
The Annals of Applied Statistics
2013, Vol. 7, No. 3, 1640–1662
DOI: 10.1214/13-AOAS634
© Institute of Mathematical Statistics, 2013

LOGISTIC REGRESSION ANALYSIS WITH STANDARDIZED
MARKERS1

BY YING HUANG, MARGARET S. PEPE AND ZIDING FENG

Fred Hutchinson Cancer Research Center Public Health Sciences Division
and University of Washington

Two different approaches to analysis of data from diagnostic biomarker
studies are commonly employed. Logistic regression is used to fit models for
probability of disease given marker values, while ROC curves and risk dis-
tributions are used to evaluate classification performance. In this paper we
present a method that simultaneously accomplishes both tasks. The key step
is to standardize markers relative to the nondiseased population before in-
cluding them in the logistic regression model. Among the advantages of this
method are the following: (i) ensuring that results from regression and perfor-
mance assessments are consistent with each other; (ii) allowing covariate ad-
justment and covariate effects on ROC curves to be handled in a familiar way,
and (iii) providing a mechanism to incorporate important assumptions about
structure in the ROC curve into the fitted risk model. We develop the method
in detail for the problem of combining biomarker data sets derived from mul-
tiple studies, populations or biomarker measurement platforms, when ROC
curves are similar across data sources. The methods are applicable to both
cohort and case–control sampling designs. The data set motivating this appli-
cation concerns Prostate Cancer Antigen 3 (PCA3) for diagnosis of prostate
cancer in patients with or without previous negative biopsy where the ROC
curves for PCA3 are found to be the same in the two populations. The esti-
mated constrained maximum likelihood and empirical likelihood estimators
are derived. The estimators are compared in simulation studies and the meth-
ods are illustrated with the PCA3 data set.

1. Introduction. As myriads of biomarkers are becoming available from re-
search laboratories, the demand for more sophisticated statistical analysis methods
increases. For example, an emerging request is to combine information from multi-
ple sources in evaluating a biomarker’s performance. In addition, biomarkers must
be evaluated from multiple points of view, including, for example, their roles as
risk factors and predictors as well as their classification performance.

Logistic regression analysis has been a mainstay of biostatistical methodol-
ogy for evaluating risk factors, particularly in epidemiology and in therapeutic
research. For evaluating biomarker performance, however, other methods are more
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appropriate, such as those based on receiver operating characteristic (ROC) curves
[Pepe (2003)] and risk distributions. Methods that evaluate categorized risk distri-
butions are gaining popularity and are often called risk reclassification methods.
However, in general, methods for evaluating performance are far less well devel-
oped and have more limited availability than logistic regression methodology.

In this paper we show that evaluation of biomarker performance can be achieved
within the logistic regression framework if as a preliminary step one standardizes
the marker using the control population to define the reference distribution for
standardization. Previously, in a simple setting with the biomarker as the only pre-
dictor of interest, Gu and Pepe (2010) applied a logistic regression model to stan-
dardized marker values as a rank-invariant approach to estimating the variance of
the empirical ROC curve in sample size calculations. Here we extend the approach
to estimate the ROC curve itself and to allow for additional covariates. Through
recognition of the fact that there is a direct functional relationship between the co-
efficient for the standardized marker in the logistic regression model and the ROC
curve, we show that risk distributions as well as the ROC curve conditional on co-
variates can be calculated directly from coefficients in the model and that incorpo-
rating this relationship into estimation leads to efficiency gains. Since the method
simultaneously evaluates the marker as a risk factor and the marker’s performance
as a classifier, it provides a more coherent approach than current methods that sep-
arately evaluate the two aspects. Potentially inconsistent results are avoided. The
framework has several other attributes. First, estimated ROC curves can be con-
strained to be concave if desired. Concavity is a fundamental property of the ROC
curve that is not taken advantage of by most standard methods. Second, covariate
effects on biomarker performance can be addressed naturally within the logistic re-
gression framework. Third, the method is rank invariant with respect to the marker,
adding a degree of robustness compared with usual logistic regression.

The general framework and methods for estimation are presented in Section 2.
The method is then developed in some detail for the problem of evaluating a
biomarker using data derived from multiple studies or populations when a com-
mon ROC curve across data sources is of interest. This is an important problem
for which methodology has not been proposed heretofore. Consider that prior to
launching a large validation study, data from multiple small studies, possibly using
different assay platforms, may be examined. Methods that can combine informa-
tion across studies are needed in this setting. Moreover, when a large collaborative
validation study is undertaken, it typically involves multiple sites that may each
follow somewhat different protocols or involve multiple subpopulations that differ
in regard to patient characteristics. Again, in this setting, our methods for combin-
ing data based on a common ROC curve will be useful. The example that motivated
our work concerns evaluating a prostate cancer biomarker in two subpopulations
of men.

In Section 3 we describe this example in detail and develop three methods for
estimating parameters in the logistic regression model. We evaluate the properties
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of these estimators in simulation studies and describe results in Section 4. In Sec-
tion 5 we illustrate the methodology using the data set from the prostate cancer
biomarker study and finish with some concluding remarks in Section 6.

2. The general framework: Logistic regression applied to standardized
biomarker values.

2.1. The risk model is related to the ROC curve. Consider a binary out-
come D, disease, say, with D = 0 for control nondiseased subjects and D = 1
for case diseased subjects, a single continuous marker Y , and additional covariates
denoted by X. Note the marker Y may be a predefined combination of predic-
tors. For example, the Framingham risk score is a linear combination of risk fac-
tors for cardiovascular events including age, total cholesterol, and systolic blood
pressure. Another example is the Oncotype-DX recurrence score that is a fixed
combination of 21 gene expression assays. For an observation with marker mea-
surement Y = y and covariate value X = x, let the standardized marker value
be U = U(x, y) = P(Y > y|D = 0,X = x). That is, using as a reference the
marker distribution among controls with covariate value x, U is the proportion
of marker values in the reference distribution exceeding y. U has been called
the placement value for Y [Pepe and Cai (2004)] and 100 × (1 − U) is recog-
nized as the percentile of Y in the reference population [Hanley and Hajian-Tilaki
(1997), Huang and Pepe (2009a)]. Percentiles are commonly used to standardize
growth and lung function measurements for children and to standardize many lab-
oratory measures. Note that the risk function can be written in terms of Y or U ,
P(D = 1|Y,X) = P(D = 1|U,X). Using the latter formulation, we propose the
following logistic regression model:

logitP(D = 1|U,X) = logitP(D = 1|X) + G(U,X,β),(2.1)

where G(U,X,β) is some parametric function of U and X parameterized by β ,
and logitP(D = 1|X) is an offset term that will be entered into the model before
the application of the logistic regression.

Interestingly, we can show that G(U,X,β) in this framework corresponds to
the log-derivative of ROCX , where ROCx is the ROC curve for Y in the covariate
specific population with X = x.

THEOREM 1. Under model (2.1), ROCx(t) = ∫ t
0 exp{G(u,x,β)}du and

G(u,x,β) = log ROC′
x(u).

A proof of Theorem 1 can be found in Appendix A of the supplementary ma-
terial [Huang, Pepe and Feng (2013)]. The proposed framework (2.1) therefore
naturally links risk modeling with ROC analysis. These two analytic tasks are typ-
ically undertaken separately in current practice, leading to disjointed and possibly
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inconsistent results, as illustrated in a simulated example in Appendix B of the
supplementary material [Huang, Pepe and Feng (2013)]. Having a unified frame-
work for risk modeling and for ROC analysis offers a more coherent approach to
biomarker evaluation.

2.2. Ensuring concave ROC curves. An important attribute of this framework
is that the ROC curve using the marker as the decision variable can be easily
constrained to be concave if desired. Concavity is a fundamental characteristic
of proper ROC curves [Dorfman et al. (1996), Egan (1975)]. In settings where it
is reasonable to assume a monotone relationship between the risk of disease and
the marker, the corresponding ROC curve for the marker is necessarily concave.
Yet concavity has not been strictly enforced in ROC modeling. Indeed, the clas-
sic binormal ROC model that is widely used in radiology is not constrained to be
concave. The binormal ROC curve assumes the existence of a common monotone
transformation that transforms the marker distributions of cases and controls to
normality, but if the variances of those normal distributions differ, the ROC curve
is not concave. There have been several concave ROC models proposed in the
literature, including the “bigamma” ROC curve [Dorfman et al. (1996)], the “bilo-
max” ROC curve [Campbell and Ratnaparkhi (1993)], and the “proper” binormal
ROC curve [Metz and Pan (1999)]. Use of these models has been limited, how-
ever, partly due to difficulties in their implementation. In our framework (2.1), we
model G(u,x,β), the log-derivative of the ROC curve directly rather than model-
ing the ROC curve itself. Consequently, it is easy to constrain the ROC curve to be
concave by modeling G(u,x,β) as a monotone decreasing function of u.

2.3. Incorporating covariates. Equation (2.1) can be recognized as showing
the association between the pre-test and post-test risk of disease where G(U,X,β)

is known as the covariate specific diagnostic likelihood ratio. Using Bayesian ter-
minology, G(U,X,β) is the Bayes factor that relates the prior and posterior prob-
abilities of disease. However, very little methodology exists that exploits its rela-
tionship with the ROC curve, G(U,X,β) = log ROC′

X(U). To our knowledge, the
only previous use of this framework is by Gu and Pepe (2010), who exploited a
simplified version of (2.1) without covariates for a different problem of estimating
the variance of the empirical ROC curve in sample size calculation.

The framework provides a mechanism to incorporate covariates X into the
model for the ROC curve through G(U,X,β) = log ROC′

X(U). This model pro-
vides opportunities for evaluating effects of covariates on the discriminatory
power of the marker. To illustrate, consider the following toy example. Sup-
pose X is comprised of two subsets X1 and X2 that can each be multivariate,
for example, X1 = age and X2 = gender. Suppose we are interested in testing
whether X2 affects the marker’s classification accuracy. We model G(U,X,β) as
β0 + β1r(U) + βT

2 X1 + βT
3 X1r(U) + βT

4 X2 + βT
5 X2r(U), where r(u) is some

pre-specified function of u. Then the null hypothesis H0, that X2 does not affect
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the ROC curve, corresponds to zero coefficients for terms involving X2, that is,
H0 :β4 = β5 = 0. The approach applies in general: we can test whether a subset of
covariates affect the marker’s discriminatory accuracy by testing the correspond-
ing coefficients in the risk model. One appealing property of (2.1) is that it natu-
rally separates covariate effects for marker standardization from covariate effects
for ROC analysis. Specifically, covariates used in deriving U are those affecting
the marker distribution in the control population, whereas covariates involved in
G(U,X,β) are those affecting the discriminatory power of the marker, as charac-
terized by the ROC curve.

Two natural competing methods existing in the literature for covariate adjust-
ment in ROC estimation using standardized marker values are the nonparametric
ROC adjustment method proposed by Janes and Pepe (2008, 2009) and various
semiparametric regression methods based on the binormal ROC model, such as the
ROC-GLM method [Alonzo and Pepe (2002)] and the pseudo-likelihood method
[Pepe and Cai (2004)]. Compared to the nonparametric method, applying a logis-
tic regression form provides a much more efficient alternative. As mentioned in
Section 2.2, existing semiparametric methods relying on the binormal ROC curve
are not natural for modeling a concave ROC curve. In addition, as detailed in Sec-
tions 3 and 4, they make inference using standardized marker values among cases
only, whereas the proposed method utilizes standardized marker values for all sub-
jects and gains efficiency as a consequence.

2.4. Estimation. Consider first a cohort or cross-sectional study. Before fitting
the logistic regression model to estimate regression coefficients, we first need to
estimate the offset term logitP(D = 1|X) and the standardized marker values U .
Denote the estimators by P̂ (D = 1|X) and Û , respectively. For a cohort or cross-
sectional study, P̂ (D = 1|X) can be derived in standard fashion using logistic
regression techniques or nonparametrically if X is discrete. Computation of Û re-
quires estimating the distribution of Y in the control population conditional on X.
Methods have been described and we refer to Huang and Pepe (2009a) for details.
In particular, they suggest nonparametric methods for discrete X, and paramet-
ric and semiparametric methods for continuous X. After obtaining P̂ (D = 1|X)

and Û , we substitute them into the logistic regression model (2.1) to estimate coef-
ficients for X and Û using standard logistic regression fitting procedures including
logit P̂ (D = 1|X) as an offset term.

Consider a case–control sample where cases and controls are randomly sampled
from the case and control subpopulations. Estimation of U can be performed as in
a cohort or cross-sectional study. Let Sampled denote being sampled into the case–
control set. According to Bayes’ theorem, we have

P(D = 1|U,X)

P (D = 0|U,X

P(D = 0|X)

P (D = 1|X)

= P(D = 1|U,X,Sampled)

P (D = 0|U,X,Sampled)

P (D = 0|X,Sampled)

P (D = 1|X,Sampled)
,
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which implies that equation (2.1) can be written as

logitP(D = 1|U,X,Sampled)

= logitP(D = 1|X,Sampled) + G(U,X,β).

Thus, the estimate of regression coefficients for (2.1) can be obtained by applying
an ordinary logistic regression to D, X, and Û to the case–control sample with
logit P̂ (D = 1|X,Sampled) entered as an offset, where P̂ (D = 1|X,Sampled) is
an estimate of P(D = 1|X,Sampled) based on the case–control sample.

After the model coefficients for (2.1) are obtained either based on a cohort,
a cross-sectional, or a case–control sample, disease risk for each subject can be
computed by entering P̂ (D = 1|X) and the individual’s Û into the estimated
model. For a case–control sample, in order to estimate P(D = 1|X), informa-
tion about prevalence, P(D = 1), has to be acquired externally, for example, from
the literature, from another independent cohort, or from the parent cohort within
which the case–control sample is nested. For evaluation of a biomarker’s classifi-
cation and prediction performance conditional on covariates, methods have been
developed previously when the risk of disease conditional on the biomarker and co-
variates follows a logistic regression model [Huang, Pepe and Feng (2007), Huang
and Pepe (2010a)]. These methods can be applied here, replacing the biomarker
value on the original scale Y with their estimated standardized value Û . Note that
the Û ’s are correlated with each other due to use of the control sample for es-
timating the reference distributions for standardization. Hence, standard variance
formulae from logistic regression results do not apply, as they assume indepen-
dence between observations. Additional complexity is also introduced by using
an estimated offset term. Instead we propose bootstrap resampling for estimating
variances of parameter estimators and constructing confidence intervals using per-
centiles of the bootstrap distribution. The resampling procedures need to mimic the
design of the original study. Specifically, separate resampling of cases and controls
would be warranted if the study is of case–control design, while for a cohort study
resampling would be at random from the cohort without regard to outcome status.

3. Methodology for combining data sources through a common ROC
curve.

3.1. Combining data sets with common ROC curves. In the remainder of this
manuscript, we focus on a specific problem where we evaluate biomarker perfor-
mance combining data from multiple sources through estimation of a common
ROC curve across data sources. The covariate X characterizes the data source and
we show how to use the logistic regression methodology to take advantage of the
constraint that the ROC curves are common across X.

The study motivating this research is a cross-sectional study conducted by the
Early Detection Research Network assessing a urine biomarker for prostate can-
cer, Prostate Cancer Antigen 3 (PCA3). PCA3 is a prostate-specific noncoding
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mRNA overexpressed in prostate tumors [Deras et al. (2008)]. Among 576 men
who were biopsied due to an elevated prostate specific antigen, half had had a pre-
vious (negative) biopsy and half had not had a previous biopsy. Researchers were
interested in assessing the risk prediction and classification capacity of PCA3 in
both populations, the initial biopsy population and the repeat biopsy population.
Interestingly, it was observed that the empirical ROC curves for PCA3 were very
similar in the two populations [Figure 1(b)], even if it is well known that the initial
biopsy population has a higher prevalence of prostate cancer. This scenario raises
the question of how to combine data from the two populations in such a way as to
incorporate this common ROC condition when evaluating PCA3. In this example,
X = 0 indicates the initial biopsy population and X = 1 indicates the repeat biopsy
population.

In general, let X denote the population and suppose that in preliminary anal-
yses a test for equality of ROC curves across populations has been accepted.
The comparison between ROC curves in two populations can be made through
the comparison between distributions of case placement values [Huang and Pepe
(2009a)]. For example, comparison of the area under the ROC curve (AUC) be-
tween populations corresponds to comparison of mean case placement values.
Moreover, comparison can be made with respect to the Wilcoxon Rank Sum statis-
tic of case placement values [Huang and Pepe (2009a)]. An alternative test may be
based on fitting a model of the form (2.1) and using a Wald test to determine
if terms involving X in G(U,X,β) can be eliminated. We next propose meth-
ods to estimate the risk model, points on the ROC curve, ROCx(t), and the in-
verse of points on the predictiveness curve, CDFRx(p), where the predictiveness
curve is defined as the quantile curve of the disease risk [Bura and Gastwirth
(2001), Huang, Pepe and Feng (2007), Pepe et al. (2008)]. In other words, the
inverse of points on the predictiveness curve is the distribution of the disease risk,
CDFRx(p) = P {Risk(X,Y ) ≤ p|X = x}, where Risk(X,Y ) = P(D = 1|X,Y ).
Without loss of generality, assume G(U,X,β) in (2.1) can be modeled with
β0 + βT

1 r(U), a monotone decreasing function of U , such that

logitP(D = 1|U,X) = logitP(D = 1|X) + β0 + βT
1 r(U).(3.1)

Different prevalences and the common ROC curve are naturally and explicitly
modeled in (3.1), with the ROC curve entirely determined by the coefficients of
the risk model. None of the existing methods we are aware of can do so. In par-
ticular, consider the standard method of fitting logistic regression to the marker Y

on its original scale and using the logit score to generate the ROC curve in each
population. Since the corresponding ROC curve depends on both the risk model
coefficients and the marker distribution in each population, the common ROC as-
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sumption cannot be incorporated into the logistic risk model without specifying
the marker distributions.

3.2. Estimated empirical likelihood estimators. First, we consider an empiri-
cal likelihood method. The key idea is to maximize the estimated empirical likeli-
hood of the observed Û in the sample. The empirical likelihood method has pre-
viously been used for evaluating goodness of fit for logistic regression models
and for constructing ROC curves based on raw marker measures only [Qin and
Lawless (1994), Qin and Zhang (1997, 2003)]. Here we extend it to accommodate
additional covariates using standardized marker values that are estimated.

Let FU
Dx and FU

D̄x
denote the CDFs of U in the case and control populations,

respectively, with covariate X = x. The logistic regression model (3.1) implies an
exponential tilt relationship between the probability densities of U among cases
and controls: dFU

Dx(u) = exp{G(u,x,β)}dFU
D̄x

(u). Let ADx and AD̄x be the set
of cases and controls in the sample with X = x and let nDx and nD̄x be the cor-
responding sample sizes. Let AD = ⋃

x ADx and AD̄ = ⋃
x AD̄x , let nD and nD̄

be the total number of cases and controls, and let n = nD + nD̄ . With i indicating
study subject, suppose we know the true Ui, i = 1, . . . , n, the empirical likelihood
given Ui is

L
(
β0, β1,F

U
D̄x

)
= ∏

x

∏
i∈AD̄x

dFU
D̄x

(Ui)
∏
x

∏
i∈ADx

dFU
Dx(Ui)(3.2)

= ∏
x

∏
i∈AD̄x

dFU
D̄x

(Ui)
∏
x

∏
i∈ADx

exp
{
β0 + βT

1 r(Ui)
}
dFU

D̄x
(Ui).

By definition, for controls the conditional distribution of U given X is
uniform(0,1). Moreover, for cases the conditional distribution of U given X is
the common ROC curve. Therefore, the distributions of U conditional on dis-
ease status are the same across populations. Henceforth, we let pi and exp{β0 +
βT

1 r(Ui)}pi be the “common” density of U for a control or a case in the sample
and the empirical likelihood (3.2) becomes

{
n∏

i=1

pi

}[∏
x

∏
i∈ADx

exp
{
β0 + βT

1 r(Ui)
}]

(3.3)

=
{

n∏
i=1

pi

}[ ∏
i∈AD

exp
{
β0 + βT

1 r(Ui)
}]

,

subject to
∑n

i=1 pi = 1 and
∑n

i=1 exp{β0 + βT
1 r(Ui)}pi = 1.
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This empirical likelihood can be maximized using a Lagrange multiplier ap-
proach by solving the equation

n∑
i=1

log(pi) + ∑
i∈AD

{
β0 + βT

1 r(Ui)
} − λ1

n∑
i=1

(pi − 1)

− λ2

n∑
i=1

[
exp

{
β0 + βT

1 r(Ui)
}
pi − 1

] = 0.

Consequently, (β̂0, β̂1), the maximum likelihood estimates of (β0, β1), satisfy the
following system of score equations:

∂l(β0, β1)

∂β0
= nD −

n∑
i=1

(nD/nD̄) exp{β0 + βT
1 r(Ui)}

1 + (nD/nD̄) exp{β0 + βT
1 r(Ui)} = 0,

∂l(β0, β1)

∂β1
= ∑

i∈AD

r(Ui) −
n∑

i=1

r(Ui)(nD/nD̄) exp{β0 + βT
1 r(Ui)}

1 + (nD/nD̄) exp{β0 + βT
1 r(Ui)} = 0,

which are the score equations for (β0, β1) if we apply a prospective logistic model
logit{P(D = 1|U)} = β0 +βT

1 r(U) to the data with offset nD/nD̄ . The maximum
likelihood estimate of pi is p̂i = 1/[nD̄ + nD exp{β̂0 + β̂T

1 r(Ui)}].
In practice, we substitute Ûi for Ui into the empirical likelihood (3.2) to get

an estimated empirical likelihood, and obtain β̂0 and β̂1 with a logistic regression
model based on Ûi . The corresponding estimated empirical likelihood estimators
of FU

D̄x
and FU

Dx are

F̂ U
D̄x

(u) = 1

nD̄

n∑
i=1

I (Ûi ≤ u)

1 + (nD/nD̄) exp{β̂0 + β̂T
1 r(Ûi)}

,

F̂ U
Dx(u) = 1

nD̄

n∑
i=1

exp{β̂0 + β̂T
1 r(Ûi)}I (Ûi ≤ u)

1 + (nD/nD̄) exp{β̂0 + β̂T
1 r(Ûi)}

,

which is the same across X levels. Note this procedure can be applied whether or
not there are tied values of Ûi in the sample.

A piecewise differentiable and concave estimator of the common ROC curve
̂ROCx(t) = ̂ROC(t) = F̂ U

DxF̂
U−1
D̄x

(t) can be constructed based on F̂ U
Dx and F̂ U

D̄x
using methods analogous to those proposed by Qin and Zhang (2003), Huang
(2007) and Huang and Pepe (2009c). The procedure is outlined in Appendix C
of the supplementary material [Huang, Pepe and Feng (2013)]. Finally, we esti-
mate FU

x , the distribution of U conditional on covariate X = x with F̂ U
x (u) =

P̂ (D = 0|X = x)F̂ U
D̄x

(u) + P̂ (D = 1|X = x)F̂ U
Dx(u), and estimate disease risk

conditional on Û and X by substituting β̂0 and β̂1 into (3.1). Then for a particu-
lar risk threshold p, we estimate CDFRx(p), the risk distribution at X = x, with
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1 − F̂ U
x {u(p,x)}, the proportion of subjects with covariate x that have Û larger

than u(p,x) = supi∈{1,...,n}{Ûi : P̂ (D = 1|Û ,X = x) ≥ p}. We call estimators ob-
tained using the approach in this section the “estimated empirical likelihood esti-
mators” (EML).

3.3. Constrained estimated maximum likelihood estimators. The estimated
empirical likelihood method proposed in Section 3.2 is easy to implement using
standard statistical software. In this method, the relationship between the ROC
curve and the logistic regression model presented in Theorem 1 is utilized for
combining Û across different covariate levels to estimate a common distribution
as in (3.3), under a common ROC assumption. Based on a discrete support for Û ,
the corresponding ROC curve estimate is piecewise differentiable. As we will
show next, an alternative way to exploit the relationship in Theorem 1 is to use
it as a constraint directly when estimating parameters in the risk model. Since the
ROC curve is completely specified by the coefficients in the logistic regression
model (3.1), this procedure leads to a smooth ROC curve estimate.

Observe that G(t, x,β) = log ROC′
x(t) implies that the common ROC(t) is

equal to
∫ t

0 exp{G(u,x,β)}du, which is independent of x and can be estimated by
replacing β with a consistent estimate based on the logistic regression model (3.1).
Unlike the typical logistic regression model where there is no constraint on the pa-
rameter space, however, the risk model (3.1) based on the standardized marker has
an implicit constraint: ROC(1) = ∫ 1

0 exp{β0 + βT
1 r(t)}dt = 1 by definition of the

ROC curve. The standard log-likelihood for D conditional on U and X based on
the logistic model is

l =
n∑

i=1

Di log
{
P(Di = 1|Ui,Xi)

} + (1 − Di) log
{
1 − P(Di = 1|Ui,Xi)

}
.(3.4)

We propose to maximize the estimated version of this log-likelihood (3.4) by sub-
stituting Û for U , with the additional constraint that

∫ 1
0 exp{β0 + βT

1 r(t)}dt = 1.
The method used to enforce this constraint in the estimation procedure de-

pends on the complexity of β1. For example, for a univariate β1, β0 can be repre-
sented by a closed-form function of β1 :β0 = log[β1/{exp(β1) − 1}] as ROC(1) =
{exp(β0 +β1)− exp(β0)}/β1 = 1. For more complicated models, numerical meth-
ods are needed to represent β0 as a function of β1. Let (β̂0, β̂1) be the estimate of
β that maximizes the constrained estimated maximum likelihood. We estimate the
common ROC curve with ̂ROCx(t) = ̂ROC(t) = ∫ t

0 exp{β̂0 + β̂T
1 r(u)}du.

The CDF of risk conditional on X = x can be derived from ̂ROCx and the
disease prevalence estimate P̂ (D = 1|X = x) by exploiting the relationship be-
tween the ROC curve and the risk distribution shown in Huang and Pepe (2009b).
Specifically, for p ∈ (0,1), CDFRx(p) can be estimated by 1−{1− P̂ (D = 1|X =
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x)}t − P̂ (D = 1|X = x)̂ROCx(t), where t satisfies

P̂ (D = 1|X = x)̂ROC′
x(t)/

{
P̂ (D = 1|X = x)̂ROC′

x(t) + 1 − P̂ (D = 1|X = x)
}

= p.

We call estimators obtained using the methods in this section the “constrained
estimated maximum likelihood estimators” (CML).

3.4. Connection to and modification of existing methods. Our approach to fit-
ting a common ROC curve across populations is similar in spirit to the covariate-
adjusted ROC curve proposed by Janes and Pepe (2008, 2009), which is de-
fined as a weighted average of covariate-specific ROC curves A ROC(t) =∫

ROCx(t) dFD(x), where FD(x) is the CDF of X among diseased case subjects.
When ROCx is the same for different values of x, A ROC is the common ROC
curve. Janes and Pepe (2008, 2009) proposed estimating A ROC nonparametrically

using the empirical CDF of Û for all cases, where Ûi = ∑nD̄Xi

j=1 I (Yi > Yj )/nD̄Xi
,

exploiting the fact that the distribution of U for diseased observations is equal
to the ROC curve. Alternatively, semiparametric methods can be used to model
the distribution of U , that is, the common ROC curve. One choice of semipara-
metric estimator is the pseudo-likelihood estimator (PSL), originally proposed by
Pepe and Cai (2004) for estimating the ROC curve in a single population. In Pepe
and Cai (2004), the PSL method imposes a parametric functional form on the ROC
curve such as a binormal form, and maximizes the likelihood of Û among diseased
case subjects. This approach is easy to implement and has been shown to have good
efficiency compared to other semiparametric ROC modeling approaches. Here we
modify the PSL method by modeling the derivative of the ROC curve directly,
thereby accommodating the model form implied by the logistic regression frame-
work (3.1). Specifically, we maximize

l = ∑
i∈AD

log dFU
Dx(Ûi) = ∑

i∈AD

log ROC′
x(Ûi) = ∑

i∈AD

{
β0 + βT

1 r(Ûi)
}
.

In addition, we enforce the constraint ROC(1) = 1 as in the CML method. Since
the PSL method uses only the standardized marker value in diseased observations,
we expect that some efficiency could be gained from our method by including
standardized marker values for nondiseased control observations as well.

4. Application to simulated data. To mimic the setting in the PCA3 ex-
ample, we simulated random samples from two populations with disease preva-
lences equal to 0.44 and 0.27, respectively. Marker distributions for controls are
N(0,1) in population 1 and N(1,1) in population 2. Marker distributions for
cases from each population are chosen to achieve a common ROC curve with
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ROC′(t) = exp(β0 + β1t + β2t
2). With X being the population indicator variable,

X = 1 for population 2, the risk model is

logitP(D = 1|U,X) = α0 + α1X + β0 + β1U + β2U
2,(4.1)

where the offset terms α0 and α0 + α1 are log odds of the prevalences in the
two populations, which will be estimated empirically from the sample and entered
into the model before estimation of the other parameters in the logistic regression
model.

We generated 300 observations from each population (cf. Section 5: the
PCA3 data set has 267 men in each population). We compared the CML, EML,
and PSL estimators for estimating: (i) β = (β0, β1, β2); (ii) ROC(t) for t =
0.1,0.3,0.5,0.7,0.9; (iii) the risk distribution, CDFRx(p) versus p in each popu-
lation for p equal to 10%, 30%, 50%, 70%, and 90%; and (iv) Risk(y|x) = P(D =
1|Y = y,X = x) in each population, for y corresponding to p in (iii). In each sim-
ulation, the standardized marker value U ’s are estimated based on nonparametric
CDF estimates of the control distribution in each population. For each estimator,
we used both the population-specific approach where only samples from the tar-
get population are used for estimation and the combined-data approach where we
estimate a common ROC curve across populations. We performed 10,000 Monte
Carlo simulations with 500 bootstrap samples for each simulated data set to con-
struct confidence intervals

All three estimators, EML, CML, and PSL, have negligible bias (Table 1).
Moreover, coverage of their 95% bootstrap percentile confidence intervals are all
close to the nominal level (Table 2). We note that for a sample of size 300 in each
population, an alternative to percentile bootstrap confidence intervals are Wald
confidence intervals with a bootstrap standard error estimate, which can achieve
reasonable coverage with a smaller bootstrap size such as 50; yet for smaller sam-
ple sizes (e.g., 100 in each population), they tend to have an under-coverage prob-
lem (details omitted). We recommend percentile bootstrap confidence intervals for
our estimators in general, as they have better performance overall.

Table 3 shows the efficiencies of the three estimators relative to each other. We
use the population-specific CML estimator as the reference in this table so the
entries are the variances of the CML estimator that employs data for the target
population only relative to variances of the estimators. In general, the EML esti-
mator appears to be slightly less efficient than the CML estimator, and both the
CML and EML estimators are slightly more efficient than the PSL estimator. Most
importantly, Table 3 shows that the combined-data analysis dramatically increases
efficiency compared to using only the population-specific data. The magnitude of
the efficiency gain varies with the measures and the target population of interest.
For example, when population 1 is the target population, the relative efficiency
of the combined-data analysis versus the population-specific method ranges from
1.6–1.8 for ROC estimation, and ranges from 1.1–1.4 for risk distribution esti-
mation; when population 2 is the target population, the relative efficiency of the
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TABLE 1
Bias of different estimators (multiplied by 1000 and rounded) using data from the target population or based on the combined-data analysis. EML is the

estimated empirical likelihood estimator, CML is the constrained estimated maximum likelihood estimator, PSL is the constrained pseudolikelihood
estimator. Standard errors of biases are less than 0.03 for β estimates, less than 0.001 for estimates of ROC(t) and Risk(y|x), and less than 0.002 for

estimates of CDFRx(p)

Population 1 Population 2

Population-specific Combined-data analysis Population-specific Combined-data analysis

EML CML PSL EML CML PSL EML CML PSL EML CML PSL

True Bias×1000 True Bias×1000

β

β0 −4 13 2 −6 22 13 3 −4 10 2 −8 22 13 3
β1 1 −73 −52 −30 −120 −107 −72 1 −54 −41 0 −120 −107 −72
β2 2 14 −1 5 85 75 66 2 −36 −45 −65 85 75 66

ROC(t)

t = 0.1 0.27 5.9 4.2 2.5 5.9 4.5 2.5 0.27 5.8 5.1 3.0 5.9 4.5 2.5
t = 0.3 0.59 3.6 2.8 −0.1 4.1 3.8 0.6 0.59 4.3 4.0 1.2 4.1 3.8 0.6
t = 0.5 0.77 1.6 1.5 −1.0 1.6 1.8 −0.7 0.77 2.6 2.7 0.6 1.6 1.8 −0.7
t = 0.7 0.89 −0.1 0.0 −1.6 −0.2 0.0 −1.6 0.89 0.3 0.5 −0.8 −0.2 0.0 −1.6
t = 0.9 0.97 −1.0 −1.0 −1.6 −0.8 −0.7 −1.3 0.97 −1.2 −1.2 −1.6 −0.8 −0.7 −1.3

CDFRx(p)

p = (0.22,0.12)� 0.10 7.3 7.6 3.8 0.8 1.4 −3.3 0.10 22.2 22.8 18.9 10.4 10.9 5.9
p = (0.30,0.16) 0.30 −1.2 −1.7 −4.5 3.1 3.0 −0.1 0.30 −10.6 −10.3 −15.0 −1.7 −1.6 −6.4
p = (0.43,0.23) 0.50 −1.0 −2.4 −2.1 2.3 1.2 1.3 0.50 0.6 −0.3 −1.2 4.5 3.4 2.6
p = (0.56,0.35) 0.70 4.0 3.4 5.9 2.2 1.3 3.8 0.70 0.9 0.4 1.3 2.5 1.3 2.7
p = (0.67,0.48) 0.90 −4.2 −1.7 1.3 −4.7 −3.1 0.7 0.90 0.4 1.2 3.7 −1.0 0.1 3.1

Risk(y|x)

y = (−1.1,−0.2)� 0.22 −1.3 −2.0 0.4 −0.2 −1.1 1.3 0.12 −0.6 −1.0 0.2 0.5 0.0 1.5
y = (−0.24,−0.64) 0.31 −2.2 −3.0 −1.5 −2.2 −3.2 −1.4 0.16 −2.6 −3.1 −2.0 −1.4 −2.0 −0.8
y = (0.33,1.20) 0.43 0.1 −1.3 −1.2 −1.0 −2.4 −1.8 0.24 −0.7 −1.5 −0.7 −1.1 −2.0 −1.4
y = (0.88,1.75) 0.56 3.0 1.1 0.5 1.7 −0.3 −0.5 0.35 2.6 1.2 1.0 0.9 −0.3 −1.0
y = (1.6,2.5) 0.67 1.7 −0.5 −1.4 2.7 0.8 −0.4 0.48 3.2 1.4 0.2 3.4 1.6 −0.2

�: the values separated by commas correspond to population 1 and population 2, respectively.
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TABLE 2

Coverage of 95% percentile bootstrap confidence intervals (subtracted by 95.0 and then multiplied by 10), based on the estimated empirical likelihood
estimator (EML), the constrained estimated maximum likelihood estimator (CML), and the pseudo likelihood estimator (PSL) using data only from the

target population or based on the combined-data analysis. Standard errors of entries do not exceed 0.4% of the value

Population 1 Population 2

Population-specific Combined-data Population-specific Combined-data

EML CML PSL EML CML PSL EML CML PSL EML CML PSL

β

β0 = −3.8 −10 −6 −4 −17 −8 −2 −9 −8 −3 −17 −8 −2
β1 = 1.2 −5 −5 −8 −8 −6 0 −7 −8 −2 −8 −6 0
β2 = 1.5 −5 −4 −5 −5 −1 −2 −7 −7 −4 −5 −1 −2

ROC(t)

t = 0.1 −7 −5 −3 −16 −10 −1 −11 −6 −5 −16 −10 −1
t = 0.3 −8 −8 −4 −13 −14 −10 −9 −8 −6 −13 −14 −10
t = 0.5 −8 −7 −2 −10 −11 −6 −14 −13 −9 −10 −11 −6
t = 0.7 −7 −8 −3 −5 −6 −4 −12 −15 −9 −5 −6 −4
t = 0.9 −5 −6 −4 −5 −6 −5 −13 −14 −11 −5 −6 −5

CDFRx(p)

p = (0.22,0.12)� −2 −4 1 −1 −1 5 −20 −21 −14 −4 −8 −1
p = (0.30,0.16) 2 1 1 0 −3 2 −4 −7 −5 3 1 5
p = (0.43,0.23) −1 −3 −4 −2 −3 −3 8 5 6 1 4 2
p = (0.56,0.35) −1 −6 −4 −3 −8 −7 8 5 4 2 0 −2
p = (0.67,0.48) −11 −8 −6 −7 −7 −3 −5 −6 −3 −5 −4 −4

Risk(y|x)

y = (−1.1,−0.17)� −4 −6 0 0 −1 2 −19 −21 −15 −4 −7 −5
y = (−0.24,0.64) −2 −5 −3 −2 −7 0 −10 −12 −6 3 0 5
y = (0.33,1.2) −5 −4 −2 1 −2 1 1 1 0 0 0 1
y = (0.88,1.7) −5 −1 −1 −2 0 −1 5 6 6 4 3 3
y = (1.6,2.5) −16 −12 −10 −14 −8 −5 −6 −3 −1 −2 0 2

�: the values separated by commas correspond to population 1 and population 2, respectively.
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TABLE 3
Efficiency of other estimators (using data from the target population or based on the combined-data
analysis) relative to the constrained maximum likelihood estimator calculated using data only from

the target population. Standard errors of entries do not exceed 3% of the value

Population 1 Population 2

Pop-specific Combined-data Pop-specific Combined-data

EML PSL EML CML PSL EML PSL EML CML PSL

β

β0 = −3.8 0.98 0.94 1.81 1.89 1.77 0.98 1.00 2.24 2.34 2.20
β1 = 1.2 0.99 0.92 1.81 1.87 1.73 0.99 0.99 2.27 2.35 2.18
β2 = 1.5 0.99 0.91 1.80 1.85 1.70 0.99 0.98 2.35 2.42 2.23

ROC(t)

t = 0.1 0.96 0.95 1.75 1.84 1.76 0.99 1.01 2.16 2.28 2.18
t = 0.3 0.99 0.98 1.77 1.81 1.77 1.00 1.01 2.25 2.31 2.25
t = 0.5 0.99 0.98 1.71 1.75 1.71 0.99 0.99 2.33 2.38 2.33
t = 0.7 0.98 0.95 1.66 1.71 1.62 0.98 0.97 2.33 2.39 2.27
t = 0.9 0.97 0.92 1.66 1.72 1.59 0.98 0.96 2.31 2.39 2.21

CDFRx(p)

p = (0.22,0.12)� 0.99 1.01 1.14 1.15 1.17 1.00 1.02 1.28 1.29 1.32
p = (0.30,0.16) 0.98 0.95 1.31 1.35 1.26 0.99 0.97 1.39 1.43 1.36
p = (0.43,0.23) 0.96 0.96 1.20 1.24 1.19 0.99 0.98 1.35 1.40 1.34
p = (0.56,0.35) 0.98 0.96 1.37 1.38 1.35 0.99 0.98 1.44 1.46 1.42
p = (0.67,0.48) 0.98 1.00 1.24 1.25 1.25 0.99 1.01 1.26 1.28 1.26

Risk(y|x)

y = (−1.1,−1.2)� 1.00 0.96 1.51 1.53 1.47 0.99 0.97 1.98 2.00 1.91
y = (−0.24,−0.36) 0.99 0.95 1.32 1.32 1.29 1.00 1.00 1.51 1.55 1.49
y = (0.33,0.20) 0.99 0.92 1.16 1.14 1.13 0.99 0.98 1.35 1.40 1.32
y = (0.88,0.75) 1.00 0.99 1.08 1.08 1.08 0.99 1.00 1.10 1.12 1.10
y = (1.6,1.5) 1.00 0.93 1.40 1.45 1.34 0.99 0.98 1.53 1.53 1.50

�: the values separated by commas correspond to population 1 and population 2, respectively.

combined-data analysis versus the population-specific method ranges from 2.2–
2.4 for ROC estimation, and ranges from 1.3–1.5 for risk distribution estimation.

Since the nonparametric method is commonly used for estimating ROC and
A ROC curves, we compared their performances with the proposed method based
on the logistic regression framework. In Table 4 we present the nonparametric es-
timate of the ROC curve within each population and the nonparametric A ROC
estimate that combines data from the two populations to estimate the common
ROC curve. While the nonparametric estimates have minimal bias, it appears in
our simulation setting that coverage of the bootstrap percentile confidence inter-
val can be remarkably below nominal levels for points at the end of the ROC
curve. Moreover, we see that the logistic regression framework gains substantial
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TABLE 4
Performance of the nonparametric ROC(t) and A ROC(t) estimators. Standard errors of biases of

ROC(t) or A ROC(t) are less than 0.001. Standard errors for coverage of 95% confidence intervals
do not exceed 0.7% of the value. Standard errors for relative efficiency do not exceed 1% of the value

Population 1 Population 2 Combined-data

Bias×1000
t = 0.1 0.012 0.014 0.008
t = 0.3 0.005 0.008 0.002
t = 0.5 0.004 0.006 0.002
t = 0.7 0.004 0.006 0.002
t = 0.9 0.004 0.006 0.002

Coverage of 95% bootstrap percentile CI
t = 0.1 94.4 95.4 95.6
t = 0.3 95.4 94.6 95.7
t = 0.5 94.8 94.2 95.6
t = 0.7 94.0 92.4 95.3
t = 0.9 90.2 82.9 93.8

Efficiency of CML relative to the nonparametric estimator
t = 0.1 1.83 1.64 1.84
t = 0.3 1.21 1.23 1.26
t = 0.5 1.28 1.29 1.32
t = 0.7 1.22 1.23 1.25
t = 0.9 1.72 1.68 1.88

efficiency over the nonparametric method. The efficiency of the CML estimator
relative to the nonparametric estimator varies from 1.2 to 1.9 in Table 4.

We further evaluated the proposed methods by varying the simulation settings.
Results for estimating the ROC curve, risk, and risk distribution are presented in
Appendix D of the supplementary material [Huang, Pepe and Feng (2013)]. We
examined two additional scenarios where the common ROC curve condition holds
across two populations. The first scenario has smaller sample sizes (100 in each
populations) compared to the primary setting (Tables 1–3 in Appendix D). The sec-
ond scenario has different control marker distributions across populations [N(0,1)

in population 1 and logNormal(1,1) in population 2] (Tables 4–6 in Appendix D).
Smaller sample sizes lead to slightly larger bias. But overall we observe minimal
bias, good coverage, and good efficiency gain with the combined-data analysis in
each of the two scenarios. We also examined another scenario where there is a
slight difference in the ROC curves between the two populations, with the area un-
der the ROC curve 5% larger in population 2 relative to population 1. In the pres-
ence of a small difference in ROC curves, the combined-data approach estimat-
ing the common ROC curve has slightly larger bias compared to the population-
specific approach, but in general still maintains a good efficiency gain in terms of
an appreciable drop in the mean squared error (Tables 7–8 in Appendix D).
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FIG. 1. (a) density of log(PCA3) conditional on disease status in each population; (b) nonpara-
metric and (c) semiparametric ROC curves for PCA3 in initial and repeat biopsy populations, and
the common ROC curve adjusting for population effect.

5. Application to a prostate cancer data set. We illustrate our methodology
using the PCA3 example data set that includes 576 patients [Deras et al. (2008)]
who underwent a diagnostic biopsy for prostate cancer due to elevated PSA levels.
Among these subjects, 267 had a previous negative biopsy and 267 subjects had
no previous biopsy.

Figure 1(a) shows probability density functions for log(PCA3) conditional on
disease status, and Figure 1(b) shows the empirical ROC curves in the two pop-
ulations. Interestingly, although the distributions of PCA3 conditional on dis-
ease status seem to differ between the two populations, the two ROC curves ap-
pear similar to each other. A test for equality of the ROC curves based on the
area under the ROC curves yields a p-value of 0.66. An alternative test com-
paring case placement values using the Wilcoxon Rank Sum statistic yields a
p-value of 0.45 [Huang and Pepe (2009a)]. Also presented in Figure 1(b) is
the nonparametric estimate of the common ROC curve [Janes and Pepe (2009)]
̂A ROC(t) = ∑nD

i=1 I {YDi > Ŝ−1
D̄Xi

(t)}/nD .
As we have noted earlier, we cannot enforce a common ROC condition by fit-

ting a logistic model with Y on the usual scale. But fitting a model with Y on
the U scale such as logitP(D = 1|U,X) = logitP(D = 1|X) + β0 + βT

1 r(U)

automatically guarantees a common ROC across X. We adopt a logistic model
logitP(D = 1|U,X) = logitP(D = 1|X) + β0 + β1U + β2U

2. Figure 1(c) dis-
plays the ROC curve estimates calculated by fitting this model separately in the
two populations and by using the combined-data analysis method. Observe that the
curves are all concave and are very similar to each other. However, the combined-
data analysis estimates are much more precise (Table 5). Borrowing information
across populations leads to an efficiency gain of over 50% compared to using the
initial biopsy sample only and over 100% gain in efficiency compared to using
the repeat biopsy sample only. Comparing the CML estimates of the common
ROC(t) (combined-data analysis) with the nonparametric A ROC(t) estimates
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TABLE 5
The constrained maximum likelihood estimators calculated with data from the PCA3 study

Initial biopsy Repeat biopsy

Combined-data Population specific Combined-data Population specific

ROC(t)

t = 0.1 Est 0.266 (0.209, 0.339) 0.274 (0.205, 0.368) 0.266 (0.209, 0.339) 0.256 (0.166, 0.369)
Eff� 1.57 1.00 2.53 1.00

t = 0.3 Est 0.591 (0.518, 0.671) 0.600 (0.510, 0.704) 0.591 (0.518, 0.671) 0.578 (0.462, 0.697)
Eff 1.57 1.00 2.41 1.00

t = 0.5 Est 0.772 (0.710, 0.831) 0.778 (0.703, 0.854) 0.772 (0.710, 0.831) 0.764 (0.670, 0.847)
Eff 1.64 1.00 2.21 1.00

t = 0.7 Est 0.886 (0.836, 0.927) 0.889 (0.827, 0.939) 0.886 (0.836, 0.927) 0.882 (0.810, 0.940)
Eff 1.67 1.00 2.19 1.00

t = 0.9 Est 0.967 (0.943, 0.982) 0.967 (0.937, 0.986) 0.967 (0.943, 0.982) 0.966 (0.930, 0.987)
Eff 1.67 1.00 2.32 1.00

CDFR(p) p = 0.65 p = 0.20
Est 0.855 (0.711, 1.000) 0.843 (0.698, 1.000) 0.418 (0.276, 0.564) 0.406 (0.211, 0.586)
Eff 1.12 1.00 1.60 1.00

Risk(y) y = 60 y = 20
Est 0.654 (0.567, 0.731) 0.659 (0.569, 0.749) 0.208 (0.147, 0.270) 0.214 (0.135, 0.292)
Eff 1.22 1.00 1.59 1.00

Eff�: efficiency relative to the population-specific estimator.
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FIG. 2. Risk as a function of log(PCA3) and versus the CDF of Risk in the (a) initial biopsy and
(b) repeat biopsy populations.

[Figure 1(b)], the efficiency gains through modeling the ROC derivative are 87%,
41%, 78%, 51%, and 74%, respectively, for t = 0.1,0.3,0.5,0.7, and 0.9.

The estimated risk is shown in Figure 2 as a function of log(PCA3) and the risk
distributions in the two populations are shown as well. Again, curves derived from
fitting the risk model to each population separately appear to be similar to those
derived from the combined-data analysis. Urologists are particularly interested in
the capacity of PCA3 to identify high risk subjects from the initial biopsy popu-
lation and low risk subjects from the repeat biopsy population. Toward this goal,
we want to have an accurate prediction of the prostate cancer risk as a function
of PCA3 among each population, and to have a good assessment of the popula-
tion impact of PCA3 in assisting treatment decision. Here we evaluate the risk
of prostate cancer at PCA3 = 60, denoted by Risk(60), for the former population
and the risk of prostate cancer at PCA3 = 20, denoted by Risk(20), for the latter
population. In addition, suppose an estimated risk greater than 0.65 will lead to
a recommendation for treatment and a risk below 0.20 will lead to a recommen-
dation against treatment. Therefore, we assess CDFR(0.65) in the initial biopsy
population and CDFR(0.20) in the repeat biopsy population. Table 5 presents the
CML estimators for those quantities based on population-specific analysis and
on combined-data analysis. Again, both approaches result in similar estimates,
but combined-data analysis yields more precise estimates. The efficiency of the
combined-data analysis is modest for evaluating the risk prediction capacity of
PCA3 in the initial biopsy population [1.22 for estimating Risk(60) and 1.12 for
estimating CDFR(0.65)], but much larger when the repeat biopsy population is
concerned, around 1.6 for both Risk(20) and CDFR(0.20). Our results provide
useful information to urologists regarding the value of PCA3 in treatment decision
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making. In particular, based on a high risk threshold of 0.65 and a low risk thresh-
old of 0.20, use of PCA3 will recommend 86% of subjects for treatment in initial
biopsy population and will spare 58% of subjects from treatment in repeat biopsy
population.

6. Discussion. In this paper we proposed a logistic regression framework for
modeling marker values after they are standardized using the distribution in the
nondiseased control population. This sort of standardization is often used in lab-
oratory and clinical medicine. For example, Frischancho (1990) provides weight
and height of children standardized relative to a healthy population of children of
the same age and gender. Our framework provides a convenient way to connect
risk modeling with ROC analysis with many applications. For example, one can
use it for simply estimating the ROC curve from a single cohort or case–control
study, for evaluating covariate effects on biomarker performance, and for combin-
ing data sources in evaluating biomarker performance through the estimation of a
common ROC curve when applicable, as presented in this paper.

Covariate adjustment is an important issue in ROC curve evaluation. When a
biomarker’s distribution depends on covariates, adjusting for the covariate effect
allows an evaluation of biomarker’s classification performance independent of the
covariate level. Estimation of a common ROC curve adjusting for a covariate that
affects marker distribution in a classification study is analogous to estimation of a
common odds ratio across covariate strata in an association study but requires dif-
ferent techniques for covariate adjustment. While the covariates to be adjusted for
in odds ratio estimation are included in the regression model, covariate-adjustment
in ROC analysis is achieved in the step of marker standardization. We developed
two types of combined-data analysis estimators based on a common ROC curve.
The constrained estimated maximum likelihood estimator is more efficient when
there is large variability in estimated standardized marker values across popula-
tions, due, for example, to variation in the sizes of the reference nondiseased sam-
ple across populations. The estimated empirical likelihood estimator, on the other
hand, is easier to implement and may be preferable for complicated models. R code
for computing the two estimators is available upon request. An easy-to-implement
nonparametric method for covariate-adjustment in ROC estimation has been pro-
posed in Janes and Pepe (2008, 2009). Our logistic regression based estimator pro-
vides a much more efficient semiparametric alternative. An additional advantage
of our semiparametric method over the nonparametric method is the ease of re-
trieving the ROC derivative, which can be used for various purposes, including the
derivation of the risk distribution [Huang and Pepe (2009b)]. Moreover, while the
nonparametric method does not model risk factors for risk prediction and opera-
tionally is more suitable for discrete X, our framework has the same flexibility as a
traditional logistic regression model. Our method also provides a useful addition to
the semiparmatric ROC modeling field. Unlike other existing semiparametric ROC
regression methods [e.g., by Alonzo and Pepe (2002), Dodd and Pepe (2003), Pepe
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and Cai (2004)] that posit assumptions on the functional form of the ROC curve
(typically a binormal ROC form), we fit a model to the ROC derivative directly.
One attractive property of this strategy is that one can easily build in the constraint
that the ROC curve is concave, which is a fundamental attribute of proper ROC
curves, whereas the traditional binormal ROC model is not natural for ensuring
concavity. Another attractive feature of the logistic regression framework is that
it accommodates case–control sampling which is common in biomarker research
studies [Pepe et al. (2001)].

Moreover, as shown in Sections 3.4 and 4, another novelty of the logistic re-
gression framework over existing ROC regression methods based on marker stan-
dardization is the way the standardized marker values are used. Our approach fits
a prospective risk model based on standardized marker values among all subjects
and is more efficient compared to the traditional ROC regression methods that
build on standardized marker value among cases only.

Our methods for combining data from different sources is flexible and applies
whether or not the components combined have the same study design. For exam-
ple, we can have one component being a case–control study and the other com-
ponent a cohort study. Frequency matching in case–control studies can also be
accommodated by adjusting for biased sampling in estimation of the standard-
ized marker value and in fitting of the logistic regression model. The former can
be conducted using the fact that U(y) = P(Y > y|D = 0) = ∑

s P (Y > y|D =
0, S = s)P (D = 0|S = s) for cases and controls frequency-matched within stra-
tum S. The latter can be conducted weighting the contribution of each observation
to the likelihood by the inverse of the sampling probability.

Finally, we want to point out that there are different ways to assess our model
calibrations in practice. The direct correspondence between our risk model and
the ROC model allows assessment of model calibration based on ROC model
checking techniques such as those proposed in Cai and Zheng (2007). In our mo-
tivating example, goodness of fit can be demonstrated graphically comparing the
nonparametric estimate of the covariate-adjusted ROC curve with our semipara-
metric estimates. Alternatively, model checking can be conducted through general
Hosmer–Lemeshow type techniques developed for logistic regression [Hosmer
and Lemeshow (1980), Huang and Pepe (2010b)].
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SUPPLEMENTARY MATERIAL

Supplementary Appendix (DOI: 10.1214/13-AOAS634SUPP; .pdf). Supple-
ment: Proof of Theorem 1, a simulated example referred to in Section 2.1, steps of
the construction of a concave ROC curve based on the pseudoempirical likelihood
estimators, and additional simulation results. The supplementary material would
be provided at this location.
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