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1. Introduction

Varying coefficient models are an important generalization of classical linear
models. They form an alternative class of models to ameliorate the so-called
‘curse of dimensionality’ in multidimensional nonparametric modeling from a
theoretical point of view, but they also allow us to explore the dynamic features
hidden in the data. Let Y be the response variable and (U,X1, . . . , Xp) be
its associated covariates. Then the varying coefficient model is defined by the
following linear model:

Y =

p
∑

l=1

al(U)Xl + ǫ, (1.1)

with E(ǫ|U,X1, . . . , Xp) = 0 and Var(ǫ|U,X1, . . . , Xp) = σ2(U). In practice,
occasionally, some of the coefficient functions in model (1.1) are constant, while
other coefficients are varying with respect to the index variable U . In this case,
we can rewrite the model as

Y =

s
∑

l=1

al(U)Xl +

p
∑

l=s+1

alXl + ǫ, (1.2)

which is the so-called semi-varying coefficient model. From an estimation point
of view, this model cannot be treated as a special case of a varying coefficient
model, because treating constant coefficients as varying will result in loss of
estimation efficiency. This motivated several authors to develop methods to in-
corporate the information of constancy into the estimation procedure. To obtain
a root-n convergence rate for the constant coefficients as in parametric models,
Zhang et al. [17] and Cheng et al. [3] considered a two-step estimation procedure
that estimates the constant coefficients by taking the average of the initial esti-
mators over a grid of points. Xia et al. [15] proposed a semi-local least squares
method that estimates the varying coefficients locally and the constant coeffi-
cients globally. Additionally, Fan and Huang [4] showed that it is also possible to
have a parametric convergence rate for the constant coefficients with the profiled
least squares method. However, in order for such methods to really work, the
information about which coefficient functions are constant should be given in
advance. Since such information is rarely available in practice, it is of interest to
develop an efficient and fast method to discriminate constant coefficients from
varying ones.

Identifying constant coefficients can be done through hypothesis testing as
in Fan et al. [5], Fan and Huang [4] and Wang et al. [13]. Nevertheless, the
theoretical properties of such identification based on hypothesis testing can be
somewhat hard to analyze. Another way to identify the constant coefficients is
to consider the problem in a variable selection framework. This type of approach
has been considered often for the identification of nonzero coefficients in varying
coefficient models as in Wang et al. [14], Noh and Park [11] and Antoniadis et al.
[1] but not as often for the identification of nonconstant coefficients. Xia et al.



Model selection in semi-VC models 2521

[15] proposed a cross-validation (CV) procedure based on local linear estimators
to discriminate constant coefficients from varying ones. However, the implemen-
tation of their method is computationally very demanding. Indeed, to calculate
the CV score for each candidate model, the bandwidth should be chosen via
leave-one-out cross-validation using the estimates based on the semi-local least
squares method involving large-scale matrix computation. Further, the compu-
tation becomes even more challenging when the number of covariates increases.
To tackle this problem, Hu and Xia [7] developed a shrinkage method based on
local polynomial smoothing and proposed a Bayesian Information Criterion to
select the shrinkage parameter. Although the method is able to identify the con-
stant coefficients without doing an exhaustive search over the candidate models,
its discrimination ability is not as good as for the method of Xia et al. [15], be-
cause it is based on local constant estimators. Additionally, the adaptation of
the method of Hu and Xia [7] to local linear estimation is not at all a trivial
task. The reason is that when the coefficient function al(·) is constant we should
estimate al(·) as constant but its derivative a′l(·) as zero. Due to this, we should
consider a totally different penalty from what Hu and Xia [7] considered and
hence much theoretical and computational work should be done for the exten-
sion. However, the extension is necessary, since local constant estimators tend
to suffer from boundary problems, which can substantially degrade the discrim-
ination ability of the procedure. Based on this observation, we are motivated
to develop a new method, whose discrimination ability is as good as for the
procedure of Xia et al. [15], which is based on local linear estimators, and which
is as fast as the one of Hu and Xia [7], which is known to be computationally
efficient.

The rest of this paper is organized as follows. In Section 2, we will introduce
our new model selection method. Consistency of the model selection method is
established in Section 3. In Section 4, we compare the performance of our pro-
posal with that of previous methods developed for the same purpose in terms of
model selection accuracy and computing time. All technical details are deferred
to the Appendix.

2. A new Bayesian Information Criterion to detect constancy

In this section, we propose an information criterion that can consistently identify
constant coefficients. For the estimation of model (1.2), suppose that we have
a random sample of size n, {(Yi, Ui, X1i, . . . , Xpi), i = 1, . . . , n}. As a first step
for model selection, we obtain the estimates âl(Ui), i = 1, . . . , n, l = 1, . . . , p,
based on local linear regression. Using Taylor’s expansion, we have

al(U) ∼= al(u) + a′l(u)(U − u), l = 1, . . . , p, (2.1)

for U in a neighborhood of u. This leads to the following local least squares
estimation problem:

(b̃, c̃) = argmin
b,c

n
∑

i=1

[

Yi −
p
∑

l=1

{bl + cl(Ui − u)}Xli

]2

Kh(Ui − u), (2.2)
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with respect to b = (b1, . . . , bp)
⊤ and c = (c1, . . . , cp)

⊤, for a given kernel
function K and a bandwidth h. Here, K(·) is a symmetric density function
and Kh(·) = h−1K(·/h). Let ãl(u) be b̃l for l = 1, . . . , p and let ã(u) =
(ã1(u), . . . , ãp(u))

⊤.
Now, we are ready to define a Bayesian Information Criterion (BIC) to iden-

tify which coefficients are varying. Without loss of generality, we can assume
that the whole set of covariates can be separated into two exclusive subsets
I0
v = {1, . . . , s} and I0

c = {s+ 1, . . . , p} representing the indices of varying and
constant coefficients, respectively. For any partition Iv ∪ Ic = {1, . . . , p}, we
define

âl(Ui) ≡ ãl(Ui) for l ∈ Iv and âl ≡
1

n

n
∑

i=1

ãl(Ui) for l ∈ Ic. (2.3)

Based on these estimates, the BIC for detecting constancy is defined as follows:

BIC(Iv, Ic) = log(RSS(Iv, Ic)) +
log(nh)

nh
|Iv|+

log n

n
|Ic|, (2.4)

where

RSS(Iv, Ic) =
1

n

n
∑

i=1

(

Yi −
∑

l∈Iv

âl(Ui)Xli −
∑

l∈Ic

âlXli

)2

, (2.5)

and |I| is the cardinality of the set I. Since the set Ic is the complement of
Iv, we suppress Ic in the remaining of the paper. The set of indices of vary-
ing coefficient functions is estimated by the minimizer of BIC(Iv), which we
denote by Îv. Similar criteria were considered in Hu and Xia [7] and Cheng
et al. [3]. Although Cheng et al. [3] considered a similar criterion in a likelihood
estimation framework, they did not focus on the consistency of the procedure
to identify constant coefficients. Hu and Xia [7] used another similar BIC to
select the amount of shrinkage for the same identification problem. In order to
detect underfit more sensitively, we use the traditional residual sum of squares,
whereas Hu and Xia [7] used the kernel-weighted residual sum of squares, which
is common in kernel smoothing methods and whose theoretical properties are
easy to show. In Section 4, we will show by means of simulations that this dif-
ference in the definition of RSS(Iv) is really crucial to enhance the ability of
preventing underfit.

From a computational point of view, our BIC method involves an exhaustive
search over

∑p
j=0

(

n
j

)

candidate models to identify constant coefficients consis-
tently, which is quite demanding when p is very large. For many situations where
computation efficiency is more desirable, one can think of heuristic algorithms to
avoid an exhaustive search such as the forward selection and backward selection
procedures. In our context, forward selection means increasing the number of
coefficients to be estimated as varying, one at a time starting from the classical
linear model as long as the proposed BIC decreases. The detail of the forward
selection procedure is given as follows:
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Forward selection

(Step 1) (Initialization) Set I(0) = ∅.

(Step 2) (Forward Selection)

(2.1) (Candidate Searching)

In the k-th step (k ≥ 1), we are given I(k−1). Then, for each j ∈ F\I(k−1),

we consider a candidate model M(k−1)
j = I(k−1) ∪ {j}. We then calculate

RSS(M(k−1)
j ) and find ak = argminj∈F\I(k−1) RSS(M(k−1)

j ).

(2.2) (Acceptance Decision)

If BIC(I(k−1) ∪ {ak}) < BIC(I(k−1)), update I(k) = I(k−1) ∪ {ak} and
repeat Step (2). Otherwise, stop the iteration and set Îv = I(k−1).

In a similar manner, one can define the backward selection procedure, which
increases the number of coefficients to be estimated as constant according to
the proposed BIC. These two heuristic algorithms take less computation time
than an exhaustive search, but lead to a comparable performance. However,
in our simulations the gain in computation time is not very remarkable even
though we do not report the results to save space. The reason is that since the
computation task to calculate BIC(Iv) for each candidate model only involves
simple averaging, it is hard to see a considerable gain in computation time until
the number of covariates becomes very large.

3. Consistency of the model selection rule

To study consistency of the proposed method for model selection, the following
standard regularity conditions are needed [4, 7]:

(A1) There is an s > 2 such that E|ǫ|2s < ∞, E‖X‖2s < ∞ and n2ǫ−1h → ∞
for some ǫ < 2− s−1, where X = (X1, . . . , Xp)

⊤ and ‖X‖2 = X
⊤
X.

(A2) The support of the random variable U is [0, 1]. The density function of U ,
f(u), is Lipschitz continuous and bounded away from 0 on the support.

(A3) The p × p matrix E(XX
⊤|U = u) is nonsingular for each u ∈ [0, 1], and

the functions u 7→ E(XX
⊤|U = u) and E(XX

⊤|U = u)−1 are Lipschitz
continuous. Moreover, the function E(‖X‖4|U = u) is bounded.

(A4) The conditional density of U givenX is continuous and uniformly bounded
with respect to u and x up to its second derivative with respect to u.

(A5) The function E(ǫ4|U = u,X = x) and the second order derivative of f(u)
are bounded with respect to u and x.

(A6) The second order derivatives of the coefficients al(u), l = 1, . . . , p, are
continuous.

(A7) K(u) is a symmetric density function with compact support.
(A8) nh5 → κ with 0 < κ <∞ as n→ ∞.

We are now ready to show the consistency of the proposed BIC procedure.
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Theorem 1. Under Assumptions (A1)-(A8), we have

lim
n→∞

P(Îv = I0
v ) = 1. (3.1)

When the simple averaging approach in (2.3) for the estimation of constant
coefficients is used as in Zhang et al. [17], Lee [8] and Cai and Xiao [2], under-
smoothing is inevitable for a root-n convergence rate of âl (l ∈ Ic). However,
obtaining a root-n convergence rate for âl (l ∈ Ic) is not necessary for the
consistency of our model selection method (as will be shown in the proof of
Theorem 1). Since our theoretical result is established under the ordinary opti-
mal bandwidth given in (A8), usual bandwidth selection methods based on the
mean squared error can be used for our method. Further, the simple averaging
approach enables us to choose the bandwidth only once, whereas the method of
Xia et al. [15] requires the selection of a bandwidth for each candidate model.

Note that one could consider another type of BIC for our method, which is
directly motivated by Hu and Xia [7]:

BIC∗(Iv) = log(RSS∗(Iv)) +
log(nh)

nh
|Iv|+

logn

n
|Ic|, (3.2)

where

RSS∗(Iv) =
1

n2

n
∑

t=1

n
∑

i=1

(

Yi −
∑

l∈Iv

âl(Ut)Xli −
∑

l∈Ic

âlXli

)2

Kh(Ut − Ui). (3.3)

Under assumptions similar to (A1)-(A8), it is possible to show that our method
with BIC∗(Iv) is also asymptotically consistent for the identification of constant
coefficients. However, our simulation study suggests that BIC∗(Iv) is signifi-
cantly inferior to BIC(Iv) in terms of resistance against underfit.

4. Numerical studies

In this section we illustrate the competitiveness of our method in terms of
model selection accuracy and computation time through the comparison with
two previously proposed methods for the same purpose. Additionally, we illus-
trate the necessity to use BIC(Iv) instead of BIC∗(Iv) by means of simulations.
Throughout this section, the kernel function K(u) = exp(−u2/2)/

√
2π is used

and the optimal bandwidth for our method is chosen by the leave-one-out cross-
validation procedure. One could also select the bandwidth using the generalized
cross-validation procedure proposed in Li and Palta [9], which is computation-
ally less intensive.

4.1. Comparison with previous methods

We compare the finite sample performance of our method with two CV-based
methods of Xia et al. [15] and with the shrinkage method of Hu and Xia [7].
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Concerning the CV methods, Xia et al. [15] proposed two modifications of
their original proposal. The first one is the simplified CV, which is designed
to avoid an exhaustive search of the proposed CV criterion. The second one is
an improvement of the first one in terms of overfit resistance. We included both
improved versions for comparison, but not the original one because it is very
time-consuming.

To compare the computation time of the different methods, we first imple-
mented all methods in R software (R Core Team [12]). In particular, as for the
shrinkage method, we reimplemented it in R referring to its original implemen-
tation in MATLAB [10] that Prof. Yingcun Xia kindly provided. However, we
found that the implementation in MATLAB is somewhat faster than that in
R, which is not the case for the other methods. Due to this, we report for the
shrinkage method the computation time from its implementation in MATLAB.

We consider the following two sets of models:

(Model A)
Yi = c(Ui − 0.5)2X1i +X2i + 0.5X3i + 0.2ǫi,

where Ui ∼ Unif[0, 1], X1i, X2i, X3i, ǫi ∼ N(0, 1) are all independent and the
value of c controls the departure of the corresponding coefficient from a constant;
and

(Model B)

(B.1) Yi = 2 sin(2πUi)X1i + 4Ui(1 − Ui)X2i + 0X3i + 0.5X4i + 0.5X5i

+X6i + 0.1X7i + 0.5ǫi ;

(B.2) Yi = 3 sin(2πUi)X1i + 8Ui(1− Ui)X2i + cos2(2πUi)X3i +X4i

+ 0.5X5i +X6i − 0.5X7i + 0.5ǫi ;

(B.3) Yi = 3UiX1i + 2 sin(2πUi)X2i + 15Ui(1− Ui)X3i +X4i −X5i

+X6i + 0X7i + 0.5ǫi,

where Ui ∼ Unif[0, 1], X1i ≡ 1, (X2i, . . . , X7i)
⊤ is simulated from a multivariate

normal with mean zero and cov(Xj1i, Xj2i) = 0.5|j1−j2| for any 2 ≤ j1, j2 ≤ 7,
and ǫi follows a standard normal distribution. Models A and B were already
considered in Xia et al. [15] and Hu and Xia [7], respectively. To evaluate the
performance of the three model selection methods, we discriminate three differ-
ent situations in Table 1 - 3. In column “C”, we present the percentage of trials
in which all the varying and constant coefficients are correctly identified. When
the estimated model misses at least one varying coefficient, we count it as an
underfitted model and report its percentage in column “U”. Finally, we show in
column “O” the percentage of overfitted cases in which all the varying coeffi-
cients are correctly identified but additionally some of the constant coefficients
are identified as varying. We measure the computing time in seconds using the
following computing environment with CPU: Intel(R) Core(TM) i7 2.80 GHz
and RAM: 4GB.
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Table 3

Comparison of the results of two versions of our method. The results are based on 400 data
sets generated under Model A

BIC(Iv) BIC∗(Iv)
c n C U O C U O
1 50 0.51 0.35 0.14 0.01 0.99 0.00

100 0.74 0.24 0.02 0.01 0.99 0.00
200 0.93 0.07 0.00 0.02 0.98 0.00

2 50 0.79 0.01 0.20 0.14 0.86 0.00
100 0.98 0.00 0.02 0.43 0.57 0.00
200 1.00 0.00 0.00 0.95 0.05 0.00

Table 1 and 2 summarize the model selection results. The consistency rates
for all methods come closer to 1 as the sample size grows. Only the simplified CV
method seems to suffer a bit from slow convergence, as was already explained in
Xia et al. [15]. In terms of model selection performance, both the modified CV
method and ours work equally better than the other methods, but the former
seems to be slightly better than the latter in Model A, which corresponds to
the case where the non-constant coefficients do not strongly deviate from a
constant. However, if we consider the computation time, our method appears to
be incomparably better than all other methods including the shrinkage method,
which is supposed to be computationally efficient. Finally, although the results
are not presented here, we learned the same lesson for the case where different
kinds of error distributions are used as long as the errors satisfy the assumptions
in Section 3.

4.2. Comparison between BIC(Iv) and BIC∗(Iv)

As will be shown in the proof of Theorem 1, the sum of residual squares in
the BIC criterion prevents underfit, whereas the penalty resists against overfit.
Our intuition in the proposal of BIC(Iv) was that the sum of residual squares
not involving additional smoothing in its definition would prevent underfitting
more effectively than the one involving smoothing. To confirm this intuition, we
compare BIC(Iv) with BIC∗(Iv) defined in (3.2) for Model A. Table 3 shows
that BIC∗(Iv) seriously underfits when c = 1, which shows that avoiding addi-
tional smoothing is helpful for sharpening the sensitivity of BIC against underfit.
However, BIC∗(Iv) seems to become consistent in constancy identification as the
sample size increases considering the case where c = 2, as it is already expected
from Section 3.

5. Conclusion and future research

We developed a new model selection method for semivarying coefficient models,
which is shown to be competitive in identification performance and significantly
faster than previous methods studied in the literature. Since we should study
the asymptotic behavior of the residual sum of squares involving the estimator
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âl(·) to show the consistency of our BIC method, we worked with a simplified
version of the error assumption which is made for the estimation of the coefficient
functions al(·) as in Fan and Zhang [6] and Fan and Huang [4]. It would be
an interesting research topic to show that the proposed BIC method works
under the general error assumption. Although we only deal with the case of
independent and identically distributed data, we expect that it would also work
in a time series setting as the method of Xia et al. [15] does. Also, it is possible
to extend our approach to quantile regression and we have some numerical
evidences supporting its validity. However, lack of a closed form of the estimator
makes the theoretical investigation more challenging than for mean regression.
We leave these as future works.
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Appendix

Lemma 2 ([16, Theorem 1]). Let {Zi}ni=1 be a sequence of independent and
identically distributed random variables and ψn(Z1, . . . ,Zk) be a symmetric
function with k ≤ n. Let un denote a k-order U -statistic with kernel function
ψn(Z1, . . . ,Zk), which is defined as

un =

(

n

k

)−1
∑

(n,k)

ψn(Zi1 , . . . ,Zik), (A.1)

where
∑

(n,k) denotes the sum over all subsets 1 ≤ i1 < i2 < · · · < ik ≤ n of

{1, 2, . . . , n}. In addition, define rcn(z1, . . . , zc) = E(ψn(Z1, . . . ,Zc,Zc+1, . . . ,
Zk)|Z1 = z1, . . . ,Zc = zc), σ

2
cn = Var(rcn(Z1, . . . ,Zc)) and θn = E(ψn(Z1, . . . ,

Zk)). Then,

un = θn +

k
∑

j=1

Op((n
−jσ2

jn)
1/2). (A.2)

Further, for 1 ≤ c1 ≤ c2 ≤ k, we have c−1
1 σ2

c1n ≤ c−1
2 σ2

c2n.

Lemma 3. Let a(u) = (a1(u), . . . , ap(u))
⊤ and ã(u) its local linear estimator

defined as b̃ in (2.2). The following results hold true for ã(u), âl(u) and âl
uniformly in u ∈ [0, 1] with cn = Op

(

h+ (log n/(nh))1/2
)

:

ã(u)− a(u) =
1

n

n
∑

i=1

f(u)Γ−1(u)Xi

{

ǫi +

p
∑

l=1

(al(Ui)− aLl (Ui;u))Xli

}

×Kh(Ui − u)(1 +Op(cn)); (A.3)
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ãl(u)− al(u) = Op(cn) ∀l ∈ Iv;

âl =
1

n

n
∑

i=1

âl(Ui)

=

∫ 1

0

al(u)f(u)du+Op(cn) ∀l = 1, . . . , p;

âl(u)− âl = al(u)−
∫ 1

0

al(u)f(u)du+Op(cn) ∀l ∈ Iv;

âl(u)− âl = Op(cn) ∀l ∈ Ic,

where Γ(u) = E(XX
⊤|U = u) and aLl (x;u) = al(u)+ a′l(u)(x− u) is the linear

approximation of al(x) at u.

Proof. The result can be easily shown using similar arguments as in the Ap-
pendix of Fan and Huang [4].

Proof of Theorem 1. To avoid unnecessary complication, we suppose through-
out that the true model is given by

Yi = a1(Ui)X1i + a2X2i + a3X3i + ǫi.

In this case, note that I0
v = {1}, I0

c = {2, 3}, and a2(x) − aL2 (x;u) = a3(x) −
aL3 (x;u) = 0.

Case 1. (Underfitted Model) We consider the situation where Iv = {3} as a
generic case of the underfitted models. To show that our method is underfit-
resistant, it is enough to show that there exists a C > 0 such that P (RSS(Iv)−
RSS(I0

v ) ≥ C) → 1 as n→ ∞. This follows from the fact that

RSS(Iv) =
1

n

n
∑

i=1

(Yi − â1X1i − â2X2i − â3(Ui)X3i)
2

= RSS(I0
v ) +

1

n

n
∑

i=1

{(â1(Ui)− â1)
2X2

1i + (â3(Ui)− â3)
2X2

3i}

+
2

n

n
∑

i=1

ǫ∗i (â1(Ui)− â1)X1i −
2

n

n
∑

i=1

ǫ∗i (â3(Ui)− â3)X3i

− 2

n

n
∑

i=1

(â1(Ui)− â1)X1i(â3(Ui)− â3)X3i

= RSS(I0
v ) + E{(a1(U)− Ea1(U))2X2

1}+Op(cn),

where ǫ∗i = Yi − â1(Ui)− â2X2i − â3X3i.

Case 2. (Overfitted Model) We only consider the situation where Iv = {1, 2}.
For the other cases similar arguments can be used to show that any overfitted
model will not be chosen by the BIC with probability tending to 1. To show
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that asymptotically the BIC does not select Iv = {1, 2}, we only need to prove
that

RSS(Iv)− RSS(I0
v ) = op

(

log(nh)

nh

)

. (A.4)

Note that RSS(I0
v ) → σ2 = E(ǫ2) as n → ∞. Therefore, once (A.4) is shown,

we have

BIC(Iv)− BIC(I0
v ) = log

(

1 +
RSS(Iv)− RSS(I0

v )

RSS(I0
v )

)

+

(

log(nh)

nh
− logn

n

)

× (|Iv| − |I0
v |)

≥ op

(

log(nh)

nh

)

+
log(nh)

nh
(1 + op(1)),

which shows that P (BIC(Iv) − BIC(I0
v ) > 0) → 1 as n → ∞. To show (A.4),

we consider the following decomposition:

RSS(Iv) =
1

n

n
∑

i=1

(Yi − â1(Ui)X1i − â2(Ui)X2i − â3X3i)
2

= RSS(Iv)−
2

n

n
∑

i=1

(Yi − â1(Ui)X1i − â2X2i − â3X3i)(â2(Ui)− â2)X2i

+
1

n

n
∑

i=1

(â2(Ui)− â2)
2X2i

≡ RSS(I0
v )− 2A+B. (A.5)

The decomposition reduces the problem to showing that both A and B are
op (log(nh)/nh), which is given below. We use the abbreviated notations Γi,
fi, Zi and Kij for Γ(Ui), f(Ui), (Xi, Ui, ǫi)

⊤ and Kh(Ui − Uj), respectively.
Additionally, we use an ≈ bn when an/bn = Op(1) and bn/an = Op(1) and use ei
to denote the ith standard basis vector of Rp. To show that A = op (log(nh)/nh),
observe that

A =
1

n

n
∑

i=1

{ǫi − (â1(Ui)− a1(Ui))X1i − (â2 − a2)X2i − (â3 − a3)X3i}

× {â2(Ui)− a2 − (â2 − a2)}X2i

=
1

n

n
∑

i=1

ǫi(â2(Ui)− a2)X2i −
1

n

n
∑

i=1

(â1(Ui)− a1(Ui))X1i(â2(Ui)− a2)X2i

− 1

n

n
∑

i=1

{(â2 − a2)X2i + (â3 − a3)X3i} (â2(Ui)− a2)X2i

− 1

n

n
∑

i=1

{ǫi − (â1(Ui)− a1(Ui))X1i − (â2 − a2)X2i − (â3 − a3)X3i}

× (â2 − a2)X2i

≡ A1 −A2 −A3 −A4.
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As for the first term A1, from (A.3) we have that

A1 ≈ 1

n

n
∑

i=1

ǫiX2ie
⊤
2





1

n

n
∑

j=1

f−1
i Γ−1

i Xj(ǫj + a∗ji)Kji





=
1

n2

∑

i6=j

e
⊤
2 Γ

−1
i XjX2iKjiǫi(ǫj + a∗ji)f

−1
i

+
1

n2h

n
∑

i=1

e
⊤
2 Γ

−1
i XiX2iK(0)ǫ2i f

−1
i

≡ 1

n2

∑

i6=j

ψnij +Op

(

1

nh

)

=
1

2

(

O(n−3) +

(

n

2

)−1
)

∑

i<j

(ψnij + ψnji) +Op

(

1

nh

)

≡ 1

2

(

O(n−3) +

(

n

2

)−1
)

∑

i<j

φnij +Op

(

1

nh

)

,

where a∗ij =
∑3

l=1{al(Ui) − aLl (Ui;Uj)}Xli = (a1(Ui) − aL1 (Ui;Uj))X1i. Here,

u1n ≡
(

n
2

)−1∑

i<j φnij is a second order U-statistic. Since θn = E(φnij) = 0,

σ2
1n = Var{E(φnij |Zi)} ≤ 2E{E2(ψnij |Zi) + E2(ψnij |Zj)} = O(h4) and σ2

2n =
Var(φnij) ≤ E(φ2nij) = O(h−1), Lemma 2 implies that u1n = Op(n

−1/2h2 +

n−1h−1/2), which results in A1 = op (log(nh)/nh).
Regarding the second term A2, first observe that

1

n

n
∑

i=1

(â1(Ui)− a1(Ui))X1i(â2(Ui)− a2)X2i

≈ 1

n

n
∑

i=1

e
T
1





1

n

n
∑

j=1

f−1
i Γ−1

i Xj(ǫj + a∗ji)Kji



X1i

×e
⊤
2

(

1

n

n
∑

k=1

f−1
i Γ−1

i Xk(ǫk + a∗ki)Kki

)

X2i

=
1

n3

∑

i,j,k

e
⊤
1 Γ

−1
i Xje

⊤
2 Γ

−1
i XkX1iX2i(ǫj + a∗ji)(ǫk + a∗ki)KjiKkif

−2
i

≡ 1

n3

∑

i,j,k

ψnijk

=
1

n3

∑

i=j 6=k

ψnijk +
1

n3

∑

i=k 6=j

ψnijk +
1

n3

∑

i6=j,j 6=k,i6=k

ψnijk +
1

n3

∑

j=k 6=i

ψnijk

+
1

n3

∑

i=j=k

ψnijk

≡ A2,1 +A2,2 +A2,3 +A2,4 +A2,5.
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It is obvious that A2,5 = Op(1/(nh)
2). Here we will focus only on A2,3 and A2,4

but the terms A2,1 and A2,2 can be shown to have the desired order using similar
arguments as the ones for A2,3 and A2,4. To show that A2,3 = op (log(nh)/nh),
observe that A2,3 is equivalent to the following third order U-statistic u2,3n :

A2,3 ≈ u2,3n ≡ 1
(

n
3

)

∑

i<j<k

(ψnijk + ψnikj + ψnjik + ψnjki + ψnkij + ψnkji)

≡ 1
(

n
3

)

∑

i<j<k

φnijk

Note that θn = E(φnijk) = O(h4), σ2
3n = Var(φnijk) ≤ E(φ2nijk) = O(h−2) and

σ2
2n = Var{E(φnijk|Zi)} ≤ (2/3)σ2

3n. Further, by standard calculations in kernel
smoothing, it can be shown that E(E2(ψnijk |Zi)) = O(h8), E(E2(ψnijk |Zj)) =
0 and E(E2(ψnijk|Zk)) = 0, because E(ψnijk|Zj ,Zk) = 0 from (A7) when
j 6= k. Since σ2

1n = Var{E(φnijk |Zi,Zj)} ≤ 3E[E2(ψnijk|Zi) + E2(ψnijk|Zj) +
E2(ψnijk |Zk)], we have that σ2

1n = O(h8) and hence u2,3n = Op(h
4 + n−1/2h4 +

n−1h−1 + n−3/2h−1) = op(log(nh)/nh) by Lemma 2. As for A2,4, note that

A2,4 ≈ 1

n

1
(

n
2

)

∑

i6=k

e
⊤
1 Γ

−1
i Xke

⊤
2 Γ

−1
i XkX1iX2i(ǫk + a∗ki)

2K2
kif

−2
i

≡ 1

n

1
(

n
2

)

∑

i6=k

ψnik =
1

n

1
(

n
2

)

∑

i<k

(ψnik + ψnki) ≡
1

n

1
(

n
2

)

∑

i<k

φnik ≡ 1

n
u2,4n .

Since 2σ2
1n ≤ σ2

2n ≤ E(φ2nik) = O(h−3) and θn = E(φnik) = O(h−1), we
have u2,4n = Op(h

−1 + n−1/2h−3/2 + n−1h−3/2) by Lemma 2, and hence A2,4 =
op (log(nh)/nh).

Using similar calculations to those for A1 and A2, it can be easily shown that

â2 − a2 = â3 − a3 = Op(h
2 + n−1/2). (A.6)

One can show that both A3 and A4 are op (log(nh)/nh) using (A.6) and U -
statistic computations similar to those done for A1 and A2. This shows that
A = op (log(nh)/nh).

Let us now consider the term B in (A.5). Consider the decomposition

1

n

n
∑

i=1

(â2(Ui)− â2)
2X2

2i

=
1

n

n
∑

i=1

(â2(Ui)− a2)
2X2

2i + (â2 − a2)
2 1

n

n
∑

i=1

X2
2i − (â2 − a2)

× 2

n

n
∑

i=1

(â2(Ui)− a2)X
2
2i. (A.7)

Regarding the first two terms, it is easy to show that they have the desired
order using similar arguments as for the term A and the third term in (A.7).
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Therefore, we concentrate on the third term. Observe that

1

n

n
∑

i=1

(â2(Ui)− a2)X
2
2i

≈ 1

n2

n
∑

i=1

n
∑

j=1

X2
2ie

⊤
2 Γ

−1
i Xj(ǫj + a∗ji)Kjif

−1
i

=
1

2

(

O(n−3) +

(

n

2

)−1
)

∑

i6=j

X2
2ie

⊤
2 Γ

−1
i Xj(ǫj + a∗ji)Kjif

−1
i +Op

(

1

nh

)

≡ 1

2

(

O(n−3) +

(

n

2

)−1
)

∑

i6=j

ψnij +Op

(

1

nh

)

≡ 1

2

(

O(n−3) +

(

n

2

)−1
)

∑

i<j

φnij +Op

(

1

nh

)

,

where φnij = ψnij + ψnji. Since u
B
n ≡

(

n
2

)−1∑

i<j φnij is a second order U-

statistic, by similar arguments as before we can easily show that uBn = Op(h
2 +

n−1/2h−1/2), which means that the third term in (A.7) is op (log(nh)/nh) be-
cause of (A.6).
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