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PRINCIPAL TREND ANALYSIS FOR TIME-COURSE DATA WITH
APPLICATIONS IN GENOMIC MEDICINE1

BY YUPING ZHANG AND RONALD DAVIS

Yale School of Public Health and Stanford University

Time-course high-throughput gene expression data are emerging in ge-
nomic and translational medicine. Extracting interesting time-course patterns
from a patient cohort can provide biological insights for further clinical re-
search and patient treatment. We propose principal trend analysis (PTA) to
extract principal trends of time-course gene expression data from a group of
patients, and identify genes that make dominant contributions to the princi-
pal trends. Through simulations, we demonstrate the utility of PTA for di-
mension reduction, time-course signal recovery and feature selection with
high-dimensional data. Moreover, PTA derives new insights in real biologi-
cal and clinical research. We demonstrate the usefulness of PTA by applying
it to longitudinal gene expression data of a circadian regulation system and
burn patients. These applications show that PTA can extract interesting time-
course trends with biological significance, which helps the understanding of
biological mechanisms of circadian regulation systems as well as the recov-
ery of burn patients. Overall, the proposed PTA approach will benefit the
genomic medicine research. Our method is implemented into an R-package:
PTA (Principal Trend Analysis).

1. Introduction. High-throughput technologies, such as microarray, LC-MS,
next generation sequencing, etc., have been applied widely in current biological
and clinical studies. In the past decades, data were usually collected at one time
point. Thus, these data have three attributes—feature (gene, protein, etc.), individ-
ual (samples, subjects, etc.) and value (gene expression, protein abundance, etc.),
which can be represented by matrices with each row indicating feature identity,
each column indicating sample identity and each cell recording gene expression
or protein abundance. Developing effective ways to analyze such high-throughput
genomic and proteomic data is one of the major challenges of bioinformatics and
computational biology. In such studies, the number of features p is usually much
larger than the number of samples n. The lasso method Tibshirani (1996) was
introduced and combined with matrix decomposition for computing a rank-K ap-
proximation for a matrix; see Mairal et al. (2010), Witten and Tibshirani (2009),
Witten, Tibshirani and Hastie (2009), Zou, Hastie and Tibshirani (2006).
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The identification of time-course gene/protein expression patterns has attracted
increasing attention in biological and clinical research. Time-course genomic and
proteomic data have been collected in many clinical and biological studies. It is
common for biologists to ask the following question on a set of genes they are
interested in: what kinds of dynamic patterns do these genes have? For exam-
ple, given a group of genes with circadian regulation functions, we want to know
their dynamic patterns and their relationships with external light signals. This is
important for understanding biological mechanisms in circadian systems, which
are critical for maintaining normal living for live organisms. Or in a more unsuper-
vised setting, without preselecting a small set of genes, we want to extract underly-
ing dominant time-course patterns and automatically identify important genes that
have contributions on those significant patterns from a genome-wide longitudinal
data set. This kind of statistical analysis is especially important for the research of
complex diseases, which can provide a systematic view of genomic/proteomic dy-
namic responses. For example, in a study of host response to burn injuries, clinical
investigators monitored a group of burn patients and measured their gene expres-
sion over time (www.gluegrant.org). To improve our systematic understanding of
the key regulatory elements in the recovery of burn patients, we need to character-
ize dynamic response in gene expression. To do so, we need a statistical learning
approach for high-dimensional longitudinal data to extract underlying time-course
patterns and identify important features that contribute to the underlying patterns
of interest.

Unlike stationary gene expression data without consideration of time, time-
course gene expression data have an additional time attribute. Traditional principal
component analysis applied to stationary gene expression data matrix for multi-
ple samples cannot be used directly in this scenario. Thus, dimension reduction
methods for time-course data are needed. The method that we propose draws on
ideas from the spline-based methods on time-course data analysis [Kimeldorf and
Wahba (1970), Wahba (1990)] and principal component analysis for dimension
reduction. Our method has the following advantages:

1. Unsupervised approach to automatically discover underlying gene expression
time-course patterns.

2. Automatically identifying important genes and classifying them into different
groups which contribute to different time-course patterns.

The remainder of this article is organized as follows. Section 2 gives the model
and algorithms for principal trend analysis (PTA). Section 3 gives the simulation
studies to show the performance of PTA at different scenarios. Section 4 gives
an application of PTA on a circadian regulation gene expression data set with a
subset of genes as known targets. This data set is from arabidopsis thaliana rosette,
which is a widely-used pattern organism. Gene expression was measured six times
during 12-h-light/12-h-dark treatments of arabidopsis thaliana rosettes. Section 5
gives an application of PTA on a burn patient gene expression data set without

http://www.gluegrant.org
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prior information of genes of interest. This study not only shows the usefulness of
PTA, but also provide insights for the further research of burn disease. Section 6
discusses the prospective of our methods and future directions.

2. Principal trend analysis. Let ynpt denote the gene p expression of subject
n at time point t , p ∈ {1, . . . ,P }, n ∈ {1, . . . ,N}, t ∈ {1, . . . , T }. For each gene
p, yp was centered. We assume all the subjects are from the same population. We
want to find the population-level time-course patterns. Thus, we propose a new
method called Principal Trend Analysis (PTA) to solve this problem.

We use the following notation. Let Yn denote a P ×T matrix of observations on
subject n; A denote a P × K matrix of factor scores, A = [a1, . . . ,aK ], [A]p,k =
ap,k ; � denote a K × (T + 2) matrix of spline coefficients, � = [θT

1, . . . , θ
T
K ],

[�]k,m = θk,m; B denote a T × (T + 2) matrix containing the cubic spline basis,
[B]t,m = Bm(t); S denote a K × T matrix presenting top K time-course trends
across T time points, [S]k,t = Sk(t); and S = �BT.

The underlying model is as below:

Y =

⎡
⎢⎢⎢⎣

Y1
Y2
...

YN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

A�BT

A�BT

...

A�BT

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

E1
E2
...

EN

⎤
⎥⎥⎥⎦ .(2.1)

Let �̂ and Â denote the parameter estimates of � and A for model (2.1). Since
both � and A are unknown, we cannot obtain their least squares solutions simul-
taneously. Thus, we propose an iterative algorithm to estimate the parameters by
solving the following optimization problem:

min
A,�

L(A,�|Y) subject to

(2.2)
���T ≤ c1, ‖A‖1 ≤ c2 and ‖A‖2

2 = 1,

where L(A,�|Y) = ∑N
n=1 ‖Yn − A�BT‖2

F is a loss function, ‖ · ‖F is the Frobe-
nius norm, ‖A‖1 is the nuclear norm of A, ‖A‖2 is the euclidean norm of A, �
denotes a (T + 2) × (T + 2) matrix, and

�ij =
∫

B ′′
i (t)B ′′

j (t) dt.

Small values of c1 produce smoother curves while larger values produce more
wiggly curves. At the one extreme, as c1 → 0, the penalty term dominates, forcing
S′′

k (t) = 0 everywhere, and thus the solution is the least-square line. At the other
extreme, as c1 → ∞, the penalty term becomes unimportant and the solution tends
to be an interpolating twice-differentiable function.

When 1 ≤ c2 ≤ √
P , we obtain sparsity on genes. When c2 >

√
P , the Lasso-

penalty will be inactive in the condition that ‖A‖2
2 ≤ 1.
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The optimization problem (2.2) is not convex due to the L2-equality penalty
on A. We modify the L2-equality penalty in (2.2) and obtain the following opti-
mization problem:

min
A,�

L(A,�|Y) subject to

(2.3)
���T ≤ c1, ‖A‖1 ≤ c2 and ‖A‖2

2 ≤ 1.

Using Lagrange multipliers, we rewrite the criteria in (2.2) and (2.3) as

min
A,�

L(A,�|Y) + λ1���T + λ2‖A‖1 + λ3‖A‖2
2.(2.4)

The supplement S1 [Zhang and Davis (2013)] proves that the optimization prob-
lem (2.3) is biconvex, so it can be solved with an iterative algorithm. Moreover,
the solution to (2.3) also satisfies ‖A‖2

2 = 1, provided that λ3 is chosen so that
(for fixed �) the A that maximizes minA L(A|�,Y), subject to ‖A‖1 ≤ c2, has
L2-norm greater than or equal to 1. This follows from the Karush–Kuhn–Tucker
conditions in convex optimization [Boyd and Vandenberghe (2004)]. Thus, for ap-
propriately chosen λ3, the solutions to (2.3) solve (2.2).

If preselected genes are available (e.g., we are interested in one particular path-
way or genes with the same biological functions), and the problem is to extract
the underlying key time-course trends for these genes, we can remove the lasso
penalty in the optimization problem (2.4), that is, let λ2 = 0.

2.1. Algorithm. When K = 1, we compute the rank-1 sparse principal trend
(PT) as follows (cf. S2 in the supplementary material [Zhang and Davis (2013)]
for the derivation):

1. Initialize θ (1) and a(1) with ‖a‖2 = 1.
2. For i = 1,2, . . . , until convergence:

(a) θ (i+1) ← (NBTB ⊗ a(i)Ta(i) + λ1�)−1BT(
∑N

n=1 Yn)a(i).
(b) When λ2 = 0,

a(i+1) ← (
∑N

n=1 Yn)Bθ (i),

a(i+1) ← a(i+1)

‖a(i+1)‖2
.

When λ2 > 0,
a(i+1) ← Soft((

∑N
n=1 Yn)Bθ (i), 1

2λ2), where Soft(·) denote the soft thresh-
olding operator; that is, Soft(x, c) = sgn(x)(|x| − c)+, where c > 0 is a
constant and x+ is defined to equal x if x > 0 and 0 if x ≤ 0.

a(i+1) ← a(i+1)

‖a(i+1)‖2
.

For multiple component decomposition with 1 < K ≤ min{P,T }, we compute
the rank-K sparse time-course PT analogously.

For k ∈ {1, . . . ,K}, iterate the following procedure:
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1. Let Y1
n ← Yn, for every n ∈ {1, . . . ,N}.

2. For k ∈ {1, . . . ,K}:
(a) Obtain θk and ak using the single component decomposition algorithm.
(b) Yk+1

n ← Yk
n − akθkBT.

The PTA algorithm is not guaranteed to get the global minimum similar to
De Leeuw and Michailidis (1994), but behaves well in practice. We illustrate
the effect of parameters by a simple example. We simulate a data set with 9
features, 7 time points and 1 replicate. Values for the first 5 features are drawn
from sin(2πt) + N(0,0.1), and those for the remaining 4 features are drawn from
N(0,0.1). Raw data is shown in the top-left panel of Figure 1, with each row
indicating one feature and each column indicating one time point. The top-right
panel of Figure 1 shows how the coefficient vector θ changes according to tuning

FIG. 1. Effects of tuning parameters for PTA. Top-left panel: raw data, with each row indicating
one feature, each column indicating one time point; top-right panel: paths of the coefficient vector
θ according to changes of tuning parameter λ1(λ1 ∈ {0.0001,0.1,1,10}) with λ2 fixed to 2; bot-
tom-left panel: four estimated time-course trends (S = Bθ , indicated by 1, 2, 3, 4) according to the
coefficients and parameters in top-right panel with λ1 equaling to 0.0001, 0.1, 1 and 10, respectively;
bottom-right panel: paths of coefficient vector a according to changes of tuning parameter c2 with
λ1 = 1.
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parameter λ1(λ1 ∈ {0.0001,0.1,1,10}) with λ2 fixed at 2. The bottom-left panel
of Figure 1 shows the estimated time-course trends with λ1 equal to 0.0001, 0.1,
1 and 10, respectively. One can see that smaller values of λ1 (larger values of c1)
produce more wiggly curves, while larger values of λ1 (smaller values of c1) pro-
duce smoother curves. The bottom-right panel of Figure 1 shows how the coeffi-
cient vector a changes according to the tuning parameter c2 with λ1 fixed to 1. One
can see that smaller values of c2 (larger values of λ2) produce more sparsity of a.

2.2. PTA for missing data. The PTA works in the case of missing data. When
some elements of the data ynpt (n ∈ {1, . . . ,N}, p ∈ {1, . . . ,P }, t ∈ {1, . . . , T })
are missing, those elements can simply be excluded from all computations. Let C

denote the set of indices of nonmissing elements in Y. The criterion is as follows:

arg min
A,�

{ ∑
(n,p,t)∈C

[
ynpt −

K∑
k=1

apkSk(t)

]2}
,(2.5)

subject to ���T ≤ c1, ‖A‖2
2 ≤ 1, and ‖A‖1 ≤ c2, where A is the matrix consist-

ing of elements apk and � is the matrix consisting of elements θkm. When the
observed samples cover all the time points and genes of interest, this approach will
work well. Admittedly, if there are too many missing observations (e.g., there is
no observed data for one or a few genes), it may cause problems.

2.3. Tuning parameter selection for PTA. In PTA, the tuning parameters are
c1 in the constraint ���T ≤ c1 for smoothing, and c2 in the constraint ‖A‖1 ≤ c2
for feature selection. We use cross-validation to select appropriate tuning param-
eters, as cross-validation (CV) is a simple and widely used method for estimating
prediction error [cf. Hastie, Tibshirani and Friedman (2009) for a description of
CV and selection of tuning parameters]. The algorithm of PTA to select tuning
parameters is as follows:

• From the original data matrix Y, construct m data matrices, where m is the
number of folds stratified for cross-validation. Let Y1, . . . ,Ym be subsets of Y,
each of which extracts a nonoverlapping 1

m
of the elements of Y. The extracted

elements are sampled at random from entries in Y. We treat those extracted
elements as “missing.”

• For each pair of candidate values of c1 and c2 (1 < c2 <
√

P ):

1. For j ∈ 1, . . . ,m:
(a) Fit the PTA to Yj with the tuning parameter c and calculate Ŷj , the

resulting estimate of Yj . Each sample i of Yj is estimated by Â�̂BT.
(b) Record the mean squared error of Ŷj . This mean squared error is ob-

tained by computing the mean of the squared differences between ele-
ments of Yj and the corresponding elements of Ŷj .
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2. Record the average mean squared error across Y1, . . . ,Ym for the tuning
parameters c1 and c2.

• The optimal values of c1 and c2 are those that correspond to the lowest mean
squared error (with one standard error rule).

For the number of folds stratified for cross-validation, one should choose the
appropriate value which depends on the application. With leave-one-out cross-
validation, the cross-validation estimator is approximately unbiased for the true
prediction error, but variance can be high, and the computational burden is also
considerable. With five- or ten-fold, say, cross-validation has lower variance but
more bias, depending on how the performance of the learning method varies with
the size of the training set. If the learning curve has a large slope at the given train-
ing set size, five- or ten-fold cross-validation will overestimate the true prediction
error. Whether this bias is a drawback in practice depends on the objective. Over-
all, five- or ten-fold cross-validation is recommended as a good compromise [see
Breiman and Spector (1992), Kohavi (1995)].

2.4. Connection with principal component analysis (PCA). Assume that we
have N P -dimensional data vectors x1, x2, . . . , xN , which form the P × N data
matrix X = [x1, . . . , xN ]. The matrix X is decomposed into

X = AS + E,(2.6)

where A is a P × K matrix, S is a K × N matrix and K ≤ min (P,N), and E is a
P × N matrix representing the error term. Principal subspace methods find A and
S such that the reconstruction error

‖X − AS‖2
F =

P∑
p=1

N∑
n=1

(
xpn −

K∑
k=1

apkskn

)2

(2.7)

is minimized. There F denotes the Frobenius norm, and xpn, apk and skn denote
elements of the matrices X, A and S, respectively. The subspace spanned by the
column vectors of the matrix A is called the principal subspace. Values in each
column of A are called scores for that principal component.

In the PTA model (2.1), we also use the Frobenius norm as the loss function.
A in mode (2.1) is also a P × K matrix and its column vectors span the principal
subspace. However, S is a matrix of K ×T to characterize the data properties over
time. We borrow the name for A used in PCA model (2.6), and name the values in
each column of A as scores.

2.5. Connections with elastic net. Suppose that the data set has N observa-
tions with P predictors. Let � = (y1, . . . , yn)

T be the response and X be the N ×P

model matrix. After centering the response and standardizing the predictors, Zou
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and Hastie (2005) propose the elastic net to solve the following optimization prob-
lem:

min
β

{
L(β)

} = min
β

{‖� − Xβ‖2
F

}
,(2.8)

subject to ‖β‖2
2 ≤ c1 and ‖β‖1 ≤ c2, by penalizing the coefficient vector β using

a combination of L1- and L2-norm constraints. In the PTA optimization prob-
lem (2.3), the penalty on A, which is a combination of ‖A‖1 ≤ c2 and ‖A‖2

2 ≤ 1,
is an elastic net type penalty. To make both L1- and L2-constraints to be active, c2

must be between 1 and
√

P .

3. Simulation study. To illustrate the performance of our method, we design
the following experiment. We simulate a data set Y with P genes, N subjects and
T time points. We assign the value of ynpt as follows:

ynpt = w0,p sin(2.0 · π · t) + w1,p sin(1.0 · π · t)
(3.1)

+ w2,p sin(0.5 · π · t) + εnpt,

where p is the indicator of gene, n is the indicator of subject, t is time, εnpt is
the error term, w0,p is I (0 < p ≤ 150), w1,p is I (150 < p ≤ 250), w2,p is
I (250 < p ≤ 300), and I denotes the indicator function. For each study, we re-
peat the simulation 10 times and report the averages of performances and their
standard deviations.

First, we study how the performance of the proposed method changes when the
percentage of noisy features increases. Noisy features widely exist in real appli-
cations. For instance, the human genome contains over 20,000 genes, not all of
which are expressed at the same time. Even after pre-filtering by variance or the
coefficient of variance, noisy features still exist. This is shown in the burn patient
data set that we consider in Section 5. Thus, we design simulations in the presence
of noisy features as illustrated in Table 1. Let P denote the number of noisy fea-
tures. The percentage of noisy features P/P changes from 0.25 to 0.70. We fix the
number of subjects and the number of time points, and assume the error term fol-
low a normal distribution N(0,0.1). We independently run the simulation 10 times

TABLE 1
Design 1: studying how the performance of PTA changes when the percentage of noisy features

increases. Simulations are performed according to (3.1)

Case P P N T P/P εnpt Nonzero features Explained variance

1 400 100 1 50 0.25 N(0,0.1) (150.0, 101.4, 50.4) ± (0.00, 1.51, 0.97) 0.838 ± 0.0005
2 500 200 1 50 0.40 N(0,0.1) (150.1, 100.0, 50.0) ± (0.32, 0.00, 0.00) 0.833 ± 0.0005
3 600 300 1 50 0.50 N(0,0.1) (150.5, 100.7, 50.0) ± (1.58, 1.25, 0.00) 0.827 ± 0.0002
4 1000 700 1 50 0.70 N(0,0.1) (150.4, 100.6, 50.1) ± (0.84, 0.52, 0.32) 0.807 ± 0.0004
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and calculate the mean and standard deviation of the percentage of explained vari-
ance. One can see that the smaller P/P is, the larger the percentage of explained
variance is. We use the proposed cross-validation method to select the number of
nonzero features for each PT at each run of the simulation. The results are shown
in the column of “Nonzero features”. The first pair of braces illustrates the average
of nonzero features for each PT in each case. The second pair shows the standard
errors of the nonzero features. We also calculate the percentage of explained vari-
ance. The average of the percentage of explained variances across 10 simulations
is shown in the “Explained variance” column. One can see that with up to 70% of
noisy features, our method has good performance on selecting the true number of
nonzero features that carry time-course signals.

Second, we study how the performance of the proposed method changes when
the number of subjects increases. In real applications, the number of subjects varies
a lot. For instance, the circadian rhythm data set that we consider in Section 4 has
3 subjects, while the burn patient data set we consider in Section 5 has 28 sub-
jects. Thus, we want to investigate the performance of PTA when the number of
subjects changes. We run the simulations with different numbers of subjects. The
design of the simulation is shown in Table 2. We change the number of subjects
from 1 to 40 with the number of features, the number of noisy features and the
number of time points fixed. The error term is drawn from N(0,0.1). For each
case, we repeat the simulation 10 times. One can see that as the number of sub-
jects increases, the performance of our method improves on both the percentage of
explained variance and the accuracy of detecting informative features. We plot one
example as shown in Figure 2. The top-left heatmap shows the raw data. The top-
right heatmap shows the prediction of PTA. The bottom 250 genes of the heatmap
reflect three time-course patterns with noise filtered. The remaining genes of the
heatmap have zero values because noise has been filtered. The bottom-left panel
of Figure 2 shows PTs identified by PTA. We can see that the first PT success-
fully extracts the dominant frequency belonging to the first 200 genes; the second
PT extracts the second dominant frequency belonging to the second 100 genes;
the third PT extracts the third dominant frequency belonging to the remaining 50
genes. We also plot the scores in the right-bottom panel of Figure 2, which reflect

TABLE 2
Design 2: studying how the performance of PTA changes when the number of subjects increases.

Simulations are performed according to (3.1)

Case P P N T εnpt Nonzero features Explained variance

1 400 100 1 50 N(0,0.1) (150.0, 101.4, 50.4) ± (0.00, 1.51, 0.97) 0.838 ± 0.0005
2 400 100 5 50 N(0,0.1) (150.0, 100.0, 50.0) ± (0.00, 0.00, 0.00) 0.940 ± 0.0001
3 400 100 10 50 N(0,0.1) (150.0, 100.0, 50.0) ± (0.00, 0.00, 0.00) 0.956 ± 0.0001
4 400 100 40 50 N(0,0.1) (150.0, 100.0, 50.0) ± (0.00, 0.00, 0.00) 0.969 ± 0.0000
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FIG. 2. One example in design 2. PTA on the simulated data with multiple patterns and noisy genes.
Data was simulated according to (3.1) with εnpt ∼ N(0,0.1), P = 400, N = 10 and T = 50. The
top-left panel shows the simulated raw data, with rows indicating genes, columns indicating samples
ordered by time points and samples from the same time point grouped together. The top-right panel
shows the predicted data with three time-course trends. The bottom-left panel shows top three PTs of
PTA with three types of frequencies: black, the first PT which extracts the dominant frequency f1 = 1;
red, the second PT which extracts the second dominant frequency f2 = 0.5; green, the third PT which
extracts the third dominant frequency f3 = 0.25. The bottom-right panel shows scores of PTA on the
simulated time-course gene expression data with three types of frequencies: black, the first PT; red,
the second PT; green, the third PT. Tuning parameters are obtained by tenfold cross-validation.

the contributions of each gene on the time-course patterns. In the first PT, the first
150 features have nonzero scores, while the remaining features have zero scores.
In the second PT, the features from 151 to 250 have nonzero features, but the re-
maining features have zero scores. In the third PT, the features from 251 to 300
have nonzero features, while the remaining features have zero scores. The results
demonstrate that our PTA method works well on the data set with multiple time-
course patterns and noisy genes. Under the designed model (3.1) and parameters
in Table 2, PTA shows good performance even with a small sample size.

Third, we study the relationship between the performance of PTA and the
signal-to-noise ratio. Genomic technologies such as Microarray and RNA-seq have
measurement errors. It affects the detection of true signals in real data sets. It is
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TABLE 3
Design 3: studying the relationship between the performance of PTA and the signal-to-noise ratio.

Simulations are performed according to (3.1)

Case P P N T εnpt SNR Nonzero features Explained variance

1 400 300 1 50 N(0,0.1) 7.07 (150.0, 101.4, 50.4) ± (0.00, 1.51, 0.97) 0.838 ± 0.0005
2 400 300 1 50 N(0,0.2) 3.54 (150.6, 100.8, 50.5) ± (0.84, 1.14, 0.71) 0.778 ± 0.0007
3 400 300 1 50 N(0,0.35) 2.02 (151.2, 101.0, 50.3) ± (2.04, 1.41, 0.95) 0.649 ± 0.0021
4 400 300 1 50 N(0,0.7) 1.01 (149.7, 100.0, 49.9) ± (1.42, 2.62, 3.60) 0.374 ± 0.0030
5 400 300 1 50 N(0,1) 0.71 (147.7, 98.0, 47.7) ± (3.97, 3.33, 3.06) 0.230 ± 0.0057
6 400 300 1 50 N(0,2) 0.35 (145.9, 95.5, 45.0) ± (2.23, 1.58, 0.00) 0.081 ± 0.0031
7 400 300 1 50 N(0,4) 0.18 (145.0, 95.0, 45.0) ± (0.00, 0.00, 0.00) 0.047 ± 0.0013

necessary to investigate the performance of PTA with different levels of signal-to-
noise ratio. We fix the number of features, the number of noninformative features,
the number of subjects and the number of time points, while increasing the noise
variance in (3.1) from 0.1 to 4 as shown in Table 3. Based on the simulation (3.1),
we calculate the signal-to-noise ratio SNR = 1√

2σε
. One can see that the larger the

signal-to-noise ratio is, the more accurate the detected informative features are.
Also, the larger the signal-to-noise ratio is, the larger the percentage of explained
variance is. Even when the signal-to-noise ratio is small, for example, 0.18, PTA
still has good estimation of informative features which are close to the true values.

Fourth, we study the effect of “noisy subjects” on the performance of the
method. In real data sets, some subjects can be “outliers.” It may be due to the
existence of unknown subpopulations or experimental errors. We design simula-
tions with the presence of “noisy subjects” as illustrated in Table 4. We fix the total
number of subjects N as 50, and increase the number of “noisy subjects”, which is
denoted by N . In this design, we assume the error term in (3.1) follows a normal
distribution, which is εnpt ∼ N(0,0.1). We repeat the simulation 10 times. One can
see that from Table 4, the ability of detecting informative features is robust against
the percentage of “noisy subjects”, though the percentage of explained variance
decreases when the percentage of “noisy subjects” increases.

TABLE 4
Design 4: studying the performance of PTA with the presence of “noisy subjects”. Simulations are

performed according to (3.1)

Case P P N T N N /N Nonzero features Explained variance

1 400 300 50 50 5 0.1 (150.0, 100.3, 50.0) ± (0.00, 0.95, 0.00) 0.869 ± 0.0001
2 400 300 50 50 10 0.2 (150.0, 100.5, 50.0) ± (0.00, 1.08, 0.00) 0.768 ± 0.0001
3 400 300 50 50 15 0.3 (150.0, 100.0, 50.0) ± (0.00, 0.00, 0.00) 0.668 ± 0.0002
4 400 300 50 50 20 0.4 (150.0, 100.5, 50.0) ± (0.00, 1.58, 0.00) 0.568 ± 0.0002
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TABLE 5
Design 5: studying the performance of PTA in terms of a smaller number of time points and a larger

number of features. Simulations are performed according to (3.1)

Case P N T Nonzero features Explained variance

1 400 1 20 (150.9,100.3,50.5) ± (1.37,0.95,1.18) 0.810 ± 0.0008
2 400 1 10 (150.0,101.6,50.0) ± (3.27,3.20,3.16) 0.730 ± 0.0026
3 1000 1 20 (151.5,101.0,50.1) ± (1.51,1.41,0.32) 0.776 ± 0.0007
4 1000 1 10 (148.5,96.9,49.1) ± (2.84,2.81,3.81) 0.688 ± 0.0019
5 10,000 1 20 (151.7,100.0,49.7) ± (1.70,0.00,1.70) 0.473 ± 0.0006
6 10,000 1 10 (148.0,98.6,47.6) ± (3.20,3.27,3.37) 0.370 ± 0.0017

Fifth, we study the performance of PTA in terms of less number of time points
and larger number of features. Once a biological sample is collected, on one hand,
the lab technician may label it at once so that thousands of genes can be scanned
simultaneously. While on the other hand, it is very time and labor intensive to ex-
tract samples at many time points. Thus, we want to investigate the performance
of PTA where there are a larger number of features and a smaller number of time
points. We design the simulation as shown in Table 5. We reduce the number of
time points to 20 and 10, respectively, and increase the number of features to 1000
and 10,000, respectively. We simulate data based on (3.1) with εnpt ∼ N(0,0.1).
We repeat the simulation 10 times. The average performance of PTA under each
setting is shown in Table 5. One can see even with a smaller number of time points
and a larger number of features, PTA can still do a good job. Nevertheless, increas-
ing the number of time points and reducing the number of noisy features help the
performance of PTA.

We have been assuming the error term εnpt follows a normal distribution so far.
However, we want to know how much the method is affected if the noise term
εnpt has some serial correlation within observations from the same subject. The
circadian rhythm data set that we consider in Section 4 shows evidence of such
correlation. As shown in Figure 3, many genes have high time-series correlation.
We use the model of (3.1) but generate εnpt from the first order auto-regression
model with correlation ρ = corr(εnpt, εnp(t+1)), denoted by AR(1, ρ). The design
is illustrated in Table 5. We study the performance of PTA with respect to different
levels of “noisy features”, different numbers of subjects and different correlation
levels in the error term. The results are shown in Table 6. One can see that PTA
has good performance in terms of serial correlation. PTA is robust against the
percentage of noninformative features with the number of subjects, the number
of time points and the error term held fixed. PTA achieves a good performance
even with a small number of subjects under the condition that the noise term has
time-series correlation. Overall, the performance of PTA is robust against serial
correlation. Nevertheless, PTA has better performance when the noise term has
smaller serial correlation.
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FIG. 3. Time-series correlation in noise in the circadian rhythm data set in Section 4. Histograms
of values for correlation between adjacent time points for 288 genes.

The three components of the time signal are orthogonal functions in (3.1). We
want to know what happens if the latent time patterns are “correlated”. For in-
stance, the expression of some genes may decay or increase with time but with
different rates and perhaps oscillatory behavior. The principal trends from the burn
data set that we consider in Section 5 are an example of such correlations among
latent time course patterns. We design the following experiment. Let Y indicate
longitudinal high-throughput gene expression from P genes, N subjects and T

time points. We assign the values of elements in Y as follows:

ynpt = sin(0.5 · π · t) ·
2∑

k=0

wk,p · exp(ξkt) + εnpt,(3.2)

where ξ0 < 0, ξ1 < 0, ξ2 < 0, p is the gene, n is the subject, t is time, εnpt is the
error term, w0,p is I (0 < p ≤ 150), w1,p is I (150 < p ≤ 250), w2,p is I (250 <

p ≤ 300) and I denotes the indicator function. We set ξ0 = −1, ξ1 = −2, ξ2 = −3
in the simulation. We assume that the error term follows a normal distribution
N(0,0.1) as shown in Table 6. We repeat the simulation 10 times. One can see
that PTA works when underlying patterns are correlated. We plot one example
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TABLE 6
Design 6: studying the performance of PTA when the noise term has time series correlation. Simulations are performed according to (3.1)

Case P P N T P/P εnpt Nonzero features Explained variance

1 400 100 1 50 0.25 AR(1), ρ = 0.8 (150.4, 101.2, 51.0) ± (0.97, 1.40, 1.70) 0.812 ± 0.0017
2 500 200 1 50 0.40 AR(1), ρ = 0.8 (150.2, 100.0, 50.0) ± (0.42, 0.00, 0.00) 0.800 ± 0.0024
3 600 300 1 50 0.50 AR(1), ρ = 0.8 (150.3, 100.5, 50.1) ± (0.67, 0.85, 0.32) 0.788 ± 0.0017
4 1000 700 1 50 0.70 AR(1), ρ = 0.8 (150.6, 101.6, 51.5) ± (1.07, 1.96, 2.12) 0.745 ± 0.0014
5 400 100 5 50 0.25 AR(1), ρ = 0.8 (150.0, 100.4, 50.7) ± (0.00, 0.97, 1.49) 0.900 ± 0.0007
6 400 100 10 50 0.25 AR(1), ρ = 0.8 (150.4, 100.1, 50.0) ± (1.26, 0.32, 0.00) 0.914 ± 0.0004
7 400 100 40 50 0.25 AR(1), ρ = 0.8 (150.0, 100.7, 50.1) ± (0.00, 1.64, 0.32) 0.925 ± 0.0001
8 400 100 1 50 0.25 AR(1), ρ = 0.1 (150.0, 100.8, 50.2) ± (0.00, 1.23, 0.63) 0.838 ± 0.0003
9 400 100 1 50 0.25 AR(1), ρ = 0.5 (150.1, 100.8, 50.6) ± (0.32, 1.03, 1.26) 0.833 ± 0.0003
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FIG. 4. One example in design 6. PTA on the simulated data with multiple correlated patterns and
noisy genes. Data was simulated according to (3.2) with εnpt ∼ N(0,0.1), P = 400, N = 10 and
T = 50. The top-left panel shows the simulated raw data, with rows indicating genes, columns indi-
cating samples ordered by time points and samples from the same time point grouped together. The
top-right panel shows the predicted data with three PTs. The bottom-left panel shows the identified
top three PTs by PTA: black, the first PT which extracts the dominant pattern exp(−t) · sin(0.5 ·π · t);
red, the second PT which extracts the second dominant pattern exp(−2t) · sin(0.5 · π · t); green, the
third PT which extracts the third dominant pattern exp(−3t) · sin(0.5 · π · t). The bottom-right panel
shows scores of genes for their contributions to the top three PTs: black, the first PT; red, the second
PT; green, the third PT. Tuning parameters are obtained by tenfold cross-validation.

which is shown in Figure 4. This example shows that PTA can also detect the true
informative features and extract the true patterns. Besides, increasing the number
of samples helps the performance of PTA as shown in Table 7. Comparing Table 7
with Tables 1 and 2, one can see that PTA achieves better performance when the
underlying time-course patterns are less correlated.

Finally, we show why we need the penalty for smoothing in the model (2.2)
instead of using the Penalized Matrix Analysis [PMA; cf. Witten, Tibshirani and
Hastie (2009)]. To compare the performance of PTA and PMA in extracting time-
course patterns of gene expression with noisy genes, we simulate a gene expression
data set consisting of genes with time-course patterns and noisy genes. Let Y =
(ypt ) be a gene expression matrix with 100 genes and 30 time points. Elements of
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TABLE 7
Design 7: studying the performance of PTA when the underlying time-course patterns are

correlated. Simulations are performed according to (3.2)

Case P P N T εnpt Nonzero features Explained variance

1 400 100 1 50 N(0,0.1) (153.0, 97.9, 45.2) ± (2.21, 3.28, 0.63) 0.530 ± 0.0088
2 500 200 1 50 N(0,0.1) (151.1, 96.9, 45.0) ± (3.38, 2.88, 0.00) 0.477 ± 0.0125
3 600 300 1 50 N(0,0.1) (151.9, 97.0, 46.9) ± (3.41, 2.62, 3.25) 0.432 ± 0.0086
4 1000 700 1 50 N(0,0.1) (151.7, 96.9, 45.2) ± (2.45, 3.07, 0.63) 0.315 ± 0.0078
5 400 100 5 50 N(0,0.1) (152.3, 102.1, 50.2) ± (2.11, 2.13, 3.26) 0.543 ± 0.0042
6 400 100 10 50 N(0,0.1) (150.8, 103.0, 50.0) ± (1.48, 1.56, 0.82) 0.550 ± 0.0013
7 400 100 40 50 N(0,0.1) (150.1, 100.7, 50.0) ± (0.32, 1.64, 0.00) 0.551 ± 0.0007

matrix Y are simulated according to the following model:

ypt =
{

cos(0.6t) + εpt , p ≤ 70,
εpt , p > 71,(3.3)

where p is the indicator of gene, t is time and εpt ∼ N(0,1). The heatmap of sim-
ulated raw gene expression is plotted in the top-left panel of Figure 5. Rows show
genes and columns indicate time points. The simulated data are represented in the
top-left panel of Figure 5. The true time-course pattern is illustrated in the top-right
panel of Figure 5, which is the cos(0.6t) curve. We applied PTA and PMA on this
simulated data using single component decomposition. The prediction of PTA is
obtained by âθ̂BT, and presented by a heatmap in the bottom-left panel of Figure 5.
The prediction of PMA is obtained by d̂ûv̂T, where {û, v̂} = arg maxu,v uTYv, sub-
ject to ‖u‖1 ≤ c1, ‖u‖2

2 = 1, ‖v‖1 ≤ c2, ‖v‖2
2 = 1, d̂ = ûTYv̂. The prediction of

PMA is presented by a heatmap in the bottom-right panel of Figure 5. One can
see that the prediction of PTA extracts a clear cosine pattern, while the prediction
of PMA is a segmented curve. We also plot the time-course patterns and scores
of genes which are identified by PTA and PMA, respectively, in Figure 6. Over-
all, the results suggest that PTA has better performance than PMA in extracting
time-course patterns of gene expressions.

4. Circadian rhythm gene expression data. Circadian rhythms are biolog-
ical processes that display endogenous and entrainable oscillation of about 24
hours. These rhythms are driven by a circadian clock. Circadian rhythms have been
widely observed in live organisms, including plants, animals, fungi and cyanobac-
teria. Circadian regulations play important roles to maintain normal living of live
organisms. In particular, disruption to rhythms in humans may result in a number
of disorders, for example, bipolar disorder and sleep disorders, and in the longer
term is believed to have significant adverse health consequences on peripheral or-
gans outside the brain, particularly in the development or exacerbation of cardio-
vascular disease. Thus, circadian regulatory systems have attracted a lot of atten-
tion for research and provide a good example to validate our PTA approach. Here,
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FIG. 5. Comparison of PTA and PMA. Data is simulated according to procedure in (3.3). The
top-left panel shows the simulated raw data, with rows indicating genes and columns indicating
samples ordered by time points. The top-right panel shows the true signal. The bottom-left panel
shows the predicted data using PTA. The bottom-right panel shows the predicted data using PMA.

to validate PTA, we use a circadian rhythm gene expression data set from a well-
studied pattern organism—arabidopsis thaliana rosette.

Bläsing et al. (2005) generated time-course gene expression data from arabidop-
sis thaliana rosettes in a light-dark treatment experiment. ATH1 arrays (Affymetrix
Arabidopsis ATH1 Genome Array, www.affymetrix.com) were used to measure
gene expression to study how diurnal cycle affects gene expression of arabidop-
sis thaliana rosettes. Arabidopsis thaliana rosettes were harvested six times dur-
ing 12-h-light/12-h-dark treatments. Three replicate samples were collected 4, 8
and 12 hours into the light period and 4, 8 and 12 hours into the night. The time
points were presented by 4, 8, 12, 16, 20, 24 h. Gene expression data were pre-
processed by MAS [MicroArray Suite Software; Hubbell, Liu and Mei (2002)]
to evaluate probe set signals of the array. The generated data files were fur-
ther processed by RMA (Robust Multi-array Average, from R-package Affy,
http://www.bioconductor.org) to normalize and estimate signal intensities. Gene
expression values were centered with mean 0. We preselected 228 genes with
known circadian regulation functions. This data set contains 228 genes, 6 time

http://www.affymetrix.com
http://www.bioconductor.org
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FIG. 6. Comparison of time-course patterns and scores identified by PTA and PMA on the simu-
lated data based on (3.3). The top-left panel shows the principal trend identified by PTA. Top-right
panel shows the gene scores of PTA. The bottom-left panel shows the time-course pattern identified
by PMA. The bottom-right panel shows the gene scores of PMA.

points and 3 replicates. Thus, to analyze circadian gene expression pattern accord-
ing to time, the standard PCA cannot be applied while PTA should be used. We
solve the following optimization problem to extract the underlying time-course
gene expression patterns by PTA:

min
A,�

L(A,�|Y) such that ���T ≤ c1 and ‖A‖2 = 1.

We plot the variance of each component in the left panel of Figure 7. One can
see that the first two PTs occupy much larger variance than the rest of components.
We also plot the first three PTs in the right panel of Figure 7. From the picture,
one can see that the first two PTs extract the patterns with greatest longitudinal
variations, which is consistent with the results in the left panel of Figure 7. In par-
ticular, the first cosine shape pattern is the dominant shape, which agrees with the
time pattern of light in the experiment. For the first PT, 96 of the total 228 genes
have positive weights, while 132 of them have negative weights. Those genes with
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FIG. 7. PTA for the gene expression of genes with known circadian regulated functions in Ara-
bidopsis thaliana rosette. The left panel shows variances for each component. Each bar shows one
component, ordered by the rank of component. The height of each bar shows the variance for each
component. The right panel shows the top three PTs. Black indicates the first PT. Red indicates the
second PT. Green indicates the third PT.

positive weights share the same up and down directions with the principal trend,
while those with negative weights share the opposite up and down directions. For
example, the gene CAT2 with a positive weight has a peak at the fourth hour. An
independent experiment has revealed the CAT2 mRNA accumulated to a peak four
hours after the onset of illumination and then declined, when etiolated seedlings
were illuminated [Zhong et al. (1994)]. Our principal trend analysis suggests that
light can be depicted as an activator of CAT2 gene expression, probably through
the action of the phytochrome sensory system. The circadian clock could be envis-
aged as a permissive regulator with respect to light, allowing induction of CAT2 at
dawn.

5. Gene expression of a burn cohort. Despite ongoing improvements in
resuscitation, care and outcomes, burn injury remains a significant health and
economic burden globally. The current approach to the clinical management of
these patients remains limited by insufficient understanding of the pathobiology
of the disease. To describe the human genomic response to burns, a cohort of
burn patients were monitored and their gene expression was measured at mul-
tiple time points (www.gluegrant.org). The longitudinal data can be divided into
three stages—early stage (within one day to ten days with three days median time),
middle stage (eleven days to fourty-nine days with nineteen days median time) and
late stage (fifty days to more than one year). Blood samples of burn patients were
collected to measure the gene expression by the Affymetrix HU133 Plus 2.0 arrays

http://www.gluegrant.org
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[Zhang, Tibshirani and Davis (2010, 2013)]. Each array consisted of 54,675 probe
sets. Gene expression data was normalized by dChip [see Li and Wong (2001)] and
further reduced to 1000 probe sets with the top 1000 highest coefficient of variation
(CV, standard deviation/mean). We take 28 surviving patients with multiple-organ-
failure scores (MOF) of three or less. Clinically, they belong to the “uncomplicated
group.”

In this study, a preknown set of burn-related genes is not available. An important
task is to automatically identify the subset of genes involved in burn response and
extract their time-course expression patterns. As suggested in the last simulation of
Section 3, not PMA in Witten, Tibshirani and Hastie (2009), but PTA is suitable for
dimension-reduction and feature selection in the time-course gene expression data
in a population of patients. Thus, we solve the following optimization problem:

min
A,�

L(A,�|Y) such that ���T ≤ c1, ‖A‖1 ≤ c2 and ‖A‖2 = 1.

After applying PTA on this data set of burn patients, we investigate the extracted
PTs and identified genes that have nonzero scores. The top two PTs are shown in
Figure 8, and the scores of genes are shown in Figure 9. There are 400 genes with
contributions on the first PT, and 600 genes with contributions on the second PT.
We applied the enrichment analysis (Fisher’s exact test) using the Ingenuity Path-
way Analysis (IPA) tool (http://www.ingenuity.com/) on the genes with nonzero
scores for the first and second PTs, respectively. Top enriched canonical pathways
are shown in Figures 10 and 11. Genes in the first PT have functions related to
inflammatory responses, immune cell trafficking, and cell-to-cell signaling and in-
teraction functions. Genes in the second PT have functions related to allograft
rejection signaling, B cell development, pattern recognition receptors in recogni-
tion of bacteria and viruses, communication between innate and adaptive immune

FIG. 8. PTA on burn data. Left: the first PT; right: the second PT.

http://www.ingenuity.com/
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FIG. 9. PTA on burn data. The scores of genes for the first two PTs are shown. The upper panel:
the first PT; the lower panel: the second PT.

cells, and cellular movement, growth and proliferation functions. PTA provides an
overview of the dynamics of genomic response to burn injuries and extracts genes
for further investigation to better understand the pathobiology of burn disease. For
example, gene IFIT1 is one of the identified genes with nonzero scores in the first

FIG. 10. PTA on burn data. Enriched canonical pathways for genes with nonzero scores at the first
PT.
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FIG. 11. PTA on burn data. Enriched canonical pathways for genes with nonzero scores at the
second PT.

PT. It has been shown that in mammalian cells, it is synthesized in response to
viral infection, and consequently assigns resistive activity against viral invasion to
cells [Li et al. (2010)]. It is common for burn patients to suffer from infectious
episodes, which are caused by viruses [Finnerty et al. (2006)]. Thus, PTA suc-
cessfully identified the key regulatory element IFIT1, which plays an important
role for the recovery of burn patients. Overall, PTA characterizes the inflammatory
transcriptome following a burn injury and identifies the burn-induced immuno-
inflammatory dysfunction and hyperinflammatory response. Comprehensive un-
derstanding of the molecular mechanisms of burn disease will ultimately lead to
novel and profound advancements in clinical care.

6. Discussion. By virtue of matrix theory, PCA is an important methodology
to study data structure. It has been widely used to analyze clinical and biological
data. Combining the lasso technique with matrix decomposition, the regularized
PCA method can be applied to high-throughput genomic or proteomic data. In the
case of a time-course experimental scenario, such data sets have four dimensions
(feature, sample, time, gene/protein expression), traditional PCA or regularized
PCA cannot be used directly. We have developed a new principal trend analysis
(PTA) method for time-course data modeling. PTA incorporates smoothing tech-
niques for time and sparsity techniques for genes when it is necessary. Our simula-
tions and applications on real data sets show that PTA works well and outperforms
regularized PCA (PMA) on time-course gene expression data.

The proposed PTA focuses on a population’s time-course patterns. However, it
also works when the number of subjects equals one. If subjects are too diverse
and cannot be treated as one population, we can apply PTA on each subject and
identify personalized longitudinal gene expression patterns and important genes.
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In clinical and biological studies, people may collect different types of data
sets on the same patients or samples at multiple time points. Those time-course
data includes gene expression and protein abundance, and clinical measurements
of the same patients, etc. It will be interesting to extract the associated relation-
ships among features from multiple longitudinal data sets. Developing methods to
handle such tasks will be an important future work.
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SUPPLEMENTARY MATERIAL

Supplement to “Principal trend analysis for time-course data with applica-
tions in genomic medicine” (DOI: 10.1214/13-AOAS659SUPP; .pdf). The sup-
plementary material includes “Proof of biconvex property” and “Derivation of PTA
algorithm.”
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