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Abstract. The purpose of this article is to develop a theory behind the occurrence of “path-integral” kernels in the study of
extended determinantal point processes and non-intersecting line ensembles. Our first result shows how determinants involving
such kernels arise naturally in studying ratios of partition functions and expectations of multiplicative functionals for ensembles
of non-intersecting paths on weighted graphs. Our second result shows how Fredholm determinants with extended kernels (as
arise in the study of extended determinantal point processes such as the Airy2 process) are equal to Fredholm determinants with
path-integral kernels. We also show how the second result applies to a number of examples including the stationary (GUE) Dyson
Brownian motion, the Airy2 process, the Pearcey process, the Airy1 and Airy2→1 processes, and Markov processes on partitions
related to the z-measures.

Résumé. Le but de cet article est de développer une théorie autour des noyaux de la forme « intégrale de chemin » qui apparaissent
dans l’étude des processus déterminantaux et des familles de chemins sans intersection. Notre premier résultat montre comment
des déterminants avec de tels noyaux apparaissent naturellement dans l’étude du quotient de fonctions de partition et d’espérances
de fonctionnelles pour des familles de chemins sans intersection sur des graphes avec des pondérations. Notre second résultat
montre comment les déterminants de Fredholm avec des noyaux étendus (comme ceux que l’on trouve dans le cas du processus
déterminantal Airy2) sont égaux à des déterminants de Fredholm avec des noyaux de la forme « intégrale de chemin ». Nous
montrons aussi comment ce second résultat s’applique à une grande variété d’exemples dont le mouvement Brownien stationnaire
de Dyson, le processus Airy2, le processus de Pearcey, les processus Airy1 et Airy2→1 ainsi que les processus de Markov sur les
partitions reliées aux z-mesures.

MSC: 60B20; 60G55
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1. Introduction

The Airy2 process is a universal scaling limit of a wide variety of probabilistic systems including random ma-
trix theory, random growth processes, interacting particle systems and directed polymers in random media (see
[28,48] and references therein). Denoted Airy2(·), it is defined via its consistent finite dimensional distributions:
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for t1 < t2 < · · · < tn,

P

(
n⋂

i=1

{
Airy2(ti) ≤ si

}) = det
(
I − χKext

2

)
L2({t1,...,tn}×R,μ)

. (1)

Here χ is an operator which acts on functions f : {t1, . . . , tn} ×R → R as

χf (ti , x) := 1x>si f (ti , x).

The operator Kext
2 acts as

Kext
2 f (ti , x) :=

n∑
j=1

∫
R

dyKext
2 (ti , x; tj , y)f (tj , y),

where Kext
2 (s, x; t, y) is the “extended” Airy2 kernel given by

Kext
2 (s, x; t, y) :=

{∫ ∞
0 dλe−λ(s−t) Ai(x + λ)Ai(y + λ) if s ≥ t ,

− ∫ 0
−∞ dλe−λ(s−t) Ai(x + λ)Ai(y + λ) if s < t ,

with Ai(x) the classical Airy function. The right-hand side of (1) is the Fredholm determinant of the identity minus
a trace class operator (see Section 3.1 for definition and details) and the measure μ appearing there is the product of
counting measure on {t1, . . . , tn} and Lebesgue measure on R.

The formula given in (1) for the finite dimensional distributions of the Airy2 process becomes increasingly cum-
bersome as n increases. This is due to the n-dependence in the L2 space on which the operators act. When taking a
limit of a sequence of operators, or their determinants, it is convenient to have the operators all act on the same L2

space, rather than a sequence of different spaces.
In Prähofer and Spohn’s initial work on the Airy2 process (see Section 5 of [43] for n = 2 or [26,44,46] for n ≥ 2)

the extended kernel formula is shown to be equivalent to the following “path-integral” kernel formula:

P

(
n⋂

i=1

{
Airy2(ti) ≤ si

}) = det
(
I − K2 + P̄s1e(t1−t2)H P̄s2 · · · e(tn−1−tn)H P̄sne(tn−t1)H K2

)
L2(R)

. (2)

Here K2(x, y) = Kext
2 (0, x;0, y) is called the Airy2 kernel, P̄sg(x) = 1x≤sg(x) is a projection operator and H =

−Δ + x is called the Airy Hamiltonian because H Ai(· − s) = s Ai(· − s) (Δ is the Laplacian on R). The dependence
on n has been absorbed into the operator rather than the L2 space, and it is now plausible to take a large n limit.

The reason we call this a path-integral kernel is because a portion of it can be written in terms of the expectation
of a certain path-integral. By the Feynman–Kac formula (cf. [35]),

P̄s1e(t1−t2)H P̄s2 · · · e(tn−1−tn)H P̄snf (x) = Eb(t1)=x

[
f

(
b(tn)

)
e
− ∫ tn

t1
b(s)ds

n∏
i=1

1b(ti )≤si

]
, (3)

where b : [t1, tn] → R is the trajectory of a Brownian motion with diffusion coefficient 2 starting at b(t1) = x.
Let t1 < · · · < tn fill out the interval [�, r] and let si = h(ti) for some function h : [�, r] → R. Then as n goes to

infinity, the above operator has a limit in trace norm (see [26] or Section 4.2 below for details) given by

Γ h
�,rf (x) = Eb(�)=x

[
f

(
b(r)

)
e− ∫ r

� b(s)ds1b≤h

]
,

where {b ≤ h} denotes the event {b(s) ≤ h(s),∀s ∈ [�, r]}. Thus, it is shown in [26], Theorem 2, or Eq. (41) below
that

P
(
Airy2(s) ≤ h(s),∀s ∈ [�, r]) = det

(
I − K2 + Γ h

�,re(r−�)HK2
)
L2(R)

. (4)
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The above formula proved useful in [26] in providing a direct proof that the value of the maximum of the Airy2
process minus a parabola is distributed according to the (GOE) Tracy–Widom distribution; and in [39] (see also [9,
22,50,51]) in computing the joint distribution for the value and location (in t ) of the maximum. The two-time path-
integral kernel formula in [43] was utilized to compute asymptotics of the two-time covariance of the Airy2 process,
since the extended kernel does not easily yield this. Note that the left-hand side in the last formula presupposes the
existence of a continuous version of the Airy2 process. This was first shown to exist in [32].

What is remarkable about formula (4) is that the right-hand side is simple (despite the cumbersome finite dimen-
sional distributions given above) and the event in question in the left-hand side has a clear translation into the operator
Γ h

�,r . As a further application of the Feynman–Kac formula as well as the Cameron–Martin–Girsanov formula (see

[26]), the integral kernel of Γ h
�,r can be expressed as

Γ h
�,r (x, y) = Pb(�)=x−�2,b(r)=y−r2

(
b(s) ≤ h(s) − s2 for all s ∈ [�, r]),

where b is now a Brownian bridge run from x − �2 at time � to y − r2 at time r (this means that Γ h
�,rf (x) =∫

dyΓ h
�,r (x, y)f (y)). In other words, the probability that the Airy2 process hits a function h can be expressed as the

Fredholm determinant of an operator which is partly expressed by the probability that a Brownian bridge hits the same
function (minus a parabola).

We will now see how these formulas for the Airy2 process are part of a more general result.

1.1. Extended kernels and the path-integral kernel in a general setting

There are many other examples of extended determinantal point processes (some given in Section 4) and our aim is
to find path-integral kernel formulas for these other processes. This may have further applications, although we do
not address them here. For example, besides the previous work of [44], in [46] a path-integral kernel formula was
discovered for the Airy1 process and used to prove existence of a continuous version of the process and its Hölder
regularity.

When the Airy2 process was introduced, it arose as the top layer of the multi-layer Airy2 process, which will be
denoted {Airy2(i; t): i ∈ Z≥1, t ∈ R} and is such that Airy2(i; t) > Airy2(j ; t) for i < j . As t varies,

∑∞
i=1 δAiry2(i;t)

forms an R-indexed collection of point processes which has the structure of an (extended) determinantal point process
(see [10] and references therein) with correlation kernel Kext

2 (s, x; t, y).
This has the following consequence. For t1 < · · · < tn fix qti :R → R and let q̄ti = 1 − qti . For g : {t1, . . . , tn} → R

define q(g) := ∏n
i=1 qti (g(ti)) and likewise define q̄(g). Then (given some conditions on q to ensure convergence –

see Section 4.2 below)

E

[ ∞∏
i=1

q̄
(
Airy2(i; ·)

)] = det
(
I − QKext

2

)
L2({t1,...,tn}×R,μ)

, (5)

where Qf (ti, x) := qti (x)f (ti , x). The left-hand side above is referred to here as the expectation of a “multiplicative
functional” of the multi-layer process. When qti (x) = 1x>si (and hence q̄ti (x) = 1x≤si ), the above formula reduces to
(1) with Q = χ .

Our first result shows that the type of identity between extended and path-integral kernel Fredholm determinants
which one gets by equating the right-hand sides of (1) and (2) is quite general and dependent on a few structural
properties of the kernels.

In stating our results presently, we leave out a number of technical assumptions (see Section 3 for these details)
and assume that we have the following collection of operators on functions f : {t1, . . . , tn} → R:

• For each 1 ≤ i, j ≤ n, Wti ,tj (with the convention Wti ,ti = I ).
• For each 1 ≤ i ≤ n, Kti .
• A diagonal operator Q such that Qf (ti, ·) := Qti f (ti , ·) where for 1 ≤ i ≤ n and g :R →R, Qti g(x) := qti (x)g(x).

Theorem 1.1 (Theorem 3.3, with technical assumptions suppressed). Let t1 < · · · < tn and assume that for all
1 ≤ i ≤ j ≤ k ≤ n the following holds:
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• Right-invertibility: Wti ,tjWtj ,ti Kti = Kti .
• Semigroup property: Wti ,tjWtj ,tk =Wti ,tk .
• Reversibility relation: Wti ,tj Ktj = KtiWti ,tj .

Then

det
(
I − QKext)

L2({t1,...,tn}×R)
= det(I − Kt1 + Qt1Wt1,t2Qt2 · · ·Wtn−1,tnQtnWtn,t1Kt1)L2(R),

where

Kext(ti , x; tj , y) =
{Wti ,tj Ktj (x, y) if i ≥ j ,

−Wti ,tj (I − Ktj )(x, y) if i < j ,

and Qti = I − Qti .

This is proved in Section 3.3 essentially via linear algebra.
Letting Wti ,tj = e−(tj −ti )H , Kti = K2 and Qsi = Psi we recover the equality (2) for the Airy2 process. More

generally, the result implies that the expectation of a multiplicative functional of the multi-layer Airy2 process (5) can
be expressed in a similar way, by replacing each Psi by Qsi on the right-hand side of (2).

In Section 4 we apply this theorem to a variety of examples of extended determinantal point processes such as
the stationary (GUE) Dyson Brownian motion, the Airy2 process, the Pearcey process, and Markov processes on
partitions related to the z-measures. We also show how the identity applies to signed extended determinantal point
processes such as the Airy1 and Airy2→1 processes. In the case of the stationary (GUE) Dyson Brownian motion and
the Airy2 process, we also obtain the continuum limits of the corresponding path-integral kernel formulas (which is
likely doable in other cases as well).

1.2. Ensembles of non-intersecting paths and the path-integral kernel

The multi-layer Airy2 process arises as the scaling limit of a variety of ensembles of non-intersecting paths (see for
instance [31]). The occurrence of extended kernel determinants in such ensembles is a consequence of the Eynard–
Mehta theorem, which implies the existence of an extended determinantal point process structure [20,27,32,40,54].
The equivalence of the extended kernel determinant formula with the path-integral kernel determinant formula which
is given in Theorem 1.1 (see also Theorem 3.3) is via linear algebra, but does not indicate why such a path-integral
kernel formula exists. Theorem 1.3 below provides a direct link between ensembles of non-intersecting paths and path-
integral kernel determinant formulas, and its proof boils down to the Lindström–Gessel–Viennot Lemma (recorded
below as Lemma 2.1). By first proving the path-integral kernel determinant formula and then relating it to an extended
kernel determinant formula, this provides another proof of the extended determinant point process structure for these
ensembles (i.e., the Eynard–Mehta theorem), see Section 1.2.1.

Let us now introduce, for given T ∈ Z≥0 and N ∈ Z≥1, the ensembles of N non-intersecting paths of length T . Let
G = (V ,E) be a finite directed acyclic planar graph with vertex set V = V0 � V1 � · · · � VT (here � represents the
disjoint union of sets) and directed edge set E = E0→1 � E1→2 � · · · � ET −1→T where En→n+1 only contains edges
from x → y with x ∈ Vn and y ∈ Vn+1. Here x → y denotes an edge directed from x to y.

As an example, let Vn be vertices of Z2 of the form (n, i) for n − i ≡ 0 mod 2 (and |i| ≤ M for some M) and
let En contain all directed edges from (x,n) to (x ± 1, n + 1). Paths in this directed graph are trajectories of simple
symmetric random walks (constrained to stay within distance M from the origin), cf. Fig. 1.

We define a path π as a sequence of edges (e0 = x0 → x1, e1 = x1 → x2, . . . , eT −1 = xT −1 → xT ) where xi ∈ Vi

for 0 ≤ i ≤ T . For such a path, let π(n) = xn denote the nth vertex in the path.
To edges e ∈ E we associate weights we ∈ R, and to a path π we associate a weight w(π) given by the product of

the weights w(en) along the edges en of π . For x ∈ V0 and y ∈ VT we define a transition matrix

W(x, y) :=
∑

π :x→y

w(π),
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Fig. 1. An example of a graph G with source vertices X on the left-hand side and sink vertices Y on the right-hand side. Here there are N = 3
non-intersecting paths which are shown in grey, with starting points πi(b) and ending points πi(d) for i = 1,2,3.

where the summation is over all paths π from x to y. Instead of considering just a single path, we may consider
ensembles of N non-intersecting paths from elements of V0 to elements of VT (by which we mean paths which use
disjoint collections of vertices). We define the collection of all such paths as

N .I.(N) := {
Π = {π1, . . . , πN }: ∀i, πi goes from V0 to VT and no two paths intersect

}
.

We will describe a measure on such an ensemble. This requires the introduction of two additional families of
functions. For N fixed, consider functions ψi :V0 → R, 1 ≤ i ≤ N , and ϕj :VT → R, 1 ≤ j ≤ N . Define the weight
of Π ∈N .I.(N) as

Wt(Π) := det
[
ψi

(
πj (0)

)]N
i,j=1

(
N∏

i=1

w(πi)

)
det

[
ϕi

(
πj (T )

)]N
i,j=1, (6)

and the partition function as

Z =
∑

Π∈N .I.(N)

Wt(Π).

If ψi and ϕj are δ-functions then the ends of the paths are fixed.
Assuming that Z 
= 0 we may define a measure (not necessarily positive but with total integral 1) on Π ∈ N .I.(N)

as

ν(Π) = Wt(Π)

Z
.

When each of the three factors on the right-hand side of (6) are positive (and thus, in particular, ν is a probability
measure), one may think of ν as follows. The determinants det[ψi(πj (0))]Ni,j=1 and det[φi(πj (0))]Ni,j=1 define mea-
sures on the collections of N initial points in V0 and N final points in VT . The weights w(πi) in the middle factor in
(6) describe the transition probabilities for N independent paths (π1, . . . , πN) connecting these points. The measure
ν is restricted to non-intersecting paths, and the division by the normalizing constant Z means that ν corresponds to a
probability measure conditioned on the N paths not intersecting.

Define ϕ
(0)
j :V0 → R by ϕ

(0)
j (x) := ∑

y∈VT
W(x, y)ϕj (y). Note that this implies that W has a right-inverse on

span{ϕ(0)
i }Ni=1 which is given by W−1ϕ

(0)
j = ϕj .

We will make the following biorthogonality assumption on the {ψi}Ni=1 and {ϕ(0)
j }Nj=1:∑

x∈V0

ψi(x)ϕ
(0)
j (x) = 1i=j .

Remark 1.2. Assuming Z 
= 0, one can show that it is always possible to perform a linear transformation in
span{ψi}Ni=1 in such a way that the biorthogonality assumption is satisfied and ν remains unchanged.
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The final concept we introduce is that of a path-integral functional, which is any function

f : E0→1 × E1→2 × · · · × ET −1→T →R

such that

f (e0, e1, . . . , eT −1) =
T −1∏
n=0

fn(en)

for functions fn :En→n+1 →R. This definition extends to a directed path π from V0 to VT by setting f (π) equal to f

applied to the ordered sequence of edges in π . From the function f define a second set of edge weights w̃e := fn(e)we

were n is such that e ∈ En→n+1. With respect to these weights {w̃e}e∈E define a transition matrix

W̃(x, y) =
∑

π :x→y

w̃(π).

The following theorem is a consequence of Theorem 2.2, which is a similar result for a more general graph setting.
The theorem shows how the path-integral kernel determinant naturally arises from ensembles of non-intersecting
paths. A proof of the below result appears in Section 2.

Theorem 1.3. For any path-integral functional f as above

∑
Π=(π1,...,πN )∈N .I.(N)

N∏
i=1

f (πi)ν(Π) = det
(
I − K + W̃W−1K

)
L2(V0)

,

where K :L2(V0) → L2(V0) is given by its kernel

K(x1, x2) =
N∑

i=1

ϕ
(0)
i (x1)ψi(x2).

As we will explain in the proof of Corollary 1.4 below, the above result can also be seen as a consequence of
Theorem 1.1 and the known determinantal structure for ensembles of non-intersecting paths. Instead, we provide
a direct and simple linear algebraic proof of Theorem 1.3 using only the Lindström–Gessel–Viennot Lemma. This
provides an explanation of the appearance of path-integral kernel formulas.

1.2.1. Recovering the determinantal structure
As an application of Theorems 1.1 and 1.3, let us see how to recover the determinantal structure of the ensemble
of non-intersecting paths associated to the measure ν. We would like to show that for any collection of vertices
{x1, . . . , xk} ∈ V , the ν-measure of the set{

Π ∈ N .I.(N): all of the xi are visited by paths in Π
}

can be written as det[K(xi, xj )]ki,j=1 for some fixed matrix K with rows and columns indexed by the set of vertices V .
This property can be seen as a consequence of Corollary 1.4 below which we show.

Consider any collection of functions qn :Vn → R, 0 ≤ n ≤ T − 1. Consider the space of matrices with rows and
columns indexed by V , and for notational convenience denote x ∈ Vn as (n, x) so that matrix elements of a matrix
M are written as M(n,x;m,y). Define a matrix Q so that Qf (n,x) = qn(x)f (n, x). For m ≤ n and x ∈ Vm, y ∈
Vn define Wm,n(x, y) := ∑

π :x→y w(π) (for m = n let this be the identity matrix). For x ∈ Vn define ϕ
(n)
j (x) :=∑

y∈VT
Wn,T (x, y)ϕj (y). For x1, x2 ∈ Vn define Kn(x1, x2) := ∑N

i=1 ϕ
(n)
i (x1)ψi(x2). Note that for m ≤ n, Wm,n has
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a right-inverse on span{ϕ(m)
i }Ni=1 which is given by W−1

m,nϕ
(m)
j = ϕ

(n)
j . We will write this inverse as Wn,m. On account

of this we may define the following (extended kernel) matrix

Kext(m,x;n,y) =
{
Wm,nKn(x, y) if m ≥ n,
−Wm,n(I − Kn)(x, y) if m < n.

Corollary 1.4. For any collection of functions qn :Vn → R, 0 ≤ n ≤ T − 1

∑
Π=(π1,...,πN )∈N .I.(N)

N∏
i=1

T −1∏
n=0

q̄n

(
πi(n)

)
ν(Π) = det

(
I − QKext)

L2(V )
, (7)

where we recall that π(n) denotes the vertex in Vn through which π passes and that q̄(x) = 1 − q(x).

This result is essentially a version of the Eynard–Mehta Theorem.

Proof of Corollary 1.4. We use Theorem 3.3 (the more general version of Theorem 1.1). The technical assumptions
are immediately satisfied since we are dealing with a finite vector space. The right-invertibility, semigroup property
and reversibility relation are all readily checked from the definitions of the Wm,n and Kn. As a consequence of that
theorem we find that we may rewrite the right-hand side of (7) as

RHS(7) = det(I − K0 + Q0W0,1Q1W1,2 · · ·QT −1WT −1,T WT ,0K0)L2(V0)
, (8)

where for x ∈ Vn, Qnf (n, x) := q̄n(x)f (n, x).
Define a path-integral functional f so that for an edge e ∈ En→n+1 from x ∈ Vn to y ∈ Vn+1, fn(e) = q̄n(x). As a

consequence, for any path π from V0 to VT , f (π) = ∏T −1
n=0 q̄n(π(n)). This observation and Theorem 1.3 then imply

that we may rewrite the left-hand side of (7) as

LHS(7) = det(I − K0 + W̃0,T WT ,0K0)L2(V0)
. (9)

Note that we have introduced the subscripts on the right-hand side to be consistent with the notation introduced before
the statement of the corollary. Due to the specific type of path-integral functional f , it is now straight-forward to see
that

W̃0,T = Q0W0,1Q1W1,2 · · ·QT −1WT −1,T .

This implies that the right-hand sides of Eqs. (8) and (9) match and therefore completes the proof of the corollary. �

1.3. Outline

In Section 2 we prove a result about ensembles of non-intersecting paths on directed graphs (which implies The-
orem 1.3 above). In Section 3 we prove a general result (which implies Theorem 1.1 above) showing the equality
between certain extended kernel and path-integral Fredholm determinants. In Section 4 we apply this equality be-
tween Fredholm determinants to a variety of extended kernels from the literature, and in the Appendix we check the
technical assumptions necessary in order to do this.

2. Non-intersecting directed paths on weighted graphs

2.1. A general combinatorial result

Let G = (V ,E) be a finite directed acyclic planar graph with vertices V and edges E. Fix source vertices X =
{x1, . . . , xN } and sink vertices Y = {y1, . . . , yN }. Fix edge weights we for each directed edge e ∈ E.

A directed path π is a sequence of vertices connecting a vertex in X to a vertex in Y via directed edges in E. Denote
the source vertex of π by π(b) and the sink vertex of π by π(d).1 We say that two paths intersect if their vertex sets

1We use b to denote the source, or base vertex; and d to denote the sink, or destination vertex.
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have non-empty intersection. To a directed path π we associate a weight w(π) which is given by the product of we

over edges e of π . Define

W(x, y) =
∑

π :x→y

w(π), (10)

where the sum is over directed paths π from source vertex x to sink vertex y.
Define the ensemble of N directed non-intersecting paths from the elements of X to the elements of Y as

N .I.(N;X → Y) = {{π1, . . . , πN }: ∀i, πi(b) ∈ X,πi(d) ∈ Y and no two paths intersect
}
.

Write Π = {π1, . . . , πN } for an element of N .I.(N;X → Y). Note that the non-intersection condition and the fact
that X and Y have N elements ensures that {π1(b), . . . , πN(b)} = X and {π1(d), . . . , πN(d)} = Y .

Lemma 2.1 ([30,36,38,53]). Fix N ≥ 1. For any finite directed acyclic planar graph G with source vertices X =
{x1, . . . , xN }, sink vertices Y = {y1, . . . , yN } and edge weights we for each directed edge e ∈ E,

det
[
W(xi, yj )

]N
i,j=1 =

∑
Π∈N .I.(N;X→Y)

N∏
i=1

w(πi).

Consider now finite sets of source vertices X ⊂ V and sink vertices Y ⊂ V (with at least N vertices in each of X
and Y). For such X and Y we can likewise define the ensemble of N directed non-intersecting paths from elements
of X to elements of Y . Denote this ensemble N .I.(N;X → Y).

Fix functions ψi :X → R for 1 ≤ i ≤ N and functions ϕj :Y → R for 1 ≤ j ≤ N . For Π = {π1, . . . , πN } with
source vertices {π1(b), . . . , πN(b)} ⊂X and sink vertices {π1(d), . . . , πN(d)} ⊂ Y we define the weight of Π as

Wt(Π) := det
[
ψi

(
πj (b)

)]N
i,j=1

(
N∏

i=1

w(πi)

)
det

[
ϕi

(
πj (d)

)]N
i,j=1.

Define a partition function for directed non-intersecting ensembles of N paths from X to Y with respect to weights
{we}e∈E and functions {ψi}Ni=1, {ϕj }Nj=1 as

Z = Z
(
X ,Y, {we}e∈E, {ψi}Ni=1, {ϕj }Nj=1

) :=
∑

Π∈N .I.(N;X→Y)

Wt(Π).

For 1 ≤ j ≤ N define ϕ
(b)
j :X → R by

ϕ
(b)
j (x) :=

∑
y∈Y

W(x, y)ϕj (y) (11)

and further define the operator K :L2(X ) → L2(X ) by its kernel (which is just an X -indexed matrix)

K(x1, x2) =
N∑

i=1

ϕ
(b)
i (x1)ψi(x2). (12)

Observe that W has a right-inverse on span{ϕ(b)
i }Ni=1, which we will denote by W−1, given by

W−1ϕ
(b)
j = ϕj .



36 A. Borodin, I. Corwin and D. Remenik

In particular, since the range of K is contained in span{ϕ(b)
i }Ni=1, W−1K is well defined as an operator mapping L2(X )

to L2(Y):

W−1Kf =
N∑

i=1

〈ψi,f 〉L2(X )ϕi, (13)

where 〈·, ·〉L2(X ) is the inner product in L2(X ).
We say that the biorthogonality assumption is satisfied if〈

ψi,ϕ
(b)
j

〉
L2(X )

= 1i=j for all 1 ≤ i, j ≤ N.

Theorem 2.2. Let G = (V ,E) be a finite directed acyclic planar graph. Fix sets of source vertices X ⊂ V and sink
vertices Y ⊂ V . Fix edge weights we and a second set of weights w̃e for each directed edge e ∈ E. Fix functions
ψi :X → R for 1 ≤ i ≤ N and functions ϕj :Y →R for 1 ≤ j ≤ N which satisfy the biorthogonality assumption with

ϕ
(b)
j defined via the we weights. Write

Z = Z
(
X ,Y, {we}e∈E, {ψi}Ni=1, {ϕj }Nj=1

)
and Z̃ = Z

(
X ,Y, {w̃e}e∈E, {ψi}Ni=1, {ϕj }Nj=1

)
.

Then

Z̃

Z
= det

(
I − K + W̃W−1K

)
L2(X )

,

where W̃ :L2(Y) → L2(X ) is given by (10) with w replaced by w̃, and W−1K :L2(X ) → L2(Y) is defined in (13).

Remark 2.3. As will be clear from the proof, the biorthogonality assumption implies that Z 
= 0 (and, in fact, that
Z = 1). Conversely, one can show that if Z 
= 0 then there exists a linear change of basis in the space spanned by
{ψi}Ni=1 (or equally well the space spanned by {ϕj }Nj=1) which leads back to the biorthogonality assumption being

satisfied and does not change the ratio Z̃/Z.

Before turning to the proof of the theorem, let us check that it implies Theorem 1.3.

Proof of Theorem 1.3. Recall that for the path-integral functional f , we defined a set of weights w̃e = fn(e)we

where e ∈ En→n+1. Let Z = Z(V0,VT , {we}e∈E, {ψi}Ni=1, {ϕj }Nj=1) and Z̃ = Z(V0,VT , {w̃e}e∈E, {ψi}Ni=1, {ϕj }Nj=1).
We claim that∫

Π∈N .I.(N;V0→VT )

dν(Π)

N∏
i=1

f (πi) = Z̃

Z
= det

(
I − K + W̃W−1K

)
L2(V0)

.

The second equality is an immediate corollary of Theorem 2.2. To see the first equality above observe that

Z̃

Z
=

∑
Π∈N .I.(N;V0→VT )

N∏
i=1

T −1∏
n=0

fn

(
πi(n) → πi(n + 1)

)Wt(Π)

Z

=
∫

Π∈N .I.(N;V0→VT )

dν(Π)

N∏
i=1

T −1∏
n=0

fn

(
πi(n) → πi(n + 1)

) =
∫

Π∈N .I.(N;V0→VT )

dν(Π)

N∏
i=1

f (πi)

as desired. �
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Proof of Theorem 2.2. The proof is linear algebra. We may rewrite Z̃ by first summing over the subsets of X
and Y which host the source and sink vertices, and then considering all non-intersecting paths between these sets.
Thus

Z̃ =
∑

X={x1,x2,...,xN }⊂X
Y={y1,y2,...,yN }⊂Y

det
[
ψi(xj )

]N
i,j=1

( ∑
Π∈N .I.(N;X→Y)

N∏
i=1

w̃(πi)

)
det

[
ϕi(yj )

]N
i,j=1

=
∑

{x1,x2,...,xN }⊂X
{y1,y2,...,yN }⊂Y

det
[
ψi(xj )

]N
i,j=1 det

[
W̃(xi, yj )

]N
i,j=1 det

[
ϕi(yj )

]N
i,j=1.

The second line follows by an application of Lemma 2.1.
We may now apply the Cauchy–Binet identity twice. The first application is with respect to the summation in the

x’s, and it yields

∑
{x1,x2,...,xN }⊂X

det
[
ψi(xj )

]N
i,j=1 det

[
W̃(xi, yj )

]N
i,j=1 = det

[∑
x∈X

ψi(x)W̃(x, yj )

]N

i,j=1
.

The second application likewise is applied to the summation in y’s and yields that

Z̃ = det
[∑
x∈X
y∈Y

ψi(x)W̃(x, y)ϕj (y)
]N

i,j=1
. (14)

Observe that by the same argument we can obtain an analogous expression for Z with W̃ replaced by W . However,
by the definition of ϕ

(b)
j we find that

Z = det

[∑
x∈X

ψi(x)ϕ
(b)
j (x)

]N

i,j=1
.

By the biorthogonality assumption,∑
x∈X

ψi(x)ϕ
(b)
j (y) = 〈

ψi,ϕ
(b)
j

〉
L2(X )

= 1i=j ,

and hence Z = 1. Now observe that we can rewrite the kernel in appearing in (14) as∑
x∈X
y∈Y

ψi(x)W̃(x, y)ϕj (y) = 〈W̃ϕi,ψj 〉L2(X )

by using the definition of the operator W̃ and the inner product on L2(X ).
Therefore, it remains to prove that

det
(
I − K + W̃W−1K

)
L2(X )

= det
[〈W̃ϕi,ψj 〉L2(X )

]N
i,j=1. (15)

To prove the above statement we will write down the matrix for the operator I − K + W̃W−1K in the ba-
sis (ϕ

(b)
1 , . . . , ϕ

(b)
N , (span{ψi}Ni=1)

⊥), where (span{ψi}Ni=1)
⊥ represents any basis of the orthogonal complement of

span{ψi}Ni=1 in L2(X ). Let us consider the action of the operator K on the basis elements. On ϕ
(b)
j one sees that K
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acts as the identity operator:

(
Kϕ

(b)
j

)
(x1) =

∑
x2∈X

(
N∑

i=1

ϕ
(b)
i (x1)ψi(x2)

)
ϕ

(b)
j (x2) =

N∑
i=1

ϕ
(b)
i (x1)

( ∑
x2∈X

ψi(x2)ϕ
(b)
j (x2)

)

=
N∑

i=1

ϕ
(b)
i (x1)

〈
ψi,ϕ

(b)
j

〉
L2(X )

=
N∑

i=1

ϕ
(b)
i (x1)1i=j = ϕ

(b)
j (x1).

It is likewise clear that K acts on the basis elements of (span{ψi}Ni=1)
⊥ by taking them all to zero. Thus we may write

K as the matrix

K =
(

I 0
0 0

)
,

where the two blocks correspond to the basis elements {ϕ(b)
j }Nj=1 and (span{ψi}Ni=1)

⊥. This shows that

I − K =
(

0 0
0 I

)
.

The remaining operator to study is W̃W−1K . Writing the corresponding matrix in blocks as above we get from
(13) that

W̃W−1K =
(

A 0
∗ 0

)
,

where the N × N matrix A is yet to be determined. The value of the star is not important. To see this, write

I − K + W̃W−1K =
(

A 0
∗ I

)
and observe then that

det
(
I − K + W̃W−1K

)
L2(X )

= det[Ai,j ]Ni,j=1. (16)

The value of Ai,j can be found by using the inner product,

Ai,j = 〈
W̃W−1Kϕ

(b)
i ,ψj

〉
L2(X )

.

Recalling that W−1Kϕ
(b)
i = ϕi we deduce that

Ai,j = 〈W̃ϕi,ψj 〉L2(X ).

Combining this with (16) proves (15) and hence completes the proof of the theorem. �

3. Equivalence of extended kernel and path-integral kernel Fredholm determinants

There are various types of limits one can take of graph-based non-intersecting line ensembles. In this section we
will show that formulas of the type given in the previous section survive these limits. We do not prove this directly
via a limit transition, but rather show how such formulas arise via manipulations of the extended kernel Fredholm
determinants which describe these limiting systems. The main result of this section is, therefore, the equality of two
types of Fredholm determinants.

This equality will be stated in an abstract setting in this section, and later applied to several examples in Section 4.
A concrete example to keep in mind is the Airy2 process, which we will use throughout this section to illustrate
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the objects we will introduce and the assumptions we will make on them. The Airy2 process was introduced in the
Introduction and is discussed in further detail in Section 4.2, we refer the reader there for details and just recall the
definitions of the Airy Hamiltonian H = −Δ + x and the Airy kernel K2(x, y) = ∫ ∞

0 dλAi(x + λ)Ai(y + λ).

3.1. Fredholm determinants

Let us briefly introduce some of the basic notions related to Fredholm determinants (we refer the reader to [52] for
more details). Consider a separable Hilbert space H and let A be a bounded linear operator acting on H (H = L2(R)

in the Airy2 case). Let |A| = √
A∗A be the unique positive square root of the operator A∗A. The trace norm of A is

defined as ‖A‖1 = ∑∞
n=1〈en, |A|en〉, where {en}n≥1 is any orthonormal basis of H. We say that A ∈ B1(H), the family

of trace class operators, if ‖A‖1 < ∞. For A ∈ B1(H), one can define the trace tr(A) = ∑∞
n=1〈en,Aen〉. For later

use we also define the Hilbert–Schmidt norm ‖A‖2 = √
tr(|A|2) and say that A ∈ B2(H), the family Hilbert–Schmidt

operators, if ‖A‖2 < ∞. Given A ∈ B1(H) one can define a generalization of the finite-dimensional determinant,
the Fredholm determinant det(I + A)H. We refer the reader to [52] for the details of the definition in this level of
generality and just point out that, as expected, det(I +A)H = ∏

n(1+λn), where λn are the eigenvalues of A (counted
with algebraic multiplicity).

The result presented in this section (Theorem 3.3) can be stated, under some conditions, for operators acting on a
general separable Hilbert space. Nevertheless, in order to keep the presentation as simple as possible, and since it is
the setting we need for the examples in Section 4, we will restrict ourselves to the case of integral operators on an L2

space.
More precisely, we assume we are given a measure space (X,Σ,μ) and consider the Hilbert space L2(X,μ).

For brevity we will drop μ from the notation. We will also denote by M(X) the space of real-valued mea-
surable functions on X. By an integral operator we mean an operator A :D ⊆ M(X) −→ M(X) acting as
Af (x) = ∫

X
μ(dy)A(x, y)f (y), where A :X × X −→ R is the integral kernel of A. We will often speak inter-

changeably of an integral operator and its kernel. In particular we have abused notation by using the same let-
ter to denote an integral operator and its kernel. We recall that the product of two integral operators is defined by
AB(x,y) = ∫

X
μ(dz)A(x, z)B(z, y).

Though we will not appeal to this, we note that the Fredholm determinant det(I − K)L2(X) of a trace class op-
erator K :L2(X) → L2(X) with continuous (in both x and y) integral kernel K(x,y) has the following (absolutely
convergent) series expansion

det(I − K)L2(X) = 1 +
∑
k≥1

(−1)k

k!
∫

X

dμ(x1) · · ·
∫

X

dμ(xk)det
[
K(xi, xj )

]k
i,j=1. (17)

3.2. Assumptions for the theorem

In order to state the main theorem of this section in a fairly broad context, we must introduce a few operators and im-
pose certain assumptions upon them. Most of the assumptions are technical and intended to ensure well-definedness or
finiteness of the various quantities involved in the statement of the theorem. The main (not just technical) assumption
is given in Assumption 2.

Fix t1 < · · · < tn for the duration of this section. We will be interested in comparing the Fredholm determinant
of certain integral operators acting on the Hilbert spaces L2(X) and L2({t1, . . . , tn} × X) (the measure we use in
the second space is the product of the counting measure on {t1, . . . , tn} and μ). The operators we consider will be
constructed from the following four families of operators:

• For each 1 ≤ i < j ≤ n, an integral kernel Wti ,tj (for convenience we also introduce the notation Wti ,ti = I ).
• For each 1 ≤ i ≤ n, an integral kernel Kti .
• For each 1 ≤ i < j ≤ n, an integral kernel Wtj ,ti Kti (for convenience we also introduce the notation Wti ,ti Kti =

Kti ).
• For each 1 ≤ i ≤ n, a multiplication operator Qti acting on M(X) as Qti f (x) = qti (x)f (x) for some qti ∈M(X).
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The reason for the choice of notation Wtj ,ti Kti in the third family of operators is that we will assume below that
Wti ,tjWtj ,ti Kti = Kti for i < j (so that even though it is not defined above as its own operator, Wtj ,ti can be thought
of as a right inverse of Wti ,tj on the range of Kti ).

We make the following (technical) assumption.

Assumption 1.

(i) The integral operators QtiWti ,tj , Qti Kti , QtiWti ,tj Ktj and QtjWtj ,ti Kti for 1 ≤ i < j ≤ n are all bounded
operators mapping L2(X) to itself.

(ii) The operator

Kt1 − Qt1Wt1,t2Qt2 · · ·Wtn−1,tnQtnWtn,t1Kt1 ,

where Qti = I − Qti , is a bounded operator mapping L2(X) to itself.

The last operator in the assumption will appear in the formula provided in Theorem 3.3. An alternative expression
for this operator, which is in some cases more convenient for checking the assumption, is given in Lemma 3.1.

In the case of the Airy2 process we take X = R, choose μ to be the Lebesgue measure and set Wti ,tj = e(ti−tj )H ,
Kti = K2, and Wtj ,ti Kti = e(tj −ti )H K2 for 1 ≤ i ≤ j ≤ n. One can take for example the operators Qti to be projections
on intervals (ai,∞), that is, Qti f (x) = 1x>ai

f (x), which corresponds to studying the finite dimensional distributions
of the Airy2 process (we will make a more general choice in Section 4.2).

Going back to the general setting, we will make a certain algebraic assumption on the operators Wti ,tj , Kti and
Wtj ,ti Kti .

Assumption 2. For each i ≤ j ≤ k the following hold:

(i) Right-invertibility: Wti ,tjWtj ,ti Kti = Kti .
(ii) Semigroup property: Wti ,tjWtj ,tk =Wti ,tk .

(iii) Reversibility relation: Wti ,tj Ktj = KtiWti ,tj .

The second property is clear in the Airy2 case, while (i) and (iii) follow from the fact that K2 is the projection
operator into the negative (generalized) eigenspace of the Airy Hamiltonian H (see Section 4.2).

Let us now explain how these operators will be used. Using the kernels introduced above we define an extended
kernel Kext as follows: for 1 ≤ i, j ≤ n and x, y ∈ X,

Kext(ti , x; tj , y) =
{Wti ,tj Ktj (x, y) if i ≥ j ,

−Wti ,tj (I − Ktj )(x, y) if i < j . (18)

This definition coincides with the usual notion of extended correlation kernels of determinantal point processes, cf.
[10,20,27,32,40,54]. In the case of the Airy2 process, it coincides with the definition given in the Introduction and in
(40). As an operator, Kext acts on f ∈ L1

loc({t1, . . . , tn} × X) as

Kextf (ti , x) =
n∑

j=1

∫
X

dμ(y)Kext(ti , x; tj , y)f (tj , y).

See Section 4 for concrete examples.
We also need to make the following (technical) analytical assumption.

Assumption 3. One can choose multiplication operators Vti , V ′
ti

, Uti and U ′
ti

acting on M(X), for 1 ≤ i ≤ n, in such
a way that:

(i) V ′
ti
Vti Qti = Qti and Kti U

′
ti
Uti = Kti , for all 1 ≤ i ≤ n.

(ii) The operators Vti Qti Kti V
′
ti

, Vti QtiWti ,tj V
′
tj

, Vti QtiWti ,tj Ktj V
′
tj

and Vtj QtjWtj ,ti Kti V
′
ti

preserve L2(X) and are

trace class in L2(X), for all 1 ≤ i < j ≤ n.
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(iii) The operator Uti [Wti ,t1Kt1 − QtiWti ,ti+1 · · ·Qtn−1
Wtn−1,tnQtnWtn,t1Kt1 ]U ′

t1
preserves L2(X) and is trace class

in L2(X), for all 1 ≤ i ≤ n, where Qti = I − Qti .

The primes in U ′
ti

and V ′
ti

mean that these are almost (left) inverses of the operators Uti and Vti , and hence the
multiplication by these operators in (ii) and (iii) should be thought of as a conjugation. The distinction is because in
many cases it will be necessary to let Vti be multiplication by a function which is 0 where qti is 0, in which case Vti is
not invertible, with an analogous situation for Uti and U ′

ti
.

Before stating the main result of this section, Theorem 3.3, let us state a formula which reexpresses the operator
appearing in Assumption 3(iii). Besides being used in the proof of the below theorem, this formula is often useful in
checking the assumption (for example, as in Remark 3.2).

Lemma 3.1. Writing Qt = I − Qt , we have, for any 1 ≤ i ≤ n,

Wti ,t1Kt1 − QtiWti ,t2Qt2 · · ·Wtn−1,tnQtnWtn,t1Kt1

=
n∑

j=i

n−j∑
k=0

(−1)k
∑

j=a0<a1<···<ak≤n

Wti ,tj QtjWtj ,ta1
Qta1

Wta1 ,ta2
Qtak−1

Wtak−1 ,tak
Qtak

Wtak
,t1Kt1 .

We postpone the proof of this lemma until the end of this section.

Remark 3.2. Suppose that there exist multiplication operators Ṽti and Ṽ ′
ti

acting on M(X), for 1 ≤ i ≤ n, in such a
way that:

(i) Ṽ ′
ti
Ṽti Qti = Qti and Kti Ṽti Ṽ

′
ti

= Kti , for all 1 ≤ i ≤ n.

(ii) The operators Ṽti Qti Kti Ṽ
′
ti

, Ṽti QtiWti ,tj Ṽ
′
tj

, Ṽti QtiWti ,tj Ktj Ṽ
′
tj

and Ṽtj QtjWtj ,ti Kti Ṽ
′
ti

preserve L2(X) and are

trace class in L2(X), for all 1 ≤ i < j ≤ n.

Then it is not hard to check, using the formula given in Lemma 3.1, that Assumption 3 holds, taking Uti = V ′
ti

= Ṽ ′
ti

and U ′
ti

= Vti = Ṽti (see the end of the proof of Corollary 4.6 in the Appendix for more details). In the case of the
Airy2 process, when the operators Qti are of the form Qti f (x) = 1x≥ai

f (x) as discussed above, both Ṽti and Ṽ ′
ti

can
be taken to be the identity. If, on the other hand, one assumes qti (x) to be 0 for x < ai but to grow at a certain rate
for x ≥ ai , as we will in Section 4.2, then it is necessary to choose these operators more carefully (see the proof of
Corollary 4.6).

3.3. Identity between extended and path-integral kernel Fredholm determinants

Define a diagonal operator Q acting on f ∈M({t1, . . . , tn} × X) as

Qf (ti, ·) = Qti f (ti , ·). (19)

Note that, by Assumption 1, QKext preserves L2({t1, . . . , tn} × X). The following result expresses the Fredholm
determinant of I − QKext on L2({t1, . . . , tn} × X) as a Fredholm determinant on L2(X). The first example of such a
formula was provided by [43] for the case of the Airy2 process (see also [44]). This was later extended to the Airy1
process in [46]. This type of formulas have recently been found to be very useful in the study of these processes, see
for example [26,39,45–47].

Theorem 3.3. With the above notation, and under Assumptions 1, 2 and 3, we have

det
(
I − QKext)

L2({t1,...,tn}×X)
= det(I − Kt1 + Qt1Wt1,t2Qt2 · · ·Wtn−1,tnQtnWtn,t1Kt1)L2(X), (20)

where Qt = I − Qt .



42 A. Borodin, I. Corwin and D. Remenik

Remark 3.4. The operators appearing in both Fredholm determinants preserve L2(X) by Assumption 1. Moreover,
the Fredholm determinants are well-defined thanks to Assumption 3, even though the operators appearing there are
not necessarily trace class. In fact, if we define the diagonal operator V acting on u ∈ L2({t1, . . . , tn}×X) as (V u)ti =
Vti uti , and similarly define V ′, then V QKextV ′ is trace class by Assumption 3(ii) and by the cyclic property of the de-
terminant and the fact that V ′V Q = Q it leads to the same Fredholm expansion for det(I −V QKextV ′)L2({t1,...,tn}×X)

and for det(I −QKext)L2({t1,...,tn}×X). The same argument applies to the Fredholm determinant on the right-hand side
of (20) by Assumption 3(iii), if we multiply it on the left by Ut1 and on the right by U ′

t1
. Hence both sides of (20) are

well-defined and one should really read the equality as

det
(
I − V QKextV ′)

L2({t1,...,tn}×X)

= det
(
I − Ut1(Kt1 − Qt1

Wt1,t2 · · ·Wtn−1,tnQtnWtn,t1Kt1)U
′
t1

)
L2(X)

.

Proof of Theorem 3.3. The proof of this result is a generalization of the proof of Theorem 1 of [46] (see also the
Appendix of [44]). We will retain most of the notation of [44,46], and as in those papers we use sans-serif fonts (e.g.
W) for operators on L2({t1, . . . , tn} × X). This space can be identified with the space

⊕
t∈{t1,...,tn} L2(X), and hence

we may (and will) think of an operator W on L2({t1, . . . , tn} × X) as an operator-valued n × n matrix. We will use
serif fonts for the matrix entries (e.g. Wi,j = W for some W acting on L2(X)). All determinants throughout this proof
are computed on L2({t1, . . . , tn} × X) unless otherwise indicated.

We will use repeatedly the following facts about trace class operators and Fredholm determinants on a separable
Hilbert space H:

(i) If A,B ∈ B1(H) then AB ∈ B1(H) and

det
(
(I + A)(I + B)

)
H = det(I + A)H det(I + B)H.

Moreover, if A and B are bounded linear operators on H and both AB,BA ∈ B1(H) then

det(I + AB)H = det(I + BA)H. (21)

(ii) An operator acting on
⊕

t∈{t1,...,tn} H is trace class if and only if all of its matrix entries are trace class.

To simplify notation throughout the proof we will replace subscripts of the form ti by i, so for example Wi,j =Wti ,tj .
Recall that we are assuming t1 < t2 < · · · < tn. Let K = QKext. Then K can be written as

K = Q
(
W−Kd + W+(

Kd − I
))

, (22)

where

Kd
ij = Ki1i=j , Qi,j = Qi1i=j

and W−, W+ are lower triangular, respectively strictly upper triangular, and defined by

W−
ij =Wi,j 1i≥j , W+

ij =Wi,j 1i<j .

Here we are slightly abusing notation, because Wi,j is not defined for i > j . However, since W− appears applied after
Kd, the formula makes sense, with [W−Kd]i,j =Wi,jKj for i > j . We also define the diagonal operators V, V′, U and
U′ by

Vi,j = Vi1i=j , V′
i,j = V ′

i 1i=j , Ui,j = Ui1i=j and U′
i,j = U ′

i 1i=j .

In order to manipulate the Fredholm determinant of I−K we will need to make sure at each step that the appropriate
operators preserve L2(X) and are trace class in L2(X) as needed. As a consequence, the proof is slightly cumbersome,
so we will first briefly explain the main idea, ignoring some details and all analytical issues.
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Our goal is to manipulate the determinant of I − K in such a way that we end up with the determinant of an
operator-valued matrix I − K̃ where only the first column of K̃ is non-zero. If we achieve this, then we will have
det(I − K) = det(I − K̃) = det(I − K̃1,1)L2(X), and all we will need to do is compute K1,1. The key to obtain such an
identity is the following observation. Using the semigroup property in Assumption 2(ii) one can check directly that[(

I + W+)−1]
i,j

= I1j=i −Wi,i+11j=i+1. (23)

This identity is meant in the sense of products of integral kernels, where the product of the identity operator with an in-
tegral kernel is defined in the obvious way. Now using the identity Wi,j−1Kj−1Wj−1,j =Wi,jKj from Assumptions
2(ii) and 2(iii) we get that[(

W− + W+)
Kd(I + W+)−1]

i,j
=Wi,jKj −Wi,j−1Kj−1Wj−1,j 1j>1 =Wi,1K11j=1. (24)

Note that only the first column of this matrix has non-zero entries. To take advantage of this fact we rewrite K as

K = Q
(
W− + W+)

Kd(I + W+)−1(
I + W+) − QW+, (25)

so that

I − K = (
I + QW+)[

I − (
I + QW+)−1

Q
(
W− + W+)

Kd(I + W+)−1(
I + W+)]

.

The invertibility of I + QW+ follows from the fact that QW+ is strictly upper triangular. This fact also implies that
det(I + QW+) = 1, and hence

det(I − K) = det
(
I − (

I + QW+)−1
Q

(
W− + W+)

Kd(I + W+)−1(
I + W+))

= det
(
I − (

I + W+)(
I + QW+)−1

Q
(
W− + W+)

Kd(I + W+)−1)
,

where we have used the cyclic property of the determinant. Recalling that only the first column of (W− + W+)Kd(I +
W+)−1 is non-zero we deduce that

K̃ = (
I + W+)(

I + QW+)−1
Q

(
W− + W+)

Kd(I + W+)−1

has the same property and hence det(I − K) = det(I − K̃) = det(I − K̃1,1)L2(X) as desired.
The rest of the proof will consist in making the above argument rigorous and precise and then computing the

resulting K̃1,1. Recall that, by Assumption 3(ii), each entry in the operator-valued matrix VKV′ is trace class in L2(X).
Let

W1 = VQW+V′ and W2 = VQ
(
W− + W+)

KdV′. (26)

Since VQW+V′ is strictly upper triangular, we have (VQW+V′)n+1 = 0, so I + W1 is invertible:

(I + W1)
−1 =

n∑
k=0

(−1)k
(
VQW+V′)k

. (27)

Therefore we can write

det
(
I − VKV′) = det

(
(I + W1)

(
I − (I + W1)

−1W2
))

.

We remark that W1, W2 and (I + W1)
−1 are trace class in L2(X) by Assumption 3(ii) and (27), and thus from the last

identity we deduce that

det
(
I − VKV′) = det(I + W1)det

(
I − (I + W1)

−1W2
) = det

(
I − (I + W1)

−1W2
)
, (28)
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where the second equality follows from the fact that, since W1 is strictly upper triangular, its only eigenvalue is 0, so
det(I + W1) = 1.

Write

(I + W1)
−1W2 = W3W4 (29)

with

W3 = (I + W1)
−1VQ

(
W− + W+)

Kd(I + W+)−1
U′ and W4 = U

(
I + W+)

V′.

Here we are using (24) and the identity KUU′ = K. We have already checked that W3W4 is trace class in L2(X). Thus
if we prove that W4W3 is also trace class we can deduce from (21), (28) and (29) that

det
(
I − VKV′) = det(I − W4W3). (30)

We want to obtain an explicit expression for the kernel W4W3. Note that, in view of (27) and the fact that V′VQ = Q,
V′(I + W1)

−1VQ = (I + QW+)−1Q, so all the factors V and V′ cancel in W4W3:

W4W3 = U
(
I + W+)(

I + QW+)−1
Q

(
W− + W+)

Kd(I + W+)−1
U′.

From (24) and the semigroup property we deduce that, for 0 ≤ k ≤ n − i,[(
QW+)k

Q
(
W− + W+)

Kd(I + W+)−1]
i,1

=
∑

i<a1<···<ak≤n

QiWi,a1Qa1Wa1,a2 · · ·Qak−1Wak−1,ak
Qak

Wak,1K1,

while for k > n− i the left-hand side above equals 0 (the case k = 0 is interpreted as QiWi,1K1). Summing the above
times (−1)k from k = 0 to k = n − i we get directly from the last formula and (27) that[(

I + QW+)−1
Q

(
W− + W+)

Kd(I + W+)−1]
i,j

= 1j=1

[
QiWi,1K1 +

n−i∑
k=1

(−1)k
∑

i<a1<···<ak≤n

QiWi,a1Qa1Wa1,a2 · · ·Qak−1Wak−1,ak
Qak

Wak,1K1

]
. (31)

Note that only the first column of the above matrix contains non-zero entries. Since U(I + W+) is upper triangular and
U′ is diagonal, the same is true for W4W3. Pre-multiplying (31) by U(I + W+) we get

(W4W3)i,1 =
n∑

j=i

n−j∑
k=0

(−1)k
∑

j=a0<a1<···<ak≤n

UiWi,jQjWj,a1Qa1Wa1,a2Qak−1Wak−1,ak
Qak

Wak,1K1U
′
1. (32)

By Lemma 3.1 we deduce that

(W4W3)i,1 = Ui[Wi,1K1 − QiWi,2Q2 · · ·Wn−1,nQnWn,1K1]U ′
1. (33)

By Assumption 3(iii) this operator is trace class, which provides the needed justification for writing (30), and then
since only the first column of W4W3 is non-zero we deduce that

det
(
I − VKV′) = det

(
I − (W4W3)1,1

)
L2(R)

.

Setting i = 1 in (33) yields the result. �

In order to finish the proof of Theorem 3.3 it remains to prove Lemma 3.1.
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Proof of Lemma 3.1. We start with the right-hand side of the identity. Replace each Qi by I −Qi except for the first
one to get

n∑
j=i

n−j∑
k=0

(−1)k
k∑

m=0

(
n − j − m

k − m

)
(−1)m

∑
j=b0<b1<···<bm≤n

Wi,b0Qb0Wb0,b1 · · ·Qbm−1
Wbm−1,bmQbm

Wbm,1K1,

where, as in the above proof, we have written i instead of ti in the subscripts. Interchanging the order of summation
leads to

∑n
j=i

∑n−j

m=0

∑n−j
k=m(−1)k+m

(
n−j−m

k−m

)
(�), where (�) represents the last sum above, and is independent of k.

Noting that
∑n−j

k=m

(
n−j−m

k−m

)
(−1)k+m = 1m=n−j , the above expression can be rewritten as

n∑
j=i

∑
j=b0<b1<···<bn−j ≤n

Wi,b0Qb0Wb0,b1Qb1
· · ·Wbm−1,bn−j

Qbn−j
Wbn−j ,1K1

=
n∑

j=i

Wi,j (I − Qj)Wj,j+1Qj+1 · · ·Wbn−1,bnQbn
Wn,1K1

=
n∑

j=i

[Wi,j+1Qj+1Wj+1,j+2Qj+2 · · ·Wbn−1,bnQbn
Wn,1K1

−Wi,jQjWj,j+1Qj+1 · · ·Wbn−1,bnQbn
Wn,1K1]

=Wi,1K1 − QiWi,2Q2 · · ·Wn−1,nQnWn,1K1,

where the last equality follows by telescoping. �

4. A few examples

We will now show how to apply Theorem 3.3 to a few examples of Fredholm determinants which arise in describing
objects of interest in random matrix theory, growth processes, particle systems, tilings and representation theory. Our
examples include extended determinantal point processes such as the stationary (GUE) Dyson Brownian motion,
the Airy2 process, and the Pearcey process; all of which are limits of ensembles of non-intersecting directed paths
on weights graphs. We also include an extended determinant point process given by Markov processes on partitions
related to the z-measures; this ensemble is not a limit of a graph-based ensemble of non-intersecting directed paths. We
also show how the identity applies to signed extended determinantal point processes such as the Airy1 and Airy2→1
processes.

The proofs of the results in this section are postponed to the Appendix.

4.1. Stationary (GUE) Dyson Brownian motion

Consider the eigenvalues of an N ×N Hermitian matrix with each (algebraically independent) entry diffusing accord-
ing to a stationary Ornstein–Uhlenbeck process (real valued on the diagonal and complex valued off the diagonal).
The eigenvalues of this process are real valued and themselves form a Markov process, called the stationary Dyson
Brownian motion. Its stationary marginal distribution is the N × N Gaussian Unitary Ensemble (GUE) eigenvalue
distribution, that is, the distribution of the (real) eigenvalues λ1 ≤ · · · ≤ λN of an N ×N Hermitian matrix with entries
which are independent, up to the Hermitian condition, with N(0,1) entries on the diagonal, and independent real and
imaginary parts above the diagonal, each with N(0,1/2) distribution (here N(μ,σ ) denotes a normal random variable
with mean μ and variance σ 2). This distribution is absolutely continuous with respect to the Lebesgue measure, with
density given by

CN1λ1≤···≤λN

∏
i<j

|λi − λj |2
∏
i

e−λ2
i /2,

where CN is an explicit normalizing constant. See [6] or [33] for more details.
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We will consider this Dyson Brownian motion process in stationarity and write the ith largest eigenvalue at time t

as λN(i; t). The collection of eigenvalues at time t is written λN(·; t) = (λN(1; t), . . . , λN(N; t)) and the curve traced
out by the ith eigenvalue over time is written as λN(i; ·). Then the graphs of λN(1; ·), . . . , λN(N; ·) form an ensemble
of non-intersecting curves (see, for example, Section 4.3.1 of [6]). This ensemble of curves is indexed by time t and
curve label i and hence can be thought of as a random variable taking values in the space of continuous curves from
{1, . . . ,N} ×R to R. We will write E as the expectation operator for this random variable.

Definition 4.1. For times t1 < t2 < · · · < tn consider functions qti :R → R and let q̄ti (x) = 1 − qti (x). For a
curve g :R → R define the functional q̄ by q̄(g) = ∏n

i=1 q̄ti (g(ti)). One likewise defines the functional q(g) =∏n
i=1 qti (g(ti)).

The stationary (GUE) Dyson Brownian motion is an extended determinantal point process. In particular this means
that for any functions qti (as above),

E

[
N∏

j=1

q̄
(
λN(j ; ·))] = det

(
I − QKext

GUE,N

)
L2({t1,...,tn}×R)

(34)

as long as both sides are well-defined, where Q is defined as in (19) and Kext
GUE,N is the extended Hermite kernel (see

e.g. [54]):

Kext
GUE,N (s, x; t, y) =

{∑N−1
k=0 ek(s−t)ϕk(x)ϕk(y) if s ≥ t ,

−∑∞
k=N ek(s−t)ϕk(x)ϕk(y) if s < t .

Here ϕk(x) = e−x2/2pk(x) and pk is the kth normalized Hermite polynomial (so that ‖ϕk‖2 = 1).
Writing

D = −1

2

(
Δ − x2 + 1

)
,

the harmonic oscillator functions ϕk satisfy Dϕk = kϕk . Then the Hermite kernel

KGUE,N (x, y) = KGUE,N (0, x;0, y) =
N−1∑
k=0

ϕk(x)ϕk(y)

acts as the projection operator onto span{ϕ0, . . . , ϕN−1}. In the notation of Theorem 3.3 we are taking X = R, μ the
Lebesgue measure, and for 1 ≤ i < j ≤ n

Wti ,tj (x, y) = e−(tj −ti )D(x, y) =
∞∑

k=0

e−(tj −ti )kϕk(x)ϕk(y), Kti = KGUE,N ,

Wtj ,ti Kti (x, y) = e(tj −ti )DKGUE,N (x, y) =
N−1∑
k=0

e(tj −ti )kϕk(x)ϕk(y).

Applying Theorem 3.3 we conclude:

Corollary 4.2. Fix t1 < · · · < tn and write τ = mini=1,...,n−1 |ti+1 − ti |. For each 1 ≤ i ≤ n choose a function qti ∈
L1

loc(R) satisfying supx∈R e−κx2 |qti (x)| < ∞ for some κ ∈ (0, 1
2
√

2
tanh(τ/

√
2)). Then

E

[
N∏

j=1

q
(
λN

j

)] = det
(
I − KGUE,N + Qt1e(t1−t2)DQt2 · · ·Qtne(tn−t1)DKGUE,N

)
L2(R)

.

Note that we have removed the bars over q and Q by replacing qti ’s by (1 − qti )’s.
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4.1.1. Continuum statistics
We may now take a continuous time limit of the above formula (in the style of [26]). Consider a function h :R×R →
[0,∞] and � < r . Define an operator Γ h

�,r acting on L2(R) as follows: Γ h
�,rf (·) = u(r, ·), where u(r, ·) is the solution

at time r of

∂tu = −Du − hu (35)

with initial data u(�, x) = f (x). By the Feynman–Kac formula we may also express the action of this operator in
terms of a path-integral through a potential h as

Γ h
�,rf (x) = Eb(�)=x

[
f

(
b(r)

)
e−(1/2)

∫ r
� (2h(s,b(s))+b(s)2−1)ds

]
, (36)

where the expectation is over a (standard) Brownian motion b(·) started at time � with b(�) = x and run until time r .
Let t1 = �, tn = r and the ti be spaced equally in between with step size δ = (r − �)/(n − 1). Then letting qti (x) =

1 − δh(ti , x) and taking n → ∞ the above formula yields:

Proposition 4.3. For any interval [�, r] and continuous bounded function h :R×R→ [0,∞]

E

[
N∏

j=1

exp

(
−

∫ r

�

h
(
t, λN(j ; t))dt

)]
= det

(
I − KGUE,N + Γ h

�,re(tn−t1)DKGUE,N

)
L2(R)

. (37)

Remark 4.4. The condition on h is not optimal, but it makes the arguments simpler. A different class of functions h

for which the result holds is the following. Fix a function g ∈ H 1([�, r]) and set h(t, x) = 0 for x < g(t) and infinity
otherwise. Then the left-hand side of (37) becomes P[⋂N

j=1{λN(j ; t) < g(t) ∀t ∈ [�, r]}] and the right-hand side

makes perfect sense as well, with Γ h
�,r now being the solution operator of a certain boundary operator involving g.

This case corresponds to calculating the probability that on the entire interval [�, r], the top curve of the Dyson
Brownian motion remains below the function g(t). This is the same type of result shown in [26] for the Airy2 process,
and the proof for this case can be easily adapted from the arguments in that paper.

4.1.2. Rescaled process
Now introduce the rescaled process

λ̃N (i; t) = √
2N1/6(λN

(
i;N−1/3t

) − √
2N

)
.

Changing variables x �→ 1√
2N1/6 x + √

2N , y �→ 1√
2N1/6 y + √

2N in the kernel accordingly, we immediately obtain:

Corollary 4.5. For any t1 < · · · < tn and functions qti :R → R, 1 ≤ i ≤ n, satisfying the same conditions as in
Corollary 4.2, we have

E

[
N∏

j=1

q
(̃
λN(j ; ·))] = det

(
I − K̃GUE,N + Qt1 e(t1−t2)HN Qt2 · · ·Qtne(tn−t1)HN K̃GUE,N

)
L2(R)

, (38)

where the kernel of K̃GUE,N is given by

K̃GUE,N (x, y) = 1√
2N1/6

KGUE,N

(
x√

2N1/6
+ √

2N,
y√

2N1/6
+ √

2N

)
and the operator

HN = −Δ + x + x2

2N2/3
.

The above rescaling corresponds to focusing in on the top curves of the Dyson Brownian motion. In the limit N

goes to infinity, K̃GUE,N converges to the Airy2 kernel K2 and HN converges to the Airy Hamiltonian H (defined in
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the Introduction and below in Section 4.2). So in the limit as N goes to infinity we recover the formula for the Airy2
process as expected. The operator in the Fredholm determinant in the right-hand side of (38) converges in trace class
to the corresponding one with K2 and H , which means that all of the left-hand side probabilities have limits. This
can certainly be proved under some additional (though not optimal) assumptions on the qti as in Corollary 4.6, but we
choose to treat the Airy2 process independently.

4.2. The Airy2 line ensemble

The multi-layer Airy2 process [32,43] is the limit of the stationary (GUE) Dyson Brownian motion under the scaling
of Section 4.1.2. In particular for t ∈ R consider the point process corresponding to {̃λN(i; t): 1 ≤ i ≤ N}. As N

goes to infinity, this point process converges in the vague topology to a limiting point process with an infinite number
of simple points which we write as {Airy2(i; t): i ∈ Z≥1} (labeled so that Airy2(i; t) > Airy2(j ; t) for i < j ). This
convergence can be strengthened so that for any fixed set t1 < t2 < · · · < tn, the n-tuple of λ̃-point processes has a limit
{Airy2(i; t): i ∈ Z≥1, t ∈ {t1, . . . , tn}}. This limiting collection of point processes is consistent and can be completed
to a point process valued stochastic process indexed by t ∈ R. This process is called the multi-layer Airy2 process. As
it is the limit of a stationary (in t ) process, it is also stationary.

There exists a continuous version of this process [25] so that Airy2 can be thought of as a random variable taking
values in the space of Z≥1 indexed, continuous and non-intersecting curves from R to R. The convention is that
Airy2(1; ·) represents the top curve (i.e., the limit of λ̃N (1; ·)). The continuous version of the multi-layer Airy2 process
is called the Airy2 line ensemble.

Since the Dyson Brownian motion was an extended determinantal point process (34), so too is the multi-layer
Airy2 process. Analogous to (34), and with the functional q̄ given in Definition 4.1 and operator Q given in (19),

E

[ ∞∏
j=1

q̄
(
Airy2(j ; ·))] = det

(
I − QKext

2

)
L2({t1,...,tn}×R)

, (39)

where Kext
2 is the extended Airy2 kernel

Kext
2 (s, x; t, y) =

{∫ ∞
0 dλe−λ(s−t) Ai(x + λ)Ai(y + λ) if s ≥ t ,

− ∫ 0
−∞ dλe−λ(s−t) Ai(x + λ)Ai(y + λ) if s < t ,

(40)

and Ai(·) is the Airy function. In order for the above expectation to make sense, one has to impose conditions on the
functions qti , such as in Corollary 4.6.

To put this example in the setting of Theorem 3.3 we take X = R, μ the Lebesgue measure, and consider the Airy
Hamiltonian defined as

H = −Δ + x.

H has the shifted Airy functions Aiλ(x) = Ai(x − λ) as its generalized eigenfunctions: H Aiλ(x) = λAiλ(x). Define
the Airy2 kernel K2 as the projection of H onto its negative generalized eigenspace:

K2(x, y) =
∫ ∞

0
dλAi(x + λ)Ai(y + λ).

Then it is not hard to check that, in the notation of Theorem 3.3, (40) corresponds to taking, for 1 ≤ i < j ≤ n,

Wti ,tj (x, y) = e−(tj −ti )H (x, y) =
∫ ∞

−∞
dλeλ(tj −ti ) Ai(x + λ)Ai(y + λ), Kti = K2,

Wtj ,ti Kti (x, y) = e(tj −ti )H K2(x, y) =
∫ ∞

0
dλe−λ(tj −ti ) Ai(x + λ)Ai(y + λ).

Note that Wti ,tj is only well-defined on the range of K2. Applying Theorem 3.3 allows to conclude:

Corollary 4.6. Fix t1 < · · · < tn and let τ = mini=1,...,n−1{|ti+1 − ti |}. Choose functions qti ∈ L1
loc(R), 1 ≤ i ≤ n,

such that supx≥0 e−rx |qti (x)| < ∞ for some 0 < r < τ and supx<0 ϕ(x)|1 − qti (x)| < ∞ for some function ϕ(x) such
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that
∫ 0
−∞ dxe−2(tn−t1)xϕ(x)−2 < ∞, 1 ≤ i ≤ n. Then

E

[ ∞∏
j=1

q
(
Airy2(j ; ·))] = det

(
I − K2 + Qt1 e(t1−t2)H Qt2 · · ·Qtne(tn−t1)H K2

)
L2(R)

.

This formula is also the limit of the right-hand side of (38) as N goes to infinity.
Since the Airy line ensemble is a continuous version of the multi-layer Airy2 process, we may take a continuum

limit of the above formula, in the same manner as done in Section 4.1.1. The PDE which Γ h
�,r is solving is now

∂tu = −Hu−hu (corresponding to replacing D by H in (35)) and the result is that for any interval [�, r] and suitable
function h :R×R → [0,∞] (for example h can be taken to be bounded, continuous, and such that h(t, x) = 0 for any
t ∈ [�, r] and x < M for some M ∈R),

E

[ ∞∏
j=1

exp

(
−

∫ r

�

h
(
t,Airy2(j ; t))dt

)]
= det

(
I − K2 + Γ h

�,re(r−�)HK2
)
L2(R)

. (41)

We will omit the proof of this statement, which can be adapted from the proofs of Proposition 4.3 and Corollary 4.6
together with the proof of Proposition 3.2 in [26]. Taking h(t, x) to be 0 for x < g(t) and infinity otherwise we recover
Theorem 2 of [26].

4.3. The Pearcey process

There are many other multi-layer processes which arise as scaling limits of non-intersecting ensembles of Brownian
motions (or similar diffusions) for which we can apply Theorem 3.3 (see for instance Airy-like processes [2,3,8,19];
bulk limits such as the Sine process [54], Pearcey process [55] or Tacnode process [3–5,11,29,34]; hard edge limits
like the Bessel process [37]).

To illustrate this point we will show how a Fredholm determinant involving the Pearcey kernel can be rewritten via
Theorem 3.3.

Let us briefly and informally recall one way the Pearcey process arises as a scaling limit of Brownian bridges.
Consider 2N Brownian bridges on the time interval [−N,N ] such that all 2N of them start at height 0 and N of
them end at height b and the other N end at height −b. Condition these Brownian bridges not to intersect (as can be
done by spacing their starting and ending points by ε and letting ε go to zero). When b = 0 the limit shape of the
ensemble of conditioned Brownian bridges has a limit shape which is elliptical (and the ensemble is sometimes called
a watermelon) and the fluctuations around the top of this limit shape are described (in the limit as N goes to infinity)
by the Airy2 line ensemble minus a parabolic shift.

When the endpoints parameter b = cN , the limit shape has a cusp at some time t = c′N , where c′ ∈ (−1,1) is
a function of c. For t1 < t2 < · · · < tn, the N -tuple of point processes formed by the heights (properly centered and
normalized by N1/4 near the height of the cusp) of the Brownian bridges at times c′N + tiN

1/2, 1 ≤ i ≤ n, converges
in the vague topology as N goes to infinity to a limit which is called the Pearcey process, P , see [7,23,24,41,55]. It is
a point process valued stochastic process indexed by t ∈ R. At each time t the point process can be indexed by Z as
{P(j ; t): j ∈ Z}.

Analogously to (34), and with the functional q̄ given in Definition 4.1 and operator Q given in (19),

E

[ ∞∏
j=−∞

q̄
(
P(j ; ·))] = det

(
I − QKext

Prc

)
L2({t1,...,tn}×R)

, (42)

where Kext
Prc is the extended Pearcey kernel

Kext
Prc(s, x; t, y) = − 1√

4π(t − s)
exp

(
− (y − x)2

4(t − s)

)
1t>s

+ 1

(2πi)2

∫
C

du

∫ i∞

−i∞
dv

e−v4/4+tv2/2−yv

e−u4/4+su2/2−xu

1

v − u
, (43)
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and where C is the contour consisting of the rays going from ±∞eiπ/4 to 0 and from 0 to ±∞e−iπ/4.
In the setting of Theorem 3.3 we take X =R, μ the Lebesgue measure, and for ti < tj define

Wti ,tj = e(1/2)(tj −ti )Δ, Kti (x, y) = K
ti
Prc(x, y) := Kext

Prc(ti , x; ti , y),

Wtj ,ti Kti (x, y) = Kext
Prc(tj , x; ti , y).

The semigroup property is obviously satisfied, while for i < j

Wti ,tj K
tj
Prc(x, y) =

∫ ∞

−∞
dz

1√
2π(tj − ti )

e−(x−z)2/(2(tj −ti ))
1

(2πi)2

∫
C

du

∫ i∞

−i∞
dv

e−v4/4+tj (v2/2)−yv

e−u4/4+tj (u2/2)−zu

1

v − u

= 1

(2πi)2

∫
C

du

∫ i∞

−i∞
dv

e−v4/4+tj (v2/2)−yv

e−u4/4+ti (u
2/2)−xu

1

v − u

= Kext
Prc(ti , x; tj , y) +Wti ,tj = K

ti
PrcWti ,tj (x, y),

where the second equality follows from computing a simple Gaussian integral and the last equality is obtained simi-
larly. Likewise one can check that for i < j we have Wti ,tjWtj ,ti K

ti
Prc = K

ti
Prc. Hence Assumption 2 is satisfied, and

from Theorem 3.3 we deduce the following:

Corollary 4.7. For any t1 < t2 < · · · < tn and functions qti : R → R, 1 ≤ i ≤ n so that Assumptions 1 and 3 are
satisfied, we have

E

[ ∞∏
j=−∞

q
(
P(j ; ·))]

= det
(
I − K

t1
Prc + Qt1 e(1/2)(t2−t1)ΔQt2 · · · e(1/2)(tn−tn−1)ΔQtne(1/2)(t1−tn)ΔK

t1
Prc

)
L2(R)

. (44)

In particular, the formula holds for the case qti (x) = 1x≤ai
.

We do not attempt here to provide more general conditions on the functions qti so that the formula holds.

4.4. The Airy1 and Airy2→1 processes

All of the examples considered thus far have involved probability measures on ensembles of non-intersecting paths or
their scaling limits. Going back to the discrete setting of Theorem 2.2, there was no condition that the measure on non-
intersecting paths be positive. This condition is not met, for example, in the case of the Airy1 and Airy2→1 processes.
These are real valued stochastic processes which are the scaling limits of marginals of measures (not entirely positive)
on non-intersecting paths [12–14,49]. Even though the ensemble measure is not entirely positive, the marginal is a
probability measure.

We will focus on the Airy2→1 process obtained in [14], since a similar result to that which we now state has already
shown up in [46]. The Airy2→1 process is a continuous time (non-stationary) real valued process Airy2→1 :R → R

given by its finite-dimensional distributions

P

(
n⋂

k=1

{
Airy2→1(tk) ≤ xk

}) = det(I − χK2→1)L2({t1,...,tn}×R) (45)

for t1 < · · · < tn, where χf (ti, x) = 1x>xi
f (x) and

Kext
2→1(s, x; t, y) = − 1√

4π(t − s)
exp

(
− (ỹ − x̃)2

4(t − s)

)
1t>s

+ 1

(2πi)2

∫
γ+

dw

∫
γ−

dz
ew3/3+tw2−ỹw

ez3/3+sz2−x̃z

2w

(z − w)(z + w)
(46)
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with

x̃ = x − (
s−)2

, ỹ = y − (
t−

)2
,

notation r− = min{0, r}, and the paths γ+, γ− satisfying −γ+ ⊆ γ− with γ+ : eiφ+∞ → e−iφ+∞, γ− : e−iφ−∞ →
eiφ−∞ for some φ+ ∈ (π/3,π/2), φ− ∈ (π/2,π−φ+). The Airy2→1 process crosses over between the Airy2 and the
Airy1 processes in the sense that Airy2→1(t + τ) converges to 21/3 Airy1(2

−2/3t) as τ → ∞ and to Airy2(1; t) (the
Airy2 process, i.e. the top line of the multi-layer Airy2 process) when τ → −∞ (in the sense of finite dimensional
distributions). It is expected to govern the asymptotic spatial fluctuations in random growth models when the initial
conditions are deterministic near the point where the hydrodynamic profile changes from flat to curved. In particular,
it is shown in [14] that it governs the asymptotic fluctuations near the profile switch point for the totally asymmetric
simple exclusion process starting with particles only at the even negative integers.

We take again X =R and μ the Lebesgue measure, and for i < j we define

Wti ,tj (x, y) = e(tj −ti )Δ
(
x − (

t−i
)2

, y − (
t−j

)2)
, Kti (x, y) = K

ti
2→1(x, y) := Kext

2→1(ti , x; ti , y),

Wtj ,ti Kti (x, y) = Kext
2→1(tj , x; ti , y).

Proceeding as in Section 4.3 one checks that these choices satisfy Assumption 2, and hence (under the additional
assumptions) we may apply Theorem 3.3. Using the translation invariance of the heat kernel to rearrange the shifts
appearing in the resulting formula we get:

Corollary 4.8. For any t1 < t2 < · · · < tn, we have

P

(
n⋂

k=1

{
Airy2→1(tk) ≤ xk

})

= det
(
I − K

t1
2→1 + P̄x̃1 e(t2−t1)ΔP̄x̃2 · · · e(tn−tn−1)ΔP̄x̃n

e(t1−tn)ΔK
t1
2→1

)
L2(R)

, (47)

where x̃i = xi − (t−i )2, P̄af (x) = 1x≤af (x) and K
t1
2→1(x, y) = Kext

2→1(t1, x + (t−1 )2; t1, y + (t−1 )2).

In the formula, e(t1−tn)ΔK
t1
2→1 should be interpreted as Kext

2→1(tn, x + (t−n )2; t1, y + (t−1 )2). One can use this formula
directly to recover the analogous path-integral kernel formulas for the Airy1 and Airy2 processes in the appropriate
limits, and thus show that Airy2→1 interpolates between these two processes.

4.5. Markov processes on partitions and z-measures

The z-measures are a remarkable family of probability distributions on partitions that arise in representation theory
of the infinite-symmetric group. They can be viewed as determinantal point processes on the one-dimensional lattice
with infinite many particles, and they degenerate to a variety of well-known discrete and continuous determinantal
point processes, see [15,16,42] and references therein.

In [18], a Markov process on partitions that preserves the z-measures was constructed. Its dynamical correlation
functions are determinantal, and they can be described via the corresponding extended kernel, see Section 6 of [18].
One particular limit of this Markov process can be seen as ‘space-like’ space–time sections of the multilayer polynu-
clear growth process of [43], see [17].

Note that it is not known how to obtain the z-measures and the corresponding Markov processes as a limit of an
ensemble of non-intersecting paths. However, these objects can be viewed as an analytic continuation of an ensemble
of non-intersecting birth-and-death processes in the number of paths, see Section 6.5 of [18].

By encoding a partition λ = (λ1 ≥ λ2 ≥ · · ·) by the point configuration {λi − i + 1
2 }i≥1, the Markov process can be

written as {Z(j ; t): j ∈ Z≥1, t ∈ R}. Here Z(j ; t) takes values in Z′ = Z+ 1
2 .
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Similarly to (34), and with the functional q̄ given in Definition 4.1 and operator Q given in (19),

E

[ ∞∏
j=1

q̄
(
Z(j ; ·))] = det

(
I − QKext

z,z′,ξ
)
L2({t1,...,tn}×Z′), (48)

where Kext
z,z′,ξ is the extended hypergeometric kernel which we will now define.

For parameters z, z′ ∈ C such that either z′ = z̄ ∈ C \ Z or m < z, z′ < m + 1 for a m ∈ Z, and ξ ∈ (0,1) define a
second order difference operator Dz,z′,ξ on Z

′, depending on (z, z′, ξ) and acting on functions f (·) ∈ �2(Z′) as follows

(Dz,z′,ξ f )(x) =
√

ξ

(
z + x + 1

2

)(
z′ + x + 1

2

)
f (x + 1)

+
√

ξ

(
z + x − 1

2

)(
z′ + x − 1

2

)
f (x − 1) − (

x + ξ
(
z + z′ + x

))
f (x). (49)

This is a self-adjoint operator with discrete simple spectrum (1 − ξ)Z′. Its eigenfunctions ψa ,

Dz,z′,ξψa = (1 − ξ)aψa,

are explicitly written through the Gauss hypergeometric function (see [18], Eq. (5.1)). We normalize them by the
condition ‖ψa‖�2(Z′) = 1. Then

Kext
z,z′,ξ (s, x; t, y) =

{∑
a∈Z′+ e−a(s−t)ψa(x)ψa(y) if s ≥ t ,

−∑
a∈Z′− e−a(s−t)ψa(x)ψa(y) if s < t ,

(50)

where Z
′± = {± 1

2 ,± 3
2 ,± 5

2 , . . .}.
Let D′

z,z′,ξ = −(1 − ξ)−1Dz,z′,ξ . Then in the setting of Theorem 3.3, (50) corresponds to taking X = Z
′, μ the

counting measure and, for i < j ,

Wti ,tj = e
(tj −ti )D

′
z,z′,ξ , Kti (x, y) = Kz,z′,ξ (x, y) := Kext

z,z′,ξ (0, x;0, y) =
∑
a∈Z′+

ψa(x)ψa(y),

Wtj ,ti Kti (x, y) = Kext
z,z′,ξ (tj , x; ti , y) =

∑
a∈Z′+

e−a(tj −ti )ψa(x)ψa(y).

Thus from Theorem 3.3 we deduce the following:

Corollary 4.9. For any t1 < t2 < · · · < tn and functions qti :Z′ → R, 1 ≤ i ≤ n, so that Assumptions 1 and 3 are
satisfied, we have

E

[ ∞∏
j=1

q
(
Z(j ; ·))]

= det
(
I − Kz,z′,ξ + Qt1e

(t2−t1)D
′
z,z′,ξ Qt2 · · · e

(tn−tn−1)D
′
z,z′,ξ Qtne

(t1−tn)D′
z,z′,ξ Kz,z′,ξ

)
L2(Z′). (51)

Let us remark that if all the functions qti have finite support then all the needed analytic assumptions are automat-
ically satisfied because we are working in an L2 space on a finite set. Of course, such a restriction is unnecessarily
harsh, but we will not pursue this issue here any further.
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Appendix: Proofs of the results from Section 4

We recall the following facts about trace class and Hilbert–Schmidt norms (see e.g. [52]) of operators in L2(X) for
some measurable space (X,Σ,μ), which we will use repeatedly without reference:

‖AB‖1 ≤ ‖A‖2‖B‖2, ‖AB‖1 ≤ ‖A‖op‖B‖1,

and if A has integral kernel A(x,y),

‖A‖2 =
(∫

μ(dx)μ(dy)
∣∣A(x,y)

∣∣2
)1/2

for each A,B in the appropriate space, where ‖ · ‖op denotes the operator norm in L2(X).
Throughout this section c and c′ will denote positive constants whose value may change from line to line.

Proof of Corollary 4.2. Checking Assumption 2 is straightforward. We will take in this case Vti = V ′
ti

= Uti = U ′
ti

=
I , and thus Assumption 1 is contained in Assumption 3, which we check next.

Condition (i) is trivial. Given functions ψ1 and ψ2 write ψ1 ⊗ ψ2 for the kernel ψ1(x)ψ2(y) and let φ be
any function with

∫
φ2 = 1. Then we can write Qti (ϕk ⊗ ϕk) = (Qti ϕk ⊗ φ)(φ ⊗ ϕk), so that ‖Qti (ϕk ⊗ ϕk)‖1 ≤

‖Qti ϕk ⊗ φ‖2‖φ ⊗ ϕk‖2 (note that we need to consider the operators with the bars because of the remark following
the statement of the corollary). Now slightly abusing notation to write ‖ · ‖2 both for the Hilbert–Schmidt norm of
operators in L2(R) and for the norm of this last space, we have

‖Qti ϕk ⊗ φ‖2 = ∥∥(1 − qti )ϕk

∥∥
2‖φ‖2 = ∥∥(1 − qti )ϕk

∥∥
2 and ‖ϕk ⊗ φ‖2 = ‖ϕk‖2‖φ‖2 = 1,

so for 1 ≤ i, j ≤ n we have

∥∥Qti e
(tj −ti )DKGUE,N

∥∥
1 ≤

N−1∑
k=0

e(tj −ti )k
∥∥Qti (ϕk ⊗ ϕk)

∥∥
1 ≤

n−1∑
k=0

e(tj −ti )k‖q̄ti ϕk‖2 < ∞,

since |ϕk(x)| ≤ cxke−x2/2 and |q̄ti (x)| ≤ ceκx2
where κ < 1

2
√

2
tanh(τ/

√
2) < 1

2 . Hence the only thing left to check

in (ii) is that ‖Qti e
−(tj −ti )D‖1 < ∞ for i < j . To that end we use the Feynman–Kac representation to write (setting

t = 1
2 (tj − ti ))

e−tD(x, y) = 1√
2πt

e−(x−y)2/2t
Eb(0)=x,b(t)=y

[
e−(1/2)

∫ t
0 (b(s)2−1)ds

]
, (52)

where b(s) denotes a standard Brownian motion and the subscript in the expectation means that it is conditioned (in
the sense of a Brownian bridge) to go from x at time 0 to y at time t . Then

∥∥Qti e
−tD

∥∥2
2 =

∫
R2

dx dyq̄ti (x)2 1

2πt
e−(x−y)2/t

Eb(0)=x,b(t)=y

[
e−(1/2)

∫ t
0 (b(s)2−1)ds

]2

≤
∫
R2

dx dyce2κx2 1

2πt
e−(x−y)2/2t

Eb(0)=x,b(t)=y

[
e− ∫ t

0 (b(s)2−1)ds
]

≤
∫ ∞

−∞
dxc

e2κx2+t

√
2πt

Eb(0)=x

[
e− ∫ t

0 b(s)2 ds
] ≤ c′

∫ ∞

−∞
dxe2κx2−tanh(

√
2t)x2/

√
2 < ∞

by our assumption on κ , where in the last inequality we have used (1.9.3) in [21]. In the same way we have ‖e−tD‖2 <

∞ and then ‖Qti e
−(tj −ti )D‖1 ≤ ‖Qti e

−tD‖2‖e−tD‖2 < ∞.
Finally, Assumption 3(iii) follows from Assumption 3(ii) thanks to the observation in Remark 3.2. �
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Proof of Proposition 4.3. Using the notation introduced before the statement of the result, it is clear that the functions
qti satisfy the assumptions appearing in Corollary 4.2, so that

E

[
N∏

j=1

n∏
i=1

(
1 − δh

(
tj , λ

N
j (ti)

))] = det
(
I − KGUE,N + Qt1 e(t1−t2)D · · ·Qtne(tn−t1)DKGUE,N

)
L2(R)

. (53)

The left-hand side equals

E

[
N∏

j=1

exp

(
n∑

i=1

log
(
1 − δh

(
ti , λ

N
j (ti)

)))]
= E

[
N∏

j=1

exp

(
−δ

n∑
i=1

h
(
ti , λ

N
j (ti)

) + nO
(
δ2))]

−−−−→
n→∞ E

[
N∏

j=1

exp

(
−

∫ r

�

h
(
t, λN

j (t)
)

dt

)]
(54)

by the dominated convergence theorem.
For the right-hand side of (53), writing Γ

h,n
�,r = Qt1e(t1−t2)DQt2 · · · e(tn−1−tn)DQtn one can use the Feynman–Kac

representation on each interval [ti , ti+1] as in (52) (see also (3)) to deduce that Γ
h,n
�,r has kernel

Γ
h,n
�,r (x, y) = 1√

2π(r − �)
e−(x−y)2/2(r−�)

Eb(�)=x,b(r)=y

[
e
∑n

i=0 log(1−δh(ti ,b(ti )))−(1/2)
∫ r
� (b(s)2−1)ds

]
,

where b(s) is a Brownian bridge (with diffusion coefficient 2) run from x at time � to y at time r . Then using (36) we
deduce that

[
Γ

h,n
�,r − Γ h

�,r

]
(x, y) = 1√

2π(r − �)
e−(x−y)2/2(r−�)

Eb(r)=x,b(�)=y

[
e−(1/2)

∫ r
� (2h(s,b(s))+b(s)2−1)ds

· (e
∑n

i=0 log(1−δh(ti ,b(ti )))+
∫ r
� h(s,b(s))ds − 1

)]
for small enough δ. Since h is bounded and continuous, the random variable inside the expectation goes to 0 almost
surely as n → ∞ using a similar argument as in (54), and thus since this random variable is bounded by ce− ∫ r

� b(s)2 ds

the whole expected value goes to 0 as n → ∞ by the dominated convergence theorem. If we now define the multiplica-
tion operator Mf (x) = φ(x)f (x) with φ(x) = (1+x2)−1/2 then the above argument gives (Γ

h,n
�,r −Γ h

�,r )M(x, y) → 0

as n → ∞ for all x, y. To deduce that ‖(Γ h,n
�,r −Γ h

�,r )M‖2 → 0 as n → ∞ we use the dominated convergence theorem

again together with the fact that (Γ
h,n
�,r − Γ h

�,r )M satisfies∫
R2

dx dy
[(

Γ
h,n
�,r − Γ h

�,r

)
M(x,y)

]2

≤ c

∫
R2

dx dye−(x−y)2/(r−�)
Eb(�)=x,b(r)=y

[
e−(1/2)

∫ r
� b(s)2 ds

]2
φ(y)2

≤ c

[∫ ∞

−∞
dyφ(y)4

]1/2 ∫ ∞

−∞
dx

[∫ ∞

−∞
dye−2(x−y)2/(r−�)

Eb(�)=x,b(r)=y

[
e−2

∫ r
� b(s)2 ds

]]1/2

≤ c‖φ‖2
4

∫ ∞

−∞
dx

[∫ ∞

−∞
dye−(x−y)2/(2(r−�))

Eb(�)=x,b(r)=y

[
e−2

∫ r
� b(s)2 ds

]]1/2

≤ c‖φ‖2
4

∫ ∞

−∞
dxEb(�)=x

[
e−2

∫ r
� b(s)2 ds

]1/2 = c′‖φ‖2
4

[∫ ∞

−∞
dxe− tanh(2(r−�))x2

]1/2

< ∞,
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where we have used the Cauchy–Schwarz inequality and the last equality follows from (1.9.3) of [21]. Checking that
‖M−1e(r−�)DKGUE,N‖2 < ∞ is simple as in the proof of Corollary 4.2, so from the above we deduce that∥∥(

KGUE,N − Γ
h,n
�,r e(r−�)DKGUE,N

) − (
KGUE,N − Γ h

�,re(r−�)DKGUE,N

)∥∥
1

≤ ∥∥(
Γ h

�,r − Γ
h,n
�,r

)
M

∥∥
2

∥∥M−1e(r−�)DKGUE,N

∥∥
2 −−−−→

n→∞ 0.

Since the mapping A �→ det(I + A)L2(R) is continuous in the space of trace class operators (see [52]), we deduce that
the right-hand side of (53) converges to det(I − KGUE,N + Γ h

�,re(r−�)DKGUE,N )L2(R), and hence

E

[
N∏

j=1

exp

(
−

∫ r

�

h
(
t, λN

j (t)
)

dt

)]
= det

(
I − KGUE,N + Γ h

�,re(tn−t1)DKGUE,N

)
L2(R)

.
�

Proof of Corollary 4.6. Fix f ∈ L2(R) and write φ(x) = erx1x≥0 + ϕ(x)−11x<0. Then for i < j (note that as in the
proof of Corollary 4.2 we need to consider the operators with bars), writing f̂ (λ) = ∫ ∞

−∞ dx Ai(x + λ)f (x) we have

∥∥Qti e
(ti−tj )H f

∥∥2
2 ≤ c

∫ ∞

−∞
dx

[∫
R2

dy dλφ(x)eλ(ti−tj ) Ai(x + λ)Ai(y + λ)f (y)

]2

≤ c

∫ ∞

−∞
dx

[∫ ∞

−∞
dλφ(x)2e2λ(tj −ti ) Ai(x + λ)2

][∫ ∞

−∞
dλf̂ (λ)2

]
= c‖f ‖2

2

∫ ∞

−∞
dxφ(x)2e−2(tj −ti )x

∫ ∞

−∞
dλe2(λ+1)(tj −ti ) Ai(λ)2 ≤ c′‖f ‖2

2, (55)

where in the last line we have used the Parseval identity for the Airy transform
∫

f̂ 2 = ∫
f 2. The fact that c′ < ∞

follows from the assumption on r and ϕ and the bounds∣∣Ai(x)
∣∣ ≤ ce−(2/3)x3/2

for x ≥ 0 and
∣∣Ai(x)

∣∣ ≤ c|x|−1/4 for x < 0 (56)

(see (10.4.59–60) in [1]). This shows that for i < j , Qti e
−(tj −ti )H is a bounded operator mapping L2(R) to itself.

Similar computations allow to check the rest of Assumption 1(i). To check (ii) we use the formula given in Lemma 3.1.
Each term can be written as a product of the form (−1)k(e(t1−ta0 )H Qta0

) · · · (e(tak−1−tak
)H

Qtak
)(e(tak

−ta1 )H K2) with

1 ≤ a0 < · · · < ak ≤ n. The k + 1 factors coming after (−1)k can be checked to be bounded operators on L2(R) by
a computation similar to (55), and a simpler computation gives the same for e(tak

−ta1 )H K2 using the spectral formula
for its kernel.

As in the previous example, checking Assumption 2 is straightforward. For Assumption 3 we choose

Vti f (x) = U ′
ti
f (x) = ψ(x)f (x), V ′

ti
f (x) = Uti f (x) = ψ(x)−1f (x)

with ψ(x) = e−rx/21x≥0 + ϕ(x)1/21x<0. Condition (i) is obvious. Now note that K2 = B0P0B0, where B0(x,λ) =
Ai(x + λ) and Paf (x) = f (x)1x≥a , so∥∥Vti Qti K2V

′
ti

∥∥
1 ≤ ‖Vti Qti B0P0‖2

∥∥P0B0V
′
ti

∥∥
2. (57)

We have

‖Vti Qti B0P0‖2
2 ≤ c

∫ ∞

−∞
dx

∫ ∞

0
dλψ(x)2φ(x)2 Ai(x + λ)2

= c

∫ ∞

0
dx

∫ ∞

0
dλerx Ai(x + λ)2 + c

∫ 0

−∞
dxϕ(x)−1

∫ ∞

−x

dλAi(λ)2.
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The first integral on the right-hand side is clearly finite by (56). For the second one, note that by (56)
∫ ∞
−x

dλAi(λ)2 ≤
c(1 + |x|1/2), so the integral is finite by the assumption on ϕ, which by the Cauchy–Schwarz inequality implies∫ 0
−∞ dx|x|1/2ϕ(x)−1 < ∞. ‖P0B0V

′
ti
‖2 < ∞ follows from the exact same calculation, and hence from (57) we get

that Vti Qti K2V
′
ti

is trace class. The same proof shows that Vti Qti e
(tj −ti )H K2V

′
ti

is trace class for i < j . To check that

Vti Qti e
−tHV ′

tj
is trace class for i < j and t = tj − ti > 0 we start by writing∥∥Vti Qti e
−tH V ′

tj

∥∥
2 ≤ ∥∥Vti Qti e

−tH/2
∥∥

2

∥∥e−tH/2V ′
tj

∥∥
2.

For the first factor we use again the explicit formula for the kernel of e−tH to obtain∥∥Vti Qti e
−tH/2

∥∥2
2

=
∫
R4

dx dy dλdσψ(x)2φ(x)2et (λ+σ)/2 Ai(x + λ)Ai(y + λ)Ai(x + σ)Ai(y + σ)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dλψ(x)2φ(x)2etλ Ai(x + λ)2 =

∫ ∞

−∞
dxψ(x)2φ(x)2e−tx

∫ ∞

−∞
dλetλ Ai(λ)2 (58)

which is finite by the similar arguments as above. ‖e−tH/2V ′
ti
‖2 can be bounded in the same manner, and we deduce

that Vti Qti e
−tH V ′

tj
is trace class. The same proof works for Vti Qti e

−tHK2V
′
tj

.
To get (iii) we use Lemma 3.1 and rewrite each term in the sum as

(−1)k
(
Uti e

(ti−ta0 )H Qta0
U ′

ta0

)(
Uta0

e(ta0−ta1 )H Qta1
U ′

ta1

) · · · (U ′
tak−1

e(tak−1 −tak
)H

Qtak
U ′

tak

)
· (Utak

e(tak
−ta1 )H K2U

′
ta1

)
.

Since Uti = V ′
ti

and U ′
ti

= Vti , each factor above corresponds to the adjoint of one of the factors appearing in (ii). Since
the adjoint of a trace class operator is also trace class, we deduce that the whole product is trace class. �

Proof of Corollary 4.8. We already indicated how to check Assumption 2. One checks directly that the first three
operators in Assumption 1(i) are bounded operators preserving L2(R), while the last one can be checked using (46)
and arguing about the Airy functions appearing there similarly as in the previous proof. Assumption 1(ii) follows
similarly using Lemma 3.1. Assumption 3 can be checked following the same ideas as in the proof of Corollary 4.6
and using the arguments in Appendix A of [12] to provide the necessary analytical estimates. �
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