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THE SHUFFLE ESTIMATOR FOR EXPLAINABLE VARIANCE
IN FMRI EXPERIMENTS1

BY YUVAL BENJAMINI AND BIN YU

Stanford University and University of California, Berkeley

In computational neuroscience, it is important to estimate well the pro-
portion of signal variance in the total variance of neural activity measure-
ments. This explainable variance measure helps neuroscientists assess the
adequacy of predictive models that describe how images are encoded in the
brain. Complicating the estimation problem are strong noise correlations,
which may confound the neural responses corresponding to the stimuli. If
not properly taken into account, the correlations could inflate the explainable
variance estimates and suggest false possible prediction accuracies.

We propose a novel method to estimate the explainable variance in func-
tional MRI (fMRI) brain activity measurements when there are strong cor-
relations in the noise. Our shuffle estimator is nonparametric, unbiased, and
built upon the random effect model reflecting the randomization in the fMRI
data collection process. Leveraging symmetries in the measurements, our es-
timator is obtained by appropriately permuting the measurement vector in
such a way that the noise covariance structure is intact but the explainable
variance is changed after the permutation. This difference is then used to es-
timate the explainable variance. We validate the properties of the proposed
method in simulation experiments. For the image-fMRI data, we show that
the shuffle estimates can explain the variation in prediction accuracy for vox-
els within the primary visual cortex (V1) better than alternative parametric
methods.

1. Introduction. Neuroscientists study how human perception of the outside
world is physically encoded in the brain. Although the brain’s processing unit, the
neuron, performs simple manipulations of its inputs, hierarchies of interconnected
neuron groups achieve complex perception tasks. By measuring neural activities
at different locations in the hierarchy, scientists effectively sample different stages
in the cognitive process.

Functional MRI (fMRI) is an indirect imaging technique, which allows re-
searchers to sample a correlate of neural activities over a dense grid covering
the brain. FMRI measures changes in the magnetic field caused by flow of oxy-
genated blood; these blood oxygen-level dependent (BOLD) signals are indicative
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of neuronal activities. Because it is noninvasive, fMRI can record neural activity
from a human subject’s brain while the subject performs cognitive tasks that range
from basic perception of images or sound to higher-level cognitive and motor ac-
tions. The vast data collected by these experiments allow neuroscientists to develop
quantitative models, encoding models [Dayan and Abbott (2001)], that relate the
cognitive tasks with the activity patterns these tasks evoke in the brain. Encoding
models are usually fit separately to each point of the spatial activity grid, a voxel,
recorded by fMRI. Each fitted encoding model extracts features of the perceptual
input and summarizes them into a value reflecting the evoked activity at the voxel.

Encoding models are important because they can be quantitatively evaluated
based on how well they can predict on new data. Prediction accuracy of different
models is thus a yardstick to contrast competing models regarding the function of
the neurons spanned by the voxel [Carandini et al. (2005)]. Furthermore, the rela-
tion between the spatial organization of neurons along the cortex and the function
of these neurons can be recovered by feeding the model with artificial stimuli. Fi-
nally, predictions for multiple voxels taken together create a predicted fingerprint
of the input; these fingerprints have been successfully used for extracting infor-
mation from the brain [so-called “mind-reading”, Nishimoto et al. (2011)] and
building brain machine interfaces [Shoham et al. (2005)]. The search for simpler
but more predictive encoding models is ongoing, as researchers try to encode more
complex stimuli and predict higher levels of cognitive processing.

Because brain responses are not deterministic, encoding models cannot be per-
fect. A substantial portion of the fMRI measurements is noise that does not reflect
the input. The noise may be caused by background brain activity, by noncognitive
factors related to blood circulation or by the measurement apparatus. Regardless
of the source, the noise cannot be predicted by encoding models that are deter-
ministic functions of the inputs [Roddey, Girish and Miller (2000)]. To reduce the
effect of noise, the same input can be displayed multiple times within the input
sequence and all responses to the same input averaged, in an experimental design
called event-related fMRI [Josephs, Turner and Friston (1997)]. See Pasupathy and
Connor (1999), Haefner and Cumming (2008), for examples, and Huettel (2012)
for a review. Typically, even after averaging, the noise level is high enough to be
a considerable source of prediction error. Hence, it is standard practice to measure
and report an indicator of the signal strength together with prediction success. We
focus on explainable variance, the proportion of signal variance in the total vari-
ance of the measurements,2 which we here formally define in equation (2.9). The
comparison of explainable variance with prediction success [Roddey, Girish and
Miller (2000), Sahani and Linden (2003)] informs how much room is left on the

2Depending on context, this proportion is also known as the intraclass correlation, effect-size

and R2.
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collected data for improving prediction through better models. Explainable vari-
ance is also an important quality control metric before fitting encoding models,
and can help choose regularization parameters for model training.

In this paper we develop a new method to estimate the explainable variance
in fMRI responses and use it to reanalyze data from an experiment conducted
by the Gallant lab at UC Berkeley [Kay et al. (2008), Naselaris et al. (2009)].
Their work examines the representation of visual inputs in the human brain using
fMRI by ambitiously modeling a rich class of images from natural scenes rather
than artificial stimulus. An encoding model was fit to each of more than 10,000
voxels within the visual cortex. The prediction accuracy of their fitted models on
a separate validation image set was surprisingly high given the richness of the
input class, inspiring many studies of rich stimuli class encoding [Pasley et al.
(2012), Pereira, Detre and Botvinick (2011)]. Still, accuracy for the voxels varied
widely (see Figure 2), and more than a third of the voxels had prediction accuracy
not significantly better than random guessing. Researchers would like to know
whether accuracy rates reflect (a) overlooked features which might have improved
the modeling, or instead reflect (b) the noise that cannot be predicted regardless of
the model used. As we show in this paper, valid measures of explainable variance
can shed light on this question.

Measuring explainable variance on correlated noise. We face the statistical
problem of estimating the explainable variance, assuming the measurement vector
is composed of a random mean-effects signal evoked by the images with additive
auto-correlated noise [Scheffé (1959)]. In fMRI data, many of the sources of noise
would likely affect more than one measurement. Furthermore, low frequency cor-
relation in the noise has been shown to be persistent in fMRI data [Fox and Raichle
(2007)]. Ignoring the correlation would greatly bias the signal variance estimation
(see Figure 7 below) and would cause us to overestimate the explainable variance.
This overestimation of signal variance may be a contributing factor to replicability
concerns raised in neuroscience [Vul et al. (2009)].

Classical analysis-of-variance methods account for correlated noise by (a) es-
timating the full noise covariance, and (b) deriving the variances of the signal
and the averaged noise based on that covariance. The two steps can be performed
separately by methods of moments [Scheffé (1959)] or simultaneously using re-
stricted maximum likelihood [Laird, Lange and Stram (1987)]. In both cases, some
parametric model for the correlation is needed for the methods to be feasible, for
example, a fast decay is assumed in Woolrich et al. (2001). These approaches,
however, are sensitive to misspecifications of the correlation parameters. In fMRI
signals, the correlation of the noise might vary with the specifics of the preprocess-
ing method in a way, that is, not easy to parametrize. As we show in Section 6, if
the autocorrelation model is too simplistic, it might not capture the correlation well
and then overestimate the signal; on the other hand, if it is too flexible, the noise
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might be overestimated and, furthermore, the numeric optimizations involved in
estimating the correlation might sometimes fail to converge.

An alternative way [Sahani and Linden (2003), Hsu, Borst and Theunissen
(2004)] to handle the noise correlation when estimating variances is to restrict the
analysis to measurements that, based on the data collection, should be indepen-
dent. Many neuroscience experiments are divided into several sessions, or blocks,
to better reflect the inherent variability and to allow the subject rest. Fewer have
a block design, where the same stimulus sequence is repeated for multiple blocks.
Under block design the signal level can be estimated by comparing repeated mea-
sures across different blocks: regardless of the within-block-correlation, the noise
should decay as 1/b when averaged over b blocks with the same stimulus se-
quence. Block designs, however, are quite limiting for fMRI experiments, because
the long reaction time of fMRI limits the number of stimuli that can be displayed
within an experimental block [Huettel (2012)]. The methods above also do not use
repeats within a block to improve their estimates. These problems call for a method
that can make use of patterns in the data collection to estimate the signal and noise
variances under less restrictive designs.

We introduce novel variance estimators for the signal and noise levels, which
we call shuffle estimators. Shuffle estimators resemble bias correction methods: we
think of the noise component as a bias and try to remove it by resampling. The key
idea is to artificially create a second data vector that will have similar noise patterns
as our original data. We do this by permuting, or shuffling, the original data along
symmetries that are based on the data collection, such as temporal stationarity
or independence across blocks. As we prove in Section 3, the variance due to
signal will be reduced in the shuffled data when some repeated measures for the
same image are shuffled into different categories. An unbiased estimator of the
signal level can be derived based on this reduction in variance. The method does
not require parametrization of the noise correlation, and is flexible to incorporate
different structures in the data collection.

We validate our method on both simulated and fMRI data. For the fMRI exper-
iment, we estimate upper bounds for prediction accuracy based on the explainable
variance of each voxel in the primary visual cortex (V1). The upper bounds we esti-
mate (in Section 6) are highly correlated (r > 0.9) to the accuracy of the prediction
models used by the neuroscientists. We therefore postulate that explainable vari-
ance, as estimated by the shuffle estimators, can “predict” optimal accuracy even
for areas that do not have a good encoding model. Alternative estimates for ex-
plainable variance showed substantially less agreement with the prediction results
of the voxels.

In Section 2 we describe the fMRI experiment in greater detail and motivate
the random effects model underlying our analysis. In Section 3 we introduce the
shuffle estimators method for estimating the signal and noise levels and prove the
estimators are unbiased. In Section 4 we focus on the relation between explainable
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variance and prediction for random effects model with correlated noise. The sim-
ulations in Section 5 verify unbiasedness of the signal estimates for various noise
regimes and show that the estimates are comparable to parametric methods with
the correct noise model. In Section 6 we estimate the explainable variance for mul-
tiple voxels from the fMRI experiment and show the shuffle estimates outperform
alternative estimates in explaining variation in prediction accuracies of the voxels.
Section 7 concludes this paper with a discussion of our method. The proofs and
the conditions of consistency for the estimator are available in the supplementary
materials [Benjamini and Yu (2013)].

2. Preliminaries.

2.1. An fMRI experiment. In this experiment, carried out by the Gallant lab
at UC Berkeley [Kay et al. (2008)], a human subject viewed natural images while
scanned by fMRI.3 The two primary goals of the experiment were (a) to find en-
coding models that have high predictive accuracy across many voxels in the early
visual areas; and (b) to use such models to identify the input image, from a set of
candidate images, based on the evoked brain patterns. The experiment created the
first noninvasive machinery to successfully identify natural images based on brain
patterns, and its success spurred many more attempts to encode and decode neural
activities evoked by various cognitive tasks [Pasley et al. (2012), Pereira, Detre
and Botvinick (2011)]. We focus only on the prediction task, but note that gains
in prediction would improve the accuracy of identification as well. A complete
description of the experiment can be found in the supplementary materials of the
original paper [Kay et al. (2008)]. This is background for our work, which begins
in Section 2.2.

The data of this experiment are composed of the set of natural images, and
the fMRI scans recorded corresponding to the images. The images were sampled
from a library of gray-scale photos depicting natural scenes, objects, etc. Two
nonoverlapping random samples were taken: the training sample (1750 images)
was used for fitting the models; and the validation sample (m = 120 images) was
used for measuring the prediction accuracy. Images were sequentially displayed
in a randomized order, each image appearing multiple times (n = 13). BOLD
contrasts—correlates of neural activity—were continuously recorded by the fMRI
along a three-dimensional grid covering the visual cortex, as the subject watched
the images. For each voxel in the grid, the responses were temporally discretized
so that a single value (per voxel) was associated with a single displayed image.

Data from the training sample was used to fit a quantitative receptive field model
for each voxel, describing the fMRI response as a function of the input image. Here
is a brief overview; more details on these V1 encoding models can be found in Vu

3We use data from subject S1 in Kay et al. (2008).
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FIG. 1. A Gabor-based encoding model for natural images. A cartoon depicting the encoding mod-
els that were used for the fMRI experiment (adapted from Kay et al.). In these models, natural images
(a) are transformed into a vector of 10,409 features; features (b) measure the energy from two lin-
ear Gabor filters—tuned for specific spatial frequency, location in the image and orientation—with
complementary phases. These features are combined according to a linear weight vector (c) that was
fit separately for each voxel. The predicted response of a voxel for an image is the weighted sum of
the features representing the image (d). The linear weights were fit on the training data consisting of
responses to 1750 images.

et al. (2011). The model was based on multiple Gabor filters capturing spatial lo-
cation, orientation and spatial-frequency of edges in the images (see Figure 1).
Because of the tuning properties of the Gabor energy filters, this filter set is typi-
cally used for representing receptive fields of mammalian V1 neurons. Gabor fil-
ters (d = 10,409 filters) transformed each image into a feature vector in R

d . For
each of Q voxels of interest, a linear weight vector relating the features to the mea-
surements was estimated from the training data. Together, the transformation and
linear weight vector result in a prediction rule that maps novel images to a real-
valued response per voxel.

In their paper, Kay et al. measured prediction accuracy by comparing observa-
tions from the validation sample with the predicted responses for those images.
The validation data consisted of a total of T = 1560 measurements (per voxel):
m = 120 different images, each repeated n = 13 times. Let Y

(r)
t ∈ R denote the

measured fMRI activity at voxel r and time t . Repeated measurements of the same
image were averaged to reduce noise:

Ȳ
(r)
j = avg

t : h(t)=j

Y
(r)
t , j = 1, . . . ,m,

where h(t) ∈ {1, . . . ,m} indexes the image that was shown at time t .
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FIG. 2. Prediction accuracy for V1 voxels. Predicted vs. observed average responses for three
voxels in the V1 area, reflecting poor (a), medium (b) and high (c) prediction accuracies. Each point
depicts the predicted response (x-axis) and the observed average response (across all repeats) for an
image of the validation sample (m = 120 images). (d) Histogram of prediction accuracy for all 1250
V1 voxels.

Let f
(r)
1 , . . . , f

(r)
m be the sequence of predictions for voxel r , and f̄ (r) their

average. A single value per voxel summarizes prediction accuracy. That is,

Corr2[(
f

(r)
j

)
j≤m,

(
Ȳ

(r)
j

)
j≤m

] := (
∑m

j=1(f
(r)
j − f̄ (r))(Ȳ

(r)
j − Ȳ (r)))2

∑m
j=1(f

(r)
j − f̄ (r))2 ∑m

j=1(Ȳ
(r)
j − Ȳ (r))2

.

In Figure 2 we show examples of voxels with low, intermediate and high prediction
accuracies, and a histogram of the accuracy for all 1250 voxels located within the
V1 area. We can drop the superscript r because each voxel is analyzed separately.

2.2. Correlation in the data. The goal of our work is to separate the two fac-
tors that determine the accuracy of prediction rules: the adequacy of the feature set
or the linear model; and the noise level. Explainable variance represents the opti-
mal accuracy if prediction were unrestricted by the choice of features and model.

We validate our explainable variance estimators by showing the estimators ac-
count well for the differences in prediction accuracy between Q = 1250 voxels
within the primary visual cortex (V1). This analysis depends on the assumption
that the observed variation between voxels is primarily due to differences in the
level of the signal-to-noise in the validation data, rather than, for example, differ-
ences in the adequacy of the feature set underlying the prediction models. Once
the estimators are validated on this controlled setting, explainable variance can be
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used more broadly, for example, to compare the predictability levels of different
functional areas.

Since we intend to use the validation data to estimate the explainable variance,
we now give a few more details on how it was collected. Recall that the validation
data consisted of m = 120 images each repeated n = 13 times [see Figure 3(a)].
These data were recorded in 10 separate sessions so that the subject could rest
between sessions; the fMRI was recalibrated at the beginning of each session.

FIG. 3. Data acquisition for the validation data. The responses in the validation set were collected
in 10 separate sessions (blocks). Both the design matrix for the experiment and the noise correla-
tion are influenced by this structure. In (a), the transposed design matrix X′ is shown. This matrix
records which image (y-axis) is displayed at each time slot t (x-axis). Separate sets of 12 images
were repeated n = 13 times within each block, whereas no image was recorded in more than one
block. In (b)–(d) temporal autocorrelation is displayed, as measured between a single time point
[t∗ = 40,140,240 for (b), (c), (d), resp.] and all others points. The t = t∗ point is marked by a blue
vertical line. On average, strong but nonsmooth correlations are found within the blocks, but sepa-
rate blocks seem uncorrelated. Note that we calculate here the aggregate correlation of the voxels,
but cannot use this same method to measure the autocorrelation of any specific voxel. Furthermore,
the correlation depicted here is due to both noise and signal.
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Each session contained all presentations of 12 different images. A pseudo-random
integer sequence ordered the repeats within a session.4

When we measure correlation across many voxels, it appears that the design of
the experiment induces strong correlation in the data. To see this, in Figure 3(b)–(d)
we plot the correlation between measurements at different time slots (each time
slot is represented by the vector of Q = 1250 measurements). This plot shows
qualitatively the correlation among individual voxels, including both noise driven
and possibly stimuli-driven correlations. Clearly, there are strong correlations be-
tween time slots within a block, but no observable correlations between blocks. As
these within-block correlation patterns do not correspond to the stimuli schedule,
that is, randomized within a block, we conclude the correlations are largely due to
noise. These noise correlations need to be taken into account to correctly estimate
the explainable variance.

2.3. A probability model for the measurements. We introduce a probabilistic
model for the measurements Y := (Yt )

T
t=1 at a single voxel. Y is modeled as a ran-

dom effects model with additive, correlated noise [Williams (1952)]. We assume
the observed response is the sum of two independent random processes: the sig-
nal process, which is random due to sampling of images into the validation set,
and the noise process describing fluctuations unrelated to the stimuli. Additivity
of noise is considered a good approximation for fMRI-event related designs and
is commonly used [Buracas and Boynton (2002)]. The random effects model ac-
counts for the generalization of prediction accuracy from the validation sample to
the larger population of natural images.

2.3.1. Signal. Images are shown in a long sequence, in which each of the m

images in the random sample is repeated multiple times. The order of presentation
is described by the design matrix X ∈ {0,1}T ×m (see Figure 3). Each row vector
Xt has a single 1 entry, which identifies the image shown at time t ,

Xt,j = 1 if the j th image in the sample is displayed at time t .

For now, the sampling of images is conveyed through their effects on the mea-
surement. We use a homogenous set of random variables [Owen (2007)] to repre-
sent the mean responses to the images in the sample. Let Aj be the mean of the
observed responses to the j th image in the sample. We assume that

Aj ∼ (
0, σ 2

A

)
for j = 1, . . . ,m,

that is, Aj ’s are i.i.d. with mean 0 and variance σ 2
A ≥ 0, but are not necessarily

normally distributed. In the experiment we are analyzing, the randomness origi-
nates from sampling a large (infinite) population of images. We use A := (Aj )

m
j=1

4The pseudo-random sequence allocated spots for 13 different images; no image was shown in the
last category and the responses were discarded.
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for the random-effect column vector, Ā := 1
m

∑m
j=1 Aj for the sample mean, and

s2
A := 1

(m−1)

∑m
j=1(Aj − Ā)2 for the sample variance of the random effects.

XA is the T -dimensional random signal vector, denoting the random effect at
each measurement. To index the effect corresponding to time t , we use the short-
hand A(t) := XtA.

2.3.2. Noise. We assume the measurement noise process ε = (εt )
T
t=1 is inde-

pendent of the random signal vector XA. We further assume the noise elements
εt have 0 mean, σ 2

ε ≥ 0 variance, but may be autocorrelated. The unknown corre-
lation, denoted by a matrix � ∈ R

T ×T (diag(�) = 1), captures the slow-changing
hemodynamics of the BOLD and the effects of preprocessing on the BOLD sig-
nals. Hence,

Eε[εt ] = 0, cov(εt , εu) = σ 2
ε �tu,�tt = 1,(2.1)

or in matrix notation cov[ε] = σ 2
ε �.

2.3.3. Model for observed responses. We are now ready to introduce the ob-
served response (column) vector Y ∈ R

T as follows:

Y = XA + ε(2.2)

and for a single time slot t

Yt = A(t) + εt .

2.3.4. Response covariance. The model involves two independent sources of
randomness: the image sampling, modeled by the random effects (A), and the mea-
surement noise ε. Assuming independence between A and ε, the covariance of Yt

and Yu amounts to adding the individual covariances

covA,ε(Yt , Yu) = covA(A(t),A(u)) + covε(εt , εu)
(2.3)

= σ 2
A1(Xt=Xu) + σ 2

ε �tu.

The first term on the RHS shows that treatment (random) effects are uncorrelated
if they are based on different inputs, but are identical if based on the same input,
with a variance of σ 2

A. In matrix form, we get

EA,ε[Y] = 0, covA,ε(Y) = σ 2
AXX′ + σ 2

ε �.(2.4)

2.4. Explainable variance and variance components. We are ready to define
explainable variance, a scaled version of the treatment variance σ 2

A. Explainable
variance is relevant to the performance of prediction models, a property we will
discuss in Section 4.
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Recall that Ȳj are the averaged responses per image (j = 1, . . . ,m for the im-
ages in our sample), and let Ȳ = 1

T

∑T
t=1 Yt be the global average response. Then

the sample variance of averages is

MSbet := 1

m − 1

m∑
j=1

(Ȳj − Ȳ )2.(2.5)

The notation MSbet refers to the mean-of-squares between treatments. Let us define
the total variance σ̄ 2

Y as the population mean of MSbet,

σ̄ 2
Y := EA,ε[MSbet].(2.6)

Note that σ̄ 2
Y is not strictly the variance of any particular Ȳj ; indeed, the variance

of Ȳj is not necessarily equal for different j ’s.5 Nevertheless, we will loosely use
the term variance here and later, owing to the parallels between these quantities
and the variances in the i.i.d. noise case.

The average across repeats Ȳj is composed of a signal part (Aj ) and an average
noise part (ε̄j ); similarly, Ȳ is composed of Ā and ε̄. By partitioning the MSbet,
and taking expectations over the sampling and the noise, we get

EA,ε[MSbet] = EA

[
1

m − 1

m∑
j=1

(Aj − Ā)2

]
+Eε

[
1

m − 1

m∑
j=1

(ε̄j − ε̄)2

]
,(2.7)

where the cross-terms cancel because of the independence of the noise from the
sampling. We can call the expectation of the second term the noise level, or σ̄ 2

ε ,
and get the following decomposition:

σ̄ 2
Y = σ 2

A + σ̄ 2
ε.(2.8)

In other words, the signal variance σ 2
A and the noise level σ̄ 2

ε are the signal and
noise components of the total variance.

Finally, we define the proportion of explainable variance to be the ratio

ω2 := σ 2
A/σ̄ 2

Y .(2.9)

Explainable variance measures the proportion of variance due to signal in the aver-
aged responses; estimating it is the goal of this work. Note that by definition, ω2 is
restricted to [0,1].

To estimate ω2, we need estimators for σ̄ 2
Y and σ 2

A. Whereas σ̄ 2
Y can be directly

estimated from the sample, to estimate σ 2
A we need a method to separate the sig-

nal from the noise. In the following, we propose a method to distinguish them
using their different covariance structures. We first develop some technical alge-
braic identities important for the estimation procedure. Some readers might prefer
to skip directly to Section 3.

5In practice, this is true for the individual measurements Yt as well. We chose �tt = 1 for illustra-
tion reasons.
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2.5. Quadratic contrasts. In this subsection we express MSbet as a quadratic
contrast of the full data vector Y. This contrast highlights the relation between
σ̄ 2

Y or σ̄ 2
ε with both the design XX′ and the measurement correlations �, and

produces algebraic descriptions to be used for deriving the shuffle estimator. These
are simple extensions of classical treatment of variance components [Townsend
and Searle (1971)].

Denote B := XX′/n, the R
T ×T matrix in which

Btu =
⎧⎨
⎩

1

n
, if Xt = Xu,

0, otherwise,
(2.10)

where B is an averaging matrix, meaning that multiplication of a measurement
vector by B replaces each element in the vector by the treatment average, as in

(BY)t = Ȳh(t).(2.11)

It is easy to check that B = B ′ and B = B2. Also, let G ∈ R
T ×T ,Gtu = 1/T for

t, u = 1, . . . , T , be the global average matrix, so that (GY)t = Ȳ , t = 1, . . . , T . We
can now express MSbet as a quadratic expression of Y,

MSbet = 1

(m − 1)n

∥∥(B − G)Y
∥∥2

,(2.12)

or, more generally, as a quadratic function of any input vector,

MSbet(·) := 1

(m − 1)n

∥∥(B − G)(·)∥∥2
.(2.13)

By replacing the MSbet with its quadratic form, a relation is exposed between
the total variance, the design and the correlation of the noise:

σ̄ 2
Y = EA,ε

[
MSbet(Y)

]
= 1

(m − 1)n
EA,ε

[
tr

(
(B − G)

(
Y′Y

)
(B − G)

)]

= 1

(m − 1)n
tr

(
(B − G) covA,ε(Y)

)
.

The signal effect and noise are additive, hence,
1

(m − 1)n
tr

(
(B − G) covA(Y)

) + 1

(m − 1)n
tr

(
(B − G) covε(Y)

)
.

Substituting covA(Y) = nσ 2
AB and covε(Y) = σ 2

ε �,

1

(m − 1)n
tr

(
(B − G)

(
nσ 2

AB
)) + 1

(m − 1)n
tr

(
(B − G)σ 2

ε �
)

= 1

(m − 1)
σ 2

A tr(B − G) + 1

(m − 1)n
σ 2

ε tr
(
(B − G)�

)

= σ 2
A + 1

(m − 1)n
σ 2

ε tr
(
(B − G)�

)
.
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DERIVATION 1. Under the model described in Section 2.3,

σ̄ 2
Y = σ 2

A + 1

(m − 1)n
σ 2

ε tr
(
(B − G)�

)
.(2.14)

As a direct consequence of (2.8) and (2.14), we get an exact expression for the
noise level

σ̄ 2
ε = 1

(m − 1)n
σ 2

ε tr
(
(B − G)�

)
.(2.15)

This expression clarifies how σ̄ 2
ε depends on the design, the noise variance and the

noise autocorrelation. As expected, σ̄ 2
ε scales linearly with the noise variance of

the individual measurements σ 2
ε . More interesting is that σ̄ 2

ε depends linearly on
tr(B�)—the interplay between the design and the noise autocorrelation.

Note that if the within treatment noise is uncorrelated, this expression sim-
plifies to a classical ANOVA result. Uncorrelated noise within treatments mani-
fests, in a properly sorted version of �, as small n × n identity blocks. Therefore,
tr((B − G)�) = (m − 1)σ 2

ε and σ̄ 2
ε = σ 2

ε /n. In that case σ̄ 2
Y = σ 2

A + σ 2
ε /n, and by

plugging in an estimator of σ 2
ε , we can directly estimate σ̄ 2

ε and σ 2
A. The estimator

for ω2 is

ω̂2 = 1 − 1

F

with F being the standard F statistic. This is the method-of-moments estimator
described fully in Section 6.1.

On the other hand, when some correlations within repeats are greater than 0,
σ 2

ε /n underestimates the noise level and inflates the explainable variance. In the
next section we introduce the shuffle estimators which can deal with correlated
noise.

3. Shuffle estimators for signal and noise variances. In this section we pro-
pose new estimators called the shuffle estimators for the signal and noise levels,
and for the explainable variance. As in (2.8), σ̄ 2

Y = σ 2
A + σ̄ 2

ε , but the noise level σ̄ 2
ε

is a function of the (unknown) measurement correlation matrix �. Using shuffle
estimators, we can estimate σ 2

A and σ̄ 2
ε without having to estimate the full � or

imposing unrealistically strong conditions on it.
The key idea is to artificially create a second data vector that will have similar

noise patterns as our original data (see Figure 4). We do this by permuting, or
shuffling, the original data along symmetries that we identify in the data collection.
In Section 3.1 we formalize the definition of such permutations that conserve the
noise correlation, and give plausible examples for neuroscience measurements.
In Section 3.2 we compare the variance of averages (MSbet) of the original data
[Figure 4(b)], with the same contrast computed on the shuffled data (c). Because
repeated measures for the same image are shuffled into different categories, the
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FIG. 4. Cartoon of the shuffle estimator. (a) Data is generated according to a predetermined de-
sign, with each color representing repeats of a different image. (b) Repeats of each image are av-
eraged together and the sample variance is computed on these averages. (c) Data is shuffled by P ,
in this example reversing the order. Now measurements which do not originate from the same re-
peat are averaged together (Ȳ ∗

j ’s), and the sample variance of the new averages is computed. These
averages should have a lower variance in expectation, and we can calculate the reduction amount
α = 1

m−1 tr((B − G)PBP ′), where B = XX′/n. (d) The shuffle estimator for signal variance is the
difference between the two sample variances, after correction of 1 − α.

variance due to signal will be reduced in the shuffled data. We derive an unbiased
estimator for signal variance σ 2

A based on this reduction in variance, and use the
plug-in estimators to estimate σ̄ 2

ε and ω2.

3.1. Noise-conserving permutation for Y with respect to design X. A prereq-
uisite for the shuffle estimator is to find a permutation that will conserve the noise
contribution to σ̄ 2

Y . We will call such permutations noise-conserving w.r.t. to X.
Recall (2.15),

σ̄ 2
ε = 1

(m − 1)n
tr

(
(B − G)

(
σ 2

ε �
))

,

where σ 2
ε � = covε[Y] as before. Let P ∈ R

T ×T be a permutation matrix. Then
we have the following:
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DEFINITION 1. P is noise conserving w.r.t. X, if

tr
(
(B − G)Pσ 2

ε �P ′) = tr
(
(B − G)σ 2

ε �
)
.(3.1)

Equivalently,

tr
(
(B − G) covε[P · Y]) = tr

(
(B − G) covε[Y]).

Although we define the noise-conserving property based on the covariance, re-
placing the covariance with the correlation matrix � would not change the class
of noise-conserving permutations.

We consider first two important cases of noise conservation. Though most use-
ful noise-conserving permutations will be derived from assumptions regarding the
noise correlation �, the noise-conservation property can be derived from the de-
sign X as well. This can be seen in the first example.

3.1.1. Trivial noise-conserving permutations. A permutation P that simply
relabels the treatments is not a desirable permutation, even though it is noise con-
serving. We call such permutations trivial:

DEFINITION 2. A permutation P , associated with permutation function
gP : {1, . . . , T } → {1, . . . , T }, is trivial if

Xt = Xu ⇒ XgP (t) = XgP (u) ∀t, u.(3.2)

It is easy to show that a trivial P does nothing, that is, MSbet(P Y) = MSbet(Y).

3.1.2. Noise-conserving permutations based on symmetries of �. A useful
class of nontrivial noise-conserving permutations is the class of symmetries in the
correlation matrix �: a symmetry of � is a permutation P such that P�P ′ = �.
If P is a symmetry of �, then P is noise conserving regardless of the design. Here
are three important general classes of symmetries which are commonly applicable
in neuroscience:

1. Uncorrelated noise. The obvious example is the uncorrelated noise case � = I

where all responses are exchangeable. Hence, any permutation is noise con-
serving.

2. Stationary time series. Neuroscience data typically are recorded in a long se-
quence containing a large number of serial recordings at constant rates. It is
natural to assume that correlations between measurements will depend on the
time passed between the two measures, rather than on the location of the pair
within the sequence. We call this the stationary time series. Under this model
� is a Toeplitz matrix parameterized by {ρd}T −1

d=0 , the set of correlation values
�t,u = ρd , where d = |t − u|. Though the correlation values ρd ’s are related,
this parameterization does not enforce any structure on them. This robustness
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is important in the fMRI data we analyze. For this model, a permutation that
reverses the measurement vector is noise conserving

(P Y)t = YT +1−t .

This is the permutation we use on our data in Section 6.
The shift operators of the form (P Y)t = (Y)t+k define a transformation that,

up to edge effects, can be considered noise conserving.
3. Block effect models. Another important case is when measurements are col-

lected in distinct sessions or blocks. Measurements from different blocks are
assumed independent, but measurements within the same block may be corre-
lated, perhaps because of calibration of the measurement equipment. We index
the block assignment of time t with β(t). A simple parameterization for noise
correlation would be to let �t,u = ζ(β(t), β(u)) depend only on the block iden-
tity of measurements t and u. We call this the block structure. Under the block
structure, any permutation P (associated with function gP ) that maintains the
identity of blocks, meaning

β(t) = β(u) ⇒ β
(
gP (t)

) = β
(
gP (u)

)
,(3.3)

would be noise conserving w.r.t. any X.

The scientist is given much freedom in choosing the permutation P , and should
consider both the variance of the estimator and the estimator’s robustness against
plausible noise-correlation structures. Establishing criteria for choosing the per-
mutation P is the topic of current research.

3.2. Shuffle estimators. We can now state the main results. From the following
lemma we observe that every noise-conserving permutation establishes a linear
mean equation with two parameters: σ 2

A and σ̄ 2
ε . The coefficient of σ̄ 2

ε is 1, whereas
the coefficient for σ 2

A is the constant

α = α(X,P ) = 1

m − 1
tr

(
(B − G)

(
PBP ′)),(3.4)

which depends only on the design B = XX′/n and the permutation P —both
known to the scientist. The size of α reflects how well P mixes the treatments;
the greater the mix, the smaller α.

LEMMA 1. If P is a noise-conserving permutation for Y, then

(a) EA,ε[MSbet(P Y)] = ασ 2
A + σ̄ 2

ε ,
(b) α ≤ 1, and the inequality is strict iff P is nontrivial.

The proof of (a) involves derivations as in Section 2.5 [e.g., equation (2.14)], and
the proof of (b) further requires the Cauchy–Schwarz inequality. Both are found in
the supplementary materials [Benjamini and Yu (2013)].
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The consequence of part (b) is that for any nontrivial P , we get a second mean
equation, which is linearly independent from the equation based on the original
data (because α < 1). In other words, for a nontrivial P , the equation set{

EA,ε

[
MSbet(Y)

] = σ 2
A + σ̄ 2

ε,

EA,ε

[
MSbet(P Y)

] = ασ 2
A + σ̄ 2

ε

(3.5)

has a unique solution. Solving the two equations above, we arrive at an unbiased
estimator for the signal variance.

DEFINITION 3. The shuffle estimator for the signal variance is defined as

σ̂ 2
A = MSbet(Y) − MSbet(P Y)

1 − α
.(3.6)

Finally, we can plug in σ̂ 2
A and ˆ̄σ 2

Y = MSbet(Y) to get the shuffle estimator for
the explainable variance ω2:

ω̂2 = σ̂ 2
A

MSbet(Y)
= 1

1 − α

(
1 − MSbet(P Y)

MSbet(Y)

)
.

REMARKS.

1. An unbiased estimator of the noise level σ̄ 2
ε can be derived from equations

(3.6) and (2.8),

ˆ̄σ 2
ε = MSbet − σ̂ 2

A.

2. Because σ̂ 2
A estimates a nonnegative quantity, it is preferable to restrict σ̂ 2

A to
nonnegative values by taking σ̂ 2

A+ = max{0, σ̂ 2
A}.

3. The estimator is consistent under proper decay of the dependance. This state-
ment is conditional on the asymptotic setup: explainable variance typically
changes as the number of measurements (T ) increases. Nevertheless, the shuf-
fle estimator is consistent for a sequence of data sets (indexed by k = 1,2, . . .)
of growing sizes [T (k) → ∞] for which total variance and explainable vari-
ance converge if (a) the number of treatments m(k) grows to ∞ and (b) the
dependence decays. For Y distributed as a multivariate gaussian,6 a sufficient
condition for (b) can be given in terms of eigenvalues of �:

(b*) The largest m − 1 eigenvalues λ(1)(k), . . . , λ(m−1)(k) of the noise cor-
relation matrix �(k) satisfy

1

n2(m − 1)2

m−1∑
i=1

λ2
(i)(k) → 0 as k → ∞.

6More general SLLN conditions for the weakly dependent random variables Ȳ 2
1(k), . . . , Ȳ 2

m(k)
(k)

can be found in Lyons (1988).
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Conditions (a) and (b*) assure that var(MSbet(Yk)) → 0 as k → ∞. The proof
relies mainly on the expression for the variance of a quadratic contrasts, as
found, for example, in Searle (1971). For the proof of these results refer to the
supplementary materials [Benjamini and Yu (2013)].

4. Evaluating prediction for correlated responses. Although there are
many uses for estimating the explainable variance, we focus on its role in assessing
prediction models. Roddey, Girish and Miller (2000) show that explainable vari-
ance upper bounds the accuracy of prediction on the sample when noise is i.i.d.
We generalize their results for arbitrary noise correlation and account for gener-
alization from sample to population.7 As shown in Lemma 2, the noise level σ̄ 2

ε

is the optimal expected loss under mean square prediction error (MSPE) loss, and
the explainable variance ω2 approximates the accuracy under squared-correlation
Corr2 utility.

A more explicit notation setup is needed for studying the relation between pre-
dictions and signal responses. Let f be a prediction function that predicts a real-
valued response to any possible image I , out of a large population of M images,

f : {Ii}Mi=1 →R.(4.1)

We will assume f does not depend on the sample we are evaluating, meaning that
it was fit on separate data. We usually think of f as using some aspects of the
image to predict the response, although we do not restrict it in any parametric way
to the image.

Prediction accuracy is measured only on the m images sampled for the
(nonoverlapping) validation set. Let s : {1, . . . ,m} → {1, . . . ,M} be the random
sampling function, and Is(j) the random image chosen for the j th sample image.

Furthermore, let us introduce notation relating the random effects to the image
sampling. For this, assume each image is associated with a mean activation quan-
tity μi , so that

∑
μi = 0 and

∑
μ2

i = σ 2
A. Then the random effects Aj defined

before can now be described Aj = μs(j).
To evaluate prediction accuracy, the predicted response f (Is(j)) is compared

with the averaged (observed) response for that image Ȳj . We consider two common
accuracy measures: mean squared prediction error (MSPE[f ]) and the squared
correlation (Corr2[f ]), defined

MSPE[f ] := 1

m − 1

m∑
j=1

(
f (Is(j)) − Ȳj

)2
,(4.2)

Corr2[f ] := Corr2
j

(
f (Is(j)), Ȳj

)
(4.3)

= (1/(m − 1)
∑m

j=1(f (Is(j)) − f̄s)(Ȳj − Ȳ ))2

1/(m − 1)
∑m

j=1(f (Is(j)) − f̄s)2 ∑m
j=1(Ȳj − Ȳ )2

,

7While these results may have been proved before, we have not found them discussed in similar
context.
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where f̄s denotes the average of the predictions for the sample.
We will state and discuss the results relating the explainable variance to optimal

prediction; the proof can be found in the supplementary materials [Benjamini and
Yu (2013)].

LEMMA 2. Let f ∗ : {Ii}Mi=1 → R be the prediction function that assigns for
each stimulus Ii its mean effect μi , or f ∗(Ii) = μi . Under the model described in
Section 2.3,

(a) f ∗ = arg minf EA,ε [MSPE[f ]];
(b) σ̄ 2

ε = EA,ε [MSPE[f ∗]] (=minf EA,ε [MSPE[f ]] by (a));
(c) ω2 ≈ EA,ε[Corr2[f ∗]] with a bias term smaller than 1

m−1 .

Under our random effects model, the best prediction (in MSPE) is obtained by
the mean effects, or f ∗. More important to us, the accuracy measures associated
with the optimal prediction f ∗ can be approximated by signal and noise levels:
σ̄ 2

ε for MSPE[f ∗] and ω2 for Corr2[f ∗].
The main consequence of this lemma is that the researcher does not need a

“good” prediction function to estimate the “predictability” of the response. Pre-
diction is upper-bounded by ω2, a quantity which can be estimated without setting
a specific function in mind. Moreover, when a researcher does want to evaluate
a particular prediction function f , ω̂2 can serve as a yardstick with which f can
be compared. If Corr2[f ] ≈ ω̂2, the prediction error is mostly because of variabil-
ity in the measurement. Then the best way to improve prediction is to reduce the
noise by preprocessing or by increasing the number of repeats. On the other hand,
if Corr2[f ]  ω̂2, there is still room for improvement of the prediction function f .

5. Simulation. We simulate data with a noise component generated from ei-
ther a block structure or a times-series structure, and compute shuffle estimates for
signal variance and for explainable variance. For a wide range of signal-to-noise
regimes, our method produces unbiased estimators of σ 2

A. These estimators are
fairly accurate for sample sizes resembling our image-fMRI data, and the bias in
the explainable variance ω2 is small compared to the inherent variability. These re-
sults are shown in Figure 5. In Figure 6 we show that under nonzero σ 2

A, the shuffle
estimates have less bias and lower spread compared to the parametric model using
the correctly specified noise correlation.

5.1. Block structure. For the block structure we assumed the noise is com-
posed of an additive random block effect constant within blocks (bk , k = 1, . . . ,B

blocks), and an i.i.d. Gaussian term (et , t = 1, . . . , T )

Yt = A(t) + bβ(t) + et .

Aj , bk and et are sampled from centered normal distributions with variances
(σ 2

A,σ 2
b , σ 2

e ). We used σ 2
b = 0.5, σ 2

e = 0.7, and varied the signal level σ 2
A =
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FIG. 5. Simulations for the block and time-series. (a) Simulation results comparing shuffle esti-
mates for signal variance σ 2

A (black) and explainable variance ω2 (blue) to the true population
values (dashed line). Noise correlation followed an independent block structure: noise within blocks
was correlated, and between blocks was independent. The x-axis represents the true signal variance
σ 2
A of the data, and the y-axis marks the average of the estimates and [0.25,0.75] quantile range.

(b) A similar plot for data generated under a stationary time-series model.

FIG. 6. Comparison of methods on simulation. Each pair of box-plots represents the estimated sig-
nal variance σ 2

A using the shuffle estimator (dark gray) and REML (light gray) for 1000 simulations.

The blue horizontal line represents the true value of σ 2
A. The REML estimator assumes the correct

model for the noise, while the shuffle estimator only assumes a stationary time series. When there is
no signal, REML outperforms the shuffle estimators, but in all other cases it is both biased and has
greater spread.
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0,0.1, . . . ,0.9. We used m = 120, n = 15, with all presentations of every 5 stimuli
composing a block (B = 20 blocks). For each of these scenarios we ran 1000 simu-
lations, sampling the signal, block and error effects. MSbet was estimated the usual
way, and P was chosen to be a random permutation within each block (α = 0.115).
The results are shown in Figure 5(a).

5.2. Time-series model. For the time-series model we assumed the noise vec-
tor e ∈ R

T is distributed as a multivariate Gaussian with mean 0 and a covariance
matrix �, where � is an exponentially decaying covariance with a nugget,

�tu = ρ|t−u| = λ1 · exp
{−|t − u|/λ2

} + (1 − λ1)1(t=u).

Then Y = A(t) + et with the random effects A(t) sampled from N (0, σ 2
A) for

σ 2
A = 0,0.1, . . . ,0.9. We used m = 120, n = 15, and the parameters for the noise

were λ1 = 0.7 and λ2 = 30, meaning ρ125 ≈ 0.01. The schedule of treatments was
generated randomly. For each of these scenarios we ran 1000 simulations, sam-
pling the signal and the noise. In Figure 5(b) we estimated the shuffle estimator
with P the reverse permutation (gP (t) = T + 1 − t), resulting in α = 0.064.

5.3. Comparison to REML. In Figure 6 we used time-series data to compare
σ 2

A estimates based on the shuffle estimators to those obtained by an REML esti-
mator with the correct parametrization for the noise correlation matrix. We used
the nlme package in R to fit a repeated measure analysis of variance for the ex-
ponentially decaying correlation of noise with a nugget effect. The comparison
included 1000 simulations for σ 2

A = 0,0.2,0.4,0.6,0.8 and a noise model identi-
cal to Section 5.2.

5.4. Results. Figure 5 describes the performance of shuffle estimates on two
different scenarios: block correlated noise (a), and stationary time-series noise (b).
For signal variance (black) the shuffle estimator gives unbiased estimates. The
shuffle estimator for explainable variance is not unbiased, but the bias is negligible
compared to the variability in the estimates. In Figure 6 we compare the signal
variance estimates based on the shuffle estimator (dark gray) with estimates based
on REML (light gray). The estimates based on the shuffle have no bias, while those
based on REML underestimate the signal. The variance of the REML estimates is
slightly larger, due in part to rare events (between 1%–0.5% of runs) in which the
estimated signal variance was effectively 0—perhaps indicating a problem with
the optimization.

6. Data. We are now ready to evaluate prediction models using the shuffle es-
timates for explainable variance. Prediction accuracy was measured for encoding
models of 1250 voxels within the primary visual cortex (V1). Because V1 is func-
tionally homogenous, encoding models for voxels within this cortical area should
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work similarly. As observed in Figure 2, there is large variation between predic-
tion accuracies for the different voxels. We try to explain this observed variation
as a result of variation in the explainable variance. To do this, prediction accuracy
values for these 1250 voxels are compared to the explainable variance estimates
generated by the shuffle estimator for each voxel. We also compare the accuracy
values to alternative estimates for explainable variance, using the method of mo-
ments for uncorrelated noise, and REML under several parameterizations for the
noise.

6.1. Methods. We estimate the explainable variance of voxels (ω2 = σ 2
A/σ̄ 2

Y )
with several different methods. The methods differ in how σ 2

A is estimated; all
methods use the sample averages variance MSbet(Y) for σ̄ 2

Y and plug in the two
estimates into ω2. We estimate ω2 separately for each voxel (r = 1, . . . ,1250). The
methods we compare are as follows:

1. The shuffle estimator. We assume the noise follows a stationary time-series
model within each block and is independent between the blocks. We therefore
choose a permutation P that reverses the order of the measurements, (P Y)t =
YT +1−t . Because the size of the blocks is identical, reversing the order of the
data vector is equivalent to reversing the order within each block, α = 0.14.
Specifically, the estimator is restricted to be positive:

σ̂ 2
A+ = max

{
MSbet(Y) − MSbet(P Y)

1 − α
,0

}

for signal variance, and ω̂2 = σ̂ 2
A+/MSbet for the explainable variance.

2. An estimator (ω̃2) unadjusted for correlation. We use the mean square within
(MSwit = 1

(m−1)n

∑m
j=1

∑
t : h(t)=j (Yt − Ȳj )

2) contrast to estimate the noise vari-

ance σ 2
ε , scale by 1/n to estimate the noise level σ̄ 2

ε , and remove the scaled
estimate from MSbet,

σ̃ 2
A = MSbet − MSwit/n.

Explainable variance is obtained by plug-in estimator ω̃2 = σ̃ 2
A/MSbet.

3. Estimators based on a parametric noise model.

• We assume the noise is generated from an exponentially decaying correlation
matrix, with a nugget effect. This means

�t,t+d = λ2 exp(−d/λ1) + 1(d=0)(1 − λ2),

where the rate of decay λ1 and nugget effect λ2 were additional parameters.
If λ2 = 0, this is equivalent to the AR(1) model.

• Alternatively, we assume the noise is generated from an AR(3) process or
εt = ηt + ∑3

k=1 akεt−k . This models allows for nonmonotone correlations.

We use the nlme package in R to estimate the signal variance of this model
using restricted maximum likelihood [REML, e.g., Laird, Lange and Stram
(1987)], and use the plug-in estimator for the explainable variance.
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FIG. 7. Optimal vs. observed prediction accuracy. The estimated optimal prediction is compared
with observed prediction (Corr2), each point representing a V1 response. The optimal prediction
estimated by (a) shuffle estimators accounting for stationary noise distributions; (b) Method of mo-
ments estimator assuming independent noise; (c) REML estimator assuming exponential decay of
noise with nugget within blocks; and (d) REML estimator assuming an AR(3) model for the noise
correlation within blocks. The x = y is plotted in blue.

6.2. Results. In Figure 7 we compare the prediction accuracy of the voxels to
estimates of the explainable variance. Each panel has 1250 points representing the
1250 voxels: the x coordinate is the estimate of explainable variance for the voxel,
and the y coordinate is Corr2[f ] for the Gabor-based prediction rule. The large
panel shows the shuffle estimators for explainable variance. The relation between
y = Corr2[f ] and ω̂2 is very linear (r = 0.9). The estimated slope and intercepts
(using least squares) for this relation are y ≈ 0.66 · ω̂2 − 0.009. Note that almost
all voxels for which accuracy is close to random guessing (Corr2[f ] < 0.05) could
be identified based on low explainable variance without knowledge of the specific
feature set.
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When we try to repeat this analysis with other ω2 estimators, explainable vari-
ance estimates are no longer strongly related with the prediction accuracy. When
correlation in the noise is ignored (b), signal strength is greatly overestimated.
In particular, some of the voxels for which prediction accuracy is almost 0 have
very high estimates of explainable variance (as high as ω̃2 = 0.8). In contrast to
the shuffle estimates, it is hard to learn from these explainable variance estimates
about the prediction accuracy for a voxel.

This incompatibility of prediction accuracy and explainable variance estimates
is also observed when the estimates are based on maximum likelihood methods
that parameterize the noise matrix. For the AR(3) model in (d), we see variability
between explainable variance estimates for voxels with given prediction accuracy
level. The smaller model (c) seems to suffer from both overestimation of signal
and from high variance.

7. Discussion. We have presented the shuffle estimator, a resampling-based
estimator for the explainable variance in a random-effects additive model with au-
tocorrelated noise. Rather than parameterize and estimate the correlation matrix
of the noise, the shuffle estimator treats the contribution of the noise to the total
variance as a single parameter. Symmetries in the data collection process indicate
those permutations which, when applied to the original data, would not change
the contribution of the noise. An unbiased estimator of the signal variance is de-
rived from differences between the total variance of the original data vector and
the shuffled vector. The resulting estimate of signal variance is plugged in as the
enumerator for the explainable variance ratio estimate.

For a brain-encoding experiment, we have shown that the strong correlation
present in the fMRI measurements greatly compromises classical methods for es-
timating explainable variance. We used prediction accuracy measures of a well-
established parametric model for voxels in the primary visual cortex as correlates
of signal variance at each of the voxels. Shuffle estimates explained most of the
variation in prediction accuracy between voxels, even though they were blind to
features of the image. Other methods did not do well: methods that ignored noise
correlation seem to greatly overestimate the explainable variance, while methods
that estimated the full correlation matrix were considerably less informative with
regards to prediction accuracy. We consider this convincing evidence that the shuf-
fle estimators for explainable variance can be used reliably even when no gold-
standard prediction model is present.

Explainable variance is an assumption-less measure of signal, in that it makes no
assumptions about the structure of the mean function that relates the input image
to response. We find it attractive that the shuffle estimator for explainable variance
similarly requires only weak assumptions for the correlation of the noise. This
makes the shuffle estimator a robust tool, which can be used at different stages
of the processing of an experiment: from optimizing of the experimental proto-
col, through choosing the feature space for the prediction models, to fitting the
prediction models.
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Choice of permutations. The bias and variance of the shuffle estimator depend
on the permutation underlying the shuffle. Different permutations pose different
assumptions on the noise correlation as well as provide a different mix of treat-
ments corresponding to different αs. We recommend the permutation be chosen
prior to the analysis, based on the expected noise structure and the mixing con-
stants (αs), to minimize the risk of data snooping. Optimally, the experiment could
be designed so that a specific permutation—perhaps the reverse permutation—
will mix treatments well, resulting in a low α. In our experiment, the reverse and
other regular permutations such as shifts had low αs because the design was gen-
erated using an irregular pseudo-random sequence. Moreover, when several noise-
conserving permutations exist and have similar αs, it may be preferable to average
the corresponding shuffle estimators to reduce the variance of the estimators.

In cases were no symmetry permutations are useable, a wider class of “almost
noise-conserving” permutations can be considered. To give concrete examples,
consider the following two permutations: A cyclic left-shift permutation so that
(P1Y)t = Yt+1 for t = 1, . . . , T − 1, and (P1Y)T = Y1; and a permutation of
odd and even channels (P2Y)2s−1 = Y2s , (P2Y)2s = Y2s−1, for s = 1, . . . , T /2.
Neither is an exact symmetry of a covariance matrix that represents a stationary
time series. In P1, the first measurement in each block is not correlated to the
sequence. P2 is even farther from symmetry, in that the medium and long-range
correlations are conserved but the local structure is scrambled.

Nevertheless, the shuffle estimates from either P1 or P2 produce, when com-
pared to predictions, population results that are similar to those observed for the
reverse permutation. The new estimates compare in both linearity, with r = 0.905
between Corr2[f ∗] and ω̂2 for both P1 and P2 compared to r = 0.9 for the re-
verse permutation, as well in the slope (0.65 for P1, 0.68 for P2) of the linear trend
and its intercept (0 for both). This does not imply that any permutation would
work well; indeed, shuffling with a random permutation, implicitly assuming i.i.d.
noise, results in a similar bias as that observed in the method of moments estimator
shown in Figure 7(b). Note that for any candidate P and possible �, the degree to
which noise is conserved can be explicitly measured by comparing tr(�(B − G))

to tr(P ′�P(B − G)).
The shuffle estimators may be useful for applications outside of neuroscience.

These estimators can be used to estimate the variance associated with the treat-
ments of an experiment, conditioned on the design, whenever measurement noise
is correlated. Spatial correlation in measurements arise in many different domains,
from agricultural experiments to DNA microarray chips. Shuffle estimators could
provide an alternative to parametric fitting of the noise contributions for these ap-
plications.

Future research should be directed at expressing the variance of the shuffle esti-
mator for a candidate permutation, as well as at developing optimal ways to com-
bine information from multiple noise-conserving permutations. More generally,
shuffle estimators are a single example of adapting relatively new nonparametric
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approaches from hypothesis testing into estimation; we see much room for expand-
ing the use of permutation methods for creating robust estimators for experimental
settings.
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/13-AOAS681SUPP; .pdf). We pro-
vide proofs for Lemmas 1 and 2 in the supplementary, as well as describe and
prove conditions for consistency of the shuffle estimator.
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