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Abstract: We obtain an asymptotic expansion for the null distribution
function of the gradient statistic for testing composite null hypotheses
in the presence of nuisance parameters. The expansion is derived using
a Bayesian route based on the shrinkage argument described in [10]. Us-
ing this expansion, we propose a Bartlett-type corrected gradient statistic
with chi-square distribution up to an error of order o(n−1) under the null
hypothesis. Further, we also use the expansion to modify the percentage
points of the large sample reference chi-square distribution. Monte Carlo
simulation experiments and various examples are presented and discussed.
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1. Introduction

The most common statistical tests of a composite null hypothesis for large sam-
ples are the likelihood ratio [29], the Wald [28], and the Rao score [23] tests.
These tests are widely used in areas such as economics, biology, and engineering,
among others, since exact tests are not always available. An alternative test uses
the gradient statistic recently proposed by [25]. An advantage of the gradient
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statistic over the Wald and the score statistics is that it does not involve knowl-
edge of the information matrix, neither expected nor observed. Additionally,
the gradient statistic is quite simple to be computed. This has been emphasised
by C.R. Rao [24], who wrote: ‘The suggestion by Terrell is attractive as it is
simple to compute. It would be of interest to investigate the performance of the
[gradient] statistic’.

Let x1, . . . , xn be a random sample of size n with each xi having prob-
ability density function f(·; θ), which depends on a p-dimensional vector of
unknown parameters θ = (θ1, . . . , θp)

⊤. Let ℓ(θ) = n−1
∑n

i=1 log f(xi; θ) and
U(θ) = ∂ℓ(θ)/∂θ be the log-likelihood function and the score vector, respec-
tively; notice that, for convenience, both are divided by n. We wish to test
the null hypothesis H0 : θ1 = θ10 against the two-sided alternative hypothesis
Ha : θ1 6= θ10, where θ10 is a fixed q-dimensional vector, θ1 = (θ1, . . . , θq)

⊤ and
θ2 = (θq+1, . . . , θp)

⊤. The partition in θ induces the corresponding partition in

U(θ): U(θ) = (U1(θ)
⊤,U2(θ)

⊤)⊤. Let θ̂ = (θ̂1, θ̂2)
⊤ and θ̃ = (θ10, θ̃2)

⊤ be the
unrestricted and the restricted (under H0) maximum likelihood estimators of
θ = (θ⊤

1 , θ
⊤

2 )
⊤, respectively. The gradient statistic for testing H0 is defined as

S = nU(θ̃)⊤(θ̂ − θ̃). (1)

It can also be expressed as S = nU1(θ̃)
⊤(θ̂1 − θ10), since U2(θ̃) = 0. Like the

likelihood ratio, the Wald, and the score statistics, the gradient statistic has an
asymptotic χ2

q distribution under the null hypothesis, q being the number of
restrictions imposed by H0.

Although the gradient statistic was derived by [25] from the score and the
Wald statistics, it is of a different nature. The score statistic measures the
squared length of the score vector evaluated at H0 using the metric given by the
inverse of the Fisher information matrix, whereas the Wald statistic gives the
squared distance between the unrestricted and the restricted maximum likeli-
hood estimators of θ using the metric given by the Fisher information matrix.
Moreover, both are quadratic forms. The gradient statistic, on the other hand,
is not a quadratic form and measures the distance between the unrestricted and
the restricted maximum likelihood estimators of θ from a different perspective.
It measures the orthogonal projection of the score vector at H0 on the vector
θ̂ − θ̃. Unlike the score statistic and like the Wald statistic, the gradient statis-
tic is not invariant under reparameterization of the model that preserves the
parameter of interest.

Recently, the gradient test has been the subject of some research papers. In
particular, [19] obtained the local power of the gradient test under Pitman alter-
natives (a sequence of alternative hypotheses converging to the null hypothesis
at the rate of n−1/2); see also [20]. The authors compared the local power of the
gradient test with those of the likelihood ratio, the Wald, and the score tests.
They showed that none of the tests is uniformly more powerful than the others,
and therefore, the gradient test is not only very simple to be calculated but it
is also competitive with the others in terms of local power. Comparison among
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the local power of the classic tests and the gradient test in regression models
can be found in [17, 18].

The main result in [19] regarding the local power of the gradient test up to
an error of order o(n−1/2) represents the first step in the study of higher-order
asymptotic properties of the gradient test. In the present paper, we wish to
go further by focusing on deriving the second-order approximation to the null
distribution of the gradient statistic. In other words, our aim is to obtain an
asymptotic expansion for the cumulative distribution function of the gradient
statistic under the null hypothesis up to an error of order o(n−1).

The usual route for deriving expansions for the distribution of asymptotic
chi-square test statistics involves multivariate Edgeworth series expansions. Al-
though such a route has been followed by many authors, it is extremely lengthy
and tedious; see, for example, [12, 11]. Here, on the other hand, in order to
derive an asymptotic expansion for the null distribution of the gradient statistic
up to order n−1, we follow a Bayesian route based on a shrinkage argument orig-
inally suggested by [10] and described later in [21]. Although it uses a Bayesian
approach, this technique can be used to solve frequentist problems, such as the
derivation of Bartlett corrections and tail probabilities [9].

Additionally, we obtain a Bartlett-type correction factor for the gradient
statistic from the results in [6]. Under the null hypothesis, the corrected statistic
is distributed as chi-square up to an error of order o(n−1), while the uncorrected
gradient statistic has a chi-square distribution up to an error of order o(n−1/2);
that is, the Bartlett-type correction factor makes the approximation error be
reduced from o(n−1/2) to o(n−1). For a detailed survey on Bartlett and Bartlett-
type corrections, the reader is referred to [7].

The paper unfolds as follows. In Section 2, we present our main results,
namely an asymptotic expansion for the cumulative distribution function of
the gradient statistic and its Bartlett-type correction. In Sections 3 and 4, we
particularise our general results to one-parameter families and to families with
two orthogonal parameters, respectively. Monte Carlo simulation experiments
are also presented in Section 4. Section 5 closes the paper with a brief discussion.
Technical details are collected in two appendices.

2. Main results

First, let us introduce some notation. Let Dj = ∂/∂θj (j = 1, . . . , p) be the dif-
ferential operator.We define Uj = Djℓ(θ), Ujr = DjDrℓ(θ), Ujrs = DjDrDsℓ(θ),
and Ujrsu = DjDrDsDuℓ(θ). We make the same assumptions, such as the regu-
larity of the first four derivatives of ℓ(θ) with respect to θ and the existence and
uniqueness of the maximum likelihood estimator of θ, as those fully outlined

by [12]. Let κjr = E(Ujr), κjrs = E(Ujrs), κjrsu = E(Ujrsu), κ
(s)
jr = Dsκjr ,

κ
(su)
jr = DsDuκjr, and κ

(u)
jrs = Duκjrs. Note that all the κs are or order O(1).

Further, let K be the per observation Fisher information matrix

K = −((κjr)) =

[
K11 K12

K21 K22

]
,



46 T.M. Vargas et al.

with K−1 = −((κjr)) denoting its inverse. Finally, define the matrices

A = ((ajr)) =

[
0 0

0 K
−1
22

]
, M = ((mjr)) = K

−1 −A.

In what follows, we use the Einstein summation convention, where
∑′

denotes
summation over all components of θ; that is, the indices j, r, s, k, l and u range
over 1 to p. We now establish the following theorem.

Theorem 1. An asymptotic expansion for the null distribution of the gradient
statistic for testing H0 : θ1 = θ10 against Ha : θ1 6= θ10 is

Pr(S ≤ x) = Gq(x) +
1

24n

3∑

i=0

RiGq+2i(x) + o(n−1), (2)

where Gz(x) is the cumulative distribution function of a chi-square random vari-
able with z degrees of freedom, R1 = 3A3− 2A2+A1, R2 = A2− 3A3, R3 = A3,
R0 = −(R1 +R2 +R3),

A1 = 3
∑′

κjrsκklu
{
mjralu(msk + 2ask) + ajrmskalu + 2mjkarlasu

}

− 12
∑′

κ
(s)
jr κ

(u)
kl

(
κsjκrkκlu + asjarkalu + κskκljκru + askaljaru

)

− 6
∑′

κjrsκ
(u)
kl

{(
asu − κsu

)(
κjkκlr − ajkalr

)
+mjr

(
askalu + κskκlu

)

+ 2ars
(
κjkκlu − ajkalu

)
+ 2arkalsmju

}

+ 6
∑′

κjrsum
jrasu − 6

∑′

κ
(u)
jrs

{
mjr

(
asu − κsu

)
+ 2mjuars

}

+ 12
∑′

κ(ju)rs

(
κjrκsu − ajrasu

)
,

A2 = −3
∑′

κjrsκklu

{
mjrmskalu +mjraskmlu + 2mjkmrlasu

+
1

4

(
3mjrmskmlu + 2mjkmrlmsu

)}

+ 6
∑′

κjrsκ
(u)
kl

{
msu

(
κjkκlr − ajkalr

)
+mjr

(
κskκlu − askalu

)}

+ 6
∑′

κ
(u)
jrsm

jrmsu − 3
∑′

κjrsum
jrmsu,

A3 =
1

4

∑′

κjrsκklu
(
3mjrmskmlu + 2mjkmrlmsu

)
.

Proof. The proof is presented in Appendix 1.

Basically, in order to prove Theorem 1, we follow a Bayesian route based on
a shrinkage argument. This argument is described in Appendix 2.

If the null hypothesis is simple, we have q = p, A = 0 and M = K−1.
Therefore, an immediate consequence of Theorem 1 is the following corollary.
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Corollary 1. An asymptotic expansion for the null distribution of the gradient
statistic for testing H0 : θ = θ0 against Ha : θ 6= θ0 is given by (2) with q = p,
R1 = 3A3 − 2A2 + A1, R2 = A2 − 3A3, R3 = A3, R0 = −(R1 + R2 + R3) and
the A’s are

A1 = −12
∑′

κ
(s)
jr κ

(u)
kl

(
κsjκrkκlu + κskκljκru

)

+ 6
∑′

κjrsκ
(u)
kl

(
κsuκjkκlr + κjrκskκlu

)

+ 12
∑′

κ(ju)rs κjrκsu − 6
∑′

κ
(u)
jrsκ

jrκsu,

A2 =
3

4

∑′

κjrsκklu
(
3κjrκskκlu + 2κjkκrlκsu

)

− 6
∑′

κjrsκ
(u)
kl

(
κsuκjkκlr + κjrκskκlu

)

+ 6
∑′

κ
(u)
jrsκ

jrκsu − 3
∑′

κjrsuκ
jrκsu,

A3 = −1

4

∑′

κjrsκklu
(
3κjrκskκlu + 2κjkκrlκsu

)
.

We are now able to present a Bartlett-type corrected gradient statistic. A
Bartlett-type correction is a multiplying factor, which depends on the statistic
itself, that results in a modified statistic that follows a chi-square distribution
with approximation error of order less than n−1. Cordeiro and Ferrari [6] ob-
tained a general formula for a Bartlett-type correction for a wide class of statis-
tics that have a chi-square distribution asymptotically. A special case is when
the cumulative distribution function of the statistic can be written as (2), inde-
pendently of the coefficients R1, R2, and R3. Hence, from Theorem 1 and the
results in [6], we have the following corollary.

Corollary 2. The modified statistic

S∗ = S
{
1−

(
c+ bS + aS2

)}
, (3)

where

a =
A3

12nq(q + 2)(q + 4)
, b =

A2 − 2A3

12nq(q + 2)
, c =

A1 −A2 +A3

12nq
,

has a χ2
q distribution up to an error of order o(n−1) under the null hypothesis.

The factor {1 − (c + bS + aS2)} in (3) can be regarded as a Bartlett-type
correction factor for the gradient statistic in such a way that the null distri-
bution of S∗ is better approximated by the reference χ2 distribution than the
distribution of the uncorrected gradient statistic.

Instead of modifying the test statistic as in (3), we may modify the reference
χ2 distribution using the inverse expansion formula in [13]. To be specific, let
γ be the desired level of the test, and x1−γ be the 1 − γ percentile of the
χ2 limiting distribution of the test statistic. From expansion (2), we have the
following corollary.
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Corollary 3. An asymptotic expansion for the 1 − γ percentile of S takes the
form

z1−γ = x1−γ +
1

12n

[
A3x1−γ

q(q + 2)(q + 4)

{
x21−γ + (q + 4)x1−γ + (q + 2)(q + 4)

}

+
x1−γ(x1−γ + q + 2)

q(q + 2)
(A2 − 3A3) +

x1−γ

q
(3A3 − 2A2 +A1)

]
(4)

+ o(n−1),

where Pr(χ2
q ≥ x1−γ) = γ.

In general, equations (3) and (4) depend on unknown parameters. In this
case, we can replace these unknown parameters by their maximum likelihood
estimates obtained under H0. It should be noticed that the improved gradient
test of the null hypothesis H0 may be performed in three ways: (i) by referring
the corrected statistic S∗ in (3) to the χ2

q distribution; (ii) by referring the
gradient statistic S to the approximate cumulative distribution function (2);
(iii) by comparing S with the modified upper percentile in (4). These three
procedures are equivalent to order n−1.

Finally, the three moments, up to order n−1 under the null hypothesis, of the
gradient statistic are presented in the following corollary.

Corollary 4. The mean, the variance, and the third central moment, up to
order n−1 under the null hypothesis, of the gradient statistic are

µ′

1(S) = q +
A1

12n
, µ2(S) = 2q +

A1 +A2

3n
,

µ3(S) = 8q +
2(A1 + 2A2 +A3)

n
,

respectively.

In the next sections, we consider some applications of the general results
derived in this section in two special cases: a one-parameter model and a two-
parameter model under orthogonality of parameters.

3. The one-parameter case

We initially assume that the model is indexed by a scalar unknown parameter,
say φ. The interest lies in testing the null hypothesis H0 : φ = φ0 against
Ha : φ 6= φ0, where φ0 is a fixed value. Let κφφ = E(∂2ℓ(φ)/∂φ2), κφφφ =

E(∂3ℓ(φ)/∂φ3), κφφφφ = E(∂4ℓ(φ)/∂φ4), κ
(φ)
φφ = ∂κφφ/∂φ, κ

(φ)
φφφ = ∂κφφφ/∂φ,

and κ
(φφ)
φφ = ∂2κφφ/∂φ

2. The gradient statistic for testing H0 is S = nU(φ0)(φ̂−
φ0), where φ̂ is the maximum likelihood estimator of φ. Here, A1, A2, and A3

given in Corollary 1 reduce to

A1 =
6κφφ(2κ

(φφ)
φφ − κ

(φ)
φφφ) + 12κ

(φ)
φφ (κφφφ − 2κ

(φ)
φφ )

κ3φφ
, (5)
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A2 =
12κφφ(2κ

(φ)
φφφ − 3κφφφφ) + 3κφφφ(5κφφφ − 16κ

(φ)
φφ )

4κ3φφ
, (6)

A3 = −
5κ2φφφ
4κ3φφ

. (7)

We now present some examples.

Example 1. (Exponential distribution)

Let x1, . . . , xn be a random sample of an exponential distribution with density

f(x;φ) =
1

φ
e−x/φ, x > 0, φ > 0.

Here, κφφ = −φ−2, κφφφ = 4φ−3, and κφφφφ = −18φ−4. The gradient statistic
assumes the form S = n(x̄−φ0)

2/φ20, where x̄ = n−1
∑n

i=1 xi, which equals the
score statistic. It is easy to see that A1 = 0, A2 = 18, and A3 = 20. The first
three moments (up to order n−1) of S are µ′

1(S) = 1, µ2(S) = 2 + 6/n, and
µ3(S) = 8 + 112/n. A partial verification of our results can be accomplished
by comparing the exact moments of S with the approximate moments given
above. Since nX̄ has a gamma distribution with parameters n and 1/(nφ), it
can be shown that the first three exact moments of S are 1, 2 + 6/n, and
8 + 112/n+ 120/n2, respectively. These moments differ from the approximate
moments obtained from Corollary 4 only in terms of order less than n−1. The
Bartlett-type corrected gradient statistic obtained from Corollary 3 is S∗ =
S{1− (3− 11S + 2S2)/(18n)}.
Example 2. (One-parameter exponential family)

Let x1, . . . , xn be a random sample of size n in which each xi has a distribution
in the one-parameter exponential family with density

f(x;φ) =
1

ξ(φ)
exp {−α(φ)d(x) + v(x)},

where α(·), v(·), d(·), and ξ(·) are known functions. Also, α(·) and ξ(·) are
assumed to have first three continuous derivatives, with ξ(·) > 0, α′(φ), and
β′(φ) being different from zero for all φ in the parameter space, where β(φ) =
ξ′(φ)/(ξ(φ)α′(φ)). Here, primes denote derivatives with respect to φ. For in-
stance, β′ = β′(φ) = dβ(φ)/dφ. It can be shown that κφφ = −α′β′, κφφφ =
−(2α′′β′ +α′β′′), and κφφφφ = −3α′′β′′ − 3α′′′β′ −α′β′′′. The gradient statistic

takes the form S = n(φ0− φ̂)α′(φ0)(β(φ0)+ d̄), where d̄ = n−1
∑n

i=1 d(xi). From
(5), (6), and (7), we can write

A1 =
6

α′β′

{
2

(
β′′

β′

)2

+
α′′β′′

α′β′
− β′′′

β′

}
,

A2 =
3

α′β′

[
β′′

β′

(
4α′′

α′
− β′′

4β′

)
+ 3

{(
α′′

α′

)2

+

(
β′′

β′

)2
}

−
(
α′′′

α′
− β′′′

β′

)]
,
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A3 =
5

α′β′

(
α′′

α′
+
β′′

2β′

)2

.

We now present some special cases.

1. Normal (φ > 0, µ ∈ R, x ∈ R):

• µ known: α(φ) = 1/(2φ), ξ(φ) = φ1/2, d(x) = (x − µ)2, and v(x) =
− log(2π)/2. We have A1 = 0, A2 = 36, and A3 = 40. The first three
moments of S up to order n−1 are µ′

1(S) = 1, µ2(S) = 2(1 + 6/n),
and µ3(S) = 8(1+ 29/n). The Bartlett-corrected gradient statistic is
S∗ = S{1− (1− 11S/3 + 2S2/3)/(3n)}.

• φ known: α(µ) = −µ/φ, ξ(µ) = exp(µ2/2φ), d(x) = x, and v(x) =
−x2/2− log(2πφ)/2. Here, A1 = A2 = A3 = 0, as expected.

2. Inverse normal (φ > 0, µ > 0, x > 0):

• µ known: α(φ) = φ, ξ(φ) = 1/φ1/2, d(x) = (x − µ)2/(2µ2x), and
v(x) = − log(2πx3)/2. Here, A1 = 24, A2 = 30, and A3 = 10, and
the three first moments of S are µ′

1(S) = 1+ 2/n, µ2(S) = 2+ 18/n,
and µ3(S) = 8 + 188/n. The Bartlett-corrected gradient statistic
takes the form S∗ = S{1− (S + 2)(S + 3)/(18n)}.

• φ known: α(µ) = φ/(2µ2), ξ(φ) = exp(−φ/µ), d(x) = x, and v(x) =
−φ/(2x2) + log(2πx3)/2. We have A1 = 0 and A2 = A3 = 45µ/φ.
The first three approximate moments of S are µ′

1(S) = 1, µ2(S) =
2+ 15µ/(nφ), and µ3(S) = 8+ 270µ/(nφ). Also, S∗ = S{1−µS(S−
5)/(4nφ)}.

3. Truncated extreme value (φ > 0, x > 0): α(φ) = 1/φ, ξ(φ) = φ, d(x) =
exp (x)− 1, and v(x) = x. We have A1 = 0, A2 = 12, A3 = 20, µ′

1(S) = 1,
µ2(S) = 2+4/n, µ3(S) = 8+88/n, and S∗ = S{1−(12−15S+2S2)/(18n)}.

4. Pareto (φ > 0, k > 0, k known, x > k): α(φ) = 1 + φ, ξ(φ) = (φkφ)−1,
and v(x) = 0. Here, A1 = 12, A2 = 15, A3 = 5, µ′

1(S) = 1 + 1/n,
µ2(S) = 2+9/n, µ3(S) = 8+94/n, and S∗ = S{1−(S+2)(S+3)/(36n)}.

5. Power (θ > 0, φ > 0, θ known, x > θ): α(φ) = 1 − φ, ξ(φ) = φ−1θφ, and
v(x) = 0. The A’s, the first three approximate moments, and the Bartlett-
type corrected statistic coincide with those obtained for the Pareto distri-
bution.

6. Laplace (θ > 0, k ∈ R, k known, x ∈ R): α(θ) = θ−1, ζ(θ) = 2θ, d(x) =
|x − k|, and v(x) = 0. We have A1 = 0, A2 = 18, A3 = 20, µ′

1(S) = 1,
µ2(S) = 2+6/n, µ3(S) = 8+112/n, and S∗ = S{1−(3−11S+2S2)/(18n)}.

4. Models with two orthogonal parameters

The two-parameter families of distributions under orthogonality of the param-
eters [8], say φ and β, will be the subject of this section. The null hypothesis
under test is H0 : φ = φ0, where φ0 is a fixed value, and β acts as a nuisance
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parameter. The orthogonality between φ and β leads to considerable simpli-
fication in the formulas of A1, A2, and A3. Here, κφφβ = E(∂3ℓ(θ)/∂β∂φ2),

κ
(β)
φφβ = ∂κφφβ/∂β, etc. After some algebra, we have

A1 = A1φ +A1φβ , A2 = A2φ +A2φβ , A3 = −
5κ2φφφ
4κ3φφ

, (8)

where A1φ and A2φ are equal to A1 and A2 given in (5) and (6), respectively,
and

A1φβ =
3
{
4κφφβκ

(β)
φφ + κφββ

(
4κ

(φ)
φφ − κφφφ

)}

κ2φφκββ
+

6
(
κφφββ − 2κ

(β)
φφβ − 2κ

(φ)
φββ

)

κφφκββ

+
3
{
2κφφβ

(
2κ

(β)
ββ − κβββ

)
+ κφββ

(
2κ

(φ)
ββ − 3κφββ

)}

κφφκ2ββ
,

A2φβ =
3
(
3κφφφκφββ + κ2φφβ

)

κ2φφκββ
.

The expressions for A1φβ and A2φβ in (8) can be regarded as the additional
contribution introduced in the expansion of the cumulative distribution function
of the gradient statistic owing to the fact that β is unknown and has to be
estimated from the data. In the following, we present some examples.

Example 3. (Normal distribution)

Let x1, . . . , xn be a random sample from a normal distribution N(φ, β). The
gradient statistic for testing H0 : φ = φ0 can be written in the form

S = n
T1T

−1
2

1 + T1T
−1
2

,

where T1 = n(x̄ − φ0)
2, T2 =

∑n
i=1(xi − x̄)2, and x̄ = n−1

∑n
i=1 xi. Under the

null hypothesis, T1/β and T2/β are independent with distributions χ2
1 and χ

2
n−1,

respectively. It can be shown that n−1S has a beta distribution with parameters
1/2 and (n−1)/2. The first three exact moments of S are 1, 2(n−1)/(n+2), and
8(n−1)(n−2)/{(n+2)(n+4)}, respectively. Here, A1 = A3 = 0 and A2 = −18.
The first three approximate moments of S are µ′(S) = 1, µ2(S) = 2 − 6/n,
and µ3(S) = 8 − 72/n. These moments differ from the exact moments only by
terms of order less than n−1. The Bartlett-type corrected gradient statistic is
S∗ = S{1− (3 − S)/(2n)}.
Example 4. (Two-parameter Birnbaum–Saunders distribution)

The two-parameter Birnbaum–Saunders distribution was proposed by [3] and
has cumulative distribution function in the form G(x) = Φ(v), with x > 0,
where v = φ−1ρ(x/β), ρ(z) = z1/2 − z−1/2, and Φ(·) is the standard normal
cumulative distribution function; φ > 0 and β > 0 are the shape and scale
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parameters, respectively. We wish to test H0 : φ = φ0 against the alternative
hypothesis Ha : φ 6= φ0, where φ0 is a known positive constant. The gradient
statistic to test H0 is

S =
n(φ̂− φ0)

φ30

{
s̄+ r̄ − (2 + φ20)},

where s̄ = (nβ̃)−1
∑n

i=1 xi, r̄ = β̃n−1
∑n

i=1 x
−1
i , and β̃ is the maximum likeli-

hood estimator of β obtained under H0. We have κφφ = −2/φ2, κφβ = 0, and

κββ = −{1 + φ(2π)−1/2h(φ)}/(φ2β2), where h(φ) = φ(π/2)1/2 − πe2/φ
2{1 −

Φ(2/φ)}. After some algebra, we obtain A1φ = −3, A2φ = 69/8, A2φβ =
−45(2 + φ2)/[2{1 + φ(2π)−1/2h(φ)}], A3 = 125/8, and

A1φβ =
9− 15φ2/2

1 + φ(2π)−1/2h(φ)
+

3(2 + φ2)

{1 + φ(2π)−1/2h(φ)}2
{
2(1+φ2)− (4 + φ2)h(φ)

φ
√
2π

}
.

Since the necessary quantities to obtain the A’s were derived, a Bartlett-corrected
gradient statistic may be obtained from Corollary 2. It is interesting to note
that the A’s do not depend on the unknown scale parameter β. Next, we shall
present a small Monte Carlo simulation regarding the test of the null hypothesis
H0 : φ = 1.

The simulations were performed by setting β = 1 and sample sizes ranging
from 5 to 22 observations. All results are based on 10,000 replications. The size
distortions (i.e. estimated minus nominal sizes) for the 5% nominal level of the
gradient test and its Bartlett-corrected version for different sample sizes are
plotted in Figure 1(a). It is clear from this figure that the Bartlett-corrected
test displays smaller size distortions than the original gradient test.

Next, we set n = 10 and consider the first-order approximation (χ2
1 distribu-

tion) for the distribution of the gradient statistic and the expansion obtained in
this paper. Figure 1(b) presents the curves. The difference between the curves
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Fig 1. (a) Size distortion of the gradient test (solid) and the Bartlett-corrected gradient test
(dashes), (b) first-order approximation (solid) and expansion to order n

−1 (dashes) of the null
cumulative distribution function of the gradient statistic; Birnbaum–Saunders distribution.
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is evident from this figure, and hence, the χ2
1 distribution may not be a good

approximation for the null distribution of the gradient statistic in testing the
null hypothesis H0 : φ = 1 for the two-parameter Birnbaum–Saunders model if
the sample is small.

Example 5. (Gamma distribution)

Let x1, . . . , xn be a random sample from a gamma distribution with mean
β and coefficient of variation φ1/2. Here, we consider the problem of testing
the null hypothesis H0 : (β, φ) = (β0, φ0), where β0 and φ0 are fixed positive
values. Note that the null hypothesis is simple, and the A’s can be obtained
from Corollary 1 with q = p = 2. After some algebra, we obtain

A1 = 6(d1 − d2 + d3 − 2d4), A2 =
18

φ
+

3

4
(d1 + 2d2 + 4d3 − 11d4),

A3 =
20

φ
− 1

4
(9d1 − 6d2 + 5d4),

where d1 = 1/[φ(1−φψ′)], d2 = (1+φ2ψ′′)/[φ(1−φψ′)2], d3 = (2−φ3ψ′′′)/[φ(1−
φψ′)2], and d4 = (1 + φ2ψ′′)2/[φ(1 − φψ′)3], with ψ = ψ(φ) = Γ′(φ)/Γ(φ),
Γ′(φ) = dΓ(φ)/dφ, ψ′ = dψ/dφ, ψ′′ = d2ψ/dφ2, and ψ′′′ = d3ψ/dφ3, and Γ(·)
represents the gamma function.

We now present results from a simulation study with 10,000 replications.
The null hypothesis is H0 : β = φ = 1. Note that H0 means that the data
come from an exponential distribution with unity mean. Figure 2(a) presents
a plot of size distortions for the 10% nominal level of the gradient test and its
Bartlett-corrected version for different sample sizes. It can be noticed that the
gradient test is oversized and its corrected version is clearly less size distorted.

Finally, we set n = 10 and plot the first-order and the second-order ap-
proximations for the distribution of the gradient statistic. Visual inspection of
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Fig 2. (a) Size distortion of the gradient test (solid) and the Bartlett-corrected gradient test
(dashes), (b) first-order approximation (solid) and expansion to order n

−1 (dashes) of the
null cumulative distribution function of the gradient statistic; gamma distribution.
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Figure 2(b) reveals that the first-order χ2
2 approximation can be inaccurate in

small samples.

5. Discussion

Lemonte and Ferrari [19] showed that the gradient test can be an interesting
alternative to the classic large-sample tests, namely the likelihood ratio, the
Wald, and the Rao score tests, since none is uniformly superior to the others in
terms of second-order local power. Additionally, as remarked before, the gradi-
ent statistic does not require one to obtain, estimate, or invert an information
matrix, unlike the Wald and the Rao score statistics. Its formal simplicity is
always an attraction.

The exact null distribution of the gradient statistic is usually unknown and
the test relies upon an asymptotic approximation. The chi-square distribution is
used as a large-sample approximation to the true null distribution of this statis-
tic. However, for small sample sizes, the chi-square distribution may be a poor
approximation to the true null distribution; that is, the asymptotic approxima-
tion may deliver inaccurate inference. In order to overcome this shortcoming,
an alternative strategy is to use a higher-order asymptotic theory.

The asymptotic expansion up to order n−1 for the null distribution function
of the gradient statistic was derived in this paper. A Bayesian route based on the
shrinkage argument [10, 21] proved to be extremely useful in this context. The
expansion is very general in the sense that the null hypothesis can be composite
in the presence of nuisance parameters. We show that the coefficients which
define this expansion depend on the joint cumulants of log likelihood derivatives
for the full data. Unfortunately, these coefficients are very difficult to interpret in
generality. It can be used to investigate how closely the asymptotic distribution
approximates the (unknown) true distribution of the gradient statistic.

Cordeiro and Ferrari [6] showed that, quite generally, continuous statistics
having a chi-square distribution asymptotically can be modified by a suitable
correction term that makes the modified statistic have chi-square distribution
to order n−1. Their work can be viewed as an extension of Bartlett corrections
to the likelihood ratio statistic [16] to other statistics having a chi-square dis-
tribution asymptotically. The correction term comes from the coefficients of the
O(n−1) term in the expansion of the cumulative distribution function of the
test statistic in such a way that it becomes better approximated by the refer-
ence chi-square distribution. It is known as the Bartlett-type correction. It is
well known that Bartlett and Bartlett-type corrections have become a widely
used method for improving the large-sample chi-square approximation to the
null distribution of the likelihood ratio and Rao score statistics, respectively. In
recent years there has been a renewed interest in Bartlett factors and several
papers have been published giving expressions for computing these corrections
for special models. Some references are [30, 14, 26, 27, 1, 15], and [22].

From the general expansion derived in this paper and using results in [6], we
also obtained a Bartlett-type correction factor for the gradient statistic. The
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advantage of the corrected statistic over its uncorrected counterpart it that it is
better approximated by the chi-square distribution. Unfortunately, the corrected
gradient statistic is more difficult to obtain. Our results are very general and not
tied to special classes of models. They allow the parameter vector to be multidi-
mensional and are valid regardless of whether nuisance parameters are present
or not. Additionally, as the coefficients in the expansion, and consequently in
the Bartlett-type correction factor, are written as functions of cumulants of
log-likelihood derivatives, they can be obtained for all the classes of parametric
models for which those cumulants can be determined. Therefore, applications of
our general results in several parametric models, such as the generalised linear
models and extensions, can be studied in future research.
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Appendix 1

Proof of Theorem 1

Except when indicated, the indices j, r, s, u, v, and w range over 1 to p
and the indices j′, r′, s′, u′, v′, and w′ range over 1 to q. Also, an array
index repeated as both a superscript and a subscript indicates an implied
summation over the appropriate range. Let λjr = −ψjr = −{DjDrℓ(θ)}θ=θ̂

,
ψjrs = {DjDrDsℓ(θ)}θ=θ̂

, ψjrsu = {DjDrDsDuℓ(θ)}θ=θ̂
, etc. The matrix

Λ = ((λjr)) is the observed information matrix evaluated at θ̂. The partition of
θ = (θ⊤

1 , θ
⊤
2 )

⊤ induces the partitions

Λ = ((λjr)) =

[
Λ11 Λ12

Λ21 Λ22

]
, Λ−1 = ((λjr)) =

[
Λ11 Λ12

Λ21 Λ22

]
,

whereΛ−1 is the inverse ofΛ. LetΛ11−1
= ((λ1w′j′ )), σ

jr = λjr−λjw′

λ1w′j′λ
j′r,

τ jj
′

= λjw
′

λ1w′j′ , σ
(1)
suvw = σsuσvw [3], λ

(1)
j′r′s′u′ = λj

′r′λs
′u′

[3], and λ
(2)
j′r′s′u′v′w′ =

λj
′r′λs

′u′

λv
′w′

[15], where [·] denotes a summation with the number in brackets
indicating the number of terms obtained by permutation of indices. For instance,
σsuσvw[3] = σsuσvw + σsvσuw + σswσuv. Let ǫ = (ǫ1, . . . , ǫq)

⊤ = n1/2(θ1 − θ̂1),

Ψ
(1)
j′ = ψjrsσ

rsτ jj
′

/2, Ψ
(3)
j′r′s′ = ψjrsτ

jj′τrr
′

τss
′

/6,

Ψ
(4)
j′r′s′u′ =

1

24
{ψjrsu + σvw(2ψjrsψuvw + 3ψjrvψsuw)} τ jj

′

τrr
′

τss
′

τuu
′

.

Lemma 1. An asymptotic expansion under the null hypothesis for the gradient
statistic (1) is

S = ǫ
⊤Λ11−1

ǫ− 3√
n
Ψ

(3)
j′r′s′ǫj′ǫr′ǫs′ −

4

n

(
Ψ

(4)
j′r′s′u′ −Ψ

(3)
j′r′s′Ψ

(1)
u′

)
ǫj′ǫr′ǫs′ǫu′

(9)
+ op(n

−1).
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Proof. Using a procedure analogous to that of [5], the result holds.

Let π = π(θ) be a prior density for θ, πj = Djπ(θ), πjr = DjDrπ(θ),

π̂ = π(θ̂), π̂j = πj(θ̂), π̂jr = πjr(θ̂),

Ψ
(2)
j′r′ =

{
π̂jr
2π̂

+
1

4
ψjrsuσ

su +
1

24

(
2ψjrsψuvw + 3ψjsuψrvw

)
σ(1)
suvw

}
τ jj

′

τrr
′

,

Γ
(1)
j′ = Ψ

(1)
j′ +

π̂j
π̂
τ jj

′

, Γ
(2)
j′r′ = Ψ

(2)
j′r′ +

1

2π̂

(
ψjrsπ̂u + ψjsuπ̂r

)
σsuτ jj

′

τrr
′

,

Γ
(4)
j′r′s′u′ = Ψ

(4)
j′r′s′u′ +

π̂u
6π̂
ψjrsτ

jj′τrr
′

τss
′

τuu
′

.

From [10], [4] derive an expansion up to order n−1 for the marginal posterior
density of ǫ, which takes the form

πpost(ǫ) = φq(ǫ;Λ
11)

[
1 +

1√
n

(
Γ
(1)
j′ ǫj′ + Γ

(3)
j′r′s′ǫj′ǫr′ǫs′)

+
1

n

{
Γ
(2)
j′r′

(
ǫj′ǫr′ − λj

′r′
)
+ Γ

(4)
j′r′s′u′

(
ǫj′ǫr′ǫs′ǫu′ − λ

(1)
j′r′s′u′

)

+
1

2
Ψ

(3)
j′r′s′Ψ

(3)
u′v′w′

(
ǫj′ǫr′ǫs′ǫu′ǫv′ǫw′ − λ

(2)
j′r′s′u′v′w′

)}]
+ o(n−1),

(10)

where φq(z;Σ) denotes the density of the q-variate normal distribution with
mean 0 and covariance matrix Σ.

We now follow the Bayesian route described in [21]; see Appendix 2.
Step 1. The approximate posterior characteristic function of S is

Mπ(t) = Eπ{exp(ξS)} =

∫
exp(ξS)πpost(ǫ)dǫ,

where ξ = it with i = (−1)1/2. From Lemma 1 and after some algebra, we can
write

exp(ξS)πpost(ǫ) = (1 − 2ξ)−q/2φq

(
ǫ;

Λ11

1− 2ξ

)
×

[
1 +

1√
n

{
(1 − 3ξ)Ψ

(3)
j′r′s′ǫj′ǫr′ǫs′ + Γ

(1)
j′ ǫ

′

j

}

+
1

n

[
1

2
Ψ

(3)
j′r′s′Ψ

(3)
u′v′w′

{
1

9
(1−3ξ)2ǫj′ǫr′ǫs′ǫu′ǫv′ǫw′−λ(2)j′r′s′u′v′w′

}

−
[
ξ
{
4Ψ

(4)
j′r′s′u′ +Ψ

(3)
j′r′s′

(
3Γ

(1)
u′ − 4Ψ

(1)
u′

)}
−Γ

(4)
j′r′s′u′

]
ǫj′ǫr′ǫs′ǫu′

+ Γ
(2)
j′r′

(
ǫj′ǫr′ − λj

′r′
)
− Γ

(4)
j′r′s′u′λ

(1)
j′r′s′u′

]]
+ op(n

−1).
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Now, by writing ξ = − 1
2 (1− 2ξ) + 1

2 , ξ
2 = 1

4 (1 − 2ξ)2 − 1
2 (1 − 2ξ) + 1

4 , and
assuming that θ is in the interior of the support of π, we obtain after some
algebra

Mπ(t) = (1− 2ξ)−q/2

{
1 +

1

n

3∑

i=0

Hi(1 − 2ξ)−i

}
+ op(n

−1), (11)

where H0 = −(H1 +H2 +H3),

H1 =
9

8
Ψ

(3)
j′r′s′Ψ

(3)
u′v′w′λ

(2)
j′r′s′u′v′w′ + Γ

(2)
j′r′λ

j′r′

+ λ
(1)
j′r′s′u′

{
2
(
Ψ

(4)
j′r′s′u′ −Ψ

(3)
j′r′s′Ψ

(1)
u′

)
+

3

2
Ψ

(3)
j′r′s′Γ

(1)
u′

}
,

H2 = −3

4
Ψ

(3)
j′r′s′Ψ

(3)
u′v′w′λ

(2)
j′r′s′u′v′w′

+ λ
(1)
j′r′s′u′

{
Γ
(4)
j′r′s′u′ − 2

(
Ψ

(4)
j′r′s′u′ −Ψ

(3)
j′r′s′Ψ

(1)
u′

)
− 3

2
Ψ

(3)
j′r′s′Γ

(1)
u′

}
,

H3 =
1

8
Ψ

(3)
j′r′s′Ψ

(3)
u′v′w′λ

(2)
j′r′s′u′v′w′ .

Step 2. Let π̄(·) be an auxiliary prior density for θ satisfying the conditions
in [2]. We now obtain an approximate posterior characteristic function of S
under the prior π̄(·), say Mπ̄(t). From (11), we have

Mπ̄(t) = (1− 2ξ)−q/2

{
1 +

1

n

3∑

i=0

H̄i(1 − 2ξ)−i

}
+ op(n

−1),

where H̄i denotes the counterpart of Hi obtained by replacing π(·) with π̄(·).
After some algebra, we have

∆(θ) = Eθ(Mπ̄) = (1 − 2ξ)−q/2

{
1 +

1

n

3∑

i=0

J̄i(1− 2ξ)−i

}
+ o(n−1),

where J̄0 = −(J̄1 + J̄2 + J̄3),

J̄1 =
1

32
κjrsκuvw

(
9mjrmsumvw + 6mjumrvmsw

)
+

1

4
κjrsum

jrmsu

+
1

4
κjrvκsuwa

vw
(
mjrmsu[3]) +

1

8
κjrsκuvwa

vw(mjrmsu[3])

+
3

4
κjrsm

jrmsu π̄u
π̄

+
1

2
mjr

{
π̄jr
π̄

+
1

2
κjrsua

su

+
1

12
(2κjrsκuvw + 3κjsuκrvw)(a

suavw[3]) +
π̄u
π̄
κjrsa

su +
π̄r
π̄
κjsua

su

}
,
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J̄2 = − 1

48
κjrsκuvw

(
9mjrmsumvw + 6mjumrvmsw

)
− 1

4
κjrsum

jrmsu

− 1

4
κjrvκsuwa

vw
(
mjrmsu[3])− 1

8
κjrsκuvwa

vw(mjrmsu[3])

− 3

4
κjrsm

jrmsu π̄u
π̄

+
1

8

(
κjrsu +

1

6
κjrs

π̄u
π̄

)
mjrmsu

+
1

24

(
2κjrsκuvw + 3κjrvκsuw

)
avw(mjrmsu[3]),

J̄3 =
1

288
κjrsκuvw

(
9mjrmsumvw + 6mjumrvmsw

)
.

Step 3. We now compute

∫
∆(θ)π̄(θ)dθ = (1− 2ξ)−q/2

{
1 +

1

n

3∑

i=0

(1− 2ξ)−i

∫
J̄iπ̄(θ)dθ

}
+ o(n−1),

by integrating the J̄ ’s with respect to π̄. After integrating each term that de-
pends on the prior distributions and by allowing π̄(·) to converge weakly to the
degenerate prior at the true value of θ, we arrive at

Eθ{exp(ξS)} = (1− 2ξ)−q/2

{
1 + n−1

3∑

i=0

Āi(1− 2ξ)−i

}
+ o(n−1),

where the Ā’s are functions of cumulants of log-likelihood derivatives. By writing
d = 2ξ/(1− 2ξ) and using the fact that

∑3
i=0 Āi = 0, we arrive at

M(t) = (1− 2ξ)−q/2

{
1 +

1

24n
(A1d+A2d

2 +A3d
3)

}
+ o(n−1), (12)

with A1 = 24(Ā1 + 2Ā2 + 3Ā3), A2 = 24(Ā2 + 3Ā3), and A3 = 24Ā3. We can
write

A1 = 12DjDrm
jr − 6Du(κjrsm

jrmsu)− 12Du

(
κjrsm

jrasu
)

− 12Dr

(
κjsum

jrasu
)
+ 6κjrsum

jrasu + κjrsκuvwa
vw

(
mjrmsu[3]

)

+ (2κjrsκuvw + 3κjsuκrvw)m
jr
(
asuavw[3]

)
,

A2 = 6Du

(
κjrsm

jrmsu
)
−
(
κjrsκuvw + 3κjrvκsuw

)
avw

(
mjrmsu[3]

)

− 3κjrsum
jrmsu − 3

4
κjrsκuvw

(
3mjrmsumvw + 2mjumrvmsw

)
,

A3 =
1

4
κjrsκuvw

(
3mjrmsumvw + 2mjumrvmsw

)
.

Inverting M(t) in (12) and interchanging the indices in a suitable manner,
after some algebra, we arrive at the expression for A1, A2, and A3 as given in
Theorem 1.
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Appendix 2

The Shrinkage Argument

Let x = (x1, . . . , xn)
⊤ be a random vector with density function that depends

on a p-dimensional parameter θ ∈ Θ, where Θ ⊆ R
p is an open subset of the

Euclidean space. Let Q(·, θ) be a measurable function. Assume that Q is con-
tinuous for all θ and that its expectation exists. A Bayesian route for obtaining
Eθ{Q(·, θ)} based on a shrinkage argument involves the three steps described
below.

Step 1. Obtain Eπ{Q(θ,X)|X = x}, the posterior expectation of Q under the
prior π(·) for θ.

Step 2. Find Eθ[Eπ{Q(θ,X)|X = x}] = ∆(θ), for θ ∈ ints(π), where ints(π)
denotes the interior of the support of π.

Step 3. Integrate ∆(θ) with respect to π(·) and allow π(·) to converge weakly
to the degenerate prior at θ, where θ ∈ ints(π). This yields Eθ{Q(X, θ)}.

A detailed justification can be found in [21].
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