I]^{d}$, then

$$
\overline{\mathbb{P}}_{y . \lambda}\binom{\sigma\left(x_{1}-y\right) \leq 4 C L,}{\tilde{\theta}_{x_{1}-y}^{-1}\left(F_{9 C L-\sigma\left(x_{1}-y\right)}\right)} \geq \overline{\mathbb{P}}_{y . \lambda}\left(\sigma\left(x_{1}-y\right) \leq 4 C L\right)\left(1-\varepsilon^{\prime} / 3\right)
$$

Considering estimate (9), we can choose $L_{3} \geq L_{2}$ such that for $L \geq L_{3}$, we have

$$
\overline{\mathbb{P}}_{y . \lambda}\left(\sigma\left(x_{1}-y\right) \leq 4 C L, \tilde{\theta}_{x_{1}-y}^{-1}\left(F_{9 C L-\sigma\left(x_{1}-y\right)}\right)\right) \geq 1-\varepsilon^{\prime} / 2 .
$$

Let $C_{1}=9 C$. With (28) and the definition of ε^{\prime}, we get

$$
\mathbb{P}_{\lambda}\left(\begin{array}{c}
\exists t \in\left[0, C_{1} L-\delta\right]: x_{1} \in \xi_{t}^{x_{0}+[-I, I]^{d}} \\
\omega_{x_{1}}([t, t+\delta])=0 \\
\exists s \in 2 L u+[-L, L]^{d}, s+[-I, I]^{d} \subset \xi_{C_{1} L-t}^{x_{1}} \circ \theta_{t}
\end{array}\right) \geq 1-3 \varepsilon / 4
$$

Finally, one takes for M the constant given by equation (12) and lets $M_{1}=$ $M C_{1}+2$. With (12), we can find $L \geq L_{3}$ sufficiently large to have

$$
\begin{equation*}
\mathbb{P}_{\lambda_{\max }}\left(\bigcup_{0 \leq t \leq C_{1} L} \xi_{t}^{[-L-I, L+I]^{d}} \subset\left[-M_{1} L, M_{1} L\right]^{d}\right) \geq 1-\varepsilon / 4 \tag{29}
\end{equation*}
$$

this fixes the integer L.
The local dependence of the events comes from the third condition in their definition. This concludes the proof of the lemma.
3.3.2. Dependent macroscopic percolation. We fix C_{1}, M_{1} given by Lemma 17. We choose $I \in \mathbb{N}^{*}, L \in \mathbb{N}^{*}$ and $\delta>0$ such that $I \leq L$ and $\delta<C_{1} L$, and we let $T=C_{1} L$.

Let x in \mathbb{Z}^{d} be fixed. We write $x=2 L[x]+\{x\}$, with $\{x\} \in\left[-L, L\left[{ }^{d}\right.\right.$ and $[x] \in \mathbb{Z}^{d}$. We will first, from the events defined in the preceding subsection, build a field $\left({ }^{x} W_{(\bar{k}, u)}^{n}\right)_{n \geq 0, \bar{k} \in \mathbb{Z}^{d},\|u\|_{1} \leq 1}$.

The idea is to construct a macroscopic oriented percolation on the bonds of $\overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}$, looking for the realizations, floor by floor, of translates of good events of type $A(\cdot)$. We start from an area centered at 0 in the box with coordinate $\overline{0}$; for each u such that $\|u\|_{1} \leq 1$, say that the bond between $(\overline{0}, 0)$ and $(u, 1)$ is open if $A(\overline{0}, u, 0,\{x\})$ holds; in that case we obtain an infected square centered at the exit point $s(\overline{0}, u, 0,\{x\})$; all bonds in this floor that are issued from another point than $\overline{0}$ are open, with fictive exit points equal to ∞. Then we move to the upper floor: for a box $(\bar{y}, 1)$, look if it contains exit points of bonds that were open at the preceding step. If it is the case, we choose one of these, denoted by $d_{1}^{x}(\bar{y})$, open the bond between $(\bar{y}, 1)$ and $(\bar{y}+u, 2)$ if $A\left(\bar{y}, u, d_{1}^{x}(\bar{y}),\{x\}\right) \circ \theta_{T}$ happens and close it otherwise; in the other case we open all bonds issued from that box, and so on for every floor.

Precisely, we let $d_{0}^{x}(\overline{0})=0$ and also $d_{0}^{x}(\bar{y})=+\infty$ for every $\bar{y} \in \mathbb{Z}^{d}$ that differs from 0 . Then, for each $\bar{y} \in \mathbb{Z}^{d}$, each $u \in \mathbb{Z}^{d}$ such that $\|u\|_{1} \leq 1$ and for each $n \geq 0$, we recursively define:

- If $d_{n}^{x}(\bar{y})=+\infty,{ }^{x} W_{(\bar{y}, u)}^{n}=1$.
- Otherwise,

$$
\begin{aligned}
{ }^{x} W_{(\bar{y}, u)}^{n} & =\mathbb{1}_{A\left(\bar{y}, u, d_{n}^{x}(\bar{y}),\{x\}\right)} \circ \theta_{n T}, \\
d_{n+1}^{x}(\bar{y}) & =\min \left\{\begin{array}{c}
s\left(\bar{y}+u,-u, d_{n}^{x}(\bar{y}+u),\{x\}\right) \circ \theta_{n T}: \\
\|u\|_{1} \leq 1, d_{n}^{x}(\bar{y}+u) \neq+\infty
\end{array}\right\} .
\end{aligned}
$$

Recall that the definition of the function s has been given with the one of a good event in the preceding subsection. Then, $d_{n+1}^{x}(\bar{y})$ represents the relative position of the entrance area for the ${ }^{x} W_{(\bar{y}, u)}^{n+1}$,s, with $\|u\|_{1} \leq 1$. We may have several candidates, that are the relative positions of the exit areas of the ${ }^{x} W_{(\bar{y}+u,-u)}^{n}$'s; the min only plays the role of a choice function. We take, for instance, the minimum for the lexicographic order on \mathbb{Z}^{d}.

We thus obtain an oriented percolation process. Among open bonds, only those corresponding to the realization of good events are relevant for the underlying contact process. Let us note, however, that the percolation cluster starting at $\overline{0}$ only contains bonds that correspond to the propagation of the contact process.

Lemma 18. Again, we work with C_{1}, M_{1} given by Lemma 17 . For each $q<1$, we can choose parameters I, L, δ such that for each $\lambda \in \Lambda$, and each $x \in \mathbb{Z}^{d}$,

$$
\text { the law of }\left({ }^{x} W_{e}^{n}\right)_{(e, n) \in \overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}} \text { under } \mathbb{P}_{\lambda} \text { is in } \mathcal{C}_{d}\left(2 M_{1}+1, q\right)
$$

Proof. For each $n \in \mathbb{N}$, let $\mathcal{G}_{n}=\mathcal{F}_{n T}$, with $T=C_{1} L$. Let us note that, for each $x, \bar{k} \in \mathbb{Z}^{d}$ and $n \geq 1$, the quantity $d_{n}^{x}(\bar{k})$ is \mathcal{G}_{n}-measurable, and so is ${ }^{x} W_{(\bar{k}, u)}^{n}$.

Lemma 17 ensures that the events $A\left(\bar{k}, u, x_{0},\{x\}\right)$ and $A\left(\bar{l}, v, x_{0}^{\prime},\{x\}\right)$ are independent as soon as $\|\bar{k}-\bar{l}\|_{1} \geq 2 M_{1}+1$; so we deduce that, conditionally to \mathcal{G}_{n}, the random variables ${ }^{x} W_{(\bar{k}, u)}^{n+1}$ and ${ }^{x} W_{(\bar{l}, v)}^{n+1}$ are independent as soon as $\|\bar{k}-\bar{l}\|_{1} \geq 2 M_{1}+1$.

Let now $x, \bar{k} \in \mathbb{Z}^{d}, n \geq 0$ and $u \in \mathbb{Z}^{d}$ such that $\|u\|_{1} \leq 1$,

$$
\begin{aligned}
\mathbb{E}_{\lambda} & {\left[{ }^{x} W_{(\bar{k}, u)}^{n+1} \mid \mathcal{G}_{n} \vee \sigma\left({ }^{x} W_{(\bar{l}, v)}^{n+1},\|v\|_{1} \leq 1,\|\bar{l}-\bar{k}\|_{1} \geq 2 M_{1}+1\right)\right] } \\
& =\mathbb{E}_{\lambda}\left[{ }^{x} W_{(\bar{k}, u)}^{n+1} \mid \mathcal{G}_{n}\right] \\
& =\mathbb{1}_{\left\{d_{n}^{x}(\bar{k})=+\infty\right\}}+\mathbb{1}_{\left\{d_{n}^{x}(\bar{k})<+\infty\right\}} \mathbb{P}_{\lambda}\left[{ }^{x} W_{(\bar{k}, u)}^{n+1}=1 \mid d_{n}^{x}(\bar{k})<+\infty\right] \\
& =\mathbb{1}_{\left\{d_{n}^{x}(\bar{k})=+\infty\right\}}+\mathbb{1}_{\left\{d_{n}^{x}(\bar{k})<+\infty\right\}} \mathbb{P}_{\lambda}\left[A\left(\bar{k}, u, d_{n}^{x}(\bar{k}),\{x\}\right)\right] .
\end{aligned}
$$

With Lemma 17, we can choose integers $I<L$ and $\delta>0$ in such a way that

$$
\mathbb{E}_{\lambda}\left[{ }^{x} W_{(\bar{k}, u)}^{n+1} \mid \mathcal{G}_{n} \vee \sigma\left({ }^{x} W_{(\bar{l}, v)}^{n+1},\|v\|_{1} \leq 1,\|\bar{l}-\bar{k}\|_{1} \geq 2 M_{1}+1\right)\right] \geq q
$$

This concludes the proof of the lemma.
We associate to the Bernoulli random field $\left({ }^{x} W_{e}^{n}\right)_{(e, n) \in \overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}}$ the quantities $\bar{\tau}^{\bar{k}}$ and $\bar{\gamma}(\theta, \bar{k}, \bar{l})$ that have been defined in Section 2.4.

Lemma 19. We can choose the parameters I, L, δ and some $\alpha_{0}>0$ such that the following holds:

- $\forall \lambda \in \Lambda \quad \mathbb{P}_{\lambda}\left(\bar{\tau}^{0}=+\infty\right) \geq \frac{1}{2} ;$
- $\forall \lambda \in \Lambda \quad \varphi(\lambda)=\mathbb{E}_{\lambda}\left[e^{\alpha_{0} \tilde{\tau}^{0}} \mathbb{1}_{\left\{\bar{\tau}^{0}<+\infty\right\}}\right] \leq 1 / 2$;
- there exist strictly positive constants θ and \bar{C} such that for every $x, y \in \mathbb{Z}^{d}$

$$
\begin{aligned}
& \forall \alpha \in\left[0, \alpha_{0}\right], \forall \lambda \in \Lambda \\
& \quad \ell(\lambda, \alpha, x, y)=\mathbb{E}_{\lambda}\left[\mathbb{1}_{\{\bar{\tau} x=+\infty\}} e^{\alpha \bar{\gamma}(\theta, x, y))}\right] \leq 2 e^{\bar{C} \alpha\|x-y\|} .
\end{aligned}
$$

Proof. By Proposition 13, we know that there exist $q<1$ and $\alpha>0$ such that we have

$$
\mathbb{E}\left[e^{\alpha \overline{\tau_{0}}} \mathbb{1}_{\{\bar{\tau} \overline{0}<+\infty\}}\right] \leq 1 / 2
$$

for each field in $\mathcal{C}_{d}\left(2 M_{1}+1, q\right)$. By Lemma 18, we can choose I, L, δ such that $\left({ }^{x} W_{e}^{n}\right)_{(e, n) \in \overrightarrow{\mathbb{E}}^{d} \times \mathbb{N}^{*}} \in \mathcal{C}_{d}\left(2 M_{1}+1, q\right)$, which gives the two first points. Then, from Proposition 14, we get constants A, B, C such that for every $x, y \in \mathbb{Z}^{d}$, every $n \geq 0$ and each $\lambda \in \Lambda$, we have

$$
\mathbb{P}_{\lambda}\left(+\infty>\bar{\gamma}(\theta, x, y)>C\|x-y\|_{1}+n\right) \leq A e^{-B n} .
$$

We can then find $B^{\prime}>0$ independent from x and λ such that the law of $\left(\bar{\gamma}(\theta, x, y)-C\|x-y\|_{1}\right) \mathbb{1}_{\{\bar{\gamma}(\theta, x, y)<+\infty\}}$ is stochastically dominated by the exponential law with parameter B^{\prime}. Let then $\alpha \leq B^{\prime} / 2$: we have

$$
\begin{aligned}
\ell(\lambda, \alpha, x, y) & =e^{\alpha C\|x-y\|_{1}} \mathbb{E}_{\lambda}\left[\mathbb{1}_{\left\{\tilde{\tau}^{x}=+\infty\right\}} e^{\alpha\left(\left(\bar{\gamma}(\theta, x, y)-C\|y-x\|_{1}\right)\right)}\right] \\
& \leq e^{\alpha C\|x-y\|_{1}} \frac{B^{\prime}}{B^{\prime}-\alpha} \\
& \leq 2 e^{\alpha C\|x-y\|_{1}} .
\end{aligned}
$$

3.3.3. Proof of Theorem 2. We first choose I, L, δ in order to satisfy the inequalities of Lemma 19, and we let $T=C_{1} L$.

We use a restart argument. The idea is as follows: fix $\lambda \in \Lambda$ and $x \in \mathbb{Z}^{d}$; if the lifetime τ^{0} of the contact process in random environment is infinite, then one can find by the restart procedure an instant T_{K} such that:

- $\xi_{T_{K}}^{0}$ contains an area $z+[-2 L, 2 L]^{d}$, which allows to activate a block oriented percolation, as defined in the previous subsection, from some $\bar{z}_{0} \in \mathbb{Z}^{d}$ such that $2 \bar{z}_{0} L+[-L, L]^{d} \subset z+[-2 L, 2 L]^{d}$;
- the block oriented percolation issued from \bar{z}_{0} infinitely survives.

Then, with Lemma 14, we give a lower bound for the proportion of time when $\bar{x}_{0}=[x]$ is occupied by descendants having themselves infinite progeny. By the definition of good events, this will allow us to bound from below the measure of $\{t \geq 0 ;(0,0) \rightarrow(x, t) \rightarrow \infty\}$ in the contact process. Indeed, recall that the definition of the event $A\left(\bar{x}_{0}, u, x_{0},\{x\}\right)$ targets $\{x\}$ and ensures that each time the site $\bar{x}_{0}=[x]$ is occupied in the macroscopic oriented percolation, then the contact process occupies the site $2 L \bar{x}_{0}+\{x\}=x$ during δ units of time.

Definition of the restart procedure. We define the following stopping times: for each nonempty subset $A \subset \mathbb{Z}^{d}$,

$$
U^{A}=\left\{\begin{array}{l}
T \quad \text { if } \forall z \in \mathbb{Z}^{d} z+[-2 L, 2 L]^{d} \not \subset \xi_{T}^{A} \\
T \times\left(1+\bar{\tau}^{0} \circ T_{2 \bar{x}^{A} L} \circ \theta_{T}\right) \\
\quad \text { otherwise } \\
\quad \text { with } \bar{x}^{A}=\inf \left\{\bar{m} \in \mathbb{Z}^{d}: 2 \bar{m} L+[-L, L]^{d} \subset \xi_{T}^{A}\right\}
\end{array}\right.
$$

and

$$
U^{\varnothing}=+\infty
$$

In other words, starting from a set A, we ask if the contact process contains an area in the form $2 \bar{m} L+[-L, L]^{d}$ at time T : if the answer is no, we stop; otherwise we consider the lifetime of the macroscopic percolation issued from the macroscopic site corresponding to that area. Particularly, if $A \neq \varnothing$ and $U^{A}=+\infty$, then there exists, at time T, in the contact process issued from A, an area $2 \bar{x}^{A} L+[-L, L]^{d}$
which is fully occupied, and such that the macroscopic oriented percolation issued from the macroscopic site \bar{x}^{A} percolates. We then search in that infinite cluster not too large a time when the proportion of individuals living at $\bar{x}_{0}=[x]$ and having infinite progeny becomes sufficiently large: if $A \neq \varnothing$ and $U^{A}=+\infty$, we define

$$
R^{A}=R^{A}(x)= \begin{cases}T\left(1+\bar{\gamma}\left(\theta, \bar{x}^{A}, \bar{x}_{0}\right)\right), & \text { if } A \neq \varnothing \text { and } U^{A}=+\infty \\ 0, & \text { otherwise }\end{cases}
$$

Thus, when $U^{A}=+\infty$, the variable R^{A} represents the first time (in the scale of the contact process, not that of the macroscopic oriented percolation) when the proportion of individuals living at $\bar{x}_{0}=[x]$ and having infinite progeny becomes sufficiently large.

Estimates for the restart procedure.
Lemma 20. There exist constants $\alpha>0, q>0, c<1, A^{\prime}, h>0$ such that for each $\lambda \in \Lambda$, each $A \subset \mathbb{Z}^{d}$, and each $x \in \mathbb{Z}^{d}$,

$$
\begin{align*}
\mathbb{P}_{\lambda}\left(U^{A}=+\infty\right) & \geq q \tag{30}\\
\mathbb{E}_{\lambda}\left[\exp \left(\alpha U^{A}\right) \mathbb{1}_{\left\{U^{A}<+\infty\right\}}\right] & \leq c \tag{31}\\
\mathbb{E}_{\lambda}\left[\exp \left(\alpha R^{A}(x)\right) \mathbb{1}_{\left\{U^{A}=+\infty\right\}}\right] & \leq A^{\prime} e^{\alpha h\left(\left\|\bar{x}_{0}\right\|_{\infty}+\|A\|_{\infty}\right)}, \tag{32}
\end{align*}
$$

where $\|A\|_{\infty}=\sup _{x \in A}\|x\|_{\infty}$.
Proof. We easily get (30) from a stochastic comparison: for each $\lambda \in \Lambda$ and each nonempty A,

$$
\mathbb{P}_{\lambda}\left(U^{A}=+\infty\right) \geq \mathbb{P}_{\lambda_{\min }}\left([-2 L, 2 L]^{d} \subset \xi_{T}^{0}\right) \mathbb{P}\left(\bar{\tau}^{0}=+\infty\right)=q>0
$$

Now, if $\alpha>0, A \subset \mathbb{Z}^{d}$ is nonempty and $\lambda \in \Lambda$, we have with the Markov property and Lemma 19,

$$
\begin{aligned}
& \mathbb{E}_{\lambda}\left[\exp \left(\alpha U^{A}\right) \mathbb{1}_{\left\{U^{A}<+\infty\right\}}\right] \\
& =\mathbb{E}_{\lambda}\left[\mathbb{E}_{\lambda}\left[\exp \left(\alpha U^{A}\right) \mathbb{1}_{\left\{U^{A}<+\infty\right\}} \mid \mathcal{F}_{T}\right]\right] \\
& =e^{\alpha T} \mathbb{E}_{\lambda}\left[\begin{array}{c}
\mathbb{1}_{\left\{\nexists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right\}} \\
+\mathbb{1}_{\left\{\exists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right\}} \mathbb{E}_{2 \bar{x} A}{ }^{2} . \lambda \\
{\left[e^{\alpha T \bar{\tau}^{0}} \mathbb{1}_{\left\{\bar{\tau}^{0}<+\infty\right\}}\right]}
\end{array}\right] \\
& \leq e^{\alpha T}\binom{c \mathbb{P}_{\lambda}\left(\nexists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right)}{+\mathbb{P}_{\lambda}\left(\exists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right) \times \frac{1}{2}} \\
& \leq e^{\alpha T}\left(1-\frac{1}{2} \mathbb{P}_{\lambda}\left(\exists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right)\right) \\
& \leq e^{\alpha T}\left(1-\frac{1}{2} \mathbb{P}_{\lambda_{\text {min }}}\left(\exists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right)\right)=c<1
\end{aligned}
$$

provided that $\alpha>0$ is small enough; this proves (31).

By the Markov property and Lemma 19, if we choose $\alpha>0$ small enough, then for each $\lambda \in \Lambda$,

$$
\begin{align*}
& \mathbb{E}_{\lambda}\left[\exp \left(\alpha R^{A}\right) \mathbb{1}_{\left\{U^{A}=+\infty\right\}} \mid \mathcal{F}_{T}\right] \\
& \quad=\mathbb{1}_{\left\{\exists z \in \mathbb{Z}^{d}, z+[-2 L, 2 L]^{d} \subset \xi_{T}^{A}\right\}} \alpha^{\alpha T} \mathbb{E}_{2 \bar{x}^{A} L . \lambda}\left[\exp \left(\alpha T \bar{\gamma}\left(\theta, \bar{x}^{A}, \bar{x}_{0}\right)\right) \mathbb{1}_{\left\{\bar{\tau}^{-} \bar{x}^{A}=+\infty\right\}}\right] \tag{33}\\
& \quad \leq 2 e^{\alpha T} \exp \left(\bar{C} \alpha T\left\|\bar{x}^{A}-\bar{x}_{0}\right\|_{\infty}\right) \\
& \quad \leq 2 e^{\alpha T\left(1+\bar{C}\left\|\bar{x}_{0}\right\|_{\infty}\right)} \exp \left(\bar{C} \alpha T\left\|\xi_{T}^{A}\right\|_{\infty}\right) .
\end{align*}
$$

We use the comparison with Richardson's model to bound the mean of the last term: let us choose the positive constants M, β such that

$$
\forall s, t \geq 0 \quad \mathbb{P}_{\lambda_{\max }}\left(\left\|\xi_{s}^{0}\right\|_{\infty} \geq M s+t\right) \leq e^{-\beta t}
$$

Then, for each nonempty finite set A, each $t>0$, and each $\lambda \in \Lambda$,

$$
\begin{aligned}
& \mathbb{P}_{\lambda}\left(\left\|\xi_{T}^{A}\right\|_{\infty} \geq 2\|A\|_{\infty}+M T+t\right) \\
& \quad \leq \mathbb{P}_{\lambda_{\max }}\left(\max _{a \in A}\left\|\xi_{T}^{a}-a\right\|_{\infty} \geq\|A\|_{\infty}+M T+t\right) \\
& \quad \leq|A| \mathbb{P}_{\lambda_{\max }}\left(\left\|\xi_{T}^{0}\right\|_{\infty} \geq M T+\|A\|_{\infty}+t\right) \\
& \quad \leq\|A\|_{\infty}^{d} e^{-\beta\left(\|A\|_{\infty}+t\right)} \leq \alpha^{\prime} \exp (-\beta t)
\end{aligned}
$$

Then, for α small enough,

$$
\begin{align*}
\mathbb{E}_{\lambda}\left[\exp \left(\bar{C} \alpha T\left\|\xi_{T}^{A}\right\|_{\infty}\right)\right] & \leq e^{\bar{C} \alpha T\left(2\|A\|_{\infty}+M T\right)}\left(1+\frac{\bar{C} \alpha T \alpha^{\prime}}{\beta-\bar{C} \alpha T}\right) \\
& \leq 2 e^{\bar{C} \alpha T\left(2\|A\|_{\infty}+M T\right)} \tag{34}
\end{align*}
$$

Inequality (32) immediately follows from (33) and (34).

Application of the restart Lemma 11. Let

$$
\begin{array}{cl}
T_{0}=0 \quad \text { and } \quad & T_{k+1}= \begin{cases}+\infty, & \text { if } T_{k}=+\infty, \\
T_{k}+U^{\xi_{0}}{ }^{T_{k}} \circ \theta_{T_{k}}, & \text { otherwise }\end{cases} \\
K=\inf \left\{k \geq 0: T_{k+1}=+\infty\right\} .
\end{array}
$$

The restart lemma, applied with $T^{\cdot}=G^{\cdot}=U^{\cdot}$ and $F^{\cdot}=0$, ensures that

$$
\mathbb{E}_{\lambda}\left[\exp \left(\alpha T_{K}\right)\right] \leq \frac{A^{\prime}}{1-c}
$$

Applying now the restart lemma with $G^{\cdot}=0$ and $F^{\cdot}=R^{\cdot}$, we get that

$$
\mathbb{E}_{\lambda}\left[\exp \left(\alpha\left(R^{\xi_{0}^{T_{K}}} \circ \theta_{T_{K}}-\left(h\left\|\bar{x}_{0}\right\|_{\infty}+\left\|\xi_{0}^{T_{K}}\right\|_{\infty}\right)\right)\right)\right] \leq \frac{A^{\prime}}{1-c} .
$$

Particularly, it holds that for each $s>0$ and $t>0$,

$$
\begin{gather*}
\mathbb{P}_{\lambda}\left(T_{K}>s\right) \leq \frac{A^{\prime}}{1-c} \exp (-\alpha s) \tag{35}\\
\mathbb{P}_{\lambda}\binom{R^{\xi_{0}^{T_{K}}}{ }_{\circ \theta_{T_{K}}} \geq t / 2,}{T_{K} \leq s, H_{s}^{0} \subset B_{M s}^{0}} \leq \frac{A^{\prime}}{1-c} \exp \left(\alpha\left(h\left(\left\|\bar{x}_{0}\right\|_{\infty}+M s\right)-t / 2\right)\right) \tag{36}
\end{gather*}
$$

On the event $\left\{\tau^{0}=+\infty\right\}$, one can be sure that the contact process is nonempty at each step of the restart procedure: the restart lemma ensures that at time $T_{K}+T$, one can find some area from which the directed block percolation percolates, and, by construction, that for every $t \geq T_{K}+R^{\xi_{0}^{T_{K}}{ }^{\circ} \theta_{T_{K}}}$,

$$
\operatorname{Leb}\left(\left\{s \in\left[T_{K}+T, t\right]:(0,0) \rightarrow(x, s) \rightarrow \infty\right\}\right) \geq \delta \theta \operatorname{Int}\left(\frac{t-\left(T_{K}+T\right)}{T}\right) \geq \frac{\delta \theta}{2 T} t
$$

as soon as $T_{K} \leq t / 2-1$. Here, $\operatorname{Int}(x)$ is the largest integer not greater than x.
Let $C=\frac{2 h}{L}$. Let now be $x \in \mathbb{Z}^{d}$, and $t \geq C\|x\|_{\infty}$.

$$
\begin{aligned}
\mathbb{P}_{\lambda}\left(\tau^{0}\right. & \left.=+\infty, \operatorname{Leb}(\{s \in[0, t]:(0,0) \rightarrow(x, s) \rightarrow \infty\})<\frac{\delta \theta}{2 T} t\right) \\
& \leq \mathbb{P}_{\lambda}\left(T_{K}>t / 2-1\right)+\mathbb{P}_{\lambda}\left(T_{K} \leq t / 2-1, t<T_{K}+R^{\xi_{0}} \circ \circ \theta_{T_{K}}\right) \\
& \leq \mathbb{P}_{\lambda}\left(T_{K}>t / 2-1\right)+\mathbb{P}_{\lambda}\left(R^{\xi_{0}}{ }^{T_{K}} \circ \theta_{T_{K}}>t / 2\right)
\end{aligned}
$$

We control the first term with (35). For the second one, we take $s=\frac{t}{8 h M}$

$$
\begin{aligned}
& \mathbb{P}_{\lambda}\left(R^{\xi_{0}^{T_{K}}} \circ \theta_{T_{K}}>t / 2\right) \\
& \quad \leq \mathbb{P}_{\lambda}\left(R^{\xi_{0}^{T_{K}}{ }^{\circ} \theta_{T_{K}}}>t / 2, T_{K} \leq s, H_{s}^{0} \subset B_{M s}^{0}\right)+\mathbb{P}_{\lambda}\left(T_{K}>s\right)+\mathbb{P}_{\lambda}\left(H_{s}^{0} \not \subset B_{M s}^{0}\right)
\end{aligned}
$$

We control the last two terms with (35) and (12); for the first one, we use (36): since $\left\|\bar{x}_{0}\right\|_{\infty} \leq \frac{1}{2 L}\|x\|_{\infty}+1$,

$$
\begin{aligned}
\mathbb{P}_{\lambda}\binom{R^{\xi_{0}^{T_{K}}{ }^{\circ} \theta_{T_{K}}>t / 2,}}{T_{K} \leq s, H_{s}^{0} \subset B_{M s}^{0}} & \leq \frac{A^{\prime}}{1-c} \exp \left(\alpha\left(h\left(\left\|\bar{x}_{0}\right\|_{\infty}+M s\right)-t / 2\right)\right) \\
& \leq \frac{A^{\prime} e^{\alpha h}}{1-c} \exp \left(\alpha\left(\left(\frac{h}{2 L}\|x\|_{\infty}-\frac{t}{4}\right)-\frac{t}{8}\right)\right) \\
& \leq \frac{A^{\prime} e^{\alpha h}}{1-c} \exp (-\alpha t / 8)
\end{aligned}
$$

which completes the proof.

4. Lower large deviations.

4.1. Duality. We have seen that the hitting times $\sigma(n x)$ enjoy superconvolutive properties. In a deterministic frame, Hammersley [15] has proved that the superconvolutive property allows us to express the large deviation functional in terms of the moments generating function, as in Chernoff's theorem. We will see that this property also holds in an ergodic random environment. The following proof is inspired by Kingman [20].

Proof of Theorem 3. Since $\left\{t(x) \leq t, \tau^{x} \circ \theta_{t(x)}=+\infty\right\} \subset\{\sigma(x) \leq t\} \subset$ $\{t(x) \leq t\}$, the Markov property ensures that

$$
\overline{\mathbb{P}}_{\lambda}(t(x) \leq t) \mathbb{P}_{\lambda}\left(\tau^{x}=+\infty\right) \leq \overline{\mathbb{P}}_{\lambda}(\sigma(x) \leq t) \leq \overline{\mathbb{P}}_{\lambda}(t(x) \leq t)
$$

Thus, letting $R=-\log \mathbb{P}_{\lambda_{\text {min }}}\left(\tau^{0}=+\infty\right)$, we have

$$
\begin{equation*}
-\log \left(\overline{\mathbb{P}}_{\lambda}(t(x) \leq t)\right) \leq-\log \left(\overline{\mathbb{P}}_{\lambda}(\sigma(x) \leq t)\right) \leq-\log \left(\overline{\mathbb{P}}_{\lambda}(t(x) \leq t)\right)+R \tag{37}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\mathbb{E}_{\lambda}\left[e^{-\theta t(x)}\right] & \geq \mathbb{E}_{\lambda}\left[e^{-\theta \sigma(x)}\right] \\
& \geq \mathbb{E}_{\lambda}\left[\mathbb{1}_{\left\{\tau^{x} \circ \theta_{t(x)}=+\infty\right\}} e^{-\theta t(x)}\right]=\mathbb{E}_{\lambda}\left[e^{-\theta t(x)}\right] \mathbb{P}_{\lambda}\left(\tau^{x}=+\infty\right)
\end{aligned}
$$

which leads to

$$
\begin{equation*}
-\log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta t(x)}\right] \leq-\log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma(x)}\right] \leq-\log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta t(x)}\right]+R \tag{38}
\end{equation*}
$$

Then, having a large deviation principle in mind, working with σ or t does not matter. We will work here with σ, which gives simpler relations. We know that

$$
\begin{equation*}
t((n+p) x) \leq \sigma(n x)+\sigma(p x) \circ \tilde{\theta}_{n x} \tag{39}
\end{equation*}
$$

that $\sigma(n x)$ and $\sigma(p x) \circ \tilde{\theta}_{n x}$ are independent under $\overline{\mathbb{P}}_{\lambda}$ and that the law of $\sigma(p x) \circ$ $\tilde{\theta}_{n x}$ under $\overline{\mathbb{P}}_{\lambda}$ is the law of $\sigma(p x)$ under $\overline{\mathbb{P}}_{n x . \lambda}$; see Proposition 5 . Then

$$
\begin{align*}
& -\log \overline{\mathbb{P}}_{\lambda}(t((n+p) x) \leq n u+p v) \tag{40}\\
& \quad \leq-\log \overline{\mathbb{P}}_{\lambda}(\sigma(n x) \leq n u)-\log \overline{\mathbb{P}}_{n x \cdot \lambda}(\sigma(p x) \leq p v)
\end{align*}
$$

Let $g_{n}^{x}(\lambda, u)=-\log \overline{\mathbb{P}}_{\lambda}(\sigma(n x) \leq n u)+R$ and $G_{n}^{x}(u)=\int_{\Lambda} g_{n}^{x}(\lambda, u) d v(\lambda)$. Inequalities (37) and (40) ensure that

$$
\begin{equation*}
g_{n+p}^{x}(\lambda, u) \leq g_{n}^{x}(\lambda, u)+g_{p}^{x}\left(T_{x}^{n} \lambda, u\right) \tag{41}
\end{equation*}
$$

Since $0 \leq g_{1}^{x}(\lambda, u) \leq-\log \overline{\mathbb{P}}_{\lambda_{\text {min }}}(\sigma(x) \leq u)+R<+\infty$, Kingman's subadditive ergodic theorem ensures that $\frac{g_{n}^{x}(u, \lambda)}{n}$ converges to

$$
\Psi_{x}(u)=\inf _{n \geq 1} \frac{1}{n} G_{n}^{x}(u)=\lim _{n \rightarrow+\infty} \frac{1}{n} G_{n}^{x}(u)
$$

for ν-almost every λ.
Note that (40) ensures that for every $n, p \in \mathbb{N}$ and every $u, v>0$,

$$
\Psi_{x}\left(\frac{n u+p v}{n+p}\right) \leq \frac{1}{n+p} G_{n+p}^{x}\left(\frac{n u+p v}{n+p}\right) \leq \frac{n}{n+p} \frac{G_{n}^{x}(u)}{n}+\frac{p}{n+p} \frac{G_{p}^{x}(v)}{p} .
$$

Let $\alpha \in] 0,1\left[\right.$. We can assume without loss of generality that $0<u<v$. Since Ψ_{x} is nonincreasing, considering some sequence n_{k}, p_{k} such that $\frac{n_{k}}{n_{k}+p_{k}}$ tends to α from above, we get

$$
\Psi_{x}(\alpha u+(1-\alpha) v) \leq \alpha \Psi_{x}(u)+(1-\alpha) \Psi_{x}(v),
$$

so Ψ is convex.
Similarly, let $h_{n}^{x}(\lambda, \theta)=-\log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma(n x)}\right]+R$ and $H_{n}^{x}(\theta)=\int h_{n}^{x}(\lambda, \theta) d \nu(\lambda)$. As previously, with (38) and the subadditive relation (39), we have

$$
\begin{aligned}
\overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma((n+p) x)}\right] & \geq e^{-R} \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta t((n+p) x)}\right] \\
& \geq e^{-R} \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta\left(\sigma(n x)+\sigma(p x) \circ \tilde{\theta}_{n x}\right)}\right] \\
& =e^{-R} \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma(n x)}\right] \overline{\mathbb{E}}_{n x . \lambda}\left[e^{-\theta \sigma(p x)}\right]
\end{aligned}
$$

and then the inequality

$$
h_{n+p}^{x}(\lambda, \theta) \leq h_{n}^{x}(\lambda, \theta)+h_{p}^{x}\left(T_{x}^{n} \lambda, \theta\right)
$$

Since $0 \leq h_{1}^{x}(\lambda, \theta) \leq-\log \overline{\mathbb{E}}_{\lambda_{\text {min }}}\left[e^{-\theta \sigma(x)}\right]<+\infty$, Kingman's subadditive ergodic theorem ensures that for v-almost every $\lambda, \frac{h_{n}^{x}(\lambda, \theta)}{n}$ converges to

$$
K_{x}(\theta)=\inf _{n \geq 1} \frac{1}{n} H_{n}^{x}(\theta)=\lim _{n \rightarrow+\infty} \frac{1}{n} H_{n}^{x}(\theta) .
$$

Let now $\theta \geq 0$ and $u>0$. By the Markov inequality, we observe that

$$
\begin{array}{ll}
\overline{\mathbb{P}}_{\lambda}(\sigma(n x) \leq n u) \leq e^{\theta n u} \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma(n x)}\right], & \text { i.e., }-g_{n}^{x}(\cdot, u) \leq \theta n u-h_{n}^{x}(\cdot, \theta), \\
& \text { i.e., } G_{n}^{x}(u) \geq-\theta n u+H_{n}(\theta) \\
& \text { i.e., } \Psi_{x}(u) \geq-\theta u+K_{x}(\theta)
\end{array}
$$

Thus, we easily get

$$
\begin{array}{ll}
\forall u>0 & \Psi_{x}(u) \geq \sup _{\theta \geq 0}\left(K_{x}(\theta)-\theta u\right), \\
\forall \theta>0 & K_{x}(\theta) \leq \inf _{u>0}\left(\Psi_{x}(u)+\theta u\right) . \tag{43}
\end{array}
$$

It remains to prove both reversed inequalities. Let us first prove

$$
\begin{equation*}
\forall \theta>0 \quad K_{x}(\theta) \geq \inf _{u>0}\left\{\Psi_{x}(u)+\theta u\right\} . \tag{44}
\end{equation*}
$$

Let $\theta>0$. Define $M=\inf _{u>0}\left\{\Psi_{x}(u)+\theta u\right\}$, and note that for each u and each integer $n \geq 1$,

$$
G_{n}^{x}(u)+n \theta u \geq n \Psi_{x}(u)+n \theta u \geq n M .
$$

Fix $\varepsilon>0$. Define $E_{n, \varepsilon}=\left\{\lambda: g_{n}^{x}(\lambda, u) \geq G_{n}^{x}(u)-n \varepsilon\right\}$. We have

$$
\begin{aligned}
H_{n}^{x}(\theta) & \geq \int_{E_{n, \varepsilon}} h_{n}^{x}(\lambda, \theta) d \nu(\lambda)=\int_{E_{n, \varepsilon}}\left(R-\log \overline{\mathbb{E}}_{\lambda}\left[e^{-\theta \sigma(n x)}\right)\right] d \nu(\lambda) \\
& =\int_{E_{n, \varepsilon}}-\log \left[\int_{0}^{+\infty} n \theta e^{-\theta n u} e^{-R} \overline{\mathbb{P}}_{\lambda}(\sigma(n x)<n u) d u\right] d \nu(\lambda)
\end{aligned}
$$

For every $\lambda \in E_{n, \varepsilon}$ and $b>0$, one has

$$
\begin{aligned}
\int_{0}^{+\infty} & n \theta e^{-\theta n u} e^{-R} \overline{\mathbb{P}}_{\lambda}(\sigma(n x)<n u) d u \\
& \leq e^{-\theta n b}+\int_{0}^{b} n \theta e^{-\theta n u} e^{-R} \overline{\mathbb{P}}_{\lambda}(\sigma(n x)<n u) d u \\
& =e^{-\theta n b}+\int_{0}^{b} n \theta e^{-\theta n u} e^{-g_{n}^{x}(\lambda, u)} d u \\
& \leq e^{-\theta n b}+\int_{0}^{b} n \theta e^{-\theta n u} e^{-G_{n}^{x}(u)+n \varepsilon} d u \\
& \leq e^{-\theta n b}+n \theta b e^{-n(M-\varepsilon)} \\
& \leq(n M+1) e^{-n(M-\varepsilon)} \quad \text { with } b=M / \theta
\end{aligned}
$$

Finally,

$$
\frac{H_{n}^{x}(\theta)}{n} \geq v\left(E_{n, \varepsilon}\right)\left(-\frac{\log (1+n M)}{n}+M-\varepsilon\right)
$$

Since $v\left(E_{n, \varepsilon}\right)$ tends to 1 when n goes to infinity, one deduces that

$$
K_{x}(\theta)=\lim \frac{1}{n} H_{n}^{x}(\theta) \geq M-\varepsilon
$$

Letting ε tend to 0 , we get (44).
Let us finally prove

$$
\begin{equation*}
\forall u>0 \quad \Psi_{x}(u) \leq \sup _{\theta \geq 0}\left(K_{x}(\theta)-\theta u\right) \tag{45}
\end{equation*}
$$

Let $u>0$. It is sufficient to prove that there exists $\theta_{u} \geq 0$, which satisfies $\Psi_{x}(u) \leq$ $-\theta_{u} u+K_{x}\left(\theta_{u}\right)$. Since Ψ_{x} is convex and nonincreasing, there exists a slope $-\theta_{u} \leq$ 0 such that $\Psi_{x}(v) \geq \Psi_{x}(u)-\theta_{u}(v-u)$. Then

$$
K_{x}\left(\theta_{u}\right)=\inf _{v>0}\left\{\Psi_{x}(v)+\theta_{u} v\right\} \geq \inf _{v>0}\left\{\Psi_{x}(u)-\theta_{u}(v-u)+\theta_{u} v\right\}=\Psi_{x}(u)+\theta_{u} u
$$

which completes the proof of (45) and of the reciprocity formulas.

The function $-K_{x}(-\theta)$ corresponds to Ψ_{x} in the Fenchel-Legendre duality: therefore, it is convex. Particularly, the functions Ψ_{x} and K_{x} are continuous on $] 0,+\infty\left[\right.$. By the definition of Ψ_{x} and K_{x}, there exists $\Lambda^{\prime} \subset \Lambda$ with $v\left(\Lambda^{\prime}\right)=1$ and such that for each $u \in \mathbb{Q} \cap(0,+\infty)$ and each $\theta \in \mathbb{Q} \cap[0,+\infty)$, we have

$$
\lim _{n \rightarrow+\infty}-\frac{1}{n} \log \overline{\mathbb{P}}_{\lambda}(\sigma(n x) \leq n u)=\Psi_{x}(u)
$$

and

$$
\lim _{n \rightarrow+\infty}-\frac{1}{n} \log \overline{\mathbb{E}}_{\lambda} e^{-\theta \sigma(n x)}=K_{x}(\theta)
$$

Since the functions $\theta \mapsto h_{n}^{x}(\cdot, \theta)$ and $u \mapsto g_{n}^{x}(\cdot, \theta)$ are monotonic, and their limits Ψ_{x} and K_{x} are continuous, it is easy to check that the convergences also hold for every $\lambda \in \Lambda^{\prime}, u>0$ and $\theta \geq 0$.
4.2. Lower large deviations. We prove here Theorem 4. Remember that $\mathbb{P}(\cdot)=\int_{\Lambda} \mathbb{P}_{\lambda}(\cdot) d \nu(\lambda)$. The main step is actually to prove the following:

THEOREM 21. Assume that $v=v_{0}^{\otimes \mathbb{E}^{d}}$ and that the support of v_{0} is included in $\left[\lambda_{\min }, \lambda_{\max }\right]$. For every $\varepsilon>0$, there exist $A, B>0$ such that

$$
\forall t \geq 0 \quad \mathbb{P}\left(\xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}\right) \leq A \exp (-B t)
$$

Using the norm equivalence on \mathbb{R}^{d}, we introduce constants $C_{\mu}^{-}, C_{\mu}^{+}>0$ such that

$$
\begin{equation*}
\forall z \in \mathbb{R}^{d} \quad C_{\mu}^{-}\|z\|_{\infty} \leq \mu(z) \leq C_{\mu}^{+}\|z\|_{\infty} \tag{46}
\end{equation*}
$$

Let $\alpha, L, N, \varepsilon>0$. We define the following event, relative to the space-time box $B_{N}=B_{N}(0,0)=[-N, N]^{d} \times[0,2 N]$:

$$
\begin{aligned}
A^{\alpha, L, N, \varepsilon}= & \left\{\forall\left(x_{0}, t_{0}\right) \in B_{N}, \xi_{\alpha L N-t_{0}}^{x_{0}} \circ \theta_{t_{0}} \subset x_{0}+(1+\varepsilon)\left(\alpha L N-t_{0}\right) A_{\mu}\right\} \\
& \cap\left\{\forall\left(x_{0}, t_{0}\right) \in B_{N}, \bigcup_{0 \leq s \leq \alpha L N-t_{0}} \xi_{s}^{x_{0}} \circ \theta_{t_{0}} \subset\right]-L N, L N\left[^{d}\right\} .
\end{aligned}
$$

The first part of the event ensures that the descendants, at time $\alpha L N$, of any point $\left(x_{0}, t_{0}\right)$ in the box B_{N} are included in $x_{0}+(1+\varepsilon)(\alpha L N) A_{\mu}$: it is a sharp control, requiring the asymptotic shape theorem. The second part ensures that the descendants, at all times in $[0, \alpha L N]$, of the whole box B_{N} are included in $]-L N, L N\left[{ }^{d}\right.$: the bound is rough, only based on the (at most) linear growth of the process.

We say that the box B_{N} is good if $A^{\alpha, L, N, \varepsilon}$ occurs. We also define, for $k \in \mathbb{Z}^{d}$ and $n \in \mathbb{N}$, the event $A^{\alpha, L, N, \varepsilon}(k, n)=A^{\alpha, L, N, \varepsilon} \circ T_{2 k N} \circ \theta_{2 n N}$, and we say that the box $B_{N}(k, n)$ is good if the event $A^{\alpha, L, N, \varepsilon}(k, n)$ occurs.

The proof of the lower large deviation inequalities is close to the one by Grimmett and Kesten [14] for first passage-percolation. If a point (x, t) is infected too
early, it means that its path of infection has "too fast" portions when compared with the speed given by the asymptotic shape theorem. For this path, we build a sequence of boxes associated with path portions, and the existence of a "too fast portion" forces the corresponding box to be bad. But we are going to see that we can choose the parameters to ensure that:

- the probability under \mathbb{P} for a box to be good is as close to 1 as we want;
- the events " $B_{N}(k, 0)$ is good" are only locally dependent.

We then complete the proof by a comparison with independent percolation with the help of the Liggett-Schonmann-Stacey lemma [21] and a control of the number of possible sequences of boxes.

LEMMA 22. We have:

- The events $\left(\left\{B_{N}(k, 0) \text { is good }\right\}\right)_{k \in \mathbb{Z}^{d}}$ are identically distributed under \mathbb{P}.
- There exists $\alpha \in(0,1)$ such that for every $\varepsilon \in(0,1)$, there exists an integer L (that can be taken as large as we want) such that

$$
\lim _{N \rightarrow+\infty} \mathbb{P}\left(A^{\alpha, L, N, \varepsilon}\right)=1
$$

- If moreover $v=v_{0}^{\otimes \mathbb{E}^{d}}$, then the events $\left(\left\{B_{N}(k, 0) \text { is good }\right\}\right)_{k \in \mathbb{Z}^{d}}$ are $(L+1)$-dependent under \mathbb{P}.

Proof. The first and last points are clear. Let us prove the second point. The idea is to find a point $(0,-k)$, with k large enough, such that:

- the descendants of $(0,-k)$ are infinitely many and behave correctly (without excessive speed);
- the coupled region of $(0,-k)$ contains a set of points that is necessarily crossed by any infection path starting from the box B_{N}.

Indeed, this will allow to find, for all the descendants of B_{N}, a unique common ancestor, and thus to control the growth of all the descendants of B_{N} by simply controlling the descendants of this ancestor. A control on a number of points of the order of the volume of B_{N} will thus be replaced by a control on a single point. See Figure 2. Let $\varepsilon>0$ be fixed.

We first control the positions of the descendants of the box B_{N} at time $4 N$. Let A, B, M be the constants given by Proposition 9. We recall that ω_{x}, for $x \in \mathbb{Z}^{d}$, and ω_{e}, for $e \in \mathbb{E}^{d}$ are the Poisson point processes giving, respectively, the death times for x and the potential infection times through edge e. We define, for every integer N,

$$
\begin{aligned}
& \tilde{A}_{1}^{N}=\left\{H_{4 N}^{0} \not \subset[-(4 M+1) N,(4 M+1) N]^{d}\right\}, \\
& A_{1}^{N}=\left\{\sum_{x \in[-N, N]^{d}} \int \mathbb{1}_{\tilde{A}_{1}^{N}} \circ T_{x} \circ \theta_{t} d\left(\delta_{0}+\sum_{e \ni x} \omega_{e}\right)(t)=0\right\} .
\end{aligned}
$$

FIG. 2. Coupling from the past.

Note in particular that
(47) $A_{1}^{N} \subset\left\{\forall\left(x_{0}, t_{0}\right) \in B_{N}, \xi_{4 N-t_{0}}^{x_{0}} \circ \theta_{t_{0}} \subset[-(4 M+1) N,(4 M+1) N]^{d}\right\}$.

Let $\lambda \in \Lambda$ and $e \in \mathbb{E}^{d}$. For $k \geq 0$, we define $S_{k}=\inf \left\{t \geq 0 ; \omega_{e}([0, t]) \geq k\right\}$. For each event A and $T \geq 0$, we have

$$
\int_{0}^{T} \mathbb{1}_{A} \circ \theta_{t} d\left(\delta_{0}+\omega_{e}\right)(t)=\sum_{k=0}^{+\infty} \mathbb{1}_{\left\{S_{k} \leq T\right\}} \mathbb{1}_{A} \circ \theta_{S_{k}}
$$

Then, the strong Markov property gives

$$
\begin{aligned}
& \mathbb{E}_{\lambda}\left(\int_{0}^{T} \mathbb{1}_{A} \circ \theta_{t} d\left(\delta_{0}+\omega_{e}\right)(t)\right) \\
& \quad=\sum_{k=0}^{+\infty} \mathbb{P}_{\lambda}\left(S_{k} \leq T\right) \mathbb{P}_{\lambda}(A)=\mathbb{P}_{\lambda}(A) \mathbb{E}_{\lambda}\left(\sum_{k=0}^{+\infty} \mathbb{1}_{\left\{S_{k} \leq T\right\}}\right) \\
& \quad=\mathbb{P}_{\lambda}(A) \mathbb{E}_{\lambda}\left(1+\omega_{e}([0, T])\right)=\mathbb{P}_{\lambda}(A)\left(1+\lambda_{e} T\right) .
\end{aligned}
$$

Thus, for each increasing event A, we have

$$
\mathbb{E}\left(\int_{0}^{T} \mathbb{1}_{A} \circ \theta_{t} d\left(\delta_{0}+\omega_{e}\right)(t)\right) \leq \mathbb{P}_{\lambda_{\max }}(A)\left(1+\lambda_{\max } T\right)
$$

Then, with (12), we have

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{x \in[-N, N]^{d}} \sum_{e \ni x} \int_{0}^{2 N} \mathbb{1}_{\tilde{A}_{1}^{N}} \circ T_{x} \circ \theta_{t} d\left(\delta_{0}+\omega_{e}\right)(t)\right) \\
& \quad \leq(2 N+1)^{d} 2 d\left(1+2 N \lambda_{\max }\right) \mathbb{P}_{\lambda_{\max }}\left(\tilde{A}_{1}^{N}\right) \\
& \quad \leq(2 N+1)^{d} 2 d\left(1+2 N \lambda_{\max }\right) A \exp (-4 B N)
\end{aligned}
$$

and thus, with the Markov inequality,

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \mathbb{P}\left(A_{1}^{N}\right)=1 \tag{48}
\end{equation*}
$$

With (47), we deduce that with a large probability, if N is large enough, the descendants of B_{N} at time $4 N$ are included in $[-(4 M+1) N,(4 M+1) N]^{d}$.

Now, we look for points with a good growth (we will look for the common ancestor of B_{N} among these candidates),

$$
\begin{aligned}
\tilde{A}_{2}^{t} & =\left\{\tau^{0}=+\infty, \forall s \geq t, K_{s}^{\prime} \supset(1-\varepsilon) s A_{\mu} \text { and } \xi_{s}^{0} \subset(1+\varepsilon / 2) s A_{\mu}\right\} \\
A_{2}^{t, N} & =\bigcup_{k=0}^{N-1} \tilde{A}_{2}^{t} \circ \theta_{-k}
\end{aligned}
$$

The first event says that the point $(0,0)$ lives forever and has a good growth after time t (at most linear growth, and at least linear growth for its coupled zone), while the second event says that there exists a point $(0,-k)$ with a good growth and such that $k \in[0 . . N-1]$. Theorem 3 in Garet and Marchand [11] ensures that $\lim _{t \rightarrow+\infty} \overline{\mathbb{P}}\left(\tilde{A}_{2}^{t}\right)=1$. But

$$
\begin{aligned}
\mathbb{P}\left(\tilde{A}_{2}^{t}\right) & =\int \mathbb{P}_{\lambda}\left(\tilde{A}_{2}^{t}\right) d \nu(\lambda)=\int \overline{\mathbb{P}}_{\lambda}\left(\tilde{A}_{2}^{t}\right) \mathbb{P}_{\lambda}\left(\tau^{0}=+\infty\right) d \nu(\lambda) \\
& \geq \int \overline{\mathbb{P}}_{\lambda}\left(\tilde{A}_{2}^{t}\right) \mathbb{P}_{\lambda_{\min }}\left(\tau^{0}=+\infty\right) d \nu(\lambda) \geq \mathbb{P}_{\lambda_{\min }}\left(\tau^{0}=+\infty\right) \overline{\mathbb{P}}\left(\tilde{A}_{2}^{t}\right)
\end{aligned}
$$

So there exists t_{2} such that $\mathbb{P}\left(\tilde{A}_{2}^{t_{2}}\right)>0$. As the time translation θ_{-1} is ergodic under \mathbb{P}, we get

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \mathbb{P}\left(A_{2}^{t_{2}, N}\right)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(\bigcup_{k=0}^{n-1} \tilde{A}_{2}^{t_{2}} \circ \theta_{-k}\right)=1 \tag{49}
\end{equation*}
$$

In other words, with a large probability, if N is large enough, there exists $k \in$ [$0 . . N-1$] such that the point $(0,-k)$ has a good growth.

Take $L_{1}=L_{1}(\varepsilon)>0$ such that

$$
\begin{equation*}
\forall N \geq 1 \quad\left(L_{1}+1\right) N(1-\varepsilon) A_{\mu} \supset[-(4 M+1) N,(4 M+1) N]^{d} \tag{50}
\end{equation*}
$$

Thus, if we find an integer $k \geq \max \left(t_{2}, L_{1} N\right)$ such that $A_{t_{2}} \circ \theta_{-k}$ occurs, then the descendants of the box B_{N} at time $4 N$ are in the coupled region of $(0,-k)$.

Denote by $\overleftarrow{\tau}^{y}$ the life time of $(y, 0)$ for the contact process when we reverse time. As the contact process is self-dual, $\overleftarrow{\tau}^{y}$ as the same law as τ^{y}. Set

$$
A_{3}^{N}=\left\{\begin{array}{l}
\forall y \in[-(4 M+1) N,(4 M+1) N]^{d} \\
\overleftarrow{\tau} y \circ \theta_{4 N}=+\infty \text { or } \overleftarrow{\tau} y_{\circ} \circ \theta_{4 N}<2 N
\end{array}\right\}
$$

The control (13) of large lifetimes ensures that

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \mathbb{P}\left(A_{3}^{N}\right)=1 \tag{51}
\end{equation*}
$$

Assume now that $N \geq t_{2} / L_{1}$. Thus $L_{1} N \geq t_{2}$.
Let us see that on $A_{1}^{N} \cap\left(A_{2}^{t_{2}, N} \circ \theta_{-L_{1} N}\right) \cap A_{3}^{N}$, we have

$$
\begin{equation*}
\forall t \geq 4 N \tag{52}
\end{equation*}
$$

$$
\bigcup_{\left(x_{0}, t_{0}\right) \in B_{N}} \xi_{t-t_{0}}^{x_{0}} \circ \theta_{t_{0}} \subset\left(\left(L_{1}+1\right) N+t\right)(1+\varepsilon / 2) A_{\mu} .
$$

Indeed, let $t \geq 4 N$, and consider $x \in \mathbb{Z}^{d}$ such that (x, t) is a descendant of $\left(x_{0}, t_{0}\right) \in B_{N}$. Let $(y, 4 N)$ be an ancestor of (x, t) and a descendant of $\left(x_{0}, t_{0}\right)$. On the event A_{1}^{N}, the point y is in $[-4 M N, 4 M N]^{d}$. But, on A_{3}^{N}, the definition of y ensures that $\overleftarrow{\tau}^{y} \circ \theta_{4 N}=+\infty$: so $(y, 4 N)$ has a living ancestor at time $-k$, for each k such that $L_{1} N \leq k \leq\left(L_{1}+1\right) N-1$. But, on $A_{2}^{t_{2}, N} \circ \theta_{-L_{1} N}$, inclusion (50) ensures that $(y, 4 N)$ is in the coupled region of $(0,-k)$ for one of these k, and so $(y, 4 N)$ is a descendant of this $(0,-k)$. Finally, (x, t) is also a descendant of $(0,-k)$, and, always on $A_{2}^{t_{2}, N} \circ \theta_{-L_{1} N}$,

$$
\mu(x) \leq(k+t)(1+\varepsilon / 2) \leq\left(\left(L_{1}+1\right) N-1+t\right)(1+\varepsilon / 2)
$$

which proves (52).
We then choose $\alpha \in(0,1)$ and an integer L such that

$$
\begin{aligned}
\alpha & <\frac{2 C_{\mu}^{-}}{3} \leq \frac{C_{\mu}^{-}}{1+\varepsilon / 2} \\
L & \geq \max \left\{\frac{4}{\alpha}, \frac{L_{1}+1}{C_{\mu}^{-}-\alpha(1+\varepsilon / 2)}, 4 M+1, \frac{2}{\alpha \varepsilon}\left(\left(L_{1}+1\right)(1+\varepsilon / 2)+C_{\mu}^{+}+2\right)\right\} .
\end{aligned}
$$

If $N \geq t_{2} / L_{1}$, as $\alpha L N \geq 4 N$, we can use (52) with $t \in[4 N, \alpha L N]$; thus our choices for α, L and (47) ensure that on the event $A_{1}^{N} \cap\left(A_{2}^{t_{2}, N} \circ \theta_{-L_{1} N}\right) \cap A_{3}^{N}$, for every $\left(x_{0}, t_{0}\right) \in B_{N}$

$$
\begin{gathered}
\bigcup_{4 N \leq s \leq \alpha L N-t_{0}} \xi_{s}^{x_{0}} \circ \theta_{t_{0}} \subset\left(\left(L_{1}+1+\alpha L\right) N\right)(1+\varepsilon / 2) A_{\mu} \subset[-L N, L N]^{d} \\
\bigcup_{0 \leq s \leq \alpha 4 N} \xi_{s}^{x_{0}} \circ \theta_{t_{0}} \subset[-(4 M+1) N,(4 M+1) N]^{d} \subset[-L N, L N]^{d} \\
\xi_{\alpha L N-t_{0}}^{x_{0}} \circ \theta_{t_{0}} \subset\left(L_{1}+1+\alpha L\right) N(1+\varepsilon / 2) A_{\mu} \\
\subset x_{0}+(1+\varepsilon)\left(\alpha L N-t_{0}\right) A_{\mu}
\end{gathered}
$$

Finally, if $N \geq t_{2} / L_{1}$,

$$
A_{1}^{N} \cap\left(A_{2}^{t_{2}, N} \circ \theta_{-L_{1} N}\right) \cap A_{3}^{N} \subset A^{\alpha, L, N, \varepsilon}
$$

and we conclude with (48), (49) and (51).

We first prove the existence of $C>0$ such that, with a large probability, the point $(0,0)$ cannot give birth to more than $C t$ generations before time t :

LEMMA 23. There exist $A, B, C>0$ such that for every $\lambda \in\left[0, \lambda_{\max }\right]^{\mathbb{E}^{d}}$, for every $t, \ell \geq 0$,

$$
\mathbb{P}_{\lambda}\binom{\exists(x, s) \in \mathbb{Z}^{d} \times[0, t] \text { and an infection path from }(0,0)}{\text { to }(x, s) \text { with more than } C t+\ell \text { horizontal edges }} \leq A \exp (-B \ell)
$$

Proof. Let $\alpha>0$ be fixed. For every path γ in \mathbb{Z}^{d} starting from 0 and eventually self-intersecting, we set

$$
X_{\gamma}=\mathbb{1}_{\left\{\gamma \text { is the projection on } \mathbb{Z}^{d} \text { of an infection path starting from }(0,0)\right\}} e^{-\alpha t(\gamma)},
$$

where $t(\gamma)$ is the time when the extremity is infected after visiting successively the previous points. More formally, if the sequence of points in γ is $\left(0=x_{0}, \ldots, x_{n}\right)$ and if we set $T_{0}=0$, and for $k \in\{0, \ldots, n-1\}$,

$$
T_{k+1}=\inf \left\{t>T_{k} ; \omega_{\left\{x_{k}, x_{k+1}\right\}}\left(\left[T_{k}, t\right]\right)=1 \text { and } \omega_{x_{k}}\left(\left[T_{k}, t\right]\right)=0\right\},
$$

we have $t(\gamma)=T_{n}$. The random variable $t(\gamma)$ is a stopping time (it is infinite if γ is not the projection of an infection path).

Let γ be a path in \mathbb{Z}^{d} starting from 0 and let f be an edge at the extremity of γ. If we denote by $\gamma \cdot f$ the concatenation of γ with f, the strong Markov property at time $t(\gamma)$ ensures that

$$
\mathbb{E}_{\lambda}\left[X_{\gamma . f} \mid \mathcal{F}_{t(\gamma)}\right] \leq X_{\gamma} \frac{\lambda_{\max }}{\alpha+\lambda_{\max }} \quad \text { and so } \quad \mathbb{E}\left[X_{\gamma}\right] \leq\left(\frac{\lambda_{\max }}{\alpha+\lambda_{\max }}\right)^{|\gamma|}
$$

Now,

$$
\begin{aligned}
& \mathbb{P}_{\lambda}\binom{c \exists(x, s) \in \mathbb{Z}^{d} \times[0, t] \text { and an infection path from }(0,0)}{\quad \text { to }(x, s) \text { with more than } C t+\ell \text { horizontal edges }} \\
& \quad=\mathbb{P}_{\lambda}\left(\bigcup_{\gamma:|\gamma| \geq C t+\ell}\left\{X_{\gamma} \geq e^{-\alpha t}\right\}\right) \\
& \quad \leq e^{\alpha t} \sum \gamma:|\gamma| \geq C t+\ell\left(\frac{\lambda_{\max }}{\alpha+\lambda_{\max }}\right)^{|\gamma|} \leq e^{\alpha t} \sum_{n \geq C t+\ell}\left(\frac{2 d \lambda_{\max }}{\alpha+\lambda_{\max }}\right)^{n} .
\end{aligned}
$$

To conclude, we take $\alpha=2 d \lambda_{\max }$, and then C such that $\left(\frac{2 d}{2 d+1}\right)^{C}=e^{-\alpha}$.
Proof of Theorem 21. Let $\varepsilon>0$ and $t>0$ be fixed. Obviously,

$$
\begin{align*}
& \mathbb{P}\left(\xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}\right) \tag{53}\\
& \quad \leq \mathbb{P}\left(\xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}, \xi_{t}^{0} \subset[-M t, M t]^{d}\right)+\mathbb{P}\left(\xi_{t}^{0} \not \subset[-M t, M t]^{d}\right)
\end{align*}
$$

The second term is controlled by equation (12).
Assume that $\xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}$: let $x \in \xi_{t}^{0}$ be such that $\mu(x) \geq(1+\varepsilon) t,\|x\|_{\infty} \leq$ $M t$, and let γ be an infection path from $(0,0)$ to (x, t). For $(x, t) \in \mathbb{Z}^{d} \times[0,+\infty)$,
we call x the space coordinate and t the time coordinate. With Lemma 23, we choose $C>1, A_{2}, B_{2}>0$ such that for every $t \geq 0$,
(54) $\mathbb{P}\binom{$ there exists an infection path from $(0,0)}{$ to $\mathbb{Z}^{d} \times\{t\}$ with more than $C t$ horizontal edges }$\leq A_{2} \exp \left(-B_{2} t\right)$.

With the last estimate, we can assume that γ has less than $C t$ horizontal edges.
We take $0<\alpha<1$ and $L=L(\alpha, \varepsilon)$ large enough to apply Lemma 22 and such that

$$
\begin{equation*}
\frac{4 C_{\mu}^{+} C}{\alpha L-1} \leq \frac{\varepsilon}{3}, \quad \alpha L \geq 2 \quad \text { and } \quad L \geq 3 \tag{55}
\end{equation*}
$$

We fix an integer N, and we cut the space-time $\mathbb{Z}^{d} \times \mathbb{R}_{+}$into space-time boxes

$$
\forall k \in \mathbb{Z}^{d}, \forall n \in \mathbb{N} \quad B_{N}(k, n)=\left(2 N k+[-N, N]^{d}\right) \times(2 N n+[0,2 N])
$$

We associate to the path γ a finite sequence $\Gamma=\left(k_{i}, n_{i}, a_{i}, t_{i}\right)_{0 \leq i \leq \ell}$, where the $\left(k_{i}, n_{i}\right) \in \mathbb{Z}^{d} \times \mathbb{N}$ are the coordinates of space-time boxes and the (a_{i}, t_{i}) are points in $\mathbb{Z}^{d} \times \mathbb{R}_{+}$in the following manner:

- $k_{0}=0, n_{0}=0, a_{0}=0$ and $t_{0}=0: B_{N}\left(k_{0}, n_{0}\right)$ is the box containing the starting point $\left(a_{0}, t_{0}\right)=(0,0)$ of the path γ.
- Assume we have chosen $\left(k_{i}, n_{i}, a_{i}, t_{i}\right)$, where $\left(a_{i}, t_{i}\right)$ is a point in γ and $\left(k_{i}, n_{i}\right)$ are the coordinates of the space-time box containing $\left(a_{i}, t_{i}\right)$.

To the box $B_{N}\left(k_{i}, n_{i}\right)$, we add the larger box $\left(2 N k_{i}+[-L N, L N]^{d}\right) \times$ $\left(2 N n_{i}+[0, \alpha L N]\right)$, we take for $\left(a_{i+1}, t_{i+1}\right)$ the first point-if it exists-along γ after $\left(a_{i}, t_{i}\right)$ to be outside this large box, and we take for $\left(k_{i+1}, n_{i+1}\right)$ the coordinates of the space-time box that contain $\left(a_{i+1}, t_{i+1}\right)$. Otherwise, we stop the process.

The idea is to extract from the path a sequence of large portions, that is, the portions of γ between $\left(a_{i}, t_{i}\right)$ and $\left(a_{i+1}, t_{i+1}\right)$. We have the following estimates:

$$
\begin{align*}
& \forall i \in[0 . . \ell-1] \\
& \forall i a_{i+1}-a_{i} \|_{\infty} \leq(L+1) N \quad \text { and } \quad\left\|a_{l}-x\right\|_{\infty} \leq(L+1) N, \tag{56}\\
& \forall i \in[0 . . \ell-1] \quad 0 \leq t_{i+1}-t_{i} \leq \alpha L N \quad \text { and } \quad 0 \leq t-t_{l} \leq \alpha L N, \tag{57}\\
& 1 \leq \ell \leq \frac{C t}{(L-1) N}+\frac{t}{(\alpha L-1) N}+2 \leq \frac{2 C t}{(\alpha L-1) N}+2 . \tag{58}
\end{align*}
$$

The two first estimates just say that-spatially for (56) and in time for (57)—that the point $\left(a_{i+1}, t_{i+1}\right)$ remains in the large box centered around $B_{N}\left(k_{i}, n_{i}\right)$, which contains $\left(a_{i}, t_{i}\right)$. Now consider the third estimate. We note that a path can get out of a large box either by its time coordinate, and the number of such exits is smaller than $\frac{t}{(\alpha L-1) N}+1$, or by the space coordinate, and the number of such exits is smaller than $\frac{C t}{(L-1) N}+1$. The last inequality comes from $C>1$ and $\alpha<1$.

To ensure that the space coordinates of the boxes associated to the path are all distinct, we extract a subsequence $\bar{\Gamma}=\left(k_{\varphi(i)}\right)_{0 \leq i \leq \bar{\ell}}$ with the loop-removal process described by Grimmett-Kesten [14]:

- $\varphi(0)=\max \left\{j \geq 0: \forall i \in[0 . . j] k_{i}=0\right\}$;
- Assume we chose $\varphi(i)$, and then we take, if it is possible,

$$
\begin{aligned}
j_{0}(i) & =\inf \left\{j>\varphi(i): k_{j} \neq k_{\varphi(i)}\right\}, \\
\varphi(i+1) & =\max \left\{j \geq j_{0}(i): k_{j}=k_{j_{0}(i)}\right\}
\end{aligned}
$$

and we stop the extraction process otherwise.
Then, as in [14]

$$
\begin{aligned}
& \left\|a_{\varphi(\bar{\ell})}-x\right\|_{\infty} \leq(L+1) N \\
& 0 \leq t-t_{\varphi(\bar{\ell})} \leq \alpha L N \\
& \forall i \in[0 . . \bar{\ell}-1] \quad\left\|a_{\varphi(i)+1}-a_{\varphi(i+1)}\right\|_{\infty} \leq 2 N \\
& \forall i \in[0 . . \bar{\ell}-1] \quad\left|t_{\varphi(i)+1}-t_{\varphi(i+1)}\right| \leq 2 N
\end{aligned}
$$

Moreover, the upper bound (58) for ℓ ensures that

$$
\begin{equation*}
1 \leq \bar{\ell} \leq \ell \leq \frac{2 C t}{(\alpha L-1) N}+2 \tag{59}
\end{equation*}
$$

On the other hand, as $\mu(x)-\mu\left(a_{\varphi(\bar{\ell})}-x\right) \leq \mu\left(a_{\varphi(\bar{l})}\right)$, we have with (59),

$$
\begin{aligned}
(1+ & \varepsilon) t-C_{\mu}^{+}(L+1) N \\
& \leq \mu\left(\sum_{i=0}^{\bar{\ell}-1} a_{\varphi(i+1)}-a_{\varphi(i)}\right) \\
\leq & \sum_{i=0}^{\bar{\ell}-1} \mu\left(a_{\varphi(i+1)}-a_{\varphi(i)+1}\right)+\sum_{i=0}^{\bar{\ell}-1} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \\
& \leq 2 N C_{\mu}^{+} \bar{\ell}+\sum_{i=0}^{\bar{\ell}-1} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \\
& \leq 2 N C_{\mu}^{+}\left(\frac{2 C t}{(\alpha L-1) N}+2\right)+\sum_{i=0}^{\bar{\ell}-1} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right)
\end{aligned}
$$

This ensures, with the choice (55) we made for α, L, that

$$
\begin{equation*}
\sum_{i=0}^{\bar{\ell}-1} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \geq(1+2 \varepsilon / 3) t-2 C_{\mu}^{+}(L+1) N \tag{60}
\end{equation*}
$$

In other words, even after the extraction process, the sum of the lengths of the crossings remains of order $(1+2 \varepsilon / 3) t$.

Let $k \in \mathbb{Z}^{d}$ and $n \in \mathbb{N}$. We say now that $B_{N}(k, n)$ is good if

$$
\text { the event } A^{\alpha, L, N, \varepsilon / 3} \circ T_{2 k N} \circ \theta_{2 n N} \text { occurs }
$$

and bad otherwise. If $B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right)$ is good, then the path exits the corresponding large box by the time coordinate, and thus

$$
\mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \leq(1+\varepsilon / 3)\left(t_{\varphi(i)+1}-t_{\varphi(i)}\right)
$$

This ensures that

$$
\begin{aligned}
& \mu\left(\sum_{i: B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right) \operatorname{good}}\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right)\right) \\
& \quad \leq \sum_{i: B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right) \operatorname{good}} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \\
& \quad \leq\left(1+\frac{\varepsilon}{3}\right)_{i: B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right) \operatorname{good}}\left(t_{\varphi(i)+1}-t_{\varphi(i)}\right) \\
& \quad \leq\left(1+\frac{\varepsilon}{3}\right) t .
\end{aligned}
$$

With (60), it implies that

$$
\sum_{i: B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right) \text { bad }} \mu\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \geq \frac{\varepsilon}{3} t-2 C_{\mu}^{+}(L+1) N
$$

and then, with (56)

$$
\left|\left\{i: B_{N}\left(k_{\varphi(i)}, n_{\varphi(i)}\right) \operatorname{bad}\right\}\right| \geq \frac{\varepsilon t}{3 C_{\mu}^{+}(L+1) N}-2
$$

In other words, if $t>0$, if x is such that $\mu(x) \geq(1+\varepsilon) t$, if there exists an infection path γ from $(0,0)$ to (x, t) with less than $C t$ horizontal edges, the associated sequence $\bar{\Gamma}$ has a number of bad boxes proportional to t.

Note that Lemma 22 says that for any deterministic family $n=\left(n_{k}\right)_{k \in \mathbb{Z}^{d}} \in \mathbb{N}^{\mathbb{Z}^{d}}$, the field $\left(\eta_{k}^{n}\right)_{k \in \mathbb{Z}^{d}}$, defined by $\eta_{k}^{n}=\mathbb{1}_{\left\{B_{N}\left(k, n_{k}\right) \text { good }\right\}}$ is locally dependent and that

$$
\lim _{N \rightarrow+\infty} \mathbb{P}\left(B_{N}(0,0) \text { good }\right)=1
$$

By the extraction process, the spatial coordinates of the boxes in $\bar{\Gamma}$ are all distinct. With the comparison theorem by Liggett-Schonmann-Stacey [21], we can, for any $p_{1}<1$, take N large enough to ensure that for any family $n=\left(n_{k}\right)_{k \in \mathbb{Z}^{d}} \in \mathbb{N}^{\mathbb{Z}^{d}}$, the
law of the field $\left(\eta_{k}^{n}\right)_{k \in \mathbb{Z}^{d}}$ under \mathbb{P} stochastically dominates a product on \mathbb{Z}^{d} of Bernoulli laws with parameter p_{1}. Thus, if x is such that $\mu(x) \geq(1+\varepsilon) t$, then
$\mathbb{P}\left(\begin{array}{c}\text { there exists an infection path } \gamma \text { from }(0,0) \text { to }(x, t) \\ \text { with less than } C t \text { horizontal edges and such that } \bar{\Gamma}=\bar{\Gamma}(\gamma) \text { has } \\ \text { at least } \frac{\varepsilon t}{3 C_{\mu}^{+}(L+1) N}-2 \text { bad boxes }\end{array}\right)$

$$
\begin{aligned}
& \leq \sum_{\ell=1}^{(2 C t /((\alpha L-1) N))+2} \sum_{|\bar{\Gamma}|=\ell} 2^{\ell}\left(1-p_{1}\right)^{\varepsilon t /\left(3 C_{\mu}^{+}(L+1) N\right)-1} \\
& =\left(1-p_{1}\right)^{\varepsilon t /\left(3 C_{\mu}^{+}(L+1) N\right)-1} \sum_{\ell=1}^{2 C t /((\alpha L-1) N)+2} 2^{\ell} \operatorname{Card}\{\bar{\Gamma} ;|\bar{\Gamma}|=\ell\} .
\end{aligned}
$$

A classical counting argument gives the existence of a constant $K=K(d, \alpha, L)$ independent of N such that

$$
\forall \ell \geq 1 \quad \operatorname{Card}\{\bar{\Gamma} ;|\bar{\Gamma}|=\ell\} \leq K^{\ell}
$$

We get then an upper bound for our probability of the form

$$
A \frac{t}{N}\left(\left(1-p_{1}\right)^{\varepsilon /\left(3 C_{\mu}^{+}(L+1)\right)}(2 K)^{2 C /(\alpha L-1)}\right)^{t / N}
$$

which leads to a bound of the form $A_{3} \exp \left(-B_{3} t\right)$ as soon as p_{1} is close enough to 1 . Summing over all $x \in[-M t, M t]^{d}$, we have again an exponential bound. With this last upper bound, (53) and (54), we end the proof of Theorem 21.

Proof of Theorem 4. We first prove there exist $A, B>0$ such that

$$
\begin{equation*}
\forall T>0 \quad \mathbb{P}\left(\exists t \geq T, \xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}\right) \leq A \exp (-B T) \tag{61}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\mathbb{P}(\exists t \geq & \left.T, \xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}\right) \\
\leq & \mathbb{P}\left(\exists n \in \mathbb{N}, \xi_{T+n}^{0} \not \subset(1+\varepsilon / 2)(T+n) A_{\mu}\right) \\
& +\mathbb{P}\binom{\exists n \in \mathbb{N}, \exists t \in[0,1], \xi_{T+n}^{0} \subset(1+\varepsilon / 2)(T+n) A_{\mu},}{\xi_{T+n+t}^{0} \not \subset(1+\varepsilon)(T+n) A_{\mu}} \\
\leq & \sum_{n \geq 0} \mathbb{P}\left(\xi_{T+n}^{0} \not \subset(1+\varepsilon / 2)(T+n) A_{\mu}\right) \\
& +\sum_{n \geq 0} \mathbb{P}\binom{\exists t \in[0,1], \xi_{T+n}^{0} \subset(1+\varepsilon / 2)(T+n) A_{\mu},}{\xi_{T+n+t}^{0} \not \subset(1+\varepsilon)(T+n) A_{\mu}} .
\end{aligned}
$$

The first sum can be controlled with Theorem 21. For the second sum, the Markov property gives for any $\lambda \in \Lambda$,

$$
\begin{aligned}
\mathbb{P}_{\lambda}(\exists t & \left.\in[0,1], \xi_{T+n}^{0} \subset(1+\varepsilon / 2)(T+n) A_{\mu}, \xi_{T+n+t}^{0} \not \subset\left((1+\varepsilon)(T+n) A_{\mu}\right)\right) \\
& \leq \sum_{x \in(1+\varepsilon / 2)(T+n) A_{\mu}} \mathbb{P}_{x . \lambda}\left(\exists t \in[0,1], \xi_{t}^{0} \not \subset(\varepsilon / 2)(T+n) A_{\mu}\right) \\
& \leq\left|(1+\varepsilon / 2)(T+n) A_{\mu}\right| \mathbb{P}_{\lambda_{\max }}\left(H_{1}^{0} \not \subset(\varepsilon / 2)(T+n) A_{\mu}\right) \\
& \leq A \exp (-B(T+n)),
\end{aligned}
$$

where the last upper bound comes from a comparison with the Richardson model. We conclude the proof of (61) by integrating with respect to λ.

Let us prove now the existence of $A, B>0$ such that

$$
\begin{equation*}
\forall r>0 \quad \mathbb{P}\left(H_{r}^{0} \not \subset(1+\varepsilon) r A_{\mu}\right) \leq A \exp (-B r) \tag{62}
\end{equation*}
$$

With (12), we can find some constants $A_{1}, B_{1}>0$ and $c<1$ such that $\mathbb{P}\left(H_{c r}^{0} \not \subset\right.$ $\left.r A_{\mu}\right) \leq A_{1} \exp \left(-B_{1} r\right)$. Now,

$$
\begin{aligned}
\mathbb{P}\left(H_{r}^{0} \not \subset(1+\varepsilon) r A_{\mu}\right) & \leq \mathbb{P}\left(H_{c r}^{0} \not \subset r A_{\mu}\right)+\mathbb{P}\left(\exists t \in(c r, r), \xi_{t}^{0} \not \subset(1+\varepsilon) r A_{\mu}\right) \\
& \leq A_{1} \exp \left(-B_{1} r\right)+\mathbb{P}\left(\exists t \geq c r, \xi_{t}^{0} \not \subset(1+\varepsilon) t A_{\mu}\right)
\end{aligned}
$$

and we conclude the proof of (62) with (61). To obtain (5), take $t \geq 1+2\left(1+\varepsilon^{-1}\right)$. Since $t \mapsto H_{t}$ is nondecreasing, we have

$$
\left\{\exists s \geq t ; H_{s} \not \subset(1+\varepsilon) s A_{\mu}\right\} \subset \bigcup_{n \geq \operatorname{Int}(t)}\left\{H_{n} \not \subset\left(1+\frac{\varepsilon}{2}\right) n A_{\mu}\right\} .
$$

Thus (5) follows from (62).
Finally, for $x \in \mathbb{Z}^{d} \backslash\{0\}$,

$$
\mathbb{P}(t(x) \leq(1-\varepsilon) \mu(x)) \leq \mathbb{P}\left(H_{(1-\varepsilon) \mu(x)}^{0} \not \subset\left(1-\frac{\varepsilon}{2}\right) \mu(x) A_{\mu}\right) .
$$

Applying (62), we end the proof of (4), and thus of Theorem 4.
5. About the order of the deviations. By Theorems 1 and 4, we have for ν-almost every λ and each $\varepsilon>0$:

$$
\varlimsup_{x \rightarrow+\infty} \frac{1}{\|x\|} \log \overline{\mathbb{P}}_{\lambda}\left(\frac{t(x)}{\mu(x)} \notin[1-\varepsilon, 1+\varepsilon]\right)<0 .
$$

To see that the exponential decrease in $\|x\|$ is optimal, we need to see that $\underline{\lim }_{x \rightarrow+\infty} \frac{1}{\|x\|} \log \overline{\mathbb{P}}_{\lambda}\left(\frac{t(x)}{\mu(x)} \notin[1-\varepsilon, 1+\varepsilon]\right)>-\infty$.

In fact, we will prove here that for every (s, t) with $0<s<t$, there exists a constant $\gamma>0$ such that for each $\lambda \in \Lambda$ and each $x \in \mathbb{Z}^{d}$,

$$
\mathbb{P}_{\lambda}\left(t(x) \in[s, t]\|x\|_{1}\right) \geq \exp \left(-\gamma\|x\|_{1}\right) .
$$

Proof. Let s, t with $0<s<t$. For each $u \in \mathbb{Z}^{d}$ such that $\|u\|_{1}=1$, we define $T_{u}=\inf \left\{t \geq 0: \xi_{t}^{0} \supset\{u\}, \forall s \in[0, t), \xi_{s}^{0}=\{0\}\right\}$. We are going to prove that

$$
\exists \gamma>0, \forall \lambda \in \Lambda, \forall u \in \mathbb{Z}^{d},\|u\|_{1}=1 \quad \mathbb{P}_{\lambda}\left(T_{u} \in[s, t]\right) \geq e^{-\gamma}
$$

In order to ensure that $T_{u} \in[s, t]$, it sufficient to satisfy:

- the lifetime of the particle at $(0,0)$ is strictly between $(s+t) / 2$ and t, which happens with probability $e^{-(s+t) / 2}-e^{-t}$ under \mathbb{P}_{λ};
- the first opening of the bond between 0 and u happens strictly between s and $(s+t) / 2$, which happens with probability

$$
\exp \left(-\lambda_{\{0, u\}} s\right)-\exp \left(-\lambda_{\{0, u\}} \frac{s+t}{2}\right) \geq e^{-\lambda_{\max } s}\left(1-\exp \left(-\lambda_{\min } \frac{t-s}{2}\right)\right)
$$

under \mathbb{P}_{λ};

- there is no opening between time 0 and time t, on the set J constituted by the $4 d-2$ bonds that are neighbors of 0 or u and differ from $\{0, u\}$, which happens under \mathbb{P}_{λ} with probability

$$
\prod_{j \in J} \exp \left(-\lambda_{j} t\right) \geq \exp \left(-(4 d-2) \lambda_{\max } t\right)
$$

- there is no death at site u between 0 and t, which happens under \mathbb{P}_{λ} with probability e^{-t}.

Then, using the independence of the Poisson processes, we get

$$
\begin{aligned}
& \mathbb{P}_{\lambda}\left(T_{u} \in[s, t]\right) \\
& \quad \geq\left(e^{-(s+t) / 2)}-e^{-t}\right) e^{-t} e^{-(4 d-2) \lambda_{\max } t} e^{-\lambda_{\max } s}\left(1-e^{-\lambda_{\min }(t-s) / 2}\right)=e^{-\gamma}
\end{aligned}
$$

Moreover, T_{u} is obviously a stopping time. Then, applying the strong Markov property $\|x\|_{1}$ times, we get

$$
\mathbb{P}_{\lambda}\left(t(x) \in[s, t]\|x\|_{1}\right) \geq \exp \left(-\gamma\|x\|_{1}\right) .
$$

This gives the good speed for both upper and lower large deviations.
Note that the order of the large deviations is the same for upper and lower deviations, as happens for the chemical distance in Bernoulli percolation; see Garet and Marchand [10]. Conversely, it is known that these orders may differ for firstpassage percolation; see Kesten [18] and Chow-Zhang [4].

Acknowledgments. The authors warmly thank a referee for the rare care with which he read their paper. His invaluable work positively improved its quality.

REFERENCES

[1] Cerf, R. and Théret, M. (2011). Upper large deviations for the maximal flow through a domain of \mathbb{R}^{d} in first passage percolation. Ann. Appl. Probab. 21 2075-2108. MR2895410
[2] Cerf, R. and Théret, M. (2011). Law of large numbers for the maximal flow through a domain of \mathbb{R}^{d} in first passage percolation. Trans. Amer. Math. Soc. 363 3665-3702. MR2775823
[3] Cerf, R. and Théret, M. (2011). Lower large deviations for the maximal flow through a domain of \mathbb{R}^{d} in first passage percolation. Probab. Theory Related Fields 150 635-661. MR2824869
[4] Chow, Y. and Zhang, Y. (2003). Large deviations in first-passage percolation. Ann. Appl. Probab. 13 1601-1614. MR2023891
[5] Couronné, O. (2004). Sur les grands clusters en percolation. Ph.D. thesis, Université Paris XI Orsay.
[6] Cranston, M., Gauthier, D. and Mountford, T. S. (2009). On large deviation regimes for random media models. Ann. Appl. Probab. 19 826-862. MR2521889
[7] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040. MR0757768
[8] Durrett, R. and Griffeath, D. (1982). Contact processes in several dimensions. Z. Wahrsch. Verw. Gebiete 59 535-552. MR0656515
[9] Garet, O. and Marchand, R. (2012). Annealed upper large deviations for the asymptotic shape of the contact process in \mathbb{Z}^{d}. Unpublished manuscript.
[10] Garet, O. and Marchand, R. (2007). Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35 833-866. MR2319709
[11] Garet, O. and Marchand, R. (2012). Asymptotic shape for the contact process in random environment. Ann. Appl. Probab. 22 1362-1410. MR2985164
[12] Garet, O. and Marchand, R. (2014). Growth of a population of bacteria in a dynamical hostile environment. Adv. in Appl. Probab. 46. To appear.
[13] Grimmett, G. (1985). Large deviations in subadditive processes and first-passage percolation. In Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math. 41 175-194. Amer. Math. Soc., Providence, RI. MR0814710
[14] Grimmett, G. and Kesten, H. (1984). First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 335-366. MR0751574
[15] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652-680. MR0370721
[16] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. 61-110. Springer, New York. MR0198576
[17] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355-378. MR0488377
[18] Kesten, H. (1986). Aspects of first passage percolation. In École d'été de Probabilités de Saint-Flour, XIV-1984. Lecture Notes in Math. 1180 125-264. Springer, Berlin. MR0876084
[19] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883-909. With discussion by D. L. Burkholder, D. Daley, H. Kesten, P. Ney, F. Spitzer and J. M. Hammersley, and a reply by the author. MR0356192
[20] Kingman, J. F. C. (1976). Subadditive processes. In École d’Été de Probabilités de SaintFlour, V-1975. Lecture Notes in Math. 539 167-223. Springer, Berlin. MR0438477
[21] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71-95. MR1428500
[22] Rossignol, R. and Théret, M. (2010). Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation. Ann. Inst. Henri Poincaré Probab. Stat. 46 1093-1131. MR2744888
[23] Rossignol, R. and Théret, M. (2010). Law of large numbers for the maximal flow through tilted cylinders in two-dimensional first passage percolation. Stochastic Process. Appl. 120 873-900. MR2610330
[24] Rossignol, R. and Théret, M. (2013). Lower large deviations for the maximal flow through tilted cylinders in two-dimensional first passage percolation. ESAIM Probab. Stat. 17 70104. MR3007160
[25] SEPPÄLÄINEN, T. and YUKICh, J. E. (2001). Large deviation principles for Euclidean functionals and other nearly additive processes. Probab. Theory Related Fields 120 309-345. MR1843178
[26] Théret, M. (2007). Upper large deviations for the maximal flow in first-passage percolation. Stochastic Process. Appl. 117 1208-1233. MR2343936
[27] Théret, M. (2008). On the small maximal flows in first passage percolation. Ann. Fac. Sci. Toulouse Math. (6) 17 207-219. MR2464099

Institut ÉLIE CARTAN DE Lorraine Université de Lorraine
UMR 7502, VANDOEUVRE-LÈS-NANCY, F-54506
France
AND
CNRS, Institut Élie Cartan de Lorraine
UMR 7502, VANDOEUVRE-LĖS-NANCY, F-54506
France
E-mAIL: Olivier.Garet@univ-lorraine.fr
Regine.Marchand@univ-lorraine.fr
URL: http://iecl.univ-lorraine.fr/~Olivier.Garet http://iecl.univ-lorraine.fr/~Regine.Marchand

[^0]: Received May 2012; revised February 2013.
 MSC2010 subject classifications. Primary 60K35; secondary 82B43.
 Key words and phrases. Random growth, contact process, random environment, almost subadditive ergodic theorem, asymptotic shape theorem, large deviation inequalities.

