
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2015, Vol. 51, No. 1, 349–375
DOI: 10.1214/13-AIHP578
© Association des Publications de l’Institut Henri Poincaré, 2015

An algebraic construction of quantum flows
with unbounded generators

Alexander C. R. Beltona and Stephen J. Willsb

aDepartment of Mathematics and Statistics, Lancaster University, United Kingdom. E-mail: a.belton@lancaster.ac.uk
bSchool of Mathematical Sciences, University College Cork, Ireland. E-mail: s.wills@ucc.ie

Received 12 September 2012; revised 1 August 2013; accepted 6 August 2013

Abstract. It is shown how to construct ∗-homomorphic quantum stochastic Feller cocycles for certain unbounded generators, and
so obtain dilations of strongly continuous quantum dynamical semigroups on C∗ algebras; this generalises the construction of a
classical Feller process and semigroup from a given generator. Our construction is possible provided the generator satisfies an
invariance property for some dense subalgebra A0 of the C∗ algebra A and obeys the necessary structure relations; the iterates
of the generator, when applied to a generating set for A0, must satisfy a growth condition. Furthermore, it is assumed that either
the subalgebra A0 is generated by isometries and A is universal, or A0 contains its square roots. These conditions are verified
in four cases: classical random walks on discrete groups, Rebolledo’s symmetric quantum exclusion process and flows on the
non-commutative torus and the universal rotation algebra.

Résumé. Des cocycles de Feller stochastiques quantiques ∗-homomorphes sont construits pour certains générateurs non bornés,
et ainsi nous obtenons des dilatations pour des semigroupes dynamiques quantiques fortement continus sur des C∗ algèbres.
Ceci généralise la construction d’un processus de Feller classique et de son semigroupe à partir d’un générateur donné. Notre
construction est possible à condition que le générateur satisfasse une propriété d’invariance pour une sous-algèbre dense A0 de
la C∗ algèbre A et obéisse aux relations de structure nécessaires; les itérations du générateur, lorsqu’elles sont appliquées à une
famille génératrice de A0, doivent satisfaire à une condition de croissance. De plus, il est supposé que soit la sous-algèbre A0 est
engendrée par les isométries et A est universelle, ou bien A0 contient ses racines carrées. Ces conditions sont vérifiées dans quatre
cas: marches aléatoires classiques sur les groupes discrets, le processus d’exclusion quantique symétrique introduit par Rebolledo
et des flux sur le tore non commutatif et l’algèbre de rotation universelle.
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1. Introduction

The connexion between time-homogeneous Markov processes and one-parameter contraction semigroups is an excel-
lent example of the interplay between probability theory and functional analysis. Given a measurable space (E,E), a
Markov semigroup T with state space E is a family (Tt )t≥0 of positive contraction operators on L∞(E) such that

Ts+t = Ts ◦ Tt for all s, t ≥ 0 and T0f = f for all f ∈ L∞(E);
the semigroup is conservative if Tt1 = 1 for all t ≥ 0. Typically, such a semigroup is defined by setting

(Ttf )(x) =
∫

E

f (y)pt (x,dy)
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for a family of transition kernels pt :E ×E → [0,1]. Given a time-homogeneous Markov process (Xt )t≥0 with values
in E, the associated Markov semigroup is obtained from the prescription

(Ttf )(x) = E
[
f (Xt )|X0 = x

]
, (1.1)

so that pt (x,A) = P(Xt ∈ A|X0 = x) is the probability of moving from x into A in time t . When the state space E is
a locally compact Hausdorff space we may specialise further: a Feller semigroup is a Markov semigroup T such that

Tt

(
C0(E)

)⊆ C0(E) for all t ≥ 0 and ‖Ttf − f ‖∞ → 0 as t → 0 for all f ∈ C0(E).

Any sufficiently nice Markov process, such as a Lévy process, gives rise to a Feller semigroup; conversely, if E is
separable then any Feller semigroup gives rise to a Markov process with càdlàg paths.

A celebrated theorem of Gelfand and Naimark states that every commutative C∗ algebra is of the form C0(E)

for some locally compact Hausdorff space E. Thus the first step in generalising Feller semigroups, and so Markov
processes, to a non-commutative setting is to replace the commutative algebra C0(E) with a general C∗ algebra A.
Moreover, a strengthening of positivity, called complete positivity, is required for a satisfactory theory: a map φ :A→
B between C∗ algebras is completely positive if the ampliation

φ(n) :Mn(A) → Mn(B); (xij ) 
→ (
φ(xij )

)
is positive for all n ≥ 1. This property is justified on physical grounds and is equivalent to the usual form of positivity
when either algebra A or B is commutative. The resulting object, a semigroup of completely positive contractions on
a C∗ algebra A, is known as a quantum dynamical semigroup or, when conservative, a quantum Markov semigroup.
Such semigroups appear in the mathematical physics literature, being used to describe the evolution of open quantum-
mechanical systems which interact irreversibly with their environment. They also arise in non-commutative geometry.

Any strongly continuous quantum dynamical semigroup T is characterised by its infinitesimal generator τ , the
closed linear operator such that

dom τ =
{
f ∈A: lim

t→0

Ttf − f

t
exists

}
and τf = lim

t→0

Ttf − f

t
.

For a Feller semigroup, the form of the generator τ may reveal properties of the corresponding process; for instance, a
classical Lévy process may be specified, via the Lévy–Khintchine formula, by the characteristics of its generator, viz.
a drift vector, a diffusion matrix describing the Brownian-motion component and a Lévy measure characterising its
jumps. If we start with a putative generator τ then operator-theoretic methods may be used to construct the semigroup,
although there are often considerable analytical challenges to be met. Verifying that τ satisfies the hypotheses of the
Hille–Yosida theorem, the key analytical tool for this construction, is often difficult. In this paper we provide, for a
suitable class of generators, another method of constructing quantum dynamical semigroups and the corresponding
non-commutative Markov processes, continuing a line of research initiated by Accardi, Hudson and Parthasarathy,
Meyer, and others.

To understand how the relationship between semigroups and Markov processes generalises to the non-commutative
framework, recall first that any locally compact Hausdorff space E may be made compact by adjoining a point at
infinity, which corresponds to adding an identity to the algebra C0(E) or adding a coffin state for an E-valued Markov
process; it is sufficient, therefore, to restrict our attention to compact Hausdorff spaces or, equivalently, unital C∗
algebras. The correct analogue of an E-valued random variable X is then a unital ∗-homomorphism j from A to
some unital C∗ algebra B; classically, j is the map f 
→ f ◦ X, where f ∈ A = C0(E) and B is L∞(P) for some
probability measure P. A family of unital ∗-homomorphisms (jt :A → B)t≥0, i.e., a non-commutative stochastic
process, is said to dilate the quantum dynamical semigroup T if A is a subalgebra of B and E ◦ jt = Tt for all t ≥ 0,
where E is a conditional expectation from B to A; the relationship to (1.1) is clear. Thus finding a dilation for a given
semigroup is analogous to constructing a Markov process from a family of transition kernels.

The tool used here for constructing semigroups and their dilations, quantum Markov processes, is a stochastic
calculus: the quantum stochastic calculus introduced by Hudson and Parthasarathy in their 1984 paper [16]. In its sim-
plest form, this is a non-commutative theory of stochastic integration with respect to three operator martingales which
correspond to the creation, annihilation and gauge processes of quantum field theory. It generalises simultaneously the
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Itô–Doob L2 integral with respect to either Brownian motion or the compensated Poisson process; as emphasised by
Meyer [26] and Attal [3], the L2 theory of any normal martingale having the chaotic-representation property, such as
Brownian motion, the compensated Poisson process or Azéma’s martingale, gives a classical probabilistic interpreta-
tion of Boson Fock space, the ambient space of quantum stochastic calculus. An excellent introduction to this subject,
with the same philosophy as here, is [4]; the use of these quantum noises to produce quantum Markov processes is
discussed in its final chapter.

We develop below new techniques for obtaining ∗-homomorphic solutions to the Evans–Hudson quantum stochas-
tic differential equation (QSDE)

djt = (jt ⊗ ιB(̂k)) ◦ φ dΛt, (1.2)

where the solution jt acts on a unital C∗ algebra A. In this way, we obtain the process j and the quantum dynamical
semigroup T simultaneously. The components of the flow generator φ include τ , the restriction of a semigroup
generator, and δ, a bimodule derivation, which are related to one another through the Bakry–Émery carré du champ
operator: see Remark 2.4. In Theorem 3.19 we show that restricting j to a suitable commutative subalgebra Ac of A
yields a classical process, in the sense that the algebra generated by {jt (a): t ≥ 0, a ∈Ac} is also commutative.

The recent expository paper [5] on quantum stochastic methods, written for an audience of probabilists, includes
Parthasarathy and Sinha’s method [27] for constructing continuous-time Markov chains with finite state spaces by
solving quantum stochastic differential equations. To quote Biane,

“It may seem strange to the classical probabilist to use noncommutative objects in order to describe a perfectly commutative situation,
however, this seems to be necessary if one wants to deal with processes with jumps . . . The right mathematical notion . . . , which generalizes
to the noncommutative situation, is that of a derivation into a bimodule . . . Using this formalism, we can use the Fock space as a uniform
source of noise, and construct general Markov processes (both continuous and discontinuous) using stochastic differential equations.”

The results herein give a further illustration of this philosophy.
The use of quantum stochastic calculus to produce dilations has now been studied for nearly thirty years. Most

results, by Hudson and Parthasarathy, Fagnola, Mohari, Sinha et cetera, are obtained in the case that A = B(h) by first
solving an operator-valued QSDE, the Hudson–Parthasarathy equation, to obtain a unitary process U , and defining j

through conjugation by U ; see [11] and references therein. The corresponding theory for the Heisenberg rather than
the Schrödinger viewpoint, solving the Evans–Hudson equation (1.2), has mainly been developed under the standing
assumption that the generator φ is completely bounded, which is necessary if the corresponding semigroup T is norm
continuous [22]. When one deviates from this assumption, which is analytically convenient but very restrictive, there
are few results. The earliest general method is due to Fagnola and Sinha [12], with later results by Goswami, Sahu
and Sinha for a particular model [15] and a more general method developed by Goswami and Sinha in [30]. Another
approach based on semigroup methods has yet to yield existence results for the Evans–Hudson equation: see [1]
and [25].

Our method here has an attractive simplicity, imposing minimal conditions on the generator φ. It must be a ∗-linear
map

φ :A0 → A0 ⊗B(C⊕ k),

where A0 is a dense ∗-subalgebra of the unital C∗ algebra A ⊆ B(h) which contains 1 = 1h and k is a Hilbert space,
called the multiplicity space, the dimension of which measures the amount of noise available in the system. This
incorporates an assumption that, if φ is viewed as a matrix of maps, its components leave A0 invariant, a hypothesis
also used in [12]. Furthermore, φ must be such that φ(1) = 0 and the first-order Itô product formula holds:

φ(xy) = φ(x)(y ⊗ 1̂k) + (x ⊗ 1̂k)φ(y) + φ(x)Δφ(y) for all x, y ∈A0, (1.3)

where k̂ := C⊕ k and Δ ∈ A0 ⊗ B(̂k) is the orthogonal projection onto h ⊗̄ k. Both these conditions are known to be
necessary if φ is to generate a family of unital ∗-homomorphisms. Finally, a growth bound must be established for the
iterates of φ applied to elements taken from a suitable subset of A0.

Our approach is an elementary one for those adept in quantum stochastic calculus, relying on familiar techniques
such as representing the solution to the Evans–Hudson QSDE as a sum of quantum Wiener integrals. An essential tool
is the higher-order Itô product formula, presented in Section 2. This formula was first stated, for finite-dimensional
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noise, in [9], was proved for that case in [17] and reached its definitive form in [24]. In that last paper it was shown
that (1.3) is but the first of a sequence of identities that must be satisfied in order to show that the solution j of the
QSDE is weakly multiplicative. However, there are many situations in which the validity of (1.3) implies that the
other identities hold [24], Corollary 4.2, and this is the case for φ as above. Moreover, one of our main observations,
Corollary 2.12, is that, by exploiting the algebraic structure imposed by this sequence of identities, it is sufficient to
establish pointwise growth bounds on a ∗-generating set of A0; this is a major simplification when compared with
[12]. Also, by using the coordinate-free approach to quantum stochastic analysis given in [20], we can take k to be
any Hilbert space, removing the restriction in [12] that k be finite dimensional.

The growth bounds obtained Section 2 are employed in Section 3 to produce a family of weakly multiplicative
∗-linear maps from the algebra A0 into the space of linear operators in h ⊗̄F , where F is the Boson Fock space over
L2(R+; k). It is shown that these maps extend to unital ∗-homomorphisms in two distinct situations. Theorem 3.9,
which includes the case of AF algebras, exploits a square-root trick that is well known in the literature; Theorem 3.12,
which applies to universal C∗ algebras such as the non-commutative torus or the Cuntz algebras, is believed to be
novel. Uniqueness of the solution is proved, and it is also shown that j is a cocycle, i.e., it satisfies the evolution
equation

js+t = (js ⊗̄ ιB(F[s,∞))) ◦ σs ◦ jt for all s, t ≥ 0, (1.4)

where (σt )t≥0 is the shift semigroup on the algebra of all bounded operators on F . At this point we see another novel
feature of our work in contrast to previous results, all of which start with a particular quantum dynamical semigroup
T . In these other papers the generator τ of T is then augmented to produce φ, and the QSDE solved to give a dilation
of T . For example, in [12] it is assumed that T is an analytic semigroup and that the composition of τ with the other
components of φ is well behaved in a certain sense; in [30] it is assumed that T is covariant with respect to some
group action on A. For us, the starting point is the map φ, which yields the cocycle j , and hence, by compression,
a quantum dynamical semigroup T generated by the closure of τ , which has core A0; this semigroup, a fortiori, is
dilated by j . Thus we do not have to check that τ is a semigroup generator with good properties at the outset, thereby
rendering our method easier to apply.

Our first application of Theorem 3.9, in Section 4, is to construct the Markov semigroups which correspond to
certain random walks on discrete groups. Theorem 3.9 is also employed in Section 5 to produce a dilation of the
symmetric quantum exclusion semigroup. This object, a model for systems of interacting quantum particles, was
introduced by Rebolledo [28] as a non-commutative generalisation of the classical exclusion process [19] and has
generated much interest: see [14] and [13]. The multiplicity space k is required to be infinite dimensional for this
process, as in previous work on processes arising from quantum interacting particle systems, e.g., [15].

In Section 6 we use Theorem 3.12 to obtain flows on some universal C∗ algebras, namely the non-commutative
torus and the universal rotation algebra [2]; the former is a particularly important example in non-commutative geom-
etry. Quantum flows on these algebras have previously been considered by Chakraborty, Goswami and Sinha [8] and
by Hudson and Robinson [18], respectively.

1.1. Conventions and notation

The quantity := is to be read as ‘is defined to be’ or similarly. The quantity 1P equals 1 if the proposition P is true
and 0 if P is false, where 1 and 0 are the appropriate multiplicative and additive identities. The set of natural numbers
is denoted by N := {1,2,3, . . .}; the set of non-negative integers is denoted by Z+ := {0,1,2, . . .}. The linear span
of the set S in the vector space V is denoted by linS; all vector spaces have complex scalar field and inner products
are linear on the right. The algebraic tensor product is denoted by ⊗; the Hilbert-space tensor product is denoted
by ⊗̄, as is the ultraweak tensor product. The domain of the linear operator T is denoted by domT . The identity
transformation on the vector space V is denoted by 1V . If P is an orthogonal projection on the inner-product space V

then the complement P ⊥ := 1V − P , the projection onto the orthogonal complement of the range of P . The Banach
space of bounded operators from the Banach space X1 to the Banach space X2 is denoted by B(X1;X2), or by B(X1)

if X1 and X2 are equal. The identity automorphism on the algebra A is denoted by ιA. If a and b are elements in an
algebra A then [a, b] := ab − ba and {a, b} := ab + ba denote their commutator and anti-commutator, respectively.
If A0 is a ∗-algebra, H1 and H2 are Hilbert spaces and α :A0 → B(H1;H2) is a linear map then the adjoint map
α† :A0 → B(H2;H1) is such that α†(a) := α(a∗)∗ for all a ∈A0.
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2. A higher-order product formula

Notation 2.1. The Dirac bra-ket notation will be useful: for any Hilbert space H and vectors ξ , χ ∈ H, let

|H〉 := B(C;H), |ξ 〉 :C → H; λ 
→ λξ, (ket)

and

〈H| := B(H;C), 〈χ | : H → C; η 
→ 〈χ,η〉. (bra)

In particular, we have the linear map |ξ 〉〈χ | ∈ B(H) such that |ξ 〉〈χ |η = 〈χ,η〉ξ for all η ∈ H.
Let A ⊆ B(h) be a unital C∗ algebra with identity 1 = 1h, whose elements act as bounded operators on the initial

space h, a Hilbert space. Let A0 ⊆A be a norm-dense ∗-subalgebra of A which contains 1.
Let the extended multiplicity space k̂ := C ⊕ k, where the multiplicity space k is a Hilbert space, and distinguish

the unit vector ω := (1,0). For brevity, let B := B(̂k).
Let Δ := 1 ⊗ Pk ∈ A0 ⊗B, where Pk := |ω〉〈ω|⊥ ∈ B is the orthogonal projection onto k ⊂ k̂.

Lemma 2.2. The map φ :A0 →A0 ⊗B is ∗-linear, such that φ(1) = 0 and such that

φ(xy) = φ(x)(y ⊗ 1k) + (x ⊗ 1k)φ(y) + φ(x)Δφ(y) for all x, y ∈ A0 (2.1)

if and only if

φ(x) =
[

τ(x) δ†(x)

δ(x) π(x) − x ⊗ 1k

]
for all x ∈A0, (2.2)

where π :A0 →A0 ⊗B(k) is a unital ∗-homomorphism, δ :A0 →A0 ⊗ |k〉 is a π -derivation, i.e., a linear map such
that

δ(xy) = δ(x)y + π(x)δ(y) for all x, y ∈ A0,

and τ :A0 → A0 is a ∗-linear map such that

τ(xy) − τ(x)y − xτ(y) = δ†(x)δ(y) for all x, y ∈A0. (2.3)

Proof. This is a straightforward exercise in elementary algebra. �

Definition 2.3. A ∗-linear map φ :A0 → A0 ⊗B such that φ(1) = 0 and such that (2.1) holds is a flow generator.

Remark 2.4. Condition (2.3) may be expressed in terms of the Bakry–Émery carré du champ operator

Γ :A0 ×A0 → A0; (x, y) 
→ 1

2

(
τ(xy) − τ(x)y − xτ(y)

);
for (2.3) to be satisfied, it is necessary and sufficient that 2Γ (x, y) = δ†(x)δ(y) for all x, y ∈A0.

The π -derivation δ becomes a bimodule derivation if A0 ⊗|k〉 is made into an A0-A0 bimodule by setting x ·z ·y :=
π(x)zy for all x, y ∈ A0 and z ∈A0 ⊗ |k〉.

Lemma 2.5. Let A0 = A, let π :A → A⊗ B(k) be a unital ∗-homomorphism, let z ∈ A ⊗ |k〉 and let h ∈ A be self
adjoint. Define

δ :A→A⊗ |k〉; x 
→ zx − π(x)z

and

τ :A→A; x 
→ i[h,x] − 1

2

{
z∗z, x

}+ z∗π(x)z.
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Then the map φ :A→ A⊗B defined in terms of π , δ and τ through (2.2) is a flow generator.

Proof. This is another straightforward exercise. �

Remark 2.6. Modulo important considerations regarding tensor products and the ranges of δ and τ , the above form
for φ is, essentially, the only one possible [21], Lemma 6.4. The quantum exclusion process in Section 5 has a generator
of the same form but with unbounded z and h.

Definition 2.7. Given a flow generator φ :A0 →A0 ⊗B, the quantum random walk (φn)n∈Z+ is a family of ∗-linear
maps

φn :A0 →A0 ⊗B⊗n

defined by setting

φ0 := ιA0 and φn+1 := (φn ⊗ ιB) ◦ φ for all n ∈ Z+.

The following identity is useful: if ξ1, χ1, . . . , ξn, χn ∈ k̂ and x ∈ A0 then(
1h ⊗ 〈ξ1| ⊗ · · · ⊗ 〈ξn|

)
φn(x)

(
1h ⊗ |χ1〉 ⊗ · · · ⊗ |χn〉

)= φξ1
χ1

◦ · · · ◦ φξn
χn

(x), (2.4)

where

φξ
χ :A0 →A0; x 
→ (

1h ⊗ 〈ξ |)φ(x)
(
1h ⊗ |χ〉)

is a linear map for each choice of ξ , χ ∈ k̂.

Remark 2.8. The paper [24], results from which will be employed below, uses a different convention to that adopted
in Definition 2.7: the components of the product B⊗n appear in the reverse order to how they do above.

Notation 2.9. Let α ⊆ {1, . . . , n}, with elements arranged in increasing order, and denote its cardinality by |α|. The
unital ∗-homomorphism

A0 ⊗B⊗|α| →A0 ⊗B⊗n; T 
→ T (n,α)

is defined by linear extension of the map

A ⊗ B1 ⊗ · · · ⊗ B|α| 
→ A ⊗ C1 ⊗ · · · ⊗ Cn,

where

Ci :=
{

Bj if i is the j th element of α,

1̂k if i is not an element of α.

For example, if α = {1,3,4} and n = 5 then

(A ⊗ B1 ⊗ B2 ⊗ B3)(5, α) = A ⊗ B1 ⊗ 1̂k ⊗ B2 ⊗ B3 ⊗ 1̂k.

Given a flow generator φ :A0 → A0 ⊗B, for all n ∈ Z+ and α ⊆ {1, . . . , n}, let

φ|α|(x;n,α) := (φ|α|(x)
)
(n,α) for all x ∈ A0

and let

Δ(n,α) := (1h ⊗ P
⊗|α|
k

)
(n,α),

so that, in the latter, Pk acts on the components of k̂⊗n which have indices in α and 1̂k acts on the others.
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Theorem 2.10. Let (φn)n∈Z+ be the quantum random walk given by the flow generator φ. For all n ∈ Z+ and x,
y ∈ A0,

φn(xy) =
∑

α∪β={1,...,n}
φ|α|(x;n,α)Δ(n,α ∩ β)φ|β|(y;n,β), (2.5)

where the summation is taken over all sets α and β whose union is {1, . . . , n}.

Proof. This may be established inductively: see [24], Proof of Theorem 4.1. �

Definition 2.11. The set S ⊆A0 is ∗-generating for A0 if A0 is the smallest unital ∗-algebra which contains S.

Corollary 2.12. For a flow generator φ :A0 →A0 ⊗B, let

Aφ := {x ∈ A0 : there exist Cx , Mx > 0 such that
∥∥φn(x)

∥∥≤ CxM
n
x for all n ∈ Z+

}
. (2.6)

Then Aφ is a unital ∗-subalgebra of A0, which is equal to A0 if Aφ contains a ∗-generating set for A0.

Proof. It suffices to demonstrate that Aφ is closed under products. To see this, let x, y ∈Aφ and suppose Cx , Mx and
Cy , My are as in (2.6). Then (2.5) implies that∥∥φn(xy)

∥∥ ≤
∑

α∪β={1,...,n}

∥∥φ|α|(x)
∥∥∥∥φ|β|(y)

∥∥
≤ CxCy

n∑
k=0

(
n

k

)
Mk

x

k∑
l=0

(
k

l

)
Mn−k+l

y

(
k = |α|, l = |α ∩ β|)

= CxCy

n∑
k=0

(
n

k

)
Mk

xMn−k
y (1 + My)

k

= CxCy(Mx + MxMy + My)
n

for all n ∈ Z+, as required. �

Lemma 2.13. If the flow generator φ is as defined in Lemma 2.5 then Aφ =A0.

Proof. This follows immediately, since φ is completely bounded and ‖φn‖ ≤ ‖φn‖cb ≤ ‖φ‖n
cb for all n ∈ Z+. �

The following result shows that, given a flow generator φ and vectors χ , ξ ∈ k̂, the elements of Aφ are entire

vectors for φ
ξ
χ .

Lemma 2.14. Let φ :A0 → A0 ⊗B be a flow generator. For all ξ , χ ∈ k̂ we have φ
ξ
χ (Aφ) ⊆Aφ , and the series

exp
(
zφξ

χ

) := ∞∑
n=0

zn(φ
ξ
χ )n

n! (2.7)

is strongly absolutely convergent on Aφ for all z ∈C.

Proof. Suppose ‖φn(x)‖ ≤ CxM
n
x for all n ∈ Z+. It follows from (2.4) that(

1h⊗̄̂k⊗̄n ⊗ 〈ξ |)φn+1(x)
(
1h⊗̄̂k⊗̄n ⊗ |χ〉)= φn

(
φξ

χ (x)
)
, (2.8)
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so ∥∥φn

(
φξ

χ (x)
)∥∥≤ ‖ξ‖CxM

n+1
x ‖χ‖ = (‖ξ‖‖χ‖CxMx

)
Mn

x

and φ
ξ
χ (x) ∈Aφ . Moreover (2.4) also gives that∥∥(φξ1

χ1
◦ · · · ◦ φξn

χn

)
(x)
∥∥≤ ‖ξ1‖ · · · ‖ξn‖‖χ1‖ · · · ‖χn‖CxM

n
x , (2.9)

hence the series (2.7) converges as claimed. �

3. Quantum flows

Notation 3.1. Let F denote Boson Fock space over L2(R+; k), the Hilbert space of k-valued, square-integrable func-
tions on the half line, and let

E := lin
{
ε(f ) :f ∈ L2(R+; k)

}
denote the linear span of the total set of exponential vectors in F . As is customary, elementary tensors in h ⊗ F are
written without a tensor-product sign: in other words, uε(f ) := u ⊗ ε(f ) for all u ∈ h and f ∈ L2(R+; k), et cetera.

If f ∈ L2(R+; k) and t ≥ 0 then f̂ (t) := f̂ (t), where ξ̂ := ω + ξ ∈ k̂ for all ξ ∈ k.
Given f ∈ L2(R+; k) and an interval I ⊆R+, let fI ∈ L2(R+; k) be defined to equal f on I and 0 elsewhere, with

ft) := f[0,t) and f[t := f[t,∞) for all t ≥ 0.

Definition 3.2. A family of linear operators (Tt )t≥0 in h ⊗̄F with domains including h ⊗ E is adapted if〈
uε(f ), Ttvε(g)

〉= 〈uε(ft)), Ttvε(gt))
〉〈
ε(f[t ), ε(g[t )

〉
for all u, v ∈ h, f , g ∈ L2(R+; k) and t ≥ 0.

Theorem 3.3. For all n ∈ N and T ∈ B(h ⊗̄ k̂⊗̄n) there exists a family Λn(T ) = (Λn
t (T ))t≥0 of linear operators in

h ⊗̄F , with domains including h ⊗ E , that is adapted and such that〈
uε(f ),Λn

t (T )vε(g)
〉= ∫

Dn(t)

〈
u ⊗ f̂ ⊗n(t), T v ⊗ ĝ⊗n(t)

〉
dt
〈
ε(f ), ε(g)

〉
(3.1)

for all u, v ∈ h, f , g ∈ L2(R+; k) and t ≥ 0. Here the simplex

Dn(t) := {t := (t1, . . . , tn) ∈ [0, t]n: t1 < · · · < tn
}

and

f̂ ⊗n(t) := f̂ (t1) ⊗ · · · ⊗ f̂ (tn), et cetera.

We extend this definition to include n = 0 by setting Λ0
t (T ) := T ⊗ 1F for all t ≥ 0.

If f ∈ L2(R+; k) then

∥∥Λn
t (T )uε(f )

∥∥≤ Kn
f,t√
n! ‖T ‖∥∥uε(f )

∥∥ for all t ≥ 0 and u ∈ h, (3.2)

where Kf,t :=√(2 + 4‖f ‖2)(t + ‖f ‖2), and the map

R+ → B(h;h ⊗̄F); t 
→ Λn
t (T )

(
1h ⊗ ∣∣ε(f )

〉)
is norm continuous.
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Proof. This is an extension of Proposition 3.18 of [20], from which we borrow the notation; as for Remark 2.8,
the ordering of the components in tensor products is different but this is no more than a convention. For each f ∈
L2(R+; k) define Cf ≥ 0 so that

C2
f = (‖f ‖ +

√
1 + ‖f ‖2

)2 ≤ 2 + 4‖f ‖2,

and note that, by inequality (3.21) of [20],∥∥Λn
t (T )uε(f )

∥∥2 ≤ (Cft)
)2n

∫
Dn(t)

∥∥T u ⊗ f̂ ⊗n(t)
∥∥2 dt

∥∥ε(f )
∥∥2

≤ K2n
f,t

n! ‖T ‖2
∥∥uε(f )

∥∥2
.

To show continuity, let T̃ denote T considered as an operator on (h ⊗̄ k̂) ⊗̄ k̂⊗̄(n−1), where the right-most copy of k̂ in
the n-fold tensor product has moved next to the initial space h. Then

Λn
t (T ) − Λn

s (T ) = Λt

(
1(s,t](·)Λn−1· (T̃ )

)
,

and so, using Theorem 3.13 of [20],

∥∥(Λn
t (T ) − Λn

s (T )
)
uε(f )

∥∥2 ≤ 2
(
t + C2

f

)∫ t

s

∥∥Λn−1
r (T̃ )

(
u ⊗ f̂ (r)

)
ε(f )

∥∥2
dr

≤ 2
(
t + C2

f

)(∫ t

s

∥∥f̂ (r)
∥∥2 dr

)
K2n−2

f,t

(n − 1)! ‖T ‖2
∥∥uε(f )

∥∥2
. �

The family Λn(T ) is the n-fold quantum Wiener integral of T .

Remark 3.4. It may be shown [24], Proof of Theorem 2.2, that

domΛl
t (S)∗ ⊇ Λm

t (T )(h ⊗ E)

for all l, m ∈ Z+, S ∈ B(h ⊗̄ k̂⊗̄l ), T ∈ B(h ⊗̄ k̂⊗̄m) and t ≥ 0.

Theorem 3.5. Let φ :A0 →A0 ⊗B be a flow generator. If x ∈ Aφ then the series

jt (x) :=
∞∑

n=0

Λn
t

(
φn(x)

)
(3.3)

is strongly absolutely convergent on h ⊗ E for all t ≥ 0, uniformly so on compact subsets of R+. The map

R+ → B(h;h ⊗̄F); t 
→ jt (x)
(
1h ⊗ ∣∣ε(f )

〉)
is norm continuous for all f ∈ L2(R+; k), the family (jt (x))t≥0 is adapted and

〈
uε(f ), jt (x)vε(g)

〉= 〈uε(f ), (xv)ε(g)
〉+ ∫ t

0

〈
uε(f ), js

(
φ

f̂ (s)

ĝ(s) (x)
)
vε(g)

〉
ds (3.4)

for all u, v ∈ h, f , g ∈ L2(R+; k), x ∈ Aφ and t ≥ 0. Furthermore,(
1h ⊗ 〈ε(f )

∣∣)jt (x)
(
1h⊗

∣∣ε(g)
〉) ∈A (3.5)

for all x ∈ Aφ , f , g ∈ L2(R+; k) and t ≥ 0.
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Proof. The first two claims are a consequence of the estimate (3.2), the definition of Aφ and the continuity result from
Theorem 3.3; adaptedness is inherited from the adaptedness of the quantum Wiener integrals. Lemma 2.14 implies
that the integrand on the right-hand side of (3.4) is well defined and, by (2.8),〈

uε(f ),Λn
s

(
φn

(
φ

f̂ (s)

ĝ(s) (x)
))

vε(g)
〉

=
∫

Dn(s)

〈
u ⊗ f̂ ⊗n(t),φn

(
φ

f̂ (s)

ĝ(s) (x)
)
v ⊗ ĝ⊗n(t)

〉
dt
〈
ε(f ), ε(g)

〉
=
∫

Dn(s)

〈
u ⊗ f̂ ⊗n(t) ⊗ f̂ (s),φn+1(x)v ⊗ ĝ⊗n(t) ⊗ ĝ(s)

〉
dt
〈
ε(f ), ε(g)

〉;
integrating with respect to s then taking the sum of these terms gives (3.4). For the final claim, note that for any f ,
g ∈ L2(R+; k), the A0-valued map

Dn(t) � t 
→ φ
f̂ (t1)

ĝ(t1)
◦ · · · ◦ φ

f̂ (tn)

ĝ(tn)
(x) = (1h ⊗ 〈f̂ ⊗n(t)

∣∣)φn(x)
(
1h ⊗ ∣∣̂g⊗n(t)

〉)
is Bochner integrable, hence(

1h ⊗ 〈ε(f )
∣∣)Λn

t

(
φn(x)

)(
1h ⊗ ∣∣ε(g)

〉)= e〈f,g〉
∫

Dn(t)

(
φ

f̂ (t1)

ĝ(t1)
◦ · · · ◦ φ

f̂ (tn)

ĝ(tn)

)
(x)dt ∈ A. (3.6)

By (2.9), we may sum (3.6) over all n ∈ Z+, with the resulting series being norm convergent, and so the final claim
follows. �

Remark 3.6. For all t ≥ 0, let jt be as in Theorem 3.5. Since Aφ is a subspace of A0 containing 1, and each φn is
linear with φn(1) = 0, it follows from (3.3) and Theorem 3.3 that each jt is linear and unital, as a map into the space
of operators with domain h ⊗ E . Moreover, the maps jt are weakly ∗-homomorphic in the following sense.

Lemma 3.7. Let φ :A0 → A0 ⊗B be a flow generator and let jt be as in Theorem 3.5 for all t ≥ 0. If x, y ∈ Aφ then
x∗y ∈ Aφ , with〈

jt (x)uε(f ), jt (y)vε(g)
〉= 〈uε(f ), jt

(
x∗y
)
vε(g)

〉
(3.7)

for all u, v ∈ h and f , g ∈ L2(R+; k). In particular, if x ∈Aφ then jt (x)∗ ⊇ jt (x
∗).

Proof. As Aφ is a ∗-algebra, so x∗y ∈Aφ . Let N ∈ Z+ and note that, by [24], Theorem 2.2,

N∑
l,m=0

Λl
t

(
φl(x)

)∗
Λm

t

(
φm(y)

)= 2N∑
n=0

Λn
t

(
φn,N ]

(
x∗y
))

on h ⊗ E, (3.8)

where

φn,N ]
(
x∗y
) := ∑

α∪β={1,...,n}
|α|,|β|≤N

φ|α|
(
x∗;n,α

)
Δ(n,α ∩ β)φ|β|(y;n,β).

Working as in the proof of Corollary 2.12 yields the inequality∥∥φn,N ]
(
x∗y
)∥∥≤ Cx∗Cy(Mx∗ + Mx∗My + My)

n,

and so, by (3.2),

∣∣〈uε(f ),Λn
t

(
φn,N ]

(
x∗y
))

vε(g)
〉∣∣≤ Kn

g,t (Mx∗ + Mx∗My + My)
n

√
n! Cx∗Cy

∥∥uε(f )
∥∥∥∥vε(g)

∥∥. (3.9)



Quantum flows with unbounded generators 359

As φn,N ] = φn if n ∈ {0,1, . . . ,N}, it follows that

〈
jt (x)uε(f ), jt (y)vε(g)

〉 = lim
N→∞

N∑
l,m=0

〈
uε(f ),Λl

t

(
φl(x)

)∗
Λm

t

(
φm(y)

)
vε(g)

〉

= lim
N→∞

N∑
n=0

〈
uε(f ),Λn

t

(
φn

(
x∗y
))

vε(g)
〉

+ lim
N→∞[t]

2N∑
n=N+1

〈
uε(f ),Λn

t

(
φn,N ]

(
x∗y
))

vε(g)
〉

= 〈uε(f ), jt

(
x∗y
)
vε(g)

〉
,

since the final limit is zero by (3.9). �

Lemma 3.8. If Aφ is dense in A then there is at most one family of ∗-homomorphisms (j̄t )t≥0 from A to B(h ⊗̄F)

that satisfies (3.4).

Proof. Suppose that j (1) and j (2) are two families of ∗-homomorphisms from A to B(h ⊗ F) that satisfy (3.4). Set
kt := j

(1)
t − j

(2)
t and note we have that

〈
uε(f ), kt (x)vε(g)

〉= ∫ t

0

〈
uε(f ), ks

(
φ

f̂ (s)

ĝ(s) (x)
)
vε(g)

〉
ds

for all u, v ∈ h, f , g ∈ L2(R+; k) and x ∈ Aφ . Iterating the above, and using the fact that ‖kt‖ ≤ 2 for all t ≥ 0, we
obtain the inequality

∣∣〈uε(f ), kt (x)vε(g)
〉∣∣≤ 2

∫
Dn(t)

∥∥φf̂ (t1)

ĝ(t1)
◦ · · · ◦ φ

f̂ (tn)

ĝ(tn) (x)
∥∥dt
∥∥uε(f )

∥∥∥∥vε(g)
∥∥.

However (2.9) now gives that

∣∣〈uε(f ), kt (x)vε(g)
〉∣∣≤ 2Cx

(Mx‖f̂t)‖‖ĝt)‖)n
n!

∥∥uε(f )
∥∥∥∥vε(g)

∥∥
and the result follows by letting n → ∞. �

Theorem 3.9. Let φ :A0 → A0 ⊗B be a flow generator and suppose A0 contains its square roots: for all non-negative
x ∈ A0, the square root x1/2 lies in A0. If Aφ =A0 then, for all t ≥ 0, there exists a unital ∗-homomorphism

j̄t :A→ B(h ⊗̄F)

such that j̄t (x) = jt (x) on h ⊗ E for all x ∈A0, where jt (x) is as defined in Theorem 3.5.

Proof. Let x ∈ A0 and suppose first that x ≥ 0. If y := (‖x‖1 − x)1/2, which lies in A0 by assumption, then
Lemma 3.7 and Remark 3.6 imply that

0 ≤ ∥∥jt (y)θ
∥∥2 = 〈θ, jt

(
y2)θ 〉= ‖x‖‖θ‖2 − 〈θ, jt (x)θ

〉
for all θ ∈ h ⊗ E .

If x is now an arbitrary element of A0, it follows that∥∥jt (x)θ
∥∥2 = 〈θ, jt

(
x∗x
)
θ
〉≤ ∥∥x∗x

∥∥‖θ‖2 = ‖x‖2‖θ‖2.
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Thus jt (x) extends to j̄t (x) ∈ B(h ⊗̄F), which has norm at most ‖x‖, and the map

A0 → B(h ⊗̄F); x 
→ j̄t (x)

is a ∗-linear contraction, which itself extends to a ∗-linear contraction

j̄t :A→ B(h ⊗̄F).

Furthermore, if x, y ∈A0 and θ , ζ ∈ h ⊗ E then, by Lemma 3.7,〈
θ, j̄t (x)j̄t (y)ζ

〉= 〈j̄t

(
x∗)θ, j̄ (y)ζ

〉= 〈jt

(
x∗)θ, jt (y)ζ

〉= 〈θ, jt (xy)ζ
〉= 〈θ, j̄t (xy)ζ

〉
,

so j̄t is multiplicative on A0. An approximation argument now gives that j̄t is multiplicative on the whole of A. �

Remark 3.10. If A is an AF algebra, i.e., the norm closure of an increasing sequence of finite-dimensional ∗-
subalgebras, then its local algebra A0, the union of these subalgebras, contains its square roots, since every finite-
dimensional C∗ algebra is closed in A.

Definition 3.11. The unital C∗ algebra A has generators {ai : i ∈ I } if A is the smallest unital C∗ algebra which
contains {ai : i ∈ I }. These generators satisfy the relations {pk: k ∈ K} if each pk is a complex polynomial in the
non-commuting indeterminate 〈Xi,X

∗
i : i ∈ I 〉 and, for all k ∈ K , the algebra element pk(ai, a

∗
i : i ∈ I ), obtained

from pk by replacing Xi by ai and X∗
i by a∗

i for all i ∈ I , is equal to 0.

Suppose A has generators {ai : i ∈ I } which satisfy the relations {pk: k ∈ K}. Then A is generated by isometries
if {X∗

i Xi − 1: i ∈ I } ⊆ {pk: k ∈ K} and is generated by unitaries if {X∗
i Xi − 1,XiX

∗
i − 1: i ∈ I } ⊆ {pk: k ∈ K}.

The algebra A is universal if, given any unital C∗ algebra B containing a set of elements {bi : i ∈ I } which satisfies
the relations {pk: k ∈ K}, i.e., pk(bi, b

∗
i : i ∈ I ) = 0 for all k ∈ K , there exists a unique ∗-homomorphism π :A → B

such that π(ai) = bi for all i ∈ I .

Theorem 3.12. Let A be the universal C∗ algebra generated by isometries {si : i ∈ I } which satisfy the relations
{pk: k ∈ K}, and let A0 be the ∗-algebra generated by {si : i ∈ I }. If φ :A0 → A0 ⊗ B is a flow generator such that
Aφ =A0 then, for all t ≥ 0, there exists a unital ∗-homomorphism

j̄t :A→ B(h ⊗̄F)

such that j̄t (x) = jt (x) on h ⊗ E for all x ∈ A0, where jt (x) is as defined in Theorem 3.5.

Proof. Remark 3.6 and Lemma 3.7 imply that jt (si) is isometric and that jt (s
∗
i ) is contractive for all i ∈ I . Repeated

application of (3.7) then shows that jt (x) is bounded for each x ∈A0, and that jt extends to a unital ∗-homomorphism
from A0 to B(h ⊗̄F). Furthermore, the set {jt (si): i ∈ I } satisfies the relations {pk: k ∈ K} so, by the universal nature
of A, there exists a ∗-homomorphism π from A into B(h ⊗̄F) such that π(si) = jt (si) for all i ∈ I and j̄t := π is as
required. �

Corollary 3.13. The family (j̄t :A → B(h ⊗̄F))t≥0 constructed in Theorems 3.9 and 3.12 is a strong solution of the
QSDE (1.2).

Proof. Fix x ∈ Aφ and let

Lt := Σ
(
(j̄t ⊗ ιB)

(
φ(x)

))
(3.10)

for all t ≥ 0, where Σ :B(h ⊗̄F ⊗̄ k̂) → B(h ⊗̄ k̂ ⊗̄F) is the isomorphism that swaps the last two components of
simple tensors. If f ∈ L2(R+; k) then∥∥Ltu ⊗ f̂ (t) ⊗ ε(f )

∥∥≤ ∥∥φ(x)
∥∥∥∥f̂ (t)

∥∥∥∥uε(f )
∥∥,
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so if t 
→ Ltu ⊗ f̂ (t) ⊗ ε(f ) is strongly measurable then t 
→ Lt is quantum stochastically integrable [20], p. 232,
and j̄ satisfies the QSDE in the strong sense, since we already have from (3.4) that it is a weak solution.

Now, Theorem 3.5 implies that for each x ∈ Aφ =A0 and θ ∈ h ⊗E the map t 
→ j̄t (x)θ is continuous, hence so is

t 
→ (j̄t ⊗ ιB)(y ⊗ T )(θ ⊗ ξ) = j̄t (y)θ ⊗ T ξ

for all y ∈ A0, T ∈ B(̂k) and ξ ∈ k̂. As ‖Lt‖ = ‖φ(x)‖ for all t ≥ 0, it follows that t 
→ Lt and t 
→ L∗
t are strongly

continuous on h ⊗̄ k̂ ⊗̄F . Hence t 
→ Lt(u ⊗ f̂ (t) ⊗ ε(f )) is separably valued and weakly measurable, so Pettis’s
theorem gives the result. �

Remark 3.14. Property (3.5) implies that the homomorphism j̄t given by Theorems 3.9 and 3.12 takes values in the
matrix space A⊗M B(F) [20].

Notation 3.15. For all t ≥ 0, f , g ∈ L2(R+; k) and a ∈A, let

j̄t [f,g](a) := (1h ⊗ 〈ε(ft))
∣∣)j̄t (a)

(
1h ⊗ ∣∣ε(gt))

〉)
.

Theorem 3.16. The family of ∗-homomorphisms (j̄t )t≥0 given by Theorems 3.9 and 3.12 forms a Feller cocycle [23],
Section 2.4, for the shift semigroup on B(F): for all s, t ≥ 0, f , g ∈ L2(R+; k) and a ∈ A,

(i) j̄0[0,0](a) = a,
(ii) j̄t [f,g](a) ∈ A,

(iii) t 
→ j̄t [f,g](a) is norm continuous and
(iv) j̄s+t [f,g] = j̄s[f,g] ◦ j̄t [f (· + s), g(· + s)].
Consequently, setting

Tt (a) := j̄t [0,0](a) = (1h ⊗ 〈ε(0)
∣∣)j̄t (a)

(
1h ⊗ ∣∣ε(0)

〉)
for all a ∈A

gives a strongly continuous semigroup T = (Tt )t≥0 of completely positive contractions on A such that Tt (x) =
exp(tφω

ω)(x) for all x ∈ A0 and t ≥ 0. In particular, Tt (1) = 1 for all t ≥ 0 and A0 is a core for the generator
of T .

Proof. Properties (i) and (ii) are immediate consequences of (3.4) and (3.5) respectively. For (iii), note that if x ∈A0

and f , g ∈ L2(R+; k) then Theorem 3.5 implies that

t 
→ j̄t [f,g](x) = (1h ⊗ 〈ε(f )
∣∣)jt (x)

(
1h ⊗ ∣∣ε(g)

〉)
exp

(
−
∫ ∞

t

〈
f (s), g(s)

〉
ds

)
is norm continuous; the general case follows by approximation.

In order to establish (iv), fix s ≥ 0 and continuous functions f , g ∈ L2(R+; k), and let

Jt := j̄s[f,g] ◦ j̄t

[
f (· + s), g(· + s)

]
for all t ≥ 0.

We will show that Jt = j̄s+t [f,g].
First note that for any x ∈A0 and t > 0, the map

F : [0, t] →A; r 
→ j̄r

[
f (· + s), g(· + s)

](
φ

f̂ (r+s)

ĝ(r+s) (x)
)〈

ε(f[s+r,s+t)), ε(g[s+r,s+t))
〉

is continuous, hence Bochner integrable, and so

x
〈
ε(f[s,s+t)), ε(g[s,s+t))

〉+ ∫ t

0
F(r)dr ∈A.
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By the adaptedness of j̄t (x) and (3.4),〈
u,

(
x
〈
ε(f[s,s+t)), ε(g[s,s+t))

〉+ ∫ t

0
F(r)dr

)
v

〉
= 〈u,xv〉〈ε(f (· + s)t)

)
, ε
(
g(· + s)t)

)〉
+
∫ t

0

〈
uε
(
f (· + s)r)

)
, jr

(
φ

f̂ (r+s)

ĝ(r+s)
(x)
)
vε
(
g(· + s)r)

)〉〈
ε
(
f (· + s)[r,t)

)
, ε
(
g(· + s)[r,t)

)〉
dr

= 〈uε
(
f (· + s)t)

)
, jt (x)vε

(
g(· + s)t)

)〉
= 〈u, j̄t

[
f (· + s), g(· + s)

]
(x)v

〉
.

Consequently,〈
u,Jt (x)v

〉 = 〈u, j̄s[f,g](x)v
〉〈
ε(f[s,s+t)), ε(g[s,s+t))

〉
+
∫ t

0

〈
u, j̄s[f,g] ◦ j̄r

[
f (· + s), g(· + s)

](
φ

f̂ (r+s)

ĝ(r+s) (x)
)
v
〉〈
ε(f[s+r,s+t)), ε(g[s+r,s+t))

〉
dr

= 〈u, j̄s[f,g](x)v
〉〈
ε(f[s,s+t)), ε(g[s,s+t))

〉
+
∫ t

0

〈
u,Jr

(
φ

f̂ (r+s)

ĝ(r+s)
(x)
)
v
〉〈
ε(f[s+r,s+t)), ε(g[s+r,s+t))

〉
dr.

On the other hand, by (3.4),

〈
u, j̄s+t [f,g](x)v

〉 = 〈u,xv〉〈ε(fs+t)), ε(gs+t))
〉+ ∫ s

0

〈
uε(fs+t)), jr

(
φ

f̂ (r)

ĝ(r) (x)
)
vε(gs+t))

〉
dr

+
∫ s+t

s

〈
uε(fs+t)), jr

(
φ

f̂ (r)

ĝ(r) (x)
)
vε(gs+t))

〉
dr

= 〈uε(fs+t)), js(x)vε(gs+t))
〉+ ∫ t

0

〈
uε(fs+t)), jq+s

(
φ

f̂ (q+s)

ĝ(q+s) (x)
)
vε(gs+t))

〉
dq

= 〈u, j̄s[f,g](x)v
〉〈
ε(f[s,s+t)), ε(g[s,s+t))

〉
+
∫ t

0

〈
u, j̄q+s[f,g](φf̂ (q+s)

ĝ(q+s) (x)
)
v
〉〈
ε(f[s+q,s+t)), ε(g[s+q,s+t))

〉
dq.

Now set Kt := Jt − j̄s+t [f,g], so that

〈
u,Kt (x)v

〉= ∫ t

0

〈
u,Kr

(
φ

f̂ (r+s)

ĝ(r+s) (x)
)
v
〉
G(r)dr,

where G : r 
→ 〈ε(f[s+r,s+t)), ε(g[s+r,s+t))〉 is continuous. As

‖Kt‖ ≤ 2 exp

(
1

2

(‖f ‖2 + ‖g‖2)) for all t ≥ 0,

iterating the above and estimating as in the proof of Lemma 3.8 shows that K ≡ 0. The density of A0 in A and of
continuous functions in L2(R+; k) now gives (iv).

That T is a semigroup follows from this cocycle property (iv): note that

Ts+t = j̄s+t [0,0] = j̄s[0,0] ◦ j̄t [0,0] = Ts ◦ Tt for all s, t ≥ 0.



Quantum flows with unbounded generators 363

Contractivity, complete positivity and strong continuity of T are immediate; the exponential identity holds because

〈
u,Tt (x)v

〉= 〈u,xv〉 +
∫ t

0

〈
u,Ts

(
φω

ω(x)
)
v
〉
ds (3.11)

for all u, v ∈ h, t ≥ 0 and x ∈ A0, by (3.4). That A0 is a core for the generator of T follows from Lemma 2.14 and
[6], Corollary 3.1.20. �

Remark 3.17. A ∗-homomorphic Feller cocycle as in Theorem 3.16 is called a quantum flow or quantum stochastic
flow; a strongly continuous semigroup (Tt )t≥0 of completely positive contractions is known as a quantum dynamical
semigroup, and the condition Tt (1) = 1 for all t ≥ 0 means that the semigroup is conservative; conservative quantum
dynamical semigroups are also known as quantum Markov semigroups. Hence Theorem 3.16 gives the existence of a
quantum flow which dilates a quantum Markov semigroup on the C∗ algebra A.

Remark 3.18. By Theorem 3.16, the component φω
ω = τ of the flow generator φ is closable, with τ being the generator

of the quantum Markov semigroup T . However, closability of the bimodule map δ seems to be a much more delicate
issue and remains an open question.

Theorem 3.19. Consider the family of ∗-homomorphisms (j̄t )t≥0 constructed in Theorems 3.9 and 3.12. If Ac is a
commutative ∗-subalgebra of A such that

(i) φ(Ac ∩A0) ⊆Ac ⊗B and
(ii) Ac ∩A0 is dense in Ac

then the family {j̄t (a) : t ≥ 0, a ∈ Ac} is commutative, i.e., the commutator [j̄s (a), j̄t (b)] = 0 for all s, t ≥ 0 and a,
b ∈ Ac.

Proof. The result is immediate when s = t , so assume without loss of generality that s < t and let b ∈ Ac ∩A0; if

Kt(b) := 〈uε(f ),
[
j̄s (a), j̄t (b)

]
vε(g)

〉= 0,

where u, v ∈ h, f , g ∈ L2(R+; k) and a ∈ Ac are arbitrary, then the result follows by (ii) and the continuity of j̄t .
Write j̄t (b) = j̄s (b) + ∫ t

s
Lr dΛr , where L = (Lr)r≥0 is the process defined in (3.10) with x changed to b. It is

straightforward, using adaptedness, to show that

A

∫ t

s

Lr dΛrB =
∫ t

s

Σ(A ⊗ 1̂k)LrΣ(B ⊗ 1̂k)dΛr

for any A, B ∈ B(h ⊗̄F[0,s)) ⊗̄1F[s,∞)
, where Σ is the swap isomorphism defined after (3.10). Since j̄ is a strong

solution of the QSDE (1.2), by Corollary 3.13, it follows that

Kt(b) =
∫ t

s

Kr

(
φ

f̂ (r)

ĝ(r)
(b)
)

dr.

Assumption (i) allows us to iterate this identity; noting also that∣∣Kr(c)
∣∣≤ 2‖u‖‖v‖∥∥ε(f )

∥∥∥∥ε(g)
∥∥‖a‖‖c‖ for all c ∈Ac ∩A0,

one readily obtains the estimate

∣∣Kt(b)
∣∣≤ 2‖u‖‖v‖∥∥ε(f )

∥∥∥∥ε(g)
∥∥‖a‖CbM

n
b

1

n!
(∫ t

s

∥∥f̂ (r)
∥∥∥∥ĝ(r)

∥∥dr

)n

,

where Cb and Mb are constants associated to b through its membership of Aφ . Letting n → ∞ gives the result. �
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Remark 3.20. If A is commutative then conditions (i) and (ii) of Theorem 3.19 are satisfied automatically when
Ac = A, so Theorems 3.9 and 3.12 produce classical Markov semigroups in this case. However, Theorem 3.19 also
allows for the possibility of dealing with different commutative subalgebras that do not commute with one another, a
necessary feature of quantum dynamics.

4. Random walks on groups

Definition 4.1. Let A = C0(G) ⊕ C1 ⊆ B(�2(G)), where G is a discrete group and x ∈ C0(G) acts on �2(G) by
multiplication, and let A0 = lin{1, eg: g ∈ G}, where eg(h) := 1g=h for all h ∈ G. That is, A is the unitisation of
the C∗ algebra of functions on G which vanish at infinity and A0 is the dense unital subalgebra generated by the
functions with finite support; as positivity in the C∗-algebraic sense corresponds here to the pointwise positivity of
functions, A0 contains its square roots.

Let H be a non-empty finite subset of G \ {e} and let the Hilbert space k have orthonormal basis {fh: h ∈ H }; the
maps

λh :G → G; g 
→ hg (h ∈ H)

correspond to the permitted moves in the random walk constructed on G.

Lemma 4.2. Given a transition function

t :H × G → C; (h, g) 
→ th(g),

the map

φ :A0 → A0 ⊗B; x 
→
[ ∑

h∈H |th|2(x ◦ λh − x)
∑

h∈H th(x ◦ λh − x) ⊗ 〈fh|∑
h∈H th(x ◦ λh − x) ⊗ |fh〉 ∑

h∈H (x ◦ λh − x) ⊗ |fh〉〈fh|
]

is a flow generator such that

φ(eg) = eg ⊗ me(g) +
∑
h∈H

eh−1g ⊗ mh

(
h−1g

)
for all g ∈ G,

where

me(g) :=
[ −∑h∈H |th(g)|2 −∑h∈H th(g)〈fh|

−∑h∈H th(g)|fh〉 −1k

]
and mh(g) :=

[ |th(g)|2 th(g)〈fh|
th(g)|fh〉 |fh〉〈fh|

]
.

Hence

φn(eg) =
∑

h1∈H∪{e}
· · ·

∑
hn∈H∪{e}

e
h−1

n ···h−1
1 g

⊗ mhn

(
h−1

n · · ·h−1
1 g

)⊗ · · · ⊗ mh1

(
h−1

1 g
)

for all n ∈N and g ∈ G.

Proof. The first claim is readily verified with the aid of Lemma 2.2; the second is immediate. �

Theorem 4.3. Let A be as in Definition 4.1 and φ as in Lemma 4.2. If the transition function t is chosen such that
Aφ = A0 then there exists an adapted family of unital ∗-homomorphisms (j̄t :A → B(h ⊗̄F))t≥0 which forms a
Feller cocycle in the sense of Theorem 3.16 and satisfies the quantum stochastic differential equation (1.2) in the
strong sense on A0 for all t ≥ 0. Setting

Tt (a) := (1h ⊗ 〈ε(0)
∣∣)j̄t (a)

(
1h ⊗ ∣∣ε(0)

〉)
for all a ∈ A and t ≥ 0
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gives a classical Markov semigroup T on A whose generator is the closure of

τ :A0 →A0; x 
→
∑
h∈H

|th|2(x ◦ λh − x).

Proof. This follows from Theorems 3.9 and 3.19 together with Lemma 4.2. �

Remark 4.4. Given g ∈ G, let A := [B1k] ∈ B(C⊕ k; k), where B :=∑h∈H th(g)|fh〉. Then me(g) = −A∗A and∥∥me(g)
∥∥= ∥∥AA∗∥∥= ∥∥BB∗ + 1k

∥∥= ∥∥B∗B
∥∥+ 1 = 1 +

∑
h∈H

∣∣th(g)
∣∣2.

It may be shown similarly that ‖mh(g)‖ = 1 + |th(g)|2 for all g ∈ G and h ∈ H , so if

Mg := lim
n→∞ max

{∣∣th(h−1
n · · ·h−1

1 g
)∣∣: h1, . . . , hn ∈ H ∪ {e}, h ∈ H

}
< ∞ (4.1)

then ∥∥φn(eg)
∥∥≤ (1 + |H | + 2|H |M2

g

)n
for all n ∈ Z+,

where |H | denotes the cardinality of H . Hence Aφ =A0 if (4.1) holds for all g ∈ G.

Remark 4.5. If t is bounded then clearly (4.1) holds for all g ∈ G. In this case, there exist bounded operators L ∈
B(h;h ⊗̄ k), S ∈ B(h ⊗̄ k) and F ∈ B(h ⊗̄ k̂) such that

L =
∑
h∈H

th ⊗ |fh〉, S =
∑
h∈H

Sh ⊗ |fh〉〈fh| and F =
[− 1

2L∗L −L∗
SL S − 1h⊗k

]
,

where th acts by multiplication and Sh is the unitary operator on �2(G) such that eg 
→ ehg .
It follows from [21], Theorems 7.1 and 7.5, that the Hudson–Parthasarathy QSDE

U0 = Ih⊗F , dUt = (F ⊗ 1F )Σ(Ut ⊗ Îk)dΛt,

where Σ is the swap isomorphism defined after (3.10), has a unique solution which is a unitary cocycle. Furthermore,
by [21], Theorem 7.4, setting

kt (a) := U∗
t (a ⊗ 1F )Ut for all a ∈ B(h) and t ≥ 0

defines a quantum flow k with generator

ϕ :B(h) → B(h ⊗̄ k̂); a 
→ (a ⊗ 1̂k)F + F ∗(a ⊗ 1̂k) + F ∗Δ(a ⊗ 1̂k)F.

A short calculation shows that ϕ is of the form covered by Lemma 2.5, with

π(a) = S∗(a ⊗ 1k)S, δ(a) = −La + π(a)L and τ(a) = −1

2

{
L∗L,a

}+ L∗π(a)L

for all a ∈ B(h). It follows that ϕ|A0 = φ, where φ is the flow generator of Lemma 4.2, and so the cocycle j̄ given by
Theorem 4.3 is the restriction of k to A. However, this construction by conjugation does not give the Feller property,
that A is preserved by k.

Example 4.6. If G = (Z,+), H = {±1} and the transition function t is bounded, with t+1(g) = 0 for all g < 0 and
t−1(g) = 0 for all g ≤ 0, then the Markov semigroup T given by Theorem 4.3 corresponds to the classical birth–death
process with birth and dates rates |t+1|2 and |t−1|2, respectively. The cocycle constructed here is Feller, as it acts on
A= C0(Z) ⊕C1, in contrast to [27], Example 3.3, where the cocycle acts on the whole of �∞(Z).

Remark 4.7. If G = (Z,+), H = {+1} and t+1 :g 
→ 2g then Mg = 2g and the condition (4.1) holds for all g ∈ G.
Thus Theorem 4.3 applies to examples where the transition function t is unbounded.
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5. The symmetric quantum exclusion process

This section was inspired by Rebolledo’s treatment of the quantum exclusion process: see [28], Examples 2.4.3 and
4.1.3.

Definition 5.1. Let I be a non-empty set. The CAR algebra is the unital C∗ algebra A with generators {bi : i ∈ I },
subject to the anti-commutation relations

{bi, bj } = 0 and
{
bi, b

∗
j

}= 1i=j for all i, j ∈ I. (5.1)

It follows from (5.1) that the bi are nonzero partial isometries for all i ∈ I .
As is well known [7], Proposition 5.2.2, A is represented faithfully and irreducibly on F−(�2(I )), the Fermionic

Fock space over �2(I ); in other words, we may (and do) suppose that A ⊆ B(h), where h := F−(�2(I )), and the
algebra identity 1 = 1h.

Remark 5.2. The elements of I may be taken to correspond to sites at which Fermionic particles may exist, with the
operators bi and b∗

i representing the annihilation and creation, respectively, of a particle at site i.

Notation 5.3. Let A0 be the unital algebra generated by {bi, b
∗
i : i ∈ I }; by definition, this is a norm-dense unital

∗-subalgebra of A.

Lemma 5.4. For each x ∈ A0 there exists a finite subset J ⊆ I such that x lies in the finite-dimensional ∗-subalgebra

AJ := lin
{
b∗
j1

· · ·b∗
jq

bi1 · · ·bip : 0 ≤ p,q ≤ |J |, {i1, . . . , ip} ∈ J (p), {j1, . . . , jq} ∈ J (q)
}⊆A0,

where J (p) denote the set of subsets of J with cardinality p et cetera. Consequently, A is an AF algebra and A0
contains its square roots.

Proof. By employing the anti-commutation relations (5.1), any finite product of terms from the generating set
{bi, b

∗
i : i ∈ I } may be reduced to a linear combination of words of the form

b∗
j1

· · ·b∗
jq

bi1 · · ·bip , (5.2)

where i1, . . . , ip are distinct elements of I , as are j1, . . . , jq , and p, q ∈ Z+, with an empty product equal to 1. As
every element of A0 is a finite linear combination of such terms, the first claim follows. The second claim holds by
Remark 3.10. �

Definition 5.5. Let {αi,j : i, j ∈ I } ⊆ C be a fixed collection of amplitudes. We may view (I, {αi,j : i, j ∈ I }) as a
weighted directed graph, where I is the set of vertices, an edge exists from i to j if αi,j �= 0 and αi,j is a complex
weight on the edge from vertex i to vertex j , which may differ from the weight αj,i from j to i.

For all i ∈ I , let

supp(i) := {j ∈ I : αi,j �= 0 or αj,i �= 0} and supp+(i) := supp(i) ∪ {i}.
Thus supp(i) is the set of sites with which site i interacts and |supp(i)| is the valency of the vertex i. We require that
the valencies are finite:∣∣supp(i)

∣∣< ∞ for all i ∈ I. (5.3)

The transport of a particle from site i to site j with amplitude αi,j is described by the operator

ti,j := αi,j b
∗
j bi .
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Definition 5.6. Let {ηi : i ∈ I } ⊆R be fixed. The total energy in the system is given by

h :=
∑
i∈I

ηib
∗
i bi ,

where ηi gives the energy of a particle at site i. If the set {i ∈ I : ηi �= 0} is infinite then the proper interpretation of h

involves issues of convergence; below it will only appear in a commutator with elements of A0, which is sufficient to
give a well-defined quantity.

Lemma 5.7. Let

τi,j (x) := t∗i,j [ti,j , x] + [x, t∗i,j
]
ti,j = |αi,j |2

(
b∗
i bj

[
b∗
j bi, x

]+ [x, b∗
i bj

]
b∗
j bi

)
for all i, j ∈ I and x ∈ A, and let

[h,x] :=
∑
i∈I

ηi

[
b∗
i bi , x

]
(5.4)

for all x ∈ A0. Setting

τ(x) := i[h,x] − 1

2

∑
i,j∈I

τi,j (x) (5.5)

defines a ∗-linear map τ :A0 → A0.

Proof. Let x ∈A0 and note that x ∈ AJ for some finite set J ⊆ I , by Lemma 5.4. Furthermore,[
b∗
j bi, x

]= b∗
j {bi, x} − {b∗

j , x
}
bi = 0 whenever i /∈ J and j /∈ J,

so

[h,x] =
∑
i∈J

ηi

[
b∗
i bi , x

] ∈ AJ and τ(x) = i[h,x] − 1

2

∑
i,j∈J+

τi,j (x) ∈ AJ+ ,

where

J+ :=
⋃
k∈J

supp+(k). (5.6)

Hence τ(AJ ) ⊆ AJ+ and, as (5.3) implies that J+ is finite, it follows that A0 is invariant under τ . The ∗-linearity of
τ is immediately verified. �

Lemma 5.8. Let

δi,j (x) := [ti,j , x] = αi,j

(
b∗
j bix − xb∗

j bi

)
for all i, j ∈ I and x ∈ A, and let k be a Hilbert space with orthonormal basis {fi,j : i, j ∈ I }. Setting

δ(x) :=
∑
i,j∈I

δi,j (x) ⊗ |fi,j 〉 (5.7)

for all x ∈ A0 defines a linear map δ :A0 →A0 ⊗ |k〉 such that

δ(xy) = δ(x)y + (x ⊗ 1k)δ(y) (5.8)



368 A. C. R. Belton and S. J. Wills

and

δ†(x)δ(y) = τ(xy) − τ(x)y − xτ(y) (5.9)

for all x, y ∈A0, where τ is as defined in Lemma 5.7.

Proof. The series in (5.7) contains only finitely many terms, since if x ∈ AJ then

δi,j (x) = 0 when {i, j}� J+.

Hence δ is well defined, and (5.8) holds because each δi,j is a derivation. A short calculation shows that

τi,j (xy) − τi,j (x)y − xτi,j (y) = −2δ
†
i,j (x)δi,j (y) (5.10)

for all x, y ∈ A. Since x 
→ [b∗
i bi , x] is a derivation for all i ∈ I , it follows from (5.10) that

τ(xy) − τ(x)y − xτ(y) =
∑
i,j∈I

δ
†
i,j (x)δi,j (y) = δ†(x)δ(y) for all x, y ∈ A0.

�

Lemma 5.9. The map

φ :A0 → A0 ⊗B; x 
→
[

τ(x) δ†(x)

δ(x) 0

]
, (5.11)

where τ , δ and δ† are as defined in Lemmas 5.7 and 5.8, is a flow generator.
If the amplitudes satisfy the symmetry condition

|αi,j | = |αj,i | for all i, j ∈ I (5.12)

then, for all n ∈N and i0 ∈ I ,

φn(bi0) =
∑

i1∈supp+(i0)

· · ·
∑

in∈supp+(in−1)

bin ⊗ Bin−1,in ⊗ · · · ⊗ Bi0,i1, (5.13)

where

Bi,j := 1j=iλi |ω〉〈ω| + |ω〉〈αi,j fi,j | − |αj,ifj,i〉〈ω|
and

λi := −iηi − 1

2

∑
j∈supp(i)

|αj,i |2

for all i, j ∈ I .

Proof. The first claim is an immediate consequence of Lemmas 5.7, 5.8 and 2.2.
If i, j , k ∈ I then a short calculation shows that

τj,k(bi) =

⎧⎪⎪⎨⎪⎪⎩
|αi,i |2bi (j = i, k = i),

|αj,i |2b∗
j bj bi (j �= i, k = i),

|αi,k|2bkb
∗
kbi (j = i, k �= i),

0 (j �= i, k �= i).

Since

[h,bi] =
∑
j∈I

ηj

[
b∗
j bj , bi

]= ηi

[
b∗
i bi , bi

]= −ηibi,
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the symmetry condition (5.12) implies that

τ(bi) = λibi for all i ∈ I.

Furthermore, if i, j , k ∈ I then

δj,k(bi) = αj,k

(
b∗
kbj bi − bib

∗
kbj

)= −αj,k

{
b∗
k , bi

}
bj = −1k=iαj,ibj

and

δ
†
j,k(bi) = αj,k

(
bib

∗
j bk − b∗

j bkbi

)= αj,k

{
bi, b

∗
j

}
bk = 1j=iαi,kbk;

thus

δ(bi) =
∑
j,k∈I

δj,k(bi) ⊗ |fj,k〉 = −
∑

j∈supp(i)

αj,ibj ⊗ |fj,i〉

and

δ†(bi) =
∑
j,k∈I

δ
†
j,k(bi) ⊗ 〈fj,k| =

∑
k∈supp(i)

αi,kbk ⊗ 〈fi,k|.

Hence

φ(bi) = λibi ⊗ |ω〉〈ω| −
∑

j∈supp(i)

αj,ibj ⊗ |fj,i〉〈ω| +
∑

k∈supp(i)

αi,kbk ⊗ |ω〉〈fi,k|

=
∑

j∈supp+(i)

bj ⊗ (1j=iλi |ω〉〈ω| + |ω〉〈αi,j fi,j | − |αj,ifj,i〉〈ω|)
and the identity (5.13) follows. �

Theorem 5.10. Let A be the CAR algebra and let φ be defined as in Lemma 5.9. If the amplitudes {αi,j } and en-
ergies {ηi} are chosen so that Aφ = A0 then there exists an adapted family of unital ∗-homomorphisms (jt :A →
B(h ⊗̄F))t≥0 which forms a Feller cocycle in the sense of Theorem 3.16 and satisfies the quantum stochastic differ-
ential equation (1.2) in the strong sense on A0 for all t ≥ 0. Setting

Tt (a) := (1h ⊗ 〈ε(0)
∣∣)jt (a)

(
1h ⊗ ∣∣ε(0)

〉)
for all a ∈ A and t ≥ 0

gives a quantum Markov semigroup T on A whose generator is the closure of

τ :A0 →A0; x 
→ i
∑
i∈I

ηi

[
b∗
i bi , x

]− 1

2

∑
i,j∈I

|αi,j |2
(
b∗
i bj

[
b∗
j bi, x

]+ [x, b∗
i bj

]
b∗
j bi

)
.

Proof. This is an immediate consequence of Theorem 3.9, Theorem 3.16 and Lemma 5.9. �

Example 5.11. Suppose that the amplitudes satisfy the symmetry condition (5.12), and further that there are uniform
bounds on the amplitudes, valencies and energies:

M := sup
i,j∈I

|αi,j | < ∞, V := sup
i∈I

∣∣supp(i)
∣∣< ∞ and H := sup

i∈I

|ηi | < ∞. (5.14)

It follows that

|λi | ≤ |ηi | + 1

2
V M2 and ‖Bi,j‖ ≤ |λi | + 2M ≤ H + 1

2
V M2 + 2M
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for all i, j ∈ I . Hence, for all n ∈ Z+,∥∥φn(bi)
∥∥≤ (V + 1)n

(
H + 1

2
V M2 + 2M

)n

and so Aφ =A0, by Corollary 2.12. Hence there is a flow on A for this generator.

Example 5.12. We can lift the boundedness assumptions in Example 5.11 by taking I to be a disjoint union of subsets,

I =
⊔
k∈K

Ik,

such that there is no transport between any of these subsets, i.e.,

αi,j �= 0 only if there is some k ∈ K such that i, j ∈ Ik.

Assume the symmetry condition (5.12) once again. Suppose that in each Ik the conditions of (5.14) are satisfied, but
with respect to constants Mk , Vk and Hk that depend on k. Then, if i ∈ Ik , we get the estimate∥∥φn(bi)

∥∥≤ (Vk + 1)n
(

Hk + 1

2
VkM

2
k + 2Mk

)n

and so Aφ =A0 once more, but now it is possible that M = ∞ et cetera.

Example 5.13. To create an example where the graph associated to I has only one component, but where we do not
assume M < ∞ as in Example 5.11, assume once again that I is decomposed into a disjoint union:

I =
⊔

k∈Z+
Ik with |Ik| < ∞ for all k ∈ Z+.

This time assume, as well as the symmetry condition (5.12), that αi,j = 0 unless there is some k ∈ Z+ such that i ∈ Ik

and j ∈ Ik+1, or j ∈ Ik and i ∈ Ik+1, so that there is transport only between neighbouring levels in I . Set

ak = sup
{|αi,j |: i ∈ Ik, j ∈ Ik+1

}
for all k ∈ Z+,

and furthermore assume that the energies are bounded, i.e., H < ∞.
Now if k ∈N and i ∈ Ik then∑

j∈supp+(i)

‖Bi,j‖ ≤ ‖Bi,i‖ +
∑

j∈Ik−1

‖Bi,j‖ +
∑

j∈Ik+1

‖Bi,j‖

≤ |λi | + 2|Ik−1|ak−1 + 2|Ik+1|ak,

with a similar estimate holding if i ∈ I0. Furthermore,

|λi | ≤ H + 1

2
|Ik−1|a2

k−1 + 1

2
|Ik+1|a2

k .

As in Example 5.11, if it can be shown that∑
j∈supp+(i)

‖Bi,j‖ ≤ C

for some constant C that does not depend on i, it follows that ‖φn(bi)‖ ≤ Cn for each n ∈ Z+ and i ∈ I , and so
Aφ = A0 once more. Here, the previous working shows this will hold if there are constants a > 0, b > 0 and p ≥ 1
such that

ak ≤ a

(k + 2)p
and |Ik| ≤ b(k + 1)p for all k ∈ Z+.
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It is clear that this can yield an example where M = ∞, i.e., there is no upper bound on the valencies.

6. Flows on universal C∗ algebras

6.1. The non-commutative torus

Definition 6.1. Let λ ∈ T, the set of complex numbers with unit modulus. The non-commutative torus is the universal
C∗ algebra A generated by unitaries U and V which satisfy the relation

UV = λV U.

Let A0 denote the dense ∗-subalgebra of A generated by U and V .

There is a faithful trace tr on A such that τ(UmV n) = 1m=n=0 for all m, n ∈ Z; the proof of this in [10], pp.
166–168, is valid for all λ. Consequently {UmV n: m,n ∈ Z} is a basis for A0.

Lemma 6.2. Let h := �2(Z2), let

(Ucu)m,n = um+1,n and (Vcu)m,n = λmum,n+1 for allu ∈ h and m,n ∈ Z,

and let Ac ⊆ B(h) be the C∗ algebra generated by Uc and Vc. There is a C∗ isomorphism from A to Ac such that
U 
→ Uc and V 
→ Vc. Moreover, under this map the trace tr corresponds to the vector state given by e ∈ h such that
em,n = 1m=n=0 for all m, n ∈ Z.

Proof. Unitarity of Uc and Vc is immediately verified, as is the identity UcVc = λVcUc , so the universality of A gives
a surjective ∗-homomorphism from A to Ac . Injectivity is a consequence of the final observation, that tr corresponds
to the vector state given by e. �

From now on we will identify A and Ac.

Definition 6.3. For each (μ, ν) ∈ T2, let πμ,ν be the automorphism of A such that

πμ,ν

(
UmV n

)= μmνnUmV n for all m,n ∈ Z;

the existence of πμ,ν is an immediate consequence of universality.

The proofs of the next two lemmas are a matter of routine algebraic computation.

Lemma 6.4. For all a, b ∈ Z, define maps aδ :A0 →A0 and δb :A0 →A0 by linear extension of the identities

aδ
(
UmV n

)= mUa+mV n and δb

(
UmV n

)= nλ−bmUmV b+n for all m,n ∈ Z.

Then aδ is a π1,λa -derivation and δb is a πλ−b,1-derivation; moreover, their adjoints are such that

aδ
†(UmV n

)= −mλanU−a+mV n and δ
†
b

(
UmV n

)= −nUmV −b+n

for all m, n ∈ Z.

Remark 6.5. The sufficient condition in Lemma 6.4 is also necessary. It is easy to show that if aδ is a πμ,ν -derivation
then μ = 1 and ν = λa ; similarly, if δb is a πμ,ν -derivation then μ = λ−b and ν = 1.
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Lemma 6.6. With A0 as in Definition 6.1, and aδ and δb as in Lemma 6.4, fix c1, c2 ∈C and let

φ :A0 → A0 ⊗B
(
C3); x 
→

[
τ(x) c1 aδ

†(x) c2 δ
†
b(x)

c1 aδ(x) π1,λa (x) − x 0
c2 δb(x) 0 πλ−b,1(x) − x

]
,

where the map

τ :A0 → A0; UmV n 
→ −1

2

(|c1|2m2 + |c2|2n2)UmV n.

Then τ is ∗-linear and φ is a flow generator.

Lemma 6.7. Let φ be as in Lemma 6.6. If a = b = 0 then Aφ = A0; conversely, if a �= 0 and c1 �= 0 then U /∈ Aφ ,
and if b �= 0 and c2 �= 0 then V /∈ Aφ .

Proof. When a = b = 0, note that φ(U) = U ⊗ mU and φ(V ) = V ⊗ mV , where

mU :=
[− 1

2 |c1|2 −c1 0
c1 0 0
0 0 0

]
and mV :=

[− 1
2 |c2|2 0 −c2
0 0 0
c2 0 0

]
.

Hence φn(U) = U ⊗ m⊗n
U and φn(V ) = V ⊗ m⊗n

V , so U , V ∈ Aφ , as claimed, and Aφ =A0, by Corollary 2.12.
If a > 0 then, by induction, one gets that

aδ
n(U) =

n−1∏
i=0

(ia + 1)Uan+1 for all n ∈N.

Let e = [1 0 0]T and f = [0 1 0]T be unit vectors in C3, and note that(
1h ⊗ 〈f | ⊗ · · · ⊗ 〈f |)φn(x)

(
1h ⊗ |e〉 ⊗ · · · ⊗ |e〉)= cn

1 aδ
n(x) for all x ∈A0,

so

∥∥φn(U)
∥∥≥ |c1|n

n−1∏
i=0

(ia + 1) ≥ |c1|nn!.

If a < 0 then, by considering aδ
† instead, we see that∥∥φn(U)

∥∥≥ ∥∥(1h ⊗ 〈e| ⊗ · · · ⊗ 〈e|)φn(U)
(
1h ⊗ |f 〉 ⊗ · · · ⊗ |f 〉)∥∥≥ |c1|nn!.

A similar proof shows that V /∈Aφ when b �= 0. �

Remark 6.8. The lower bounds obtained in Lemma 6.7 when a �= 0 or b �= 0 show that our techniques do not apply
in these cases. The same problem arises if one attempts to use the results of [12] instead.

The following theorem gives the existence of a quantum flow used by Chakraborty, Goswami and Sinha [8],
Theorem 2.1(i).

Theorem 6.9. Let A be as in Definition 6.1 and φ as in Lemma 6.6 for a = b = 0. There exists an adapted family j

of unital ∗-homomorphisms from A to B(h ⊗̄F) such that

〈
uε(f ), jt (x)vε(g)

〉= 〈uε(f ), (xv)ε(g)
〉+ ∫ t

0

〈
uε(f ), js

(
φ

f̂ (s)

ĝ(s) (x)
)
vε(g)

〉
ds

for all u, v ∈ h, f , g ∈ L2(R+; k), x ∈A0 and t ≥ 0.
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Proof. This follows from Theorem 3.12, Lemma 6.6 and Lemma 6.7. �

Remark 6.10. The cocycle constructed in Theorem 6.9 is essentially a classical object: as noted in [8], Theorem 2.1,
when c1 = c2 = i one may take

jt (x) := β
(
exp
(
2iB1

t

)
, exp

(
2iB2

t

))
(x) for all x ∈A and t ≥ 0,

where β :T2 → Aut(A) is the natural action of the 2-torus T2 on A, so that

β(z,w)
(
UmV n

)= zmwnUmV n for all (z,w) ∈ T2,

and the Fock space F is identified in the usual manner with the L2 space of the two-dimensional classical Brownian
motion (B1,B2).

As noted by Hudson and Robinson [18], the following result makes clear why in Theorem 6.9 it is necessary to use
two dimensions of noise to obtain a process whose flow generator includes both of the derivations c1 0δ and c2δ0: the
linear combination δ = c1 0δ + c2δ0 can appear on the right-hand side of (2.3) only when the coefficients c1 and c2
satisfy a particular algebraic relation.

Proposition 6.11. Let 0δ and δ0 be as in Lemma 6.4, and let δ = c1 0 δ + c2δ0 for complex numbers c1 and c2. A
necessary and sufficient condition for the existence of a linear map τ :A0 → A such that

τ(xy) − τ(x)y − xτ(y) = δ†(x)δ(y) for all x, y ∈A0

is the equality c1c2 = c1c2.

Proof. This may be established by adapting slightly the proof of [29], Theorem 2.2. �

6.2. The universal rotation algebra

To avoid the issue of Proposition 6.11, Hudson and Robinson work with the universal rotation algebra.

Definition 6.12. Let A be the universal rotation algebra [2]: this is the universal C∗ algebra with unitary generators
U , V and Z satisfying the relations

UV = ZV U, UZ = ZU and V Z = ZV.

It may be viewed as the group C∗ algebra corresponding to the discrete Heisenberg group

Γ := 〈u,v, z | uv = zvu,uz = zu, vz = zv〉;
from this perspective, its universal nature is immediately apparent.

Letting A0 denote the ∗-subalgebra generated by U , V and Z, there are skew-adjoint derivations

δ1 :A0 → A0; UmV nZp 
→ mUmV nZp and δ2 :A0 → A0; UmV nZp 
→ nUmV nZp

for all m, n, p ∈ Z.

Remark 6.13. For a concrete version of the universal rotation algebra, let h := �2(Z3) and define operators Uc, Vc

and Zc by setting

(Ucu)m,n,p = um+1,n,p, (Vcu)m,n,p = um,n+1,m+p and (Zcu)m,n,p = um,n,p+1

for all u ∈ h and m, n, p ∈ Z. It is readily verified that Uc, Vc and Zc are unitary and satisfy the commutation relations
as claimed; let Ac be the C∗ algebra generated by these operators.
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Universality gives a surjective ∗-homomorphism from A to Ac such that U 
→ Uc , V 
→ Vc and Z 
→ Zc, and
injectivity may be established in the same manner as for the non-commutative torus: there is a faithful state τ on A such
that τ(UmV nZp) = 1m=n=p=0 and this corresponds to the vector state given by e ∈ h such that em,n,p = 1m=n=p=0.

Lemma 6.14. With A0, δ1 and δ2 as in Definition 6.12, fix c1, c2 ∈ C, let δ = c1δ1 + c2δ2 and define the Bellissard
map

τ :A0 → A0; UmV nZp 
→ −
(

1

2
|c1|2m2 + 1

2
|c2|2n2 + c1c2mn + (c1c2 − c1c2)p

)
UmV nZp,

then τ is ∗-linear and such that

τ(xy) − τ(x)y − xτ(y) = δ†(x)δ(y) for all x, y ∈A0,

so the map

φ :A0 → A0 ⊗B(C2); x 
→
[

τ(x) δ†(x)

δ(x) 0

]
is a flow generator.

Furthermore, U , V , Z ∈Aφ and Aφ =A0.

Proof. The algebraic statements are readily verified, and a short calculation shows that

φ(U) = U ⊗ mU, φ(V ) = V ⊗ mV and φ(Z) = Z ⊗ mZ,

where

mU =
[− 1

2 |c1|2 −c1
c1 0

]
, mV =

[− 1
2 |c2|2 −c2
c2 0

]
and mZ =

[
c1c2 − c1c2 0

0 0

]
.

Hence

φn(U) = U ⊗ m⊗n
U , φn(V ) = V ⊗ m⊗n

V and φn(Z) = Z ⊗ m⊗n
Z

for all n ∈ Z+, so U , V , Z ∈ Aφ and Aφ =A0, by Corollary 2.12. �

The following theorem is an algebraic version of the result presented by Hudson and Robinson in [18], Section 4.

Theorem 6.15. Let A be as in Definition 6.12 and φ as in Lemma 6.14. There exists an adapted family j of unital
∗-homomorphisms from A to B(h ⊗̄F) such that

〈
uε(f ), jt (x)vε(g)

〉= 〈uε(f ), (xv)ε(g)
〉+ ∫ t

0

〈
uε(f ), js

(
φ

f̂ (s)

ĝ(s) (x)
)
vε(g)

〉
ds

for all u, v ∈ h, f , g ∈ L2(R+; k), x ∈A0 and t ≥ 0.
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