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Human mortality data sets can be expressed as multiway data arrays,
the dimensions of which correspond to categories by which mortality rates
are reported, such as age, sex, country and year. Regression models for such
data typically assume an independent error distribution or an error model
that allows for dependence along at most one or two dimensions of the data
array. However, failing to account for other dependencies can lead to ineffi-
cient estimates of regression parameters, inaccurate standard errors and poor
predictions. An alternative to assuming independent errors is to allow for de-
pendence along each dimension of the array using a separable covariance
model. However, the number of parameters in this model increases rapidly
with the dimensions of the array and, for many arrays, maximum likelihood
estimates of the covariance parameters do not exist. In this paper, we propose
a submodel of the separable covariance model that estimates the covariance
matrix for each dimension as having factor analytic structure. This model can
be viewed as an extension of factor analysis to array-valued data, as it uses
a factor model to estimate the covariance along each dimension of the array.
We discuss properties of this model as they relate to ordinary factor anal-
ysis, describe maximum likelihood and Bayesian estimation methods, and
provide a likelihood ratio testing procedure for selecting the factor model
ranks. We apply this methodology to the analysis of data from the Human
Mortality Database, and show in a cross-validation experiment how it outper-
forms simpler methods. Additionally, we use this model to impute mortality
rates for countries that have no mortality data for several years. Unlike other
approaches, our methodology is able to estimate similarities between the mor-
tality rates of countries, time periods and sexes, and use this information to
assist with the imputations.

1. Introduction. Human mortality data are used extensively by researchers
and policy makers to analyze historic and current population trends and assess
long-term impacts of public policy initiatives. To enable such inference, numerous
regression models have been proposed that estimate mortality rates as a function
of age using a small number of parameters [Heligman and Pollard (1980), Mode
and Busby (1982), Siler (1983)]. Practitioners using these methods typically model
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FIG. 1. Mortality curves for the United States of America and Sweden. The gradient of colors for
each country represents the log death rates in the four 5-year time periods from 1960 to 1980. The
average sex-specific mortality curve over the four time periods and all countries is shown in black.

the age-specific death rates for each country, year and sex combination separately
and assume independent error distributions. Examples of death rates analyzed by
such methods are shown in Figure 1 for the United States and Sweden. Each mor-
tality curve is defined by 23 age-specific death rates and the average sex-specific
mortality curve from 1960–1980 over thirty-eight countries is also displayed.

From the figure, it is clear that a country’s mortality rates in one time period
are similar to its rates in adjacent time periods. Acknowledging this fact, several
researchers have developed models for “dynamic life tables,” that is, matrices of
mortality rates for combinations of ages and time periods, for single country–sex
combinations. An example of such a life table is the male death rates in Sweden
from 1960 to 1980 shown in Figure 1. Some of the models developed for these
data specify ARIMA processes for the time-varying model parameters [McNown
and Rogers (1989), Renshaw and Haberman (2003a)], while others smooth the
death rates over age and time using a kernel smoother [Felipe, Guillen and Nielsen
(2001)], p-splines [Currie, Durban and Eilers (2004)], nonseparable age–time pe-
riod covariance functions [Martínez-Ruiz et al. (2010)] or multiplicative effects
for age and time [Lee and Carter (1992), Renshaw, Haberman and Hatzopoulos
(1996), Renshaw and Haberman (2003b, 2003c), Chiou and Müller (2009)].

Human mortality data sets typically provide mortality rates of populations cor-
responding to combinations of several factors. For example, the Human Mortality
Database (HMD) [University of California, Berkeley and Max Planck Institute
for Demographic Research (2011)] provides mortality rates of populations corre-
sponding to combinations of 40 countries, 9 time periods, 23 age groups, and both
male and female sexes. As is shown in Figure 1, mortality rates of men and women
within a country will typically both be higher than or both lower than the sex-
specific rates averaged across countries. Furthermore, differences between male
and female mortality rates generally show trends that are consistent across coun-
tries and time periods. Such patterns suggest joint estimation of mortality rates
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using a model that can share information across levels of two or more factors.
Two models that consider death rates for more than one country or sex are that
developed by Li and Lee (2005), which estimates common age and time period
effects for a group of countries or both sexes, and Carter and Lee (1992), where
male and female death rates within the same country share a time-varying mortal-
ity level. Although these methods consider either both sexes or multiple countries,
the extreme similarity of the curves in Figure 1 for males across countries and for
a given country across sexes suggest that separately modeling death rates for dif-
ferent countries or sexes is inefficient, and inference may be improved by using
a joint model that shares information across all factors.

With this in mind, we consider a regression model for the HMD data consist-
ing of a mean model that is a piecewise-polynomial in age with additive effects
for country, time period and sex (more details on this model, and its comparison
to other models, are provided in Section 4). This mean model is extremely flex-
ible: it contains over 370 parameters and an ordinary least squares (OLS) fit ac-
counts for over 99% of the total variation in the data (coefficient of determination,
R2 > 0.995). Nonetheless, an analysis of the residuals from the OLS fit indicates
that some clear patterns in the data are not captured by the regression model and,
in particular, a model of independent errors is a poor representation of these data.
To illustrate this, note that the residuals can be represented as a 4-way array, the
dimensions of which are given by the number of levels of each of the four factors:
country, time period, sex and age. To examine residual correlation across levels of
a factor, the 4-way array of residuals can be converted into a matrix whose columns
represent the levels of the factor, and a sample correlation matrix for the factor can
be obtained. Figure 2 summarizes the patterns in the residual correlations using
the first two principal components of each sample correlation matrix. If a model of
independent errors were to be adequate, we would expect the sample correlation
values to be small and centered about zero, and no discernible patterns to exist in

FIG. 2. The first two principal components of each sample correlation matrix are displayed, and
countries in the same United Nations region are shown in the same color. Close proximity in the
principal components space away from the origin is indicative of a positive correlation.
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the principal components. However, the sample correlations are substantially more
positive than would be expected under independence: 59% of the observed coun-
try correlations, 61% of time period correlations and 98% of age correlations are
greater than the corresponding 95% theoretical percentiles under the independence
assumption. Additionally, there are clear geographic, temporal and age trends in
the principal components in Figure 2. For example, the residuals for the Ukrainian
mortality rates are positively correlated to those for Russia, and the residuals for
the year 2000 are positively correlated with those for 1995. This residual analysis
suggests that an assumption of uncorrelated errors is inappropriate.

Failure to recognize correlated errors can lead to a variety of inferential prob-
lems, such as inefficient parameter estimates and inaccurate standard errors. For
the analysis of the mortality data, an additional important consequence is that the
accuracy of predictions of missing mortality rates may suffer. Predicting miss-
ing death rates is a primary application of modeling mortality data, as developing
countries often lack reliable death registration data. It is possible that the residual
dependence could be reduced by increasing the flexibility of the mean model, but
since this is already fairly complex, we may instead prefer to represent residual de-
pendence with a covariance model, leading to a general linear model for the data
in which the mean function and residual covariance are estimated simultaneously.

The mortality data, like the residuals, can be represented as a 4-way array, each
dimension of which corresponds to one of the factors of country, time period, sex
and age. In the literature on multiway array data [see, e.g., Kroonenberg (2008)],
each dimension is referred to as a mode of the array, so the 4-way array of mortality
data consists of four modes. As described by Hoff (2011), a natural covariance
model for a K-way data array is a separable covariance model, parameterized in
terms of K covariance matrices, one for each mode of the array. If the array is also
assumed to be normally distributed, the model is referred to as the array normal
model and can be seen as an extension of the matrix normal model [Dawid (1981)].

Even though the separable covariance model is not a full, unstructured covari-
ance model, the array normal likelihood is unbounded for many array dimen-
sions, prohibiting the use of maximum likelihood methods [Manceur and Dutilleul
(2013)]. Estimates of the array normal covariance parameters can still be obtained
by taking a Bayesian approach [Hoff (2011)] or by using a penalized likelihood
[Allen and Tibshirani (2010)]. However, the lack of existence of the maximum
likelihood estimates (MLEs) indicates that the data is unable to provide informa-
tion about all of the parameters. In this article we propose an alternative modeling
approach that parameterizes the covariance matrix of each mode by a reduced rank
matrix plus a diagonal matrix, referred to here as factor analytic covariance struc-
ture. This new model, called Separable Factor Analysis (SFA), is an extension of
factor analysis to array-valued data and provides a parsimonious representation of
mode-specific covariance in an array-valued data set. The reduction in the number
of parameters by using covariance matrices with factor analytic structure leads to
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existence of MLEs for the SFA parameters in many cases when the MLEs of the
array normal parameters do not exist.

This article is outlined as follows: in the next section we introduce and motivate
SFA, as well as discuss its properties and similarities to ordinary factor analysis.
We describe two estimation procedures in Section 3: an iterative maximum like-
lihood algorithm and a Metropolis–Hastings sampler for inference in a Bayesian
framework. A likelihood ratio testing procedure for selecting the rank of the fac-
tor model for each mode is also presented. In Section 4 the SFA model is used
to analyze the HMD mortality data and its performance is compared to simpler
covariance models in a simulation study. We illustrate how SFA uses estimated
similarities between country mortality rates to provide imputations for countries
missing mortality data for several years. This prediction method extends the ap-
proach taken in Coale and Demeny (1966), Brass (1971), United Nations (1982)
and Murray et al. (2003), where one country’s mortality curve is modeled a func-
tion of another’s. Our approach is novel in that it estimates the covariance between
mortality rates across all countries, time periods and sexes, and uses these relation-
ships to impute missing death rates. We conclude with a discussion in Section 5.

2. Extending factor analysis to arrays.

2.1. Motivating separable factor analysis. Suppose Y is a K-way array of
dimension m1 × m2 × · · · × mK . We are interested in relating the data Y to ex-
planatory variables X through the model Y = M(X,β) + E, where β represents
unknown regression coefficients and E represents the deviations from the mean.
As was discussed in the preliminary analysis of the mortality data, it is often unrea-
sonable to assume the elements of E are independent and identically distributed.

In cases where there is no independent replication, estimation of the Cov[E]
can be problematic, as it must be based on essentially a single sample. One solu-
tion is to approximate the covariance matrix with one with simplified structure.
A frequently used model in spatio-temporal analysis is a separable covariance
model [Stein (2005), Genton (2007)], which estimates a covariance matrix for
each mode of the array. It is written Cov[vec(E)] = �K ⊗ �K−1 ⊗ · · · ⊗ �1,
where “vec” and “⊗” denote the vectorization and Kronecker operators, respec-
tively. In the context of the mortality data, this model contains a covariance
matrix for country (�c), time period (�t ), age (�a) and sex (�s). A separable
covariance model with the assumption that the deviations are normally distributed,
vec(E) ∼ normal(0,Cov[vec(E)]), is an array normal model and was developed
by Hoff (2011) as an extension of the matrix normal [Dawid (1981), Browne
(1984), Oort (1999)].

The mode covariance matrices in the array normal model are not estimable for
certain array dimensions using standard techniques such as maximum likelihood
estimation [Manceur and Dutilleul (2013)]. However, often the covariance matri-
ces of large modes can be well approximated by matrices with simpler structure.
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A common approach in the social sciences to modeling the covariance of a high-
dimensional random vector x ∈ R

p is to use a k-factor model, which parameterizes
the covariance matrix as Cov[x] = ��T +D2, where � ∈ R

p×k , k < p, and D is a
diagonal matrix [Spearman (1904), Mardia, Kent and Bibby (1979)]. We will refer
to this model as single mode factor analysis, as it models the covariance among one
set of variables. When the number of independent observations n is less than p, the
sample covariance matrix is not positive definite and hence cannot be used as an
estimate of Cov[x]. Nevertheless, under the assumption that x follows a multivari-
ate normal distribution with known mean, the maximum likelihood estimate of the
factor analytic covariance matrix exists if k < min(p,n) [Robertson and Symons
(2007)].

We propose a submodel of the array normal model where each mode covari-
ance matrix potentially has factor analytic structure. We call this model Separable
Factor Analysis (SFA) and it is written as follows:

vec(E) ∼ normal
(
0,Cov

[
vec(E)

])
,

Cov
[
vec(E)

] = �K ⊗ �K−1 ⊗ · · · ⊗ �1,(1)

where �i = �i�
T
i + D2

i for 0 ≤ ki < mi

and �i is unconstrained (i.e., equals any positive definite matrix) if ki = mi . SFA
models are characterized by the covariance matrix structure chosen for each mode
and can be represented by a K-vector of ranks (k1, . . . , kK), where ki equals the
rank of �i if mode i’s covariance matrix has factor analytic structure and equals
mi if the mode covariance matrix is unstructured. Note that we consider the ki = 0
case where the covariance matrix is diagonal. A key advantage of the SFA model
over the array normal model is that empirical evidence has shown that MLEs of
the SFA covariance parameters exist for array dimensions where the MLEs of the
array normal unstructured covariance matrices do not exist.

2.2. Properties of SFA. In this section we relate the SFA parameters to those
in ordinary factor analysis, discuss indeterminancies in the model, and interpret
the SFA parameters when the true covariance matrix in each mode is unstructured.
This requires the concept of array matricization. Here we follow the convention
set in Kolda and Bader (2009) where the matricization of an array in the ith mode
is defined as the (mi ×∏

j �=i mj ) matrix Y(i), whose column indices vary faster for
earlier mode indices than later mode indices [see Kiers (2000) and De Lathauwer,
De Moor and Vandewalle (2000) for alternative definitions].

Latent variable representation. Although the primary motivation for the factor
analytic structure of the mode covariance matrices in SFA is parameter reduc-
tion, the SFA has a convenient latent variable formulation similar to that in single
mode factor analysis. A single mode k-factor model for a sample of n mean-zero
p-variate random vectors is written {x1, . . . , xn} ∼ i.i.d. normal(0,��T + D2),
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where � ∈ R
p×k and D is a diagonal matrix. Defining X = [x1, . . . , xn] as the

p × n matrix of observations, this model has an equivalent latent variable repre-
sentation as a decomposition into common latent factors, Z = [z1, . . . , zn], and
variable specific latent factors, E = [e1, . . . , en], as follows:

Xp×n = �p×kZk×n + Dp×pEp×n,

{z1, . . . , zn} ∼ i.i.d. normal(0, Ik), Cov[zi, ej ] = 0k×p
(2)

for all i, j ,

{e1, . . . , en} ∼ i.i.d. normal(0, Ip).

This representation expresses the j th observation of the ith variable Xij as a linear
combination of common latent factors zj with coefficients given by the ith row
of �, plus a single variable specific factor Eij , scaled by the ith diagonal element
of D.

A similar representation exists for each mode with a factor analytic covariance
structure in the SFA model. Consider a mean-zero array Y and an SFA model
with a factor analytic covariance matrix in the ith mode. Define Ỹ i to be the array
obtained by standardizing Y with all but the ith mode’s covariance matrix:

vec
(
Ỹ i) := vec(Y )

(
�

−1/2
K ⊗ · · · ⊗ �

−1/2
i+1 ⊗ Imi

⊗ �
−1/2
i−1 ⊗ · · · ⊗ �

−1/2
1

)
.(3)

It follows that

{y1, . . . , ym−i
} ∼ i.i.d. normal

(
0,�i�

T
i + D2

i

)
and

(4)
Ỹ i

(i) = [y1, . . . , ym−i
] d= �iZ

i + DiE
i,

where m−i = ∏
j �=i mj , and Zi and Ei are ki × m−i and mi × m−i , respectively,

with the same distributional properties as Z and E in (2). The superscript i on
Ỹ i

(i) indicates the ith mode has not been standardized and the subscript (i) indi-
cates the array has been matricized along the ith mode. The representation in (4)

suggests the parameters {�i,Di} can be viewed as single mode factor analysis pa-
rameters for the ith mode of the array when the covariance in all other modes has
been removed. This representation is used in the parameter estimation methods in
Section 3.

Model indeterminacies. SFA as parameterized in (1) has two indeterminacies,
one of which is common to all factor models and one that is common to all array
normal models. The first indeterminacy, which is also present in single mode factor
analysis, is the orientation of the � matrices. The array covariance matrix in (1) is
the same with mode i factor analytic parameters {�i,Di} as it is with parameters
{�iGi,Di}, where Gi is any ki × ki orthogonal matrix. A common identifiable
parameterization of � is that which restricts � to be lower-triangular with positive
diagonal elements [Geweke and Zhou (1996), Carvalho et al. (2008); see Anderson
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and Rubin (1956) for alternative identifiability conditions]. The formulation in (1)
can be viewed as a model with parameter-expanded �i matrices, similar to that in
Bhattacharya and Dunson (2011), since it includes no identifiability constraints.

The second indeterminacy concerns the scales of the mode covariance matri-
ces and stems from the model’s separable covariance structure. For example, the
transformation {�i,�j } �→ {c�i,�j/c} does not affect the array covariance ma-
trix in (1) for any c > 0. This scale nonidentifiability is eliminated if all mode
covariance matrices are restricted to have trace equal to one and a scale parameter
is included for the total variance of the array.

Pseudo-true parameters. In single mode factor analysis the goal is to repre-
sent the covariance among a large set of variables in terms of a small number
of latent factors. However, often it is unlikely the true covariance matrix � has
factor analytic structure. Therefore, there is interest in what k-factor analytic pa-
rameter values, � and D, best approximate the true covariance matrix �. These
optimal parameter values, denoted 	�(�) and 	D(�), are those that minimize the
Kullback–Leibler (KL) divergence between the k-factor model and the multivari-
ate normal model. Minimizing the KL divergence is equivalent to maximizing the
expected value of the k-factor analysis (FA) probability density with respect to
the true multivariate normal (MN) distribution. Letting X = [x1, . . . , xn] where
{x1, . . . , xn} ∼ i.i.d. normal(0,�), 	�(�) and 	D(�) can be defined as{	�(�), 	D(�)

} := arg max
�,D

EMN
[
pFA(X|�,D)

]
= arg max

�,D

cFA − n

2
log

(∣∣��T + D2∣∣) − n

2
tr

[(
��T + D2)−1

�
]
,

where “tr” represents the trace operator and cFA is a constant not depending
on � or D. In the case of k = 0, the best approximating diagonal matrix 	D2 con-
tains the diagonal elements of �.

Similarly, SFA is an approximation to a separable covariance structure where
modes’ true covariance matrices are unlikely to have factor analytic structure. Sup-
pose the distribution of Y is array normal with mean zero and covariance matrices
�̃ = {�̃i : 1 ≤ i ≤ K}. Consider a (k1, . . . , kK) SFA model for Y with parameters
� = {�i : 0 < ki < mi}, D = {Di : 0 ≤ ki < mi} and � = {�j :kj = mj }. The ex-
pected value of the SFA probability density with respect to the true array normal
(AN) model is

EAN
[
pSFA(Y |�,D,�)

] = cSFA −
K∑

i=1

m

2mi

log
(|�i |) − 1

2

K∏
i=1

tr
[
�−1

i �̃i

]
(5)

where �i = �i�
T
i + D2

i for 0 ≤ ki < mi,

cSFA is a constant independent of the SFA parameters, and m = ∏K
i=1 mi . Let

		�(�̃), 		D(�̃) and 		�(�̃) denote the SFA parameters that maximize (5) and, hence,
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provide the best approximation to the true separable covariance matrix based on
�̃. It can be shown that for all appropriate i, j and k,

		�i(�̃) = 	�(�̃i),
		Dj(�̃) = 	D(�̃j ) and 		�k(�̃) = �̃k.(6)

This implies that the best factor analytic parameters, {		�i(�̃), 		Dj(�̃)}, for a given
mode in the SFA model are the closest fitting single mode factor analytic param-
eters to that mode’s true covariance matrix, {	�i(�̃i), 	Dj(�̃i)}. As we might ex-
pect, the optimal values of the unstructured covariance matrices in the SFA model,
		�k(�̃), are the modes’ true covariance matrices �̃k .

This implies that when the true model is array normal, the optimal SFA param-
eters for a given mode do not depend on the specified covariance structures in the
other modes. Note that the scale indeterminacy of the covariance matrices is still
present here, such that there is a set of optimal SFA parameter values that provide
the same approximation. Asymptotically, as the number of replicates of the array
increases, these optimal SFA parameter values are the limiting values of the SFA
maximum likelihood estimates [White (1982)].

3. Estimation and testing. In this section we consider parameter estimation
for the SFA model and propose a likelihood ratio testing procedure for selecting
the ranks (k1, . . . , kK). Two estimation methods are described here: an iterative al-
gorithm for maximum likelihood estimation and a Metropolis–Hastings algorithm
which approximates the posterior distribution of the parameters given the data. We
present the case where the array has mean zero, however, both estimation methods
and the testing procedure can be extended to allow for simultaneous estimation of
a mean structure and the SFA covariance structure. Examples of such extensions
are discussed in Section 4 for the mortality data.

3.1. Maximum likelihood estimation. While simultaneous maximization of
the SFA log likelihood with respect to all parameters is difficult, maximizing the
log likelihood with respect to a single mode’s covariance parameters is feasible.
Thus, we propose a block coordinate ascent algorithm that iteratively maximizes
the SFA log likelihood over a single mode’s covariance parameters using the lat-
est values of all other modes’ parameters and is guaranteed to increase the log
likelihood at each step.

Let � = {�i : 0 < ki < mi}, D = {Di : 0 ≤ ki < mi}, and � = {�j :kj = mj } as
in Section 2.2. Also, let �−j = �/{�j } be the set � with �j removed, and define
D−j and �−i analogously. The iterative maximum likelihood algorithm proceeds
as follows:

0. Specify initial values for all covariance parameters {�,D,�}.
1. For each mode {i :ki = 0}, update the estimate of Di .
2. For each mode {i : 0 < ki < mi}, update the estimates of �i and Di .
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3. For each mode {i :ki = mi}, update the estimate of �i .
4. Repeat steps 1–3 until a desired level of convergence is obtained.

The maximization of the SFA log likelihood for the updates in steps 1 and 3 are
straightforward. Differentiating the log likelihood with respect to Di or �i , it can
be shown the updates for steps 1 and 3, respectively, are

D2
i = diag

(
mi

m
Ỹ i

(i)

(
Ỹ i

(i)

)T )
and �i = mi

m
Ỹ i

(i)

(
Ỹ i

(i)

)T
,

where the covariance matrices used to standardize Y in Ỹ i are the latest covariance
matrix estimates and m = ∏K

i mi .
Estimation of a mode’s factor analytic parameters in step 2 is more difficult,

but can be accomplished using methods developed for single mode factor analysis.
The SFA log likelihood as a function of the ith mode’s factor analytic parameters is

�(�i,Di |�,�−i ,D−i , Y ) = ci − m

2mi

log
(∣∣�i�

T
i + D2

i

∣∣)
(7)

− 1

2
tr

[(
�i�

T
i + D2

i

)−1
Ỹ i

(i)

(
Ỹ i

(i)

)T ]
,

where ci is a constant not depending on �i or Di . The log likelihood for a single
mode ki -factor model for a p × n matrix X is written

�(�,D|X) = c − n

2
log

(∣∣��T + D2∣∣) − 1

2
tr

[(
��T + D2)−1

XXT ]
.(8)

Notice that the SFA log likelihood has the same form as that for single mode fac-
tor analysis where XXT and n are replaced by Ỹ i

(i)(Ỹ
i
(i))

T and m/mi , respectively.
Therefore, estimation methods for single mode factor analysis can be used to up-
date �i and Di in step 2.

Numerous iterative algorithms have been developed to obtain the single mode
factor model maximum likelihood estimates, however, many suffer from poor
convergence behavior [Lawley (1940), Jöreskog (1967), Jennrich and Robinson
(1969)]. An expectation–maximization (EM) algorithm was developed based on
the model representation in (2) that treats Z as latent variables [Dempster, Laird
and Rubin (1977), Rubin and Thayer (1982)]. The slow convergence of this al-
gorithm led to expectation/conditional maximization either (ECME) algorithms,
some of which rely on numerical optimization procedures [Liu and Rubin (1998),
Zhao, Yu and Jiang (2008)]. Zhao, Yu and Jiang (2008) proposed an iterative al-
gorithm that updates �, treating D as known, and then sequentially updates each
diagonal element of D, treating � and all other elements of D as known. This
algorithm has closed form expressions for all parameter updates and was shown to
outperform the EM algorithm and its extensions in terms of convergence and com-
putation time. For these reasons, we chose to use it for step 2 of the SFA estimation
procedure.
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Divergence of the SFA maximum likelihood algorithm, where the log likeli-
hood continually grows at a nondecreasing rate, is evidence that the maximum
likelihood estimates do not exist. While the update in step 1 for a mode with a
diagonal covariance matrix is always well defined (i.e., the SFA log likelihood has
a maximum in terms of Di ), step 2 of the algorithm for an unstructured covariance
matrix is only well defined if mi <

∏
j �=i mj . Similarly, step 3 is well defined for a

mode i if ki < rank(Ỹ i
(i)(Ỹ

i
(i))

T ). This latter requirement is effectively equivalent

to ki < min(mi,
∏

j �=i mj ) since Ỹ i
(i) is unlikely to be rank deficient for a continu-

ous array Y .
Since no identifiability constraints are placed on the mode covariance matrix

scales or the factor analytic �i parameters, the estimates that result from the above
procedure correspond to a set of equivalent estimates obtained by reallocating the
scale of the covariance matrices and rotating the �i matrices. If interpretation of
the � matrices is of interest, an identifiable parameterization can be obtained from
the resulting estimate using the restrictions mentioned in Section 2.2. The iterative
maximum likelihood estimation procedure can be extended to simultaneously esti-
mate parameters β associated with an array mean model M(X,β), if an additional
step is added to the procedure that maximizes the normal log likelihood with re-
spect to β and Ỹ is redefined as the array that has been standardized by both the
mean and covariance matrices.

3.2. Bayesian estimation. Maximum likelihood estimates of the SFA covari-
ance parameters and any mean model parameters β can be obtained using the
block coordinate ascent algorithm, however, obtaining standard errors of the es-
timates based on the Fisher information matrix requires complicated derivatives
and large matrix inversion. While numerical estimation of the information matrix
is possible [Spall (2005)], an alternative estimation procedure that readily pro-
vides parameter uncertainty estimates is that based on a Bayesian approach. In this
framework inference for the parameters is based on the joint posterior distribu-
tion of the parameters given the data, p(�,D,�|Y) ∝ p(Y |�,D,�)p(�,D,�),
where p(Y |�,D,�) is the density of the (k1, . . . , kK) SFA model and p(�,D,�)

is the joint prior distribution of the parameters. Again, we present this algorithm
for the mean-zero array case, however, it can be trivially extended to include mean
model parameters β .

Prior specification. In the absence of real prior information, we suggest a con-
venience prior composed of semiconjugate distributions for the parameters. For
each mode i with an unstructured covariance matrix, the prior distribution for �−1

i
is Wishart(κi, Imi

) with hyperparameter κi , where κi ≥ mi . For a mode i with a
factor analytic covariance matrix, the joint prior distribution of {�i,Di} is speci-
fied as follows: {

vec(�i)|Di

} ∼ normal
(
0, Iki

⊗ D2
i

)
,(9) {

D−2
i [1,1], . . . ,D−2

i [mi,mi]} ∼ i.i.d. gamma
(
ν0/2, rate = ν0d

2
0/2

)
,(10)
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where ν0 > 0 and d2
0 > 0. A priori each mode’s parameters are modeled as in-

dependent of all other modes’ parameters given the hyperparameters ν0, d2
0 and

{κi :ki = mi}.
The prior distribution of the factor analytic parameters given in (9)–(10)

has nice properties related to the rotational indeterminacies in the � matri-
ces. Recall that the SFA likelihood is invariant to rotation of �i , meaning
LSFA(�i,Di,�,�−i ,D−i |Y) = LSFA(�iGi,Di,�,�−i ,D−i |Y), where LSFA is
the SFA likelihood and Gi is any ki × ki orthogonal matrix. Integrating the joint
prior distribution p(�i,Di) over Di , the marginal distribution of �i is obtained
and can be expressed as

p(�i) ∝
mi∏

j=1

[
ν0d

2
0 + ∥∥�i[j, ]

∥∥2](ki+ν0)/2
,

where ‖·‖2 denotes the Frobenius norm. Observe that p(�i) = p(�iGi), implying
that the prior distribution is also invariant to rotations of �i . This is a desirable
property, as it indicates the prior does not favor one set of parameters over another
if they are equivalent given the data (i.e., have the same SFA likelihood).

Metropolis–Hastings algorithm. The posterior distribution p(�,D,�|Y) is not
a standard distribution and is difficult to sample from directly, so we propose ap-
proximating it using samples from a Metropolis–Hastings algorithm. This algo-
rithm produces a Markov chain in {�,D,�}, whose stationary distribution is equal
to p(�,D,�|Y), and proceeds by iteratively proposing new values of each mode’s
parameters. Typically, in such an algorithm, proposals are accepted based on a
probability that is a function of the data likelihood, prior and proposals, however,
the parameter proposals in this algorithm all have acceptance probability equal to
one. The algorithm can be described as follows:

0. Specify initial values for all covariance parameters {�,D,�}.
1. For each mode {i :ki = 0}, sample Di from its full conditional distribution:{

D−2
i [j, j ]|D−i ,�,�, Y

}
(11)

∼ gamma
(
(ν0 + m/mi)/2, rate = (

ν0d
2
0 + Si[j, j ])/2

)
for j ∈ {1, . . . ,mi} where Si = Ỹ i

(i)(Ỹ
i
(i))

T .
2. For each mode {i : 0 < ki < mi}, sample new values of �i and Di using the

following steps:

(a) Sample {vec(Zi)|�i,Di, Ỹ
i} ∼ normal(vec(φ�T

i D−2
i Ỹ i

(i)), Im/mi
⊗φ) where

φ = (�T
i D−2

i �i + I)−1.
(b) Sample{

vec(�i)|Zi,Y,D,�−i ,�
}

∼ normal
(
γ

(
Zi

(i) ⊗ D−2
i

)
vec

(
Ỹ i

(i)

)
, γ = [(

Zi
(i)

(
Zi

(i)

)T + Imi

) ⊗ D−2
i

]−1)
.
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(c) Sample {vec(Zi)|�i,Di, Ỹ
i} as in 2(a).

(d) Sample the elements of D2
i independently from{

D−2
i [j, j ]|Zi,Y,D−i ,�,�

}
∼ gamma

(
(ν0 + m/mi + ki)/2, rate = (

ν0d
2
0 + J [j, j ] + ∥∥�i[j, ]

∥∥2)
/2

)
,

where J = (Ỹ i
(i) − �iZ

i)(Ỹ i
(i) − �iZ

i)T and ‖ · ‖2 denotes the Frobenius
norm.

3. For each mode {i :ki = mi}, sample �i from its full conditional distribution:{
�−1

i |D,�,�−i , Y
} ∼ Wishart

(
κi + m/mi,

(
Imi

+ Ỹ i
(i)

(
Ỹ i

(i)

)T )−1)
.(12)

4. Repeat steps 1–3 until a sufficiently accurate approximation of the posterior
distribution is obtained.

The covariance matrices used to standardize Y in Ỹ i in each of the updates above
are the most current parameter updates. The updates of the factor analytic param-
eters {�i,Di} in step 2 are based on the latent variable representation of SFA
introduced in (4), which expresses Y as Ỹ i

(i)

d= �iZ
i + DiE

i , where the elements
of Zi and Ei are independent standard normal random variables. Proof that the
acceptance probabilities are equal to one for the proposals of �i and Di is pro-
vided in Appendix. Note that the Zi variables involved in step 2 are not included
as parameters, as is done in a parameter-augmented sampler, but instead are simply
used to propose new factor analytic parameters.

Since no identifiability restrictions are placed on the scales of the mode co-
variance matrices or on the orientation of the � matrices, the model can be
viewed as a parameter-expanded model, similar to the single-mode factor model
in Bhattacharya and Dunson (2011). Working with this parameterization greatly
simplifies the estimation procedure and avoids the index order dependence issues
that arise from performing estimation with an identifiable parameterization where
choice of the index order within a mode becomes an important modeling decision
[see Carvalho et al. (2008) and Bhattacharya and Dunson (2011) for further dis-
cussion]. Note that identifiability of the � matrices is irrelevant when the goal in
the analysis is covariance matrix estimation, mean model inference or prediction
of missing values. However, if interpretation of the factor analytic parameters is
of interest, the samples from the Markov chain can be transformed to identifiable
parameters using the restrictions mentioned in Section 2.2. Similarly, posterior in-
ference on the total variance of the array can be based on the combined scales
of each sample of covariance matrices, obtained by scaling all mode covariance
matrices to have trace one.

Unlike in the frequentist setting where divergence of the maximum likelihood
estimation procedure indicates a lack of information in the data about the param-
eters, the posterior distribution of the parameters given the data will always exist.
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Although Bayesian parameter estimates are available, we should be aware of what
information the estimates reflect. Extreme similarity between the prior distribution
and the posterior distribution suggests that little information is gained from the
data and inference based on the posterior distribution is primarily a reflection of
the information in the prior.

Hyperparameters. When there is little prior information about the parameters,
it is common to choose hyperparameter values that result in diffuse prior distribu-
tions. We propose ν0 = 3 and κi = mi +2 for {i :ki = mi} as default values, as they
correspond to prior distributions whose first moments are finite and represent some
of the most diffuse distributions in the Wishart and gamma families, respectively.
They also have the following properties:

E[�i] = Imi
, E

[
D2

i [j, j ]] = 3d2
0 , E

[
tr

(
�i�

T
i

)] = 3kimid
2
0 .(13)

Prior information about specific mode covariance matrices may be limited, how-
ever, an estimate ψ̂ of the total variance of the array, ψ = tr(Cov[vec(Y )]) =∏K

i=1 tr(�i), may be available. This information can improve parameter estima-
tion by centering the prior distribution of the total variance of the array around
a reasonable value. Based on the expectations in (13) and the independence of the
mode covariance matrices in the prior, the prior expected value of the total variance
of the array will equal the estimate, E[tr(Cov[vec(Y )])] = ψ̂ , if

d2
0 = ψ̂1/R

[( ∏
j : 0<kj<mj

[kj + 1]
)(

K∏
i=1

mi

)
3R

]−1/R

,(14)

where R = ∑K
i=1 1{0 ≤ ki < mi} is the number of modes with factor analytic co-

variance structure. In the event there is no prior knowledge about ψ and it is not
of interest in the analysis, we propose taking an empirical Bayes approach and ob-
taining an estimate of it based on the data. Possible estimates include ψ̂ = ‖Y‖2 or
ψ̂ = ‖Y −M̂(X,β)‖2 if the model has a nonzero mean. In the latter case, M̂(X,β)

represents an initial estimate of the mean, such as the ordinary least squares esti-
mate. A similar approach was suggested in Hoff (2011) for the array normal model.

3.3. Accommodating missing data. Mortality information is limited for many
undeveloped countries that do not have reliable death registration data. Thus, it is
not uncommon to be missing a country’s death rates for specific ages or at all ages
in a given year. Both the maximum likelihood and Bayesian estimation procedures
can be modified to accommodate missing data, however, such modifications are
often computationally expensive.

In the maximum likelihood estimation, expectation–maximization algorithms
are often employed to obtain parameter estimates in the presence of missing data.
The proposed coordinate ascent algorithm with an additional step that computes
the expectation of the log probability of the data under the SFA model given the
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current values of the parameters and observed data would correspond to an ex-
pectation/conditional maximization (ECM) algorithm [Meng and Rubin (1993)].
Allen and Tibshirani (2010) discuss such an algorithm in detail for the matrix nor-
mal (K = 2), when additional penalties are placed on the covariance matrices, and
find that such an algorithm is not computationally feasible for high-dimensional
data due to the complicated expectations required. An analogous algorithm for
array data and the SFA model would likely suffer from the same burdens. Allen
and Tibshirani (2010) further propose an approximation of the ECM procedure
to obtain estimates of the missing values that involves the following three steps:
initialize the missing values, compute maximum likelihood estimates of the pa-
rameters, and use an iterative procedure to compute the expectation of the missing
values conditional on the observed data and parameters. While an analogous ap-
proximation could be developed for the SFA model, the procedure for the matrix
case lacks theoretical guarantees and was also shown to require complete iteration
of all three steps to obtain estimates that sufficiently match those from the ECM.

Accommodating missing data in a Bayesian framework is straightforward and
provides predictive distributions for the missing values. The proposed Metropolis–
Hastings algorithm can easily be adapted by including additional steps that sample
portions of the missing data from their full conditional distributions. Although the
full conditional distribution of all missing data elements conditional on the param-
eters and observed data can be expressed as a multivariate normal, calculating the
parameters for this distribution is often computationally expensive due to the large
matrices involved in computing the distribution’s covariance matrix. However, us-
ing results from Hoff (2011), the conditional distribution of a slice of an array
(where one mode index is fixed) can be written as an array normal distribution.
The missing data within the slice conditional on the observed data in the slice fol-
lows a multivariate normal distribution, which can be sampled from to update the
missing values. Calculating the conditional distribution of the missing elements
in a slice of the array via this two-step conditioning procedure (once for the slice
and once for the missing data within the slice) circumvents computation with un-
necessarily large matrices. Allen and Tibshirani (2010) used a similar procedure
to obtain expected values of missing elements in a matrix normal model in their
ECM approximation. Section 4 illustrates the use of a Metropolis–Hastings algo-
rithm that has been modified to accommodate and provide predictions for missing
mortality data.

3.4. Testing for the mode ranks. It is often difficult to choose the number of
factors for a single mode factor model. This problem is only more pronounced
in the array case where the rank ki must be specified for each mode. As in sin-
gle mode factor analysis [Mardia, Kent and Bibby (1979)], a likelihood ratio test
can be constructed to test between nested SFA models with ranks (k1, . . . , kK)

and (k∗
1 , . . . , k∗

K), where ki ≤ k∗
i for all i. However, due to the large number of

possible combinations of ranks, choosing the ranks using these likelihood ratio
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tests is challenging. In the Bayesian framework, alternative approaches to speci-
fying the factor rank in single mode factor analysis are to estimate it along with
the model parameters using MCMC estimation methods such as reversible jump
[Lopes and West (2004)] and path sampling [Lee and Song (2002)], or specify an
infinite number of factors [Bhattacharya and Dunson (2011)]. While it is possi-
ble to extend these methods to the array case and SFA model, they would greatly
increase the computational complexity of estimation. Maximum likelihood param-
eter estimates via the coordinate ascent algorithm can be obtained in minutes even
for a large array such as the mortality data, while the MCMC Bayesian estimation
procedure can take hours to run depending on the size of the array and complex-
ity of the mean model. Therefore, here we propose an alternative mode-by-mode
rank selection procedure based on the maximum likelihood parameter estimates
that suggests when the rank specified for a given mode is sufficient for capturing
the dependence within that mode.

As in Section 2.2, let Ỹ denote a K-way array that has been standardized by
all mode covariance matrices. To determine whether the dependence in mode i is
captured by a proposed (k1, . . . , kK) SFA model, we can compute Ỹ using the SFA
mode covariance matrix estimates as in (1) and test whether the covariance matrix
of the rows of Ỹ(i) equals the identity. The likelihood ratio test statistic for this
test is

t = m

mi

[
tr(V̂ ) − log |V̂ | − mi

]
,(15)

where V̂ = mi

m
Ỹ(i)Ỹ

T
(i), and has an asymptotic χ2

mi(mi+1)/2 distribution under the
null hypothesis of an identity row covariance matrix. Note that rejecting this test
suggests that a more complex covariance structure is needed for the ith mode. This
motivates the following rank selection procedure for the entire array:

0. Consider an SFA model with all ki = 0. Obtain estimates of the covariance
parameters Di using the maximum likelihood procedure in Section 3.1 and com-
pute Ỹ using the estimates.

1. For each mode i, define Ri = Cov[vec(Ỹ(i))] and test H0 :Ri = Im/mi
⊗ Imi

vs H1 :Ri = Im/mi
⊗ V , where V is an unstructured mi × mi covariance matrix,

using a likelihood ratio test with test statistic given by (15).
2. If the test for mode i rejects and{

δ(mi, ki + 1) > 0, increase the rank ki by one,
δ(mi, ki + 1) ≤ 0, set the rank equal to mi .

If the test for mode i does not reject, fix ki at its current value and perform
no further tests on the mode. Obtain maximum likelihood estimates {�̂, �̂, D̂} for
an SFA model with the new ranks (k1, . . . , kK) and compute Ỹ using these new
estimates.

3. Repeat steps 1–2 until each mode has failed to reject a test.
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The suggested ranks (k1, . . . , kK) are those that result at the end of this procedure.
In step 2 δ(m, k) = [(m− k)2 − (m+ k)]/2 represents the reduction in the number
of parameters when using a k-factor analytic covariance matrix instead of an m×m

unstructured covariance matrix. When δ(m, k) ≤ 0, a factor analytic covariance
structure no longer provides a reduction in the number of covariance parameters
and an unstructured covariance matrix should be specified. Note that if a nonzero
mean model was specified, its parameters β would be simultaneously estimated
with the covariance matrices at each iteration of the procedure.

The maximum number of SFA models that could be considered using this proce-
dure is bounded by the largest value of kl such that δ(ml, kl) > 0, where l denotes
the array mode with the largest dimension ml . To control the type I error rate of
all mode tests to be α for an iteration of steps 1 and 2, the level of each mode test
can be set to αr , where r is the number of modes being tested (i.e., the number
that have rejected every test thus far). An example of this procedure is described
in Section 4.2 for the mortality data.

4. Application to Human Mortality Database death rates. In this section
we analyze death rates from the Human Mortality Database (HMD) using an SFA
model, compare our model to other covariance models, and obtain predictions for
over four hundred missing death rates. We focus on death rates for 5-year time
periods for populations corresponding to combinations of sex, age and country of
residence. Specifically, we consider death rates from 1960 to 2005 for 40 countries,
both sexes and twenty-three age groups, {0, 1–4, 5–9, 10–14, . . . ,105+}. These
data are represented in a 4-way array Y = {yctsa} of dimension (40 × 9 × 2 × 23),
where yctsa is the log death rate for country c, time period t , sex s and age group a.
We will refer to a set of age-specific death rates for a combination of country, time
period and sex as a mortality curve.

We begin this section by introducing a flexible piecewise polynomial mean
model and show the residuals from this mean model exhibit dependence within
each mode: age, time period, country, and sex. Using the likelihood ratio testing
procedure presented in Section 3.4, we select ranks for an SFA model. The result-
ing SFA model is compared to models with simpler covariance structures using
out-of-sample cross-validation and is used to impute multiple years of missing
death rates for Chile and Taiwan.

4.1. Mean model selection. As discussed in the Introduction, existing methods
for analyzing mortality data model the death rates for different countries, sexes
and/or time periods separately. Such an approach can be inefficient due to the
strong similarities between mortality rates within the same country, time period
and sex. For this reason, we propose a new joint mean model for the HMD data
that exploits these relationships between mortality rates that share levels of one or
more of these factors.
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Figure 1 shows mortality curves defined by the twenty-three age-specific death
rates for the United States and Sweden in four time periods. The large spikes at
age zero represent infant mortality, and the humps around age twenty, which are
especially evident in males, are attributed to teenage and young adult accident
mortality. The overall shapes of the mortality curves for each sex are similar across
countries and time periods, however, Sweden has considerably lower mortality
levels during childhood and young adulthood compared to the United States. This
suggests that a mean model for the data should allow for different curves across
countries and time periods, yet still take advantage of the similarity between death
rates within the same country, age group or sex.

Drawing from the mortality literature and viewing mortality rates as function of
age, we propose the following piecewise polynomial (PP) mean model:

E[yctsa] =
⎧⎪⎨⎪⎩

φ0, a = 0,
φ1 + aφ11 + a2φ12, 1 ≤ a < 20,
φ2 + aφ21 + a2φ22 + a3φ23, 20 ≤ a,

(16)

φi = αi
c + βi

t + γ i
s .

This model distinguishes between the infant, childhood and adult stages of mortal-
ity by fitting each with a separate polynomial, whose coefficients are composed of
additive effects for country, time period and sex. The constant term at age zero is
necessary to model the steep decline from infant mortality to child mortality that
is not well represented by a low degree polynomial.

One of the most commonly used models in demography for age-specific mortal-
ity measures is the Heligman–Pollard (HP) model [Heligman and Pollard (1980)].
This model also uses eight parameters to parameterize a mortality curve, however,
it is typically used to model each mortality curve individually and is nonlinear and
nonconvex in the parameters, making estimation extremely difficult [Hartmann
(1987), Congdon (1993)]. When the HP model is fit separately to the 684 HMD
mortality curves for the 38 countries missing no death rates using OLS, it requires
over 5400 parameters and under the assumption of independent, homoscedastic er-
rors has a Bayesian Information Criterion (BIC) value of −17,288. However, when
the PP model is fit jointly to the same data using OLS, it contains 376 parameters
and has a BIC of −52,436. Due to the relative parsimony of the PP model, its su-
perior fit in terms of BIC, and its straightforward estimation as a linear model, it
was selected as the mean model.

4.2. Excess dependence and SFA rank selection. The piecewise polynomial
model in (16) is extremely flexible. To investigate its fit to the HMD mortality
rates, we focused on a subset of the original data that contains no missing obser-
vations, specifically the (38 × 9 × 2 × 23) array that does not contain death rates
for Chile or Taiwan. The OLS fit explains 99.5% of the variation in the mortal-
ity rates (coefficient of determination, R2 = 0.995). However, there is interest in



138 B. K. FOSDICK AND P. D. HOFF

whether excess correlation exists in the residuals since modeling it can improve
both predictions of missing values and the efficiency of parameter estimates. OLS
estimates of the parameters in (16) are equivalent to maximum likelihood estimates
assuming independent normal errors. To evaluate this latter assumption, we com-
puted the empirical correlation matrix for each mode based on the mean model
residuals.

As mentioned in the Introduction, the distributions of these correlations have
substantially more large positive values than would be expected under the assump-
tion of independent errors. For example, speaking specifically to the temporal de-
pendence, the average correlation between adjacent time periods, those one time
period apart and those two periods apart is 0.79, 0.54 and 0.26, respectively. The
first two principal components of each correlation matrix are shown in Figure 2.
The horseshoe pattern in the time period principal components and the cluster-
ing of countries within the same region suggest temporal and geographic trends
in the data are not captured by the mean [Diaconis, Goel and Holmes (2008)].
This indicates that even though the mean model contains several country-specific
and time period-specific parameters, similarities between the mortality curves of
certain countries and time periods is not being accounted for. The mean model
already contains over 370 parameters and it would likely be nontrivial to modify
it to capture all of the dependence seen in the residuals. For this reason, we con-
sider incorporating a covariance structure to model this excess dependence. An
array normal separable covariance structure could be specified, however, it would
add over one thousand parameters to the model. Therefore, we instead consider an
SFA model for the data with the PP mean with the belief that the residual depen-
dence within some modes may be well approximated by a low rank factor analytic
structured covariance matrix.

As outlined in Section 3.4, suggestions for the SFA ranks can be obtained
from a repeated likelihood ratio testing procedure. For the mortality data, we
consider (kc, kt , ks, ka) SFA models where the ranks correspond to the coun-
try, time period, sex and age covariance matrices, respectively. The standard-
ized residual array Ỹ for a (kc, kt , ks, ka) SFA model is defined as vec(Ỹ ) =
(vec(Y ) − vec(M̂))(�̂

−1/2
a ⊗ �̂

−1/2
s ⊗ �̂

−1/2
t ⊗ �̂

−1/2
c ), where M̂ represents the

PP mean model estimate and �̂i is the SFA mode i covariance matrix estimate
from the maximum likelihood estimation procedure (modified to estimate the mean
model and covariance parameters simultaneously). The results from the iterative
testing procedure are shown in Table 1. The first step in this process is to consider a
(0,0,0,0) SFA model where all covariance matrices are diagonal. The likelihood
ratio test statistics for this model are shown in the first row of Table 1 and the corre-
sponding 0.05 level critical values are shown in the last row. Since the test for each
mode rejects the null hypothesis of independent, variance one errors, the rank of
each mode is increased by one in the subsequent model, except for that for the sex
mode. A rank one factor analytic structure for a (2×2) covariance matrix has more
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TABLE 1
Iterative testing procedure for the SFA ranks. Each row represents an SFA model and each entry is
the likelihood ratio test statistic based on (15). The 0.05 level critical value for each test is given in
the last row. A box around a statistic indicates that the mode does not reject the test for the first time

and the rank is fixed in subsequent models

SFA ranks
(kc,kt , ks, ka)

Likelihood ratio test statistic

Country Time period Sex Age

(0,0,0,0) 21,852 14,482 702 27,883

(1,1,2,1) 9526 5853 0 14,451
(2,2,2,2) 4425 1722 0 6374
(3,3,2,3) 2776 716 0 3762

(4,4,2,4) 1946 17 0 2422
(5,4,2,5) 1556 14 0 1833
(6,4,2,6) 1287 10 0 1340
(7,4,2,7) 1040 8 0 967
(8,4,2,8) 892 5 0 540

(9,4,2,9) 762 8 0 363

(9,4,2,10) 737 8 0 257

χ2
0.95 critical value 805 62 8 316

parameters than an unstructured covariance matrix, so the sex covariance matrix is
unstructured in the next model. A box around a test statistic in the table indicates
the mode failed to reject the test for the first time. Recall that when a mode’s test
does not reject, the rank for that mode is fixed and not increased in later models.
The table shows where the sex, time period, country and age ranks become fixed at
two, four, nine and ten, respectively. Observe that after a mode’s rank is fixed, the
test statistic for that mode stays below the critical value in all subsequent models.
Although the mode tests are not independent of the covariance structures fit in the
other modes, this consistency supports the suggested ranks.

4.3. Out-of-sample cross-validation. We evaluate the SFA model by compar-
ing its out-of-sample predictive performance with two simpler covariance models
that share the same PP mean model. The three covariance models considered are
the following:

M1: Independent and identically distributed (i.i.d.) model.
M2: Time covariance model.
M3: SFA model (9,4,2,10).

M1 corresponds to the conventional ordinary least squares (OLS) approach where
all errors are assumed independent and identically distributed with a common vari-
ance. In general, country mortality rates are relatively stable over time, so if the
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observed mortality for a given country, year and age deviates from the mean model
in one year, it is likely the observations deviate in the same direction in neighboring
years. Thus, a natural first step to incorporating a covariance model is to consider
an unstructured covariance matrix for time as in M2.

Fifty cross-validations were performed by removing a random 25% of the array,
estimating each of the three covariance models with the PP mean model on the re-
maining data, and computing the mean squared error (MSE) between the observed
values and the predicted values for the withheld entries. The predicted values for
M1 are those from the OLS PP mean estimate. For M2 and M3, the predictions are
the posterior mean estimates of the missing values from the Bayesian estimation
procedure described in Section 3.2, modified to accommodate missing data.

A prior distribution for the parameters in the PP model is needed to perform
simultaneous Bayesian estimation for the mean and covariance parameters. The
prior on the vector of PP coefficients is a mean-zero normal distribution with
covariance matrix m(XT X)−1, where X is the design matrix for the PP model
for vec(Y ) and m = ∏K

i=1 mi . This is a relatively uninformative prior, as it is
over 30 times more diffuse than the corresponding unit-information prior [Kass
and Wasserman (1995)]. The hyperparameters were specified as described in Sec-
tion 3.2 where the mean estimate M̂ used in ψ̂ is the OLS estimate of the PP
model. Since M2 has no modes with factor analytic structure, the prior on the time
covariance matrix is

�−1
t ∼ Wishart

(
nt = mt + 2,

mψ̂

mt

Imt

)
.

This specification is necessary to preserve the property that E[tr(Cov[vec(Y )])] =
ψ̂ under the prior.

The results from the 50 cross-validations are shown in Table 2. The MSE for
the SFA model was less than that of the time covariance model for each of the 50
cross-validations, and the MSE for the time covariance model was always less than
that of the i.i.d. model. In terms of average MSE, both the time covariance model
and the SFA model significantly improve upon the i.i.d. model, and the SFA model
outperforms the time covariance model by nearly a factor of two. This is evidence
that even with the extremely flexible PP mean model, the SFA covariance structure
still improves model fit, as it is able to estimate the similarity between mortality

TABLE 2
Average and standard deviation of the mean squared errors from 50 out-of-sample

cross-validation experiments

M1 (i.i.d.) M2 (time covariance) M3 (SFA)

Average MSE 0.02996 0.00729 0.00385
Standard deviation of MSEs 0.00084 0.00049 0.00034
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rates across countries, time periods, age groups and sexes, and use this information
in its predictions.

4.4. Prediction of missing data. The imputation of missing death rates is an
important application of modeling mortality data, as information is often incom-
plete for countries lacking accurate death registration data. We now consider the
original (40 × 9 × 2 × 23) array of mortality rates with observations for Chile
and Taiwan. Seven time periods of mortality information are missing for Chile
(1960–1995) and two time periods for Taiwan (1960–1970), combining for a total
of 414 missing entries in the array. This larger data array contains only two ad-
ditional countries, so the SFA ranks (9,4,2,10) selected for the reduced data are
used again here. Predictions for the missing death rates were based on samples
from the Metropolis–Hastings procedure, for which the effective sample sizes for
the Monte Carlo estimates of all missing values were greater than 500.

In the left column of Figure 3, posterior mean predicted death rates and 95%
prediction intervals are shown for Chile in 1990 and Taiwan in 1965. To visu-
alize the impact of the SFA covariance model on the predicted death rates, we

FIG. 3. The first column of plots shows the predicted values and corresponding 95% prediction
intervals for the missing death rates for Chile and Taiwan. The middle column shows the difference
between the posterior mean predicted value and the piecewise polynomial mean function fitted value,
ŷp − ŷm, for Chile and Taiwan, along with empirical mean model residuals, y − ŷm, for countries
that are highly correlated with them in the posterior mean country covariance matrix. The last col-
umn contains empirical residuals for the following time period when Chile and Taiwan mortality is
observed.
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investigate the difference between the SFA predicted values and the fitted values
based on the PP mean model. The SFA predictions, ŷp , are conditional on the
observed mortality rates for all other countries and time periods, while the mean
model fitted values, ŷm, are based only on the estimate of the PP mean model.
These differences, ŷp − ŷm, are called “predictive residuals” since they are based
on predicted values instead of observed values and illustrate the changes in the pre-
dicted values by using the SFA covariance model compared to only using the mean
model. The empirical residuals based on the PP mean model, y − ŷm, were com-
puted for the United States and Australia, the two countries most highly correlated
with Chile (estimated correlations around 0.40). These residuals were also com-
puted for Japan and West Germany, the two countries most highly correlated with
Taiwan (estimated correlations of around 0.13). The middle column of Figure 3
shows the predictive residuals for Chile and Taiwan and the empirical residuals
for these select countries. The last column contains the empirical residuals in 1995
and 1970 when mortality information is available for all countries. Observe that
the plots in the middle column and last column are similar, demonstrating an over-
all positive association for both sexes and all country pairs. This demonstrates how
the model uses the relationship between the empirical residuals of Chile and other
countries to predict Chile’s deviations from the mean model in years when Chile
data is missing. The ability to draw information across multiple country, year and
sex residuals to impute missing values is a critical strength of the SFA model that
is not shared by other mortality models or simpler covariance structures.

The empirical residuals for Chile shown in the last column may not show as
strong of an association with the United States and Australia as one would expect
from a posterior mean correlation estimate of 0.4. However, recall that the estimate
of the country correlations is based on all time periods, sexes and ages. Although
we show adjacent time periods in this plot, the correlation between the country
residuals in the period adjacent to the missing time period and the correlations
in time periods furthest away are weighted equally in the estimate of the country
correlation, and hence weighted equally in the imputation of the missing data. This
property is a consequence of the separability of the SFA covariance matrix. A more
complicated nonseparable covariance model would be required for the correlations
between countries, ages and sexes to be differentially weighted in the imputation
based on the proximity of the observed data to the missing data.

5. Discussion. In this article we introduced the separable factor analysis
model for array-valued data. Unlike the array normal model where all mode co-
variance matrices are unstructured, SFA parameterizes mode covariance matrices
by those with factor analytic structure. Using covariance matrices with reduced
structure decreases the number of parameters in the model considerably and allows
mode covariance matrices to be estimated using maximum likelihood methods for
any array dimension. Including a covariance structure in a model for multiway data
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can drastically improve mean model parameter estimation and missing data pre-
dictions in situations where dependence exists within modes that is not captured
by the mean model. In an out-of-sample cross-validation study with a large set of
mortality data, the SFA model was shown to have superior fit compared to models
with simpler covariance structures, even in the presence of an extremely flexible
mean model. The SFA model was also shown to estimate which countries have
similar deviations from the mean model and was able to use this information in its
predictions of multiple years of missing death rates.

We propose reducing the number of covariance parameters in the array normal
model by modeling mode covariance matrices with factor analytic structure, how-
ever, other simplified covariance structures are possible. For example, the Bayesian
graphical lasso [Wang (2012)] and covariance matrices derived from Gaussian
graphical models [Wang and West (2009), Dobra, Lenkoski and Rodriguez (2011)]
estimate or assume conditional independencies between pairs of indices (reflected
by zeros in the precision matrix) and are commonly used to represent covariance
among index sets which have a natural spatial structure. Similarly, for temporal
data, a covariance matrix derived from an autoregressive model is commonly used.
Nevertheless, in many cases there may not be a clear choice of a reduced struc-
tured covariance matrix, and in these cases specifically we propose the factor an-
alytic structure as an agnostic approach to covariance matrix parameter reduction.
It was suggested that an autoregressive covariance structure may be appropriate
for the time and/or age mode covariance matrices in the mortality data application
in Section 4. Figure 4 shows boxplots of the residual correlations discussed in the
Introduction, grouped by time period lag and age group lag. If an autoregressive
model of order-1 were appropriate for either of these modes, we would expect the
correlations to monotonically decrease toward zero with lag. However, the neg-
ative correlations exhibited by the time periods and asymptoting behavior of the
age correlations cannot be captured by such structure. This illustrates that even in
instances when traditional covariance structures may seem appropriate, they may

FIG. 4. Sample residual correlations between time periods and age groups from the OLS fit of the
model in (16) grouped by lag.
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not be given the mean model, and it may be preferable to take a more agnostic
approach to modeling and assume a factor analytic structure.

A trivial extension of the SFA model would be to relax the separability as-
sumption for groups of modes of the array. For example, in the mortality data, if
we believed the residual correlation between sexes and across time periods was
not separable, the four-way array could be unfolded into a three-way array whose
dimensions are age, country and time period/sex. An SFA model could then be
specified for the resulting three-way array. Relaxing the separability assumption
between some modes is likely to improve model fit for specific data sets when the
assumption of separability is not appropriate, however, this also increases the po-
tential number of covariance parameters in the corresponding array normal model.
Therefore, in order to gain a sufficient reduction in the number of covariance pa-
rameters, a small factor model rank is likely to be necessary for combined modes.
Investigation of the empirical residual correlations may help suggest when relaxing
the separable assumption is warranted.

APPENDIX: SAMPLING � AND D

Let �∗
i be the proposed value of � that results from 2(a–b). The acceptance

probability for this proposal is

α
(
�∗

i ,�i

) = p(�∗
i |Y,�−i ,D,�)p(�i |�∗

i ,D,�,�−i , Y )

p(�i |Y,�−i ,D,�)p(�∗
i |�i,D,�,�−i , Y )

= p(Y |�∗
i ,�−i ,D,�)p(�∗

i |Di)p(�i |�∗
i ,D,�,�−i , Y )
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The proposal probability can be written
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where c(�i,�
∗
i |D,�,�−i , Y ) represents the integral, which is symmetric in �i

and �∗
i . Plugging the last expression into the acceptance probability, we obtain

α(�∗
i ,�i) = 1. Analogous logic can be used to show the acceptance probability

for a proposed Di from 2(c − d) is also one.
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