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1. Introduction

Given i.i.d. observations D := ((x1, y1) , . . . , (xn, yn)) of input/output observa-
tions drawn from an unknown distribution P onX×Y , where Y ⊂ R, the goal of
non-parametric regression is to find a function fD : X → R that captures impor-
tant characteristics of the conditional distribution P(Y |x), x ∈ X . For example,
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in non-parametric least squares regression, an fD is sought that approximates
the conditional mean E(Y |x), while in quantile regression the goal is to find an
estimate fD of the quantiles of P(Y |x), x ∈ X . Non-parametric least squares
regression is one of the classical non-parametric problems, which has been exten-
sively studied for decades. We refer to the book [16], which presents many results
in this direction. In contrast, the non-parametric quantile regression problem
has attracted less attention, probably because for more advanced estimation
procedures, or learning algorithms, the problem is often less tractable, both
mathematically and algorithmically. Nonetheless, also for this problem impor-
tant contributions have been made, which, besides other questions regarding
quantile regression, are summarized in the recent book [19].

A typical way to assess the quality of a found estimator fD in these regression
problems is the distance of fD to the target function. To be more precise, if f∗

denotes the conditional function of interest, that is, either the conditional mean
or a conditional quantile, and P is the marginal distribution of P on X , then,
for some p ∈ (0,∞), the norm

‖fD − f∗‖pLp(PX) , (1)

is often used to describe how well fD approximates f∗. Here we note, that taking
the p-th power of the norm is, of course, not dictated by mathematics but more
by historically grown habits for the least squares loss. Recall that, for least
squares regression, one usually considers p = 2 due to the very nature of the
least squares loss, while for quantile regression various values for p have actually
been considered. In both cases, we say the learning algorithm that produces the
estimates fD is consistent, if the norm in (1) converges to 0 in probability for
n → ∞. Likewise, learning rates describe the corresponding convergence rates,
either in probability or in expectation.

One of the learning algorithms that have recently attracted many theoretical
investigations are support vector machines (SVMs), or more precisely, kernel-
based regularized empirical risk minimizers. Reasons for this grown interest
include their state-of-the-art empirical performance in applications, their rela-
tively simple implementation and application, and last-but-not-least, their flexi-
bility. To describe this flexibility, which is key for considering the two regression
scenarios simultaneously, let us briefly recall that SVMs solve an optimization
problem of the form

fD,λ ∈ arg min
f∈H

λ‖f‖2H +RL,D(f) , (2)

where H is a reproducing kernel Hilbert space (RKHS) with reproducing kernel
k, see e.g. [2, 4, 30], λ > 0 is a user-specified regularization parameter, L :
Y × R → [0,∞) is a loss function, and RL,D(f) denotes the empirical error or
risk of a function f : X → R, that is

RL,D (f) =
1

n

n∑

i=1

L (yi, f (xi)) .
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It is well-known that the optimization problem above has a unique solution
whenever the loss L is convex in its second argument. In addition, under mild
assumptions on the richness of H and the way the regularization parameter λ is
chosen, the corresponding SVM is L-risk consistent. We refer to [30] for detailed
descriptions of these and other results. Now, the above mentioned flexibility of
SVMs is made possible by their two main ingredients, namely the RKHS H and
the loss function L. To be more precise, the loss function can be used to model
the learning target, see [30, Chapter 3], while the RKHS can be used to adapt to
the nature of the input domain X . For example, when using the standard least
squares loss in the optimization problem (2), the SVM estimates the conditional
mean, and for the so-called pinball loss, see Section 4 for a definition, the SVM
estimates conditional quantiles. On the other hand, RKHSs can be defined on
arbitrary input domains X , so that, besides standard R

d-valued data, various
other types of data can be dealt with. Moreover, due to the so-called kernel-trick
[24], the choice of H has little to no algorithmic consequences for solving the
SVM optimization problem. The latter is not true for the choice of L, where each
different L demands a different optimization algorithm. However, for standard
loss functions including the least-squares loss and the pinball loss, these opti-
mization problems, which reduce to convex quadratic optimization problems,
have been well-understood. For solvers, we exemplarily refer to [9, 18] and [35],
respectively.

One of the main topics in recent theoretical investigations on SVMs have been
learning rates. For example, the articles [10, 11, 27, 5, 22, 32] and the references
therein establish rates for SVMs using the least squares loss, while SVMs using
the pinball loss are investigated in [29, 31]. We discuss the findings of these arti-
cles and compare them to our results in more detail at the end of Sections 3 and
4 after we have presented our main results. Here, we only note that besides a
very few articles, namely [5, 22, 32], the obtained learning rates are typically not
optimal in a minmax sense. In addition, these three papers only consider some
specific cases. For example, [5] only considers the case, when the target function,
in this case the conditional mean, is contained in the used RKHS H . On the
other hand, H is assumed to be generic in this article, that is, no specific family
of kernels is considered. The latter generality is also adopted in [22, 32], where
the authors establish optimal rates in the more realistic case in which H does
not contain the target function. Unfortunately, however, these articles require
additional assumptions on the interplay between H and the marginal distribu-
tion PX . Namely, [22] assumes that the eigenfunctions of the integral operator
associated to the kernel k of H are (almost) uniformly bounded. This assump-
tion, however, cannot be easily guaranteed, neither in practice nor in theory.
This issue is partially addressed in [32], where the eigenfunction assumption is
replaced by a weaker assumption in terms of inclusions of certain interpolation
spaces of H and L2(PX). While in practice, these inclusions can not be checked
either, there are, at least, certain combinations of H and L2(PX) in which they
are satisfied. For example, if X ⊂ R

d is a bounded domain satisfying some
standard regularity assumptions and H is a Sobolev space Wm

2 (X) of sufficient
smoothness m, that is m > d/2, then [32] shows that the inclusion assumptions
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made in this article are satisfied and that the resulting learning rates for SVMs
are minmax optimal. While this result is interesting from a theoretical point
of view, in practice Sobolev spaces of large order m are rarely used for SVMs,
probably because of computational issues.

The discussion so far may already indicate the fact that most articles, in-
cluding the three establishing optimal rates, only consider the case, where H is
fixed during the training process. This scenario, however, is rather unrealistic,
since in most applications, H is chosen in a data-dependent way. For example,
for input domains X ⊂ R

d, the standard way of using SVMs is to equip them
with Gaussian RBF kernels kγ defined by

kγ (x, x
′) = exp

(
−‖x− x′‖22

γ2

)
, x, x′ ∈ X ,

and to determine the free width parameter γ > 0 in a data-dependent way, e.g.,
by cross-validation. Despite the dominance of this approach, however, only a
very few articles analyze the learning behaviour of SVMs with Gaussian kernels.
To be more concrete, the currently best learning rates have been established in
[33, 40]. Here we note that in both articles the authors actually consider binary
classification, although a closer look reveals that at least the results of [40] can
also be applied to least squares regression. Indeed, if the conditional mean is
assumed to be contained in the Sobolev space W s

2 (X) for some s > 0, then [40]
establishes rates of the form

n− s
s+2d+2 .

Unfortunately, these rates are far from the known minmax rates n− 2s
2s+d of this

setting, and up to now, it has been unknown, whether SVMs with Gaussian
kernels can actually achieve these minmax rates, as their good empirical perfor-
mance may suggest, or whether they can only learn with sub-optimal rates like
classical kernel rules with Gaussian kernels do. The first goal of this paper is
to answer this question. More precisely, we show that SVMs with least squares
loss and Gaussian kernels can learn with rate

n− 2s
2s+d

+ξ (3)

for all ξ > 0. In other words, we establish learning rates that are arbitrarily
close to the minmax rates. Moreover, we show that these rates can be achieved
by a simple but completely data-driven procedure that splits the data set D
into a training and a validation set. Our second goal is to show that these
rates as well as the adaptivity to the unknown smoothness s is preserved when
considering quantile regression, instead. More precisely, we show under mild
additional assumptions on the conditional distributions that the conditional
quantile functions f∗ are approximated by SVM decision functions in the L2-
norm (1) with rate (3). Moreover, it turns out that splitting D into a training
and validation set again leads to a learning procedure that is fully adaptive to
the unknown smoothness s.
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In the remainder of this section we introduce some assumptions and notations
used throughout the paper. Except a passage in Section 3, where we discuss the
case of unbounded noise, we mainly consider the case of bounded regression.
Thus, we begin with the probability measure P on R

d×Y where Y := [−M,M ]
for some M > 0. We further assume that X := suppPX ⊂ Bℓd2

and that
the marginal distribution PX on X is absolutely continuous with respect to
the Lebesgue measure µ on X . In addition, the corresponding density of PX

is assumed to be contained in Lq(X) for some q ∈ [1,∞], where Lq(ν) is the
Lebesgue spaces of order q w.r.t. the measure ν and for the Lebesgue measure
µ on X ⊂ R

d we define Lq(X) := Lq(µ).

Throughout the paper we further assume that the boundary of X has zero
Lebesgue measure. Note that if this assumption is satisfied, the distribution on
X can be identified with the distribution on the interior and the closure of X ,
since it has a Lebesgue density on X . Hence, we will not distinguish between
these distributions in terms of notation. Similarly, we often view the distribution
on X as a probability measure defined on R

d rather than on X .

Since we consider both least squares regression and quantile regression, it is
helpful to consider some concepts in a generic way. To this end, we say that
a function L : Y × R → [0,∞) is a loss function, if it is measurable. In the
following, L will be either the least squares loss or the pinball loss introduced
in Section 4. Moreover, for a measurable f : X → R, the L-risk is defined by

RL,P (f) :=

∫

X×Y

L (y, f (x)) dP (x, y)

and the Bayes L-risk is the smallest possible L-risk, that is

R∗
L,P := inf {RL,P (f) | f : X → R measurable} .

Since P lives on X × [−M,M ], both the conditional mean and the conditional
quantiles are [−M,M ]-valued on X . It therefore suffices to consider estimators
of these quantities that are [−M,M ]-valued on X . To make this precise, we
denote the clipped value of some t ∈ R by Ût, that is

Ût :=





−M if t < −M
t if t ∈ [−M,M ]

M if t > M .

It is easy to check that the risks of both the least squares loss and the pinball
loss satisfy

RL,P( Ûf ) ≤ RL,P (f) ,

for all f : X → R. In other words, clipping the decision functions at ±M does
not increase the L-risk, and hence we will always consider clipped versions of
the SVM decision functions. Finally, since we do not consider SVMs with a fixed
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kernel, a notation that is slightly more detailed than (2) is helpful. Namely, if
Hγ is the RKHS of the Gaussian RBF kernel kγ , then we write

fD,λ,γ = arg min
f∈Hγ

λ ‖f‖2Hγ
+RL,D (f) , (4)

where again, L is one of the above loss functions. Note that projection (4) has
already been used in the literature, see e.g. [8, 33, 39].

The rest of this paper is organized as follows: The next section presents some
upper bounds on the approximation error of SVMs using Gaussian kernels.
These bounds are then used to derive new oracle inequalities for the least squares
loss and for the pinball loss in Sections 3 and 4, respectively. In these sections
we also present and discuss the learning rates that result from these oracle
inequalities. In particular, it turns out that the rates are (essentially) minmax
optimal if the target function is contained in some Sobolev or Besov spaces.
Section 5 finally presents, besides some technical lemmata, the proofs of our
results.

2. Estimates on the approximation error

The main goal of this work is to derive new oracle inequalities and learning rates
for SVMs with Gaussian kernels using the least squares loss (cf. Section 3) and
the pinball loss (cf. Section 4), respectively. To this end, we need to describe the
infinite sample behaviour for fixed regularization parameter λ and kernel width
γ, i.e. we need to find an upper bound for the approximation error function
Aγ : [0,∞) → [0,∞) defined by

Aγ(λ) := inf
f∈Hγ

λ‖f‖2Hγ
+RL,P(f)−R∗

L,P , (5)

where the infimum is actually attained by a unique element fP,λ,γ ∈ Hγ , see [30,
Lemma 5.1 and Theorem 5.2]. In this section we thus estimate the approximation
error of some function contained in the RKHS Hγ .

Let us begin by introducing some function spaces that are later assumed to
contain the target function. To this end, we first present some notations. We
denote the closed unit ball of a Banach space E by BE . In particular, for the
d-dimensional Euclidean space ℓd2, we write Bℓd2

. For s ∈ R, ⌊s⌋ is the greatest

integer smaller or equal s and ⌈s⌉ is the smallest integer greater or equal s.

Let us now introduce a first type of subspaces of Lp(ν), namely Sobolev spaces
(cf. [1, Section 3] and [38, Sections 2 and 3]). To this end, let ∂(α) be the α-th

weak derivative for a multi-index α = (α1, . . . , αd) ∈ N
d
0 with |α| = ∑d

i=1 αi.
Then, for an integer m ≥ 0, 1 ≤ p ≤ ∞, and a measure ν, the Sobolev space of
order m w.r.t. ν is defined by

Wm
p (ν) :=

{
f ∈ Lp(ν) : ∂

(α)f ∈ Lp(ν) exists for all α ∈ N
d
0 with |α| ≤ m

}
,
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i.e. it is the space of all functions in Lp(ν), whose weak derivatives up to order
m exist and are contained in Lp(ν). The Sobolev space is equipped with the
Sobolev norm

‖f‖Wm
p (ν) :=



∑

|α|≤m

∥∥∥∂(α)f
∥∥∥
p

Lp(ν)




1
p

,

(cf. [1, page 60]). Moreover, we write W 0
p (ν) = Lp(ν) and, for the Lebesgue

measure µ on X ⊂ R
d, we define Wm

p (X) :=Wm
p (µ).

In order to bound the excess risk in (5), it turns out that we need a finer
scale of smoothness given by the Besov space scale. To recall these function
spaces, we first have to introduce another device to measure the smoothness of
functions, namely the modulus of smoothness (see e.g. [12, p. 44], [13, p. 398],
and [3, p. 360]).

Definition 2.1. Let X ⊂ R
d be a subset with non-empty interior, ν be an

arbitrary measure on X , and f : X → R be a function with f ∈ Lp (ν) for some
p ∈ (0,∞]. For r ∈ N, the r-th modulus of smoothness of f is defined by

ωr,Lp(ν) (f, t) = sup
‖h‖2≤t

‖△r
h (f, · )‖Lp(ν)

, t ≥ 0 ,

where ‖ · ‖2 denotes the Euclidean norm and the r-th difference △r
h (f, · ) is

defined by

△r
h (f, x) =

{∑r
j=0

(
r
j

)
(−1)

r−j
f (x+ jh) if x ∈ Xr,h

0 if x /∈ Xr,h

for h = (h1, . . . , hd) ∈ [0,∞)d and Xr,h := {x ∈ X : x+ sh ∈ X f.a. s ∈ [0, r]}.
To illustrate the idea of the modulus of smoothness, let us consider the case

d = 1 and r = 1. Then, we obtain

h−1△1
h(f, x) =

f(x+ h)− f(x)

h

h→0−−−→ f ′(x) ,

if the derivative f ′ of f exists in x. Consequently, h−1△1
h(f, x) equals the secant’s

slope and is bounded, if f is differentiable at x. Analogously, h−r△r
h(f, x) is

bounded, if, for example, second order derivatives exist.
It is well-known, see e.g. [17, Equation (2.1)], that the modulus of smoothness

with respect to Lp

(
R

d
)
satisfies

ωr,Lp(Rd) (f, t) ≤
(
1 +

t

s

)r

ωr,Lp(Rd) (f, s) , (6)

for all f ∈ Lp

(
R

d
)
and all s > 0. As already mentioned, the modulus of smooth-

ness can be used to define the scale of Besov spaces (see e.g. [1, Section 7] and
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[38, Sections 2 and 3]), which besides Sobolev spaces will later be assumed
to contain the target function and thus indicate the smoothness of the latter.
Namely, for 1 ≤ p, q ≤ ∞, α > 0, r := ⌊α⌋+1, and an arbitrary measure ν, the
Besov space Bα

p,q (ν) is

Bα
p,q (ν) :=

{
f ∈ Lp (ν) : |f |Bα

p,q(ν)
<∞

}
,

where, for 1 ≤ q <∞, the seminorm | · |Bα
p,q(ν)

is defined by

|f |Bα
p,q(ν)

:=

(∫ ∞

0

(
t−αωr,Lp(ν) (f, t)

)q dt
t

) 1
q

,

and, for q = ∞, it is defined by

|f |Bα
p,∞(ν) := sup

t>0

(
t−αωr,Lp(ν) (f, t)

)
.

In both cases, the norm of Bα
p,q (ν) can be defined by ‖f‖Bα

p,q(ν)
:= ‖f‖Lp(ν)

+

|f |Bα
p,q(ν)

, see e.g. [12, pp. 54/55] and [13, p. 398]. In addition, for q = ∞, we

often write Lip∗ (α,Lp (ν)) := Bα
p,∞ (ν) and call Lip∗ (α,Lp (ν)) the generalized

Lipschitz space of order α. Finally, if ν is the Lebesgue measure on X , we write
Bα

p,q (X) := Bα
p,q (ν).

It is well-known, see e.g. [15, p. 25 and p. 44], that the Sobolev spacesWα
p (R

d)
fall into the scale of Besov spaces, namely

Wα
p (R

d) ⊂ Bα
p,q(R

d) (7)

for α ∈ N, p ∈ (1,∞), and max{p, 2} ≤ q ≤ ∞. Moreover, for p = q = 2 we
actually have equality, that is Wα

2 (R
d) = Bα

2,2(R
d) with equivalent norms.

As alluded at the beginning of this section, our main goal is to derive new
oracle inequalities for SVMs and for this purpose we need to estimate the ap-
proximation error (5). In order to cope with this task, we already introduced all
necessary concepts in the previous part of this section. It remains to show how
they can be applied. Now, to bound (5), it suffices to find a function f0 ∈ Hγ such

that both the regularization term λ ‖f0‖2Hγ
and the excess risk RL,P(f0)−R∗

L,P

are small. To construct this function f0 we define, for r ∈ N and γ > 0, the
function K : Rd → R by

K (x) :=

r∑

j=1

(
r

j

)
(−1)

1−j 1

jd

(
2

γ2π

) d
2

K jγ√
2

(x) , (8)

where Kγ (x) := exp
(
−γ−2‖x‖22

)
for all x ∈ R

d. Let us now assume that there
exists a function f∗

L,P : Rd → R such that f∗
L,P is a Bayes decision function, i.e.

RL,P(f
∗
L,P) = R∗

L,P, and such that f∗
L,P ∈ L2(R

d)∩L∞(Rd). Then we define f0
by convolving K with this Bayes decision function, that is

f0(x) := K ∗ f∗
L,P(x) :=

∫

Rd

K(x− t)f∗
L,P(t) dt , x ∈ R

d . (9)
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Now, to show that f0 is indeed a suitable function to bound (5), we first need
to ensure that f0 is contained in Hγ . In addition, we need to derive bounds for
both, the Hγ-norm and the excess risk of f0. Theorem 2.2 concentrates on the
latter with the help of the modulus of smoothness, while Theorem 2.3 estimates
the regularization term.

Theorem 2.2. Let us fix some q ∈ [1,∞). Furthermore, assume that PX is a
distribution on R

d that has a Lebesgue density g ∈ Lp(R
d) for some p ∈ [1,∞].

Let f : Rd → R be such that f ∈ Lq

(
R

d
)
∩ L∞

(
R

d
)
. Then, for r ∈ N, γ > 0,

and s ≥ 1 with 1 = 1
s + 1

p , we have

‖K ∗ f − f‖qLq(PX ) ≤ Cr,q‖g‖Lp(Rd) ω
q
r,Lqs(Rd)

(f, γ/2) ,

where Cr,q is a constant only depending on r and q.

The next result will be used to bound the regularization term and to prove
that the convolution of a function from L2(R

d) withK is contained in the RKHS
Hγ . In addition, it provides a very useful supremum bound.

Theorem 2.3. Let f ∈ L2

(
R

d
)
, Hγ be the RKHS of the Gaussian RBF kernel

kγ over X ⊂ R
d with γ > 0 and K : Rd → R be defined by (8) for a fixed r ∈ N.

Then we have K ∗ f ∈ Hγ with

‖K ∗ f‖Hγ
≤
(
γ
√
π
)−d

2 (2r − 1) ‖f‖L2(Rd) .

Moreover, if f ∈ L∞

(
R

d
)
, we have

|K ∗ f (x)| ≤ (2r − 1) ‖f‖L∞(Rd) , x ∈ X .

To illustrate the theorems above, let us now consider f0 defined by (9), where
f∗
L,P : Rd → R is a Bayes decision function contained in L2(R

d) ∩ L∞(Rd). For

the sake of simplicity, we fix q = 2 and p, s ≥ 1 with 1
p +

1
s = 1, i.e. the Lebesgue

density g of PX has to be contained in Lp(X). Then is turns out that together
the two theorems yield

min
f∈Hγ

λ ‖f‖2Hγ
+RL,P(f)−R∗

L,P

≤ λ‖f0‖2Hγ
+RL,P(f0)−R∗

L,P

= λ‖K ∗ f∗
L,P‖2Hγ

+RL,P(K ∗ f∗
L,P)−R∗

L,P

≤ λ(γ
√
π)−d(2r − 1)2

∥∥f∗
L,P

∥∥2
L2(Rd)

+ c‖K ∗ f∗
L,P − f∗

L,P‖2L2(PX)

≤ λ(γ
√
π)−d(2r−1)2

∥∥f∗
L,P

∥∥2
L2(Rd)

+cCr,2‖g‖Lp(Rd) ω
2
r,L2s(Rd)

(
f∗
L,P, γ/2

)
, (10)

where the crucial intermediate estimate

RL,P(K ∗ f∗
L,P)−R∗

L,P ≤ c‖K ∗ f∗
L,P − f∗

L,P‖2L2(PX )
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will be discussed in Sections 3 and 4, respectively. Now, to further bound (10),
we have to estimate the modulus of smoothness. To this end, recall that for
f∗
L,P ∈ Bα

2s,∞(Rd), or f∗
L,P ∈Wα

2s(R
d) by (7), we have

ωr,L2s(Rd)

(
f∗
L,P, t

)
≤ cs t

α , t > 0 ,

where r := ⌊α⌋ + 1 and cs > 0 is a constant. Using this inequality the upper
bound of the approximation error only depends on the kernel width γ, the
regularization parameter λ, the smoothness parameter α of the target function
and some positive constants, i.e.

min
f∈Hγ

λ ‖f‖2Hγ
+RL,P(f)−R∗

L,P ≤ c1λγ
−d + c2γ

2α . (11)

At first sight, it seems surprising that starting from (10) the parameters s and
p do not appear in (11) any more, but it has to be pointed out that they affect
the constant c2 > 0. Moreover, note that Theorem 2.3 also implies the estimate

‖f0‖∞ = ‖K ∗ f∗
L,P‖∞ ≤ (2r − 1)‖f∗

L,P‖L∞(Rd) ,

which will be important when applying concentration inequalities to prove the
new oracle inequalities of Sections 3 and 4.

Remark 2.4. To bound the approximation error in (5), we assumed that there
exists a Bayes decision function f∗

L,P : R
d → R such that f∗

L,P ∈ L2(R
d) ∩

L∞(Rd). This assumption could be significantly weakened if functions f : X →
R could be extended to functions f̂ : Rd → R such that f̂ inherits the smooth-
ness properties of f described by some Sobolev or Besov space. Fortunately,
Stein’s Extension Theorem (cf. [28, p. 181]) guarantees the existence of such an
extension operator with the desired features, whenever X ⊂ R

d is a bounded
Lipschitz domain. To be more precise, in this case there exists a linear operator
E mapping functions f : X → R to functions Ef : Rd → R such that

i) Ef|X = f ,

ii) E continuously maps Wm
p (X) into Wm

p

(
R

d
)
for all p ∈ [1,∞] and all

integers m ≥ 0, and
iii) E continuously maps Bα

p,q (X) into Bα
p,q

(
R

d
)
for all p ∈ (1,∞), q ∈ (0,∞]

and all α > 0.

For more details we refer to [28, p. 181], [1, p. 83], and [37, pp. 65/66].

Now, in addition to the general assumptions made in Section 1, let X ⊂ R
d be

a bounded domain such that the extension operator E exists and f∗
L,P : X → R

be a Bayes decision function such that f∗
L,P ∈ L∞(X). Using Stein’s extension

operator we then obtain a function Ef∗
L,P : Rd → R with Ef∗

L,P ∈ Lq(R
d) for

all 1 ≤ q ≤ ∞. With this and with the choice f := Ef∗
L,P, Theorems 2.2 and

2.3 can be applied and thus estimation (10) of the approximation error holds
for Ef∗

L,P. In [14] these considerations are carried out precisely.
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3. Learning rates for least squares SVMs

In this section, we consider the non-parametric least squares regression problem
based on the least squares loss L : Y ×R → [0,∞) defined by L (y, t) = (y − t)

2
.

It is well known that, for this loss, the function f∗
L,P : R

d → R defined by

f∗
L,P (x) = EP (Y |x), x ∈ R

d, is the only function for which the Bayes risk is
attained. Furthermore, some simple and well-known transformations show

RL,P (f)−R∗
L,P =

∥∥f − f∗
L,P

∥∥2
L2(PX)

. (12)

In other words, the motivating estimate (10) is satisfied for c = 1.
In the following, we present our main results of this section including the

essentially optimal rates for LS-SVMs using Gaussian kernels.

Theorem 3.1. Let Y := [−M,M ] for M > 0, and P be a distribution on
R

d × Y such that X := suppPX ⊂ Bℓd2
is a bounded domain with µ(∂X) = 0.

Furthermore, let PX have a Lebesgue density g ∈ Lq(R
d) for some q ≥ 1.

Moreover, let f∗
L,P : Rd → R be a Bayes decision function such that f∗

L,P ∈
L2(R

d) ∩ L∞(Rd) as well as f∗
L,P ∈ Bα

2s,∞(Rd) for α ≥ 1 and s ≥ 1 with
1
q +

1
s = 1. Then, for all ε > 0 and p ∈ (0, 1), there exists a constant C > 0 such

that for all n ≥ 1, ρ ≥ 1, γ ∈ (0, 1], and λ > 0, the SVM using the RKHS Hγ

and the least squares loss L satisfies

λ ‖fD,λ,γ‖2Hγ
+RL,P( ÛfD,λ,γ)−R∗

L,P ≤C
(
λγ−d+c2γ2α+

γ−(1−p)(1+ε)d

λpn
+
ρ

n

)

with probability Pn not less than 1− e−ρ.

For the proof of Theorem 2.2 it is essential that PX is absolutely contin-
uous w.r.t. the Lebesgue measure. Apart from that the remaining arguments
used to prove Theorem 3.1 and its consequences below apply to all marginal
distributions PX .

Note that Theorem 3.1 in particular holds for Bayes decision functions f∗
L,P :

R
d → R with f∗

L,P ∈ L2(R
d)∩L∞(Rd) and f∗

L,P ∈Wα
2s(R

d) for α ∈ N and s ≥ 1
by (7).

With the help of Theorem 3.1 we can immediately derive learning rates for
the learning method (4).

Corollary 3.2. Let ρ ≥ 1 be fixed. Under the assumptions of Theorem 3.1 and
with

λn = c1n
−1 ,

γn = c2n
− 1

2α+d ,

we have, for all n ≥ 1 and ξ > 0,

RL,P( ÛfD,λn,γn
)−R∗

L,P ≤ Cρn− 2α
2α+d

+ξ (13)

with probability Pn not less than 1 − e−ρ. Here, c1 > 0 and c2 > 0 are user-
specified constants and C > 0 is a constant independent of n and ρ.
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Note that the choice of λn in the Corollary above is actually independent of
the unknown smoothness parameter α. Moreover, the kernel width depends on
α in the same way, it does in classical kernel methods for density estimation
and regression.

Consequently, to achieve rate (13), we need to know α. Since in practice we
usually do not know this value nor its existence, we now show that a standard
training/validation approach, see e.g. [30, Chapters 6.5, 7.4, 8.2], achieves the
same rates adaptively, i.e. without knowing α. To this end, let Λ := (Λn) and
Γ := (Γn) be sequences of finite subsets Λn,Γn ⊂ (0, 1]. For a data set D :=
((x1, y1) , . . . , (xn, yn)), we define

D1 := ((x1, y1) , . . . , (xm, ym))

D2 := ((xm+1, ym+1) , . . . , (xn, yn))

where m :=
⌊
n
2

⌋
+ 1 and n ≥ 4. We will use D1 as a training set by computing

the SVM decision functions

fD1,λ,γ := arg min
f∈Hγ

λ ‖f‖2Hγ
+RL,D1 (f) , (λ, γ) ∈ Λn × Γn (14)

and use D2 to determine (λ, γ) by choosing a (λD2 , γD2) ∈ Λn × Γn such that

RL,D2

(
ÛfD1,λD2 ,γD2

)
= min

(λ,γ)∈Λn×Γn

RL,D2

(
ÛfD1,λ,γ

)
. (15)

In the following, we call this training/validation approach TV-SVM. For suitably
chosen candidate sets Λn and Γn that only depend on n and d, the next theorem
establishes the rates (13) for TV-SVMs.

Theorem 3.3. Under the assumptions of Theorem 3.1 we fix sequences Λ :=
(Λn) and Γ := (Γn) of finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an ǫn-

net of (0, 1] and Γn is a δn-net of (0, 1] with ǫn ≤ n−1, δn ≤ n− 1
2+d , 1 ∈ Λn,

and 1 ∈ Γn. Furthermore, assume that the cardinalities |Λn| and |Γn| grow
polynomially in n. Then, for all ξ > 0 and ρ ≥ 1, the TV-SVM producing the
decision functions fD1,λD2 ,γD2

satisfies

Pn
(
RL,P( ÛfD1,λD2 ,γD2

)−R∗
L,P ≤ Cρn− 2α

2α+d
+ξ
)
≥ 1− e−ρ (16)

where C > 0 is a constant independent of n and ρ.

Strictly speaking, it suffices to consider λn = cn−1 and a δn-net Γn of (0, 1] in
the theorem above, since we have already seen in Corollary 3.2 that the optimal
λn is of this form for f∗

L,P ∈ Bα
2s,∞(Rd). However, since we do not know, whether

this is also true under other distributional assumptions, we decided to formulate
the training/validation approach over both λ and γ as a safety measure.

Remark 3.4. The learning rates obtained so far in particular hold, if PX has
a Lebesgue density that is bounded away from 0 and ∞. It is well-known that
in this case the minmax rate for α > d/2 and target functions f∗

L,P ∈ Wα
2 (X)
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is n− 2α
2α+d . Modulo ξ, our rate is therefore asymptotically optimal in a minmax

sense. In addition, recall that for the latter distributions PX the entropy numbers
(cf. Definition 5.1) of the embedding id : Bα

2,∞(X) → L2(PX) behave like i−
α
d ,

see e.g. [15, p. 151]. Therefore and since Bα
2,∞(X) is continuously embedded into

the space ℓ∞(X) of all bounded functions on X , we obtain by [36, Theorem 2.2]

that n− 2α
2α+d is the optimal learning rate in a minmax sense for α > d (cf.

[32, Theorem 13]). In other words, for α > d, the learning rates (13) and (16)
obtained for f∗

L,P ∈ Bα
2,∞(Rd) are again asymptotically optimal modulo ξ.

Remark 3.5. Recall the extension operator E and the assumptions made in
Remark 2.4. Then the results of Theorem 3.1, Corollary 3.2, and Theorem 3.3
also hold, if f∗

L,P : X → R is a Bayes decision function with f∗
L,P ∈ L∞(X)

and f∗
L,P ∈ Bα

2s,∞(X) for some α ≥ 1 and s ≥ 1. Indeed, these assumptions

on f∗
L,P are sufficient, since f∗

L,P ∈ L∞(X) implies Ef∗
L,P ∈ L2(R

d) ∩ L∞(Rd).

Analogously, f∗
L,P ∈ Bα

2s,∞(X) implies Ef∗
L,P ∈ Bα

2s,∞(Rd), and hence, Theorem
3.1, Corollary 3.2, and Theorem 3.3 can be applied for Ef∗

L,P. Note that we

can also assume f∗
L,P ∈ Wα

2s(X), α ∈ N, since this yields Ef∗
L,P ∈ Wα

2s(R
d) ⊂

Bα
2s,∞(Rd) by (7). In both cases, the resulting rates obviously coincide with (13),

and in addition, it is not hard to see, that these rates are, again, optimal in a
minmax sense. Again, we refer to [14] for a detailed version of the results of this
section using the extension operator E.

So far we only considered the case of bounded regression but in practice un-
bounded noise is relevant as well. In the following, we briefly examine a regres-
sion problem with exponentially decaying Y -tails. That is, for ε := y − f∗

L,P(x)
we assume that there are constants c ≥ 1 and l > 0 such that

P
({

(x, y) ∈ X × Y : |ε| ≤ cρl
})

≥ 1− e−ρ (17)

for all ρ > 1. In other words, the probability of having large noise is very small.
Additionally, we assume that the Bayes decision function f∗

L,P is PX -almost
surely bounded on X . The next theorem establishes learning rates for least
squares SVMs in the spirit of Corollary 3.2 under these new assumptions.

Theorem 3.6. Let Y ⊂ R and P be a distribution on R
d × Y such that X :=

suppPX ⊂ Bℓd2
is a bounded domain with µ(∂X) = 0. Furthermore, let PX

have a Lebesgue density g ∈ Lq(R
d) for q ≥ 1. Assume that f∗

L,P(x) ∈ [−1, 1]

for PX-almost all x ∈ X and that f∗
L,P ∈ L2(R

d) as well as f∗
L,P ∈ Bα

2s,∞(Rd)

for some α ≥ 1 and s ≥ 1 defined by 1
s +

1
q = 1. Finally, assume that (17) holds.

We define

λn = c1n
−1 ,

γn = c2n
− 1

2α+d ,

where c1 > 0 and c2 > 0 are user-specified constants independent of n. Now,
for some fixed ρ̂ ≥ 1 and n ≥ 3, we define ρ := ρ̂ + lnn and Mn := 2cρl. Let
us consider the SVM that uses λn and γn and that clips its decision function
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fD,λn,γn
at Mn after training. Then, for all ξ > 0, there exists a constant C > 0

independent of n and ρ such that for all ρ̄ > 1 we have

λ ‖fD,λn,γn
‖2Hγ

+RL,P( ÛfD,λn,γn
)−R∗

L,P ≤ Cρ̄ρ̂2l+ξn− 2α
2α+d

+ξ (18)

with probability Pn not less than 1− (e−ρ̄ + e−ρ̂).

Note that the tail assumption (17) does not change the learning rates achieved
in Corollary 3.2. Moreover, the learning rate (18) is essentially optimal for f∗

L,P ∈
Bα

2s,∞(Rd) and f∗
L,P ∈ Wα

2s(R
d), respectively. Finally, these rates can again be

achieved by the TV-SVM approach considered in Theorem 3.3, if we assume an
upper bound on the unknown parameter l. The following two examples illustrate
that such an assumption may not be to unrealistic.

Example 3.7. Let us consider the case of Gaussian noise, i.e. ε ∼ N (0, 1). The

choice m =
√
2ρ

1
2 yields

P ({(x, y) ∈ X × Y : |ε| ≤ m}) = 1− 2√
2π

∫ ∞

m

e−
t2

2 dt

≥ 1− 2√
2π

√
π

2
e−

m2

2

= 1− e−ρ ,

where we used

∫ ∞

m

e−
t2

2 dt ≤
∫ ∞

m

e−
m2

2 e−
(t−m)2

2 dt = e−
m2

2

∫ ∞

0

e−
t2

2 dt =

√
π

2
e−

m2

2 .

Hence, assumption (17) is satisfied for l = 1
2 and c =

√
2. Obviously, a similar

result holds for the general case ε ∼ N (0, σ2).

Example 3.8. Assume that the distribution of the noise ε has the density

h(t) =
1

2
e−|t| , t ∈ R .

Then we have

P ({(x, y) ∈ X × Y : |ε| ≤ ρ}) =
∫ ρ

0

e−tdt = 1− e−ρ ,

i.e. assumption (17) holds for l = 1 and c = 1.

Finally, it seems fair to say that for distributions that have fatter Y -tails than
those considered by assumption (17) the simple clipping approach of Theorem
3.6 will lead to slower rates.

Let us now compare our results with previously obtained learning rates for
SVMs. To begin recall that there have already been made several investigations
on learning rates for SVMs using the least squares loss, see e.g. [5, 10, 11, 27, 22]
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and the references therein. In particular, optimal rates have been established in
[5], if f∗

L,P ∈ H , and the eigenvalue behavior of the integral operator associated
to H is known. Moreover, for f∗

L,P 6∈ H , the articles [22] and [32] establish

learning rates of the form n−β/(β+p), where β is a parameter describing the
approximation properties of H and p is a parameter describing the eigenvalue
decay. In both cases, however, additional assumptions on the interplay between
H and L2(PX) are required, and [22] actually considers a different exponent
in the regularization term of (4). On the other hand, [32] shows that the rate
n−β/(β+p) is often asymptotically optimal in a minmax sense. In particular, the
latter is the case for H = Wm

2 (X), f∗
L,P ∈ Wα

2 (X), and α ∈ (d/2,m], that is,
when using a Sobolev space as underlying RKHS H , then all target functions
contained in a Sobolev space of lower smoothness α > d/2 can be learned with

the asymptotically optimal rate n− 2α
2α+d . Here we note that the condition α >

d/2 ensures by Sobolev’s embedding theorem that Wα
2 (X) consists of bounded

functions, and hence Y = [−M,M ] does not impose an additional assumption
on f∗

L,P. If α ∈ (0, d/2], then the results of [32] still yield the above mentioned
rates, but we no longer know whether they are optimal in a minmax sense, since
Y = [−M,M ] does impose an additional assumption. In addition, note that for
Sobolev spaces this result, modulo an extra log factor, has already been proved
by [16, Section 3.2]. Besides, similar results to those of [32] have been recently
achieved in [34] for the case of multiple kernel learning. Note that one of the
reasons for these learning rates is the fact that the approximation error decays
polynomially fast if (and only if) the regression function f∗

L,P is contained in
some interpolation space [L2(X),Wm

2 (X)]β,∞, m ∈ Z+, β ∈ (0, 1), see [26] for
more details.

These results suggest that by using a fixed C∞-kernel such as the Gaussian
RBF kernel, one could actually learn the entire scale of Sobolev spaces with
the above mentioned rates. Unfortunately, however, there are good reasons to
believe that this is not the case. Indeed, [26] shows that for many analytic
kernels the approximation error function AH(λ) defined by (5) can only have
polynomial decay for λ → 0 if f∗

L,P is analytic, too. In particular, for Gaussian
kernels with fixed width γ and f∗

L,P 6∈ C∞, the approximation error has only
logarithmic decay, see [26, Proposition 1.1.]. Since it seems rather unlikely that
these poor approximation properties can be balanced by superior bounds on the
estimation error, the above-mentioned results indicate that Gaussian kernels
with fixed width may have a poor performance. This conjecture is justified
by many empirical experience gained throughout the last decade. Beginning
with [33], research has thus focused on the learning performance of SVMs with
varying widths. In this direction the result that is probably the closest to ours is
[40]. Although these authors actually consider binary classification using convex
loss functions including the least squares loss, it is relatively straightforward to
translate their findings to our least squares regression scenario. The resulting
learning rate is n− α

α+2d+2 , again under the assumption f∗
L,P ∈Wα

2 (X) for some
α > 0. Clearly, this is significantly worse than our rates.

In [41] multi-kernel regularization schemes are treated, where X is isometri-
cally embedded into a t-dimensional, connected and compact C∞-submanifold
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of Rd. In [41, Section 5] it is pointed out that the regularization scheme with
one fixed Gaussian kernel has weak approximation ability since the regular-
ization error only decays polynomially if the regression function is analytic.
Hence, the multi-kernel regularization scheme using Gaussian kernels with flex-
ible variances is advantageous for many applications. In addition, it turns out
that the resulting learning rate for this multi-kernel regularization scheme does
not depend on the dimension d, but on the intrinsic dimension t of the data.
Namely, the authors establish the rate n− α

8α+4t modulo a logarithmic factor,
where α ∈ (0, 1] and f∗

L,P ∈ Lip (α). Note that this rate is better than ours

only if t < d−14α
8 , that is, e.g. for α = 1, if d > 8t + 14. Other results on

multi-kernel regularization schemes applied to Gaussian kernels with varying
widths can be found in [23, 41, 42, 43]. For example, [43] treats the multi-kernel
least squares regularized regression problem and, for f∗

L,P ∈ Wα
2 (X), establishes

learning rates of the form n− α
2(4α+d) modulo a logarithmic factor for α ≤ 2 and

bounded X as well as rates of the form n− 2α−d
4(4α−d)

+ξ whenever f∗
L,P ∈ Wα

2 (X)
for some α ∈ (d/2, d/2 + 2), respectively, where again ξ > 0 can be chosen to
be arbitrarily close to 0.

Again all these rates are far from being optimal, so that it seems fair to
conclude that our results represent a significant advance. Furthermore, we can
conclude that, in terms of asymptotical minmax rates, multi-kernel approaches
applied to Gaussian RBFs cannot provide any significant improvement over a
simple training/validation approach for determining the kernel width and the
regularization parameter, since the latter already leads to rates that are optimal
modulo an arbitrarily small ξ in the exponent.

4. Learning rates for SVMs for quantile regression

In the previous section we used the approximation results of Section 2 to derive
essentially optimal learning rates for least squares SVMs. In this section we
focus on quantile regression with the goal to derive learning rates for SVMs
that are comparable with the rates achieved for least squares SVMs. Recall that
the goal of quantile regression is to estimate the conditional τ -quantile, i.e. the
set valued function

F ∗
τ,P(x) := {t ∈ R : P (Y ≤ t|x) ≥ τ and P (Y ≥ t|x) ≥ 1− τ} ,

where τ ∈ (0, 1) is a fixed constant. Throughout this section, we assume Y :=
[−1, 1] and that F ∗

τ,P consists of singletons, i.e. there exists an f∗
τ,P : X → [−1, 1],

such that F ∗
τ,P(x) = {f∗

τ,P(x)} for PX -almost all x ∈ X . In the following, f∗
τ,P

is called the conditional τ -quantile function. To estimate the latter one can use
the so-called τ -pinball loss Lτ : Y × R → [0,∞) represented by

ψ(r) :=

{
−(1− τ)r, if r < 0

τr, if r ≥ 0 ,
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where r := y − t and Lτ (y, t) = ψ(r). Recall that the conditional τ -quantile
function is, modulo PX-zero sets, the only function that minimizes the Lτ -risk,
that is R∗

Lτ ,P
= RLτ ,P(f

∗
τ,P).

To derive meaningful learning rates for SVMs for quantile regression, we need
to compare the excess Lτ -risk of some estimator fD to the distance

‖fD − f∗
τ,P‖Lv(PX) .

For that purpose, we have to introduce some characteristics of the distribution P.
For the sake of simplicity, we use Q as template for the conditional distribution
P( · |x). Hence, let Q be a distribution on R with support suppQ ⊂ [−1, 1] and
τ -quantile

F ∗
τ (Q) := {t ∈ R : Q ((−∞, t]) ≥ τ and Q ([t,∞)) ≥ 1− τ} .

Recall that F ∗
τ (Q) is a bounded and closed interval, i.e. F ∗

τ (Q) = [t∗min, t
∗
max]

with t∗min := minF ∗
τ (Q) and t∗max := maxF ∗

τ (Q). Since we assumed that F ∗
τ,P

consists of singletons, we also assume that F ∗
τ (Q) consists of singletons for the

sake of uniformity, i.e. t∗min = t∗max =: t∗ and F ∗
τ (Q) = {t∗}. We start with a

definition describing the concentration of Q around the τ -quantile t∗.

Definition 4.1. A distribution Q with suppQ ⊂ [−1, 1] is said to have a τ -
quantile t∗ of lower type q ∈ (1,∞), if there exist constants αQ ∈ (0, 2] and
bQ > 0 such that

Q ((t∗ − s, t∗)) ≥ bQs
q−1

Q ((t∗, t∗ + s)) ≥ bQs
q−1

for all s ∈ [0, αQ]. Moreover, Q has a τ -quantile of type q = 1, if Q({t∗}) > 0. In
this case we define αQ := 2 and bQ := min{τ −Q((−∞, t∗)), Q((−∞, t∗])− τ},
where we note that this implies bQ > 0. For q ≥ 1, we finally write κQ := bQα

q−1
Q .

Definition 4.1 has already been introduced in [31, Section 2], where more
details including examples that go beyond the ones we discuss below can be
found.

Since we are interested in distributions P on X ×R and not only in distribu-
tions Q on R, we extend Definition 4.1 to such P.

Definition 4.2. Let p ∈ (0,∞], q ∈ [1,∞), and P be a distribution on X × R

with suppP( · |x) ⊂ [−1, 1] for PX -almost all x ∈ X . Then P is said to have a
τ -quantile of lower p-average type q, if P( · |x) has a τ -quantile of lower type q for
PX-almost all x ∈ X , and the function κ : X → [0,∞] defined, for PX -almost
all x ∈ X , by

κ(x) := κP(·|x) ,

where κP(·|x) = bP(·|x)α
q−1
P(·|x) is defined in Definition 4.1, satisfies κ−1 ∈ Lp(PX).
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Definition 4.1 describes the concentration around t∗ by lower bounds. Analo-
gously, the next definition measures the concentration of Q around t∗ by upper
bounds.

Definition 4.3. A distribution Q on [−1, 1] is said to have a τ -quantile t∗ of
upper type q ∈ [1,∞), if there exists a constant bQ > 0 such that

Q ((t∗ − s, t∗)) ≤ bQs
q−1

Q ((t∗, t∗ + s)) ≤ bQs
q−1

for all s ∈ [0, 2].

By setting q = 1 and bQ = 1, we see that Q always has a τ -quantile of
upper type q. On the other hand, for q > 1 Definition 4.3 divides the set of all
distributions on [−1, 1] into various classes.

Finally, based on Definition 4.3 we define quantiles of upper p-average type
q analogously to the quantiles of lower p-average type q.

Definition 4.4. Let p ∈ (1,∞], q ∈ [1,∞), and P be a distribution on X ×
[−1, 1]. Then P is said to have a τ -quantile of upper p-average type q, if P( · |x)
has a τ -quantile of upper type q for PX -almost all x ∈ X , and the function
ϕ : X → [0,∞] defined, for PX -almost all x ∈ X , by ϕ(x) := bP( · |x), satisfies
ϕ ∈ Lp(PX).

Let us now present some examples to illustrate the notion of quantiles of
upper and lower p-average type q.

Example 4.5. Let ν be a distribution on [−1, 1] having a bounded Lebesgue
density h, i.e. h(y) ≤ b for some b ∈ (0,∞) and Lebesgue-almost all y ∈ [−1, 1].
Then a simple integration yields that ν has a τ -quantile of upper type q = 2 for
all τ ∈ (0, 1). Here, we set bν := b.

In addition, we assume that P is a distribution on X × [−1, 1] with X ⊂ R
d

and such that PX is absolutely continuous with respect to the Lebesgue measure
µ. Furthermore, assume that the corresponding conditional densities h( · , x) :=
dP( · |x)
dµ|[−1,1]

are uniformly bounded, that is, h(y, x) ≤ b for Lebesgue-almost all

y ∈ [−1, 1]. Then, for p = ∞, P has a τ -quantile of upper p-average type q = 2
with ϕ(x) := b.

If we further assume that, for PX-almost all x ∈ X , the density h( · , x) of

P( · |x) is bounded away from 0, i.e. h(y, x) ≥ b̂ for some 0 < b̂ ≤ b for Lebesgue-
almost all y ∈ [−1, 1], then, for p = ∞, P also has a τ -quantile of lower p-average

type q = 2 with κ(x) := 2b̂.

Example 4.6. Let δt∗ be the Dirac measure at t∗ ∈ (0, 1), ν be a distribution
on [−1, 1] with ν({t∗}) = 0 and Q := αν + (1 − α)δt∗ for some α ∈ [0, 1). By
[31, Example 2.4] we know that, for τ ∈ (αν((−∞, t∗)), αν((−∞, t∗)) + 1− α),
{t∗} is a τ -quantile of lower type q = 1 with κQ := min{τ − αν((−∞, t∗)),
αν((−∞, t∗)) + 1− α− τ}.

Now assume that P is a distribution on X× [−1, 1] such that each conditional
distribution P( · |x) is of the above form Q, where t∗ may depend on x but ν and
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α do not. Then, for p = ∞, P has a τ -quantile of lower p-average type q = 1.
Moreover, for p = ∞, P also has a τ -quantile of upper p-average type q = 1.

Using the property of the distribution P having quantiles of lower/upper p-
average type q, we return to our initial goal of comparing the excess Lτ -risk of
some estimator fD to the distance ‖fD−f∗

τ,P‖Lv(PX). To this end, we first recall
from [31, Theorem 2.7] the following so-called self-calibration inequality

‖f − f∗
τ,P‖Lv(PX ) ≤ 21−

1
q q

1
q ‖κ−1‖

1
q

Lp(PX)(RLτ ,P(f)−R∗
Lτ ,P)

1
q , (19)

which holds for p ∈ (0,∞], q ∈ [1,∞), v := pq
p+1 , and all f : X → [−1, 1], when-

ever P is a distribution that has a τ -quantile of lower p-average type q. Initially,
our statistical analysis will provide oracle inequalities for the excess Lτ -risk,
and hence self-calibration inequalities provide a natural mean to translate such
oracle inequalities into bounds on the distance ‖fD − f∗

τ,P‖Lv(PX). Interestingly,
however, if we want to use the approximation results from Section 2, we also
need inverse self-calibration inequalities. In this respect, we first note that the
Lipschitz continuity of Lτ immediately yields

RLτ ,P(f)−R∗
Lτ ,P ≤ ‖f − f∗

τ,P‖L1(PX) (20)

for all f : X → [−1, 1]. For our purposes, this estimate can be substantially
improved by the next theorem for distributions having quantiles of upper p-
average type q.

Theorem 4.7. Let P be a distribution on X × [−1, 1] that has a τ-quantile of
upper p-average type q with p ∈ (1,∞] and q ∈ [1,∞). In addition, assume that,
for all x ∈ X, we have P({f∗

τ,P(x)}|x) = 0. Then we have

RLτ ,P(f)−R∗
Lτ ,P ≤ q−1‖bP( · |x)‖Lp(PX)‖f − f∗

τ,P‖qLu(PX) (21)

for all f : X → [−1, 1], where u := pq
p−1 .

To see that (21) is indeed an improvement of (20) we consider f0 := K ∗ f∗
τ,P

with K as in (8) and f∗
τ,P : Rd → R such that it is a Bayes decision function

with f∗
τ,P ∈ L2(R

d) ∩ L∞(Rd). Assuming f∗
τ,P ∈ Bα

1,∞(Rd) or f∗
τ,P ∈ Bα

u,∞(Rd)
with u as in Theorem 4.7, we obtain by Theorem 2.2 and by the definition of
Besov spaces

RLτ ,P(f0)−R∗
Lτ ,P ≤ ‖f0 − f∗

τ,P‖L1(PX) ≤ c1 ωr,L1(Rd)

(
f∗
τ,P, γ/2

)
≤ c2γ

α

from (20), while (21) yields

RLτ ,P(f0)−R∗
Lτ ,P≤c3‖f0 − f∗

τ,P‖qLu(PX)≤c4
(
ωu
r,Lu(Rd)

(
f∗
τ,P, γ/2

))q
u≤c5γqα,

for suitable positive constants c1, . . . , c5. Since γ ∈ (0, 1], it is obvious that the
second estimate is tighter than the first one whenever q > 1. Taking advantage
of Theorem 4.7 and the improved estimate of the excess Lτ -risk, we achieve
a new oracle inequality for SVMs for quantile regression similar to the one of
Theorem 3.1 for LS-SVMs.
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Theorem 4.8. Let Y := [−1, 1], and P be a distribution on R
d×Y that has a τ-

quantile of upper p-average type q for some p ∈ (1,∞] and q ∈ [1,∞). Assume
that X := suppPX ⊂ Bℓd2

is a domain and that PX has a Lebesgue density

g ∈ Lw(R
d) for some w ≥ 1. For u := pq

p−1 , suppose that f
∗
τ,P ∈ Lu(R

d)∩L∞(Rd)

if u ∈ [1, 2) and f∗
τ,P ∈ L2(R

d) ∩ L∞(Rd) if u ≥ 2. In addition, we assume that

f∗
τ,P ∈ Bα

us,∞(Rd) for some α ≥ 1 and s ≥ 1 defined by 1
s + 1

w = 1. Finally,

suppose that there exist constants ϑ ∈ [0, 1] and V ≥ 22−ϑ such that the variance
bound

EP(Lτ ◦ Ûf − Lτ ◦ f∗
τ,P)

2 ≤ V ·
(
EP(Lτ ◦ Ûf − Lτ ◦ f∗

τ,P)
)ϑ

(22)

is satisfied for all f : Rd → R. Then, for all ε > 0 and ς ∈ (0, 1), there exists a
constant C > 0 such that for all n ≥ 1, ρ ≥ 1, γ ∈ (0, 1], and λ > 0, the SVM
using the RKHS Hγ and the pinball loss Lτ satisfies

λ ‖fD,λ,γ‖2Hγ
+RLτ ,P(

ÛfD,λ,γ)−R∗
Lτ ,P

≤ C

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)

with probability Pn not less than 1− e−ρ.

To prove Theorem 4.8 we have to use the approximation result of Theorem
2.2. Similarly to Theorem 3.1 and its corollaries, it is for this reason essential in
Theorem 4.8 that PX is absolutely continuous w.r.t. the Lebesgue measure and
that the associated density is contained in Lw(X). The remaining arguments
used to prove Theorem 4.8 and its consequences, on the contrary, hold for all
marginal distributions PX . Our next goal is to illustrate these consequences. We
begin with a general form of the learning rates that result from Theorem 4.8.

Corollary 4.9. Let ρ ≥ 1 be fixed, and ξ > 0. Under the assumptions of
Theorem 4.8 and with

λn = c1n
− qα+d

qα(2−ϑ)+d ,

γn = c2n
− 1

qα(2−ϑ)+d ,

we have, for all n ≥ 1,

RLτ ,P(
ÛfD,λn,γn

)−R∗
Lτ ,P ≤ Cρn− qα

qα(2−ϑ)+d
+ξ (23)

with probability Pn not less than 1 − e−ρ. Here, c1 > 0 and c2 > 0 are user-
specified constants and C > 0 is a constant independent of n and ρ.

To achieve the learning rate (23), λn and γn have to be set as in Corollary
4.9. To this end, we again have to know α and ϑ, which is usually not the case
in practice. Nevertheless, we derive the same learning rates without knowing
neither α nor ϑ by the standard training/validation approach of Section 3.
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Theorem 4.10. Under the assumptions of Theorem 4.8 we fix sequences Λ :=
(Λn) and Γ := (Γn) of finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an ǫn-net

of (0, 1] and Γn is an δn-net of (0, 1] with ǫn ≤ n−1, δn ≤ n− 1
1+d , 1 ∈ Λn,

and 1 ∈ Γn. Furthermore, assume that the cardinalities |Λn| and |Γn| grow
polynomially in n. Then, for all ξ > 0 and ρ ≥ 1, the TV-SVM using Lτ

satisfies

Pn
(
RLτ ,P( ÛfD1,λD2 ,γD2

)−R∗
Lτ ,P ≤ Cρn− qα

qα(2−ϑ)+d
+ξ
)
≥ 1− e−ρ

with a constant C > 0 independent of n and ρ

To apply Theorems 4.8 and 4.10, we need the variance bound (22) for the
τ -pinball loss. But unfortunately, unlike for the least squares loss, (22) generally
does not hold for some ϑ > 0. However, if P has a lower quantile type, then the
following result taken from [31, Theorem 2.8] establishes non-trivial variance
bounds.

Theorem 4.11. Let P be a distribution that has a τ-quantile of lower p-average
type q for some p ∈ (0,∞] and q ∈ [1,∞). Then, for ϑ := min{ 2

q ,
p

p+1}, V :=

22−ϑqϑ‖κ−1‖ϑLp(PX), and all f : X → R, we have

EP(Lτ ◦ Ûf − Lτ ◦ f∗
τ,P)

2 ≤ V ·
(
EP(Lτ ◦ Ûf − Lτ ◦ f∗

τ,P)
)ϑ

.

Let us now combine this variance bound with the previous results such that
learning rates can be achieved with simplified assumptions. For the sake of
simplicity, we restrict our considerations to distributions P that have both a
τ -quantile of lower and upper p-average type q. Let us begin with the probably
most interesting example (p, q) = (∞, 2), cf. Example 4.5.

Corollary 4.12. Let Y := [−1, 1], and P be a distribution on R
d × Y that

has a τ-quantile of lower and upper p-average type q for q = 2 and p = ∞.
Assume that X := suppPX ⊂ Bℓd2

is a domain and that PX has a Lebesgue

density g ∈ Lw(R
d) for some w ≥ 1. Suppose that f∗

τ,P ∈ L2(R
d) ∩L∞(Rd) and

f∗
τ,P ∈ Bα

2s,∞(Rd) for some α ≥ 1 and s ≥ 1 defined by 1
s + 1

w = 1. Then we
obtain for the SVM considered in Corollary 4.9 that, for all ξ > 0 and ρ ≥ 1,

Pn
(
RLτ ,P(

ÛfD,λ,γ)−R∗
Lτ ,P ≤ Cρn− 2α

2α+d
+ξ
)
≥ 1− e−ρ

and

Pn
(
‖ ÛfD,λ,γ − f∗

τ,P‖2L2(PX) ≤ C′ρ n− 2α
2α+d

+ξ
)
≥ 1− e−ρ ,

with constants C > 0 and C′ := 4‖κ−1‖L∞(PX)C independent of n and ρ.
Moreover, the same learning rates can be obtained for the TV-SVM considered
in Theorem 4.10.
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In particular, by (7) Corollary 4.12 also holds for a conditional τ -quantile
function f∗

τ,P : Rd → R such that f∗
τ,P|X : X → [−1, 1], f∗

τ,P ∈ L2(R
d)∩L∞(Rd)

and f∗
τ,P ∈ Wα

2s(R
d) for α ∈ N and s ≥ 1.

Note that the convergence rates above equal the rates we achieved for the
least squares SVMs in Section 3 (cf. Remark 3.4).

Let us now again quickly discuss the influence of the assumed upper quantile
type. To this end, assume that we are not using a possibly non-trivial upper
quantile type. Then, as discussed in front of Theorem 4.8, we can only use the
estimate

RLτ ,P(f0)−R∗
Lτ ,P ≤ ‖f0 − f∗

τ,P‖L1(PX) ≤ cγα, (24)

in the corresponding proof, where f0 := K ∗ f∗
τ,P. Assuming that P has a τ -

quantile of lower p-average type q with p = ∞ and q = 2, i.e. v = 2 and ϑ = 1,
then (24) and (19) yield

‖ ÛfD,λ,γ − f∗
τ,P‖2L2(PX) ≤ Cn− α

α+d
+ξ

for all ξ > 0. Clearly, this rate is significantly worse than that of Corollary 4.12.
For this reason and for the sake of completeness, we consider distributions

P having a τ -quantile of upper p-average type q with p = ∞ and q 6= 2 in the
following corollary, where we omit the obvious proof.

Corollary 4.13. Let P be a distribution having a τ-quantile of lower and upper
p-average type q with p = ∞ and q ∈ [1, 2) ∪ (2,∞). Under the assumptions of
Theorem 4.8 and of Theorem 4.11 we obtain

ϑ =

{
1 , if q < 2 ,
2
q , if q > 2 .

Then, for the SVM considered in Corollary 4.9 as well as for the TV-SVM
considered in Theorem 4.10, we obtain, for all ξ > 0 and ρ ≥ 1,

‖ ÛfD,λ,γ − f∗
τ,P‖qLq(PX) ≤

{
Cρn− qα

qα+d
+ξ , if q < 2 ,

Cρ n− qα
2α(q−1)+d

+ξ , if q > 2 .

with probability Pn not less than 1−e−ρ, where C > 0 is a constant independent
of n and ρ.

Remark 4.14. Again, recall the extension operator E and the assumptions
made in Remark 2.4. Let X ⊂ Bℓd2

be a domain such that we have such an exten-

sion operator E, and let f∗
τ,P : X → [−1, 1] be the conditional τ -quantile function

such that f∗
τ,P ∈ Bα

us,∞(X) for some α ≥ 1, s ≥ 1, and u = pq
p−1 . Then apply-

ing Ef∗
τ,P we achieve the results of Theorem 4.8, Corollary 4.9, Theorem 4.10,

Corollary 4.12, and Corollary 4.13 for the modified assumptions analogously to
Remark 3.5. Moreover, the same holds for f∗

τ,P ∈ Wα
us(X), α ∈ N, instead of

f∗
τ,P ∈ Bα

us,∞(X) since f∗
τ,P ∈ Wα

us(X) implies Ef∗
τ,P ∈ Wα

us(R
d) ⊂ Bα

us,∞(Rd)
by (7).
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Like learning rates for least squares regression, learning rates for quantile
regression have already been obtained in the literature, although it seems fair to
say that the latter regression problem has attracted less attention. Let us begin
the discussion of such rates with the case of SVMs. Probably the first result in
this direction is [35], where a learning rate of n− 1

2 for the excess risk is shown
under some assumptions including that f∗

τ,P is contained in the RKHS used by
the SVM. In addition, algorithmic aspects of SVMs for quantile regression are
discussed. An approach similar to ours is used in [21] to estimate the distance
of the SVM estimator to f∗

τ,P. There, the authors show for example, that if f∗
τ,P

is contained in some known Hγ and the following calibration inequality

‖f − f∗
τ,P‖L1(PX) ≤ c

√
RLτ ,P(f)−R∗

Lτ ,P
(25)

is satisfied, then modulo some logarithmic factor, the rate n−1/3 can be achieved
for ‖fD,λn,γ − f∗

τ,P‖L1(PX ). Unfortunately, assuming that f∗
τ,P is contained in

the used RKHS is rather restrictive as discussed in the previous section. In
addition, it is well-known that establishing rates under such an assumption is
rather simple compared to the general case. Nonetheless, it seems interesting
that their rates can be essentially recovered by combining Theorem 4.8 with
Theorem 4.11 and (19) for p = 1, q = 2, and α = ∞, since in this case (19)
reduces to (25). Moreover, for the example discussed after [21, Corollary 1] our
general results actually achieve a rate of the form n−2/3+ξ, whereas the authors

only obtain a rate of the form n−1/3. Furthermore, [31] achieves our rate n− 2α
2α+d

if H = Wα
2 (X) for some α > d

2 , P has a τ -quantile of lower p-average type q
with p = ∞ and q = 2, and, again, f∗

τ,P ∈ H .

The Sobolev setting is also treated in [25], where the author considers a
penalized estimate with hypothesis space Wα

p [a, b]. In particular, he obtains the
same learning rate as we do for d = 1. In [20] a partially linear quantile regression

model is considered, where the parametric component learns with rate n− 1
2 .

Finally, [19, Chapter 7] presents learning rates for a polynomial model and

locally polynomial quantile regression estimators. Here, the rate n− 2α
2α+d lnn is

achieved, where α describes the order of smoothness. In fact, the author refers to
[7], where a similar rate is also achieved for arbitrary Lp-norms with 1 ≤ p <∞.

5. Proofs

5.1. Proofs of Section 2

In Section 2 we presented two theorems that estimate parts of the approximation
error. Let us begin with the proofs of these theorems. To this end, we need the
convention 00 := 1.

Proof of Theorem 2.2. First of all, we show f ∈ Lq(PX). Because of the as-
sumption f ∈ Lq

(
R

d
)
∩ L∞

(
R

d
)
, we have f ∈ Lu

(
R

d
)
and thus f ∈ Lu (X)
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for every u ∈ [q,∞] and q ∈ [1,∞]. In addition,

‖f‖Lq(PX)=

(∫

Rd

|f (x)|q dPX (x)

)1
q

=

(∫

X

|f (x)|q dPX (x)

)1
q

≤‖f‖L∞(X)<∞

holds, i.e. f ∈ Lq(PX) for all q ∈ [1,∞). It remains to show

‖K ∗ f − f‖qLq(PX) ≤ Cr,q‖g‖Lp(Rd) ω
q
r,Lqs(Rd)

(f, γ/2) .

To this end, we use the translation invariance of the Lebesgue measure and
Kγ (u) = Kγ (−u) (u ∈ R

d) to obtain, for x ∈ X ,

K ∗ f (x) =
∫

Rd

r∑

j=1

(
r

j

)
(−1)

1−j 1

jd

(
2

γ2π

) d
2

K jγ√
2

(x− t) f (t) dt

=

r∑

j=1

(
r

j

)
(−1)

1−j 1

jd

(
2

γ2π

) d
2
∫

Rd

K γ√
2

(
x− t

j

)
f (t) dt

=
r∑

j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ2π

) d
2
∫

Rd

K γ√
2
(h) f (x+ jh) jd dh

=

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)




r∑

j=1

(
r

j

)
(−1)1−j f (x+ jh)


 dh .

With this we can derive, for q ≥ 1,

‖K ∗ f − f‖qLq(PX)

=

∫

X

|K ∗ f (x)− f (x)|q dPX (x)

=

∫

Rd

∣∣∣∣∣∣

∫

Rd

(
2

γ2π

)d
2

K γ√
2
(h)




r∑

j=1

(
r

j

)
(−1)1−j f (x+ jh)


dh− f (x)

∣∣∣∣∣∣

q

dPX (x)

=

∫

Rd

∣∣∣∣∣∣

∫

Rd

(
2

γ2π

)d
2

K γ√
2
(h)




(

r∑

j=1

(
r

j

)
(−1)

2r+1−j
f (x+jh)

)
− f(x)



dh

∣∣∣∣∣∣

q

dPX (x)

=

∫

Rd

∣∣∣∣∣∣

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)




r∑

j=0

(
r

j

)
(−1)

2r+1−j
f (x+ jh)


 dh

∣∣∣∣∣∣

q

dPX (x)

=

∫

Rd

∣∣∣∣∣

∫

Rd

(−1)
r+1

(
2

γ2π

) d
2

K γ√
2
(h)△r

h (f, x) dh

∣∣∣∣∣

q

dPX (x) .

Next, Hölder’s inequality and
∫
Rd

(
2

γ2π

)d/2
K γ√

2
(h) dh = 1 yield, for q > 1,

‖K ∗ f − f‖qLq(PX)
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≤
∫

Rd

((∫

Rd

(
2

γ2π

)d
2

K γ√
2
(h)dh

)q−1
q
(∫

Rd

(
2

γ2π

)d
2

K γ√
2
(h) |△r

h (f, x)|q dh
)1
q
)q
dPX(x)

=

∫

Rd

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h) |△r

h (f, x)|q dh dPX (x)

=

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)

∫

Rd

|△r
h (f, x)|q dPX (x) dh

=

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h) ‖△r

h (f, ·)‖qLq(PX) dh

≤
∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)ωq

r,Lq(PX) (f, ‖h‖2) dh . (26)

Moreover, for q = 1, we have

‖K ∗ f − f‖L1(PX) =

∫

Rd

∣∣∣∣∣

∫

Rd

(−1)
r+1

(
2

γ2π

)d
2

K γ√
2
(h)△r

h (f, x) dh

∣∣∣∣∣ dPX (x)

≤
∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)

∫

Rd

|△r
h (f, x)| dPX (x) dh

≤
∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)ωr,L1(PX) (f, ‖h‖2) dh .

Consequently, (26) holds for all q ≥ 1. Furthermore, we have

ωq
r,Lq(PX) (f, t) = sup

‖h‖2≤t

∫

Rd

∣∣∣△r
h (f, x)

∣∣∣
q

dPX (x)

= sup
‖h‖2≤t

∫

Rd

∣∣∣△r
h (f, x)

∣∣∣
q

g(x)dµ (x)

= sup
‖h‖2≤t

∫

Rd

∣∣∣△r
h (f, x) (g(x))

1
q

∣∣∣
q

dµ (x)

= sup
‖h‖2≤t

∥∥∥△r
h (f, ·) g

1
q

∥∥∥
q

Lq(Rd)

≤ sup
‖h‖2≤t

(
‖△r

h (f, ·)‖Lqs(Rd)

∥∥∥g
1
q

∥∥∥
Lqp(Rd)

)q

= ‖g‖Lp(Rd) ω
q
r,Lqs(Rd)

(f, t)

≤ ‖g‖Lp(Rd)

(
1 +

2t

γ

)rq

ωq
r,Lqs(Rd)

(
f,
γ

2

)

for t ≥ 0, where we used (6). Together with (26) this implies

‖K ∗ f − f‖qLq(PX )
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≤
∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h) ‖g‖Lp(Rd)

(
1 +

2 ‖h‖2
γ

)rq

ωq
r,Lqs(Rd)

(
f,
γ

2

)
dh

= ‖g‖Lp(Rd) ω
q
r,Lqs(Rd)

(
f,
γ

2

)∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)

(
1 +

2 ‖h‖2
γ

)rq

dh . (27)

Because
(

2
γ2π

) d
2K γ√

2
(·) is the density of a probability measure on R

d, the esti-

mate

(
1 +

2 ‖h‖2
γ

)rq

≤
(
1 +

2 ‖h‖2
γ

)⌈rq⌉

≤
⌈rq⌉∑

i=0

(⌈rq⌉
i

)(
2

γ
‖h‖2

)i

and Hölder’s inequality yield

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)

(
1 +

2 ‖h‖2
γ

)rq

dh

≤
⌈rq⌉∑

i=0

(⌈rq⌉
i

)(
2

γ

)i ∫

Rd

‖h‖i2
(

2

γ2π

) d
2

K γ√
2
(h) dh

≤
⌈rq⌉∑

i=0

(⌈rq⌉
i

)(
2

γ

)i
(∫

Rd

‖h‖2i2
(

2

γ2π

) d
2

K γ√
2
(h) dh

) 1
2

. (28)

Since, for s ≥ 0 and an integer i ≥ 0, the function s 7→ si is convex, we have for
every integer i ≥ 0 the transformation




d∑

j=1

h2j




i

= di




d∑

j=1

1

d
h2j




i

≤ di
d∑

j=1

1

d

(
h2j
)i

= di−1
d∑

j=1

h2ij .

Note that d
i−1
2i is just the embedding constant of ℓd2i to ℓd2. This embedding

constant leads to

∫

Rd

‖h‖2i2
(

2

γ2π

) d
2

K γ√
2
(h) dh

=

∫

Rd

‖h‖2i2
(

2

γ2π

) d
2

exp

(
−2 ‖h‖22

γ2

)
dh

≤ di−1

(
2

γ2π

) d
2

d∑

j=1

∫

Rd

h2ij

d∏

l=1

exp

(
−2h2l
γ2

)
d (h1, . . . , hd)

= di−1

(
2

γ2π

) d
2

d∑

j=1

(
γ2π

2

) d−1
2
∫

R

h2ij exp

(
−
2h2j
γ2

)
dhj

= di−1

(
2

γ2π

) 1
2

2d

∫ ∞

0

t2i exp

(
−2t2

γ2

)
dt
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= 2di
(

2

γ2π

) 1
2
∫ ∞

0

t2i exp

(
−2t2

γ2

)
dt . (29)

With the substitution t = (γ
2

2 u)
1
2 , the functional equation Γ(t + 1) = tΓ(t) of

the Gamma function Γ, and Γ
(
1
2

)
=

√
π we have

∫ ∞

0

t2i exp

(
−2t2

γ2

)
dt =

1

2

γ√
2

(
γ2

2

)i ∫ ∞

0

u(i+
1
2 )−1 exp (−u) du

=
1

2

γ√
2

(
γ2

2

)i

Γ

(
i+

1

2

)

=
1

2

γ√
2

(
γ2

2

)i

Γ

(
1

2

) i∏

j=1

(
j − 1

2

)

=
1

2

γ√
2

(
γ2

2

)i√
π

i∏

j=1

(
j − 1

2

)
. (30)

Together, (29) and (30) lead to

∫

Rd

‖h‖2i2
(

2

γ2π

) d
2

K γ√
2
(h) dh ≤ di

(
γ2

2

)i i∏

j=1

(
j − 1

2

)
,

and with (28) we obtain

∫

Rd

(
2

γ2π

) d
2

K γ√
2
(h)

(
1 +

2 ‖h‖2
γ

)rq

dh

≤
⌈rq⌉∑

i=0

(⌈rq⌉
i

)(
2

γ

)i

di

(
γ2

2

)i i∏

j=1

(
j − 1

2

)


1
2

=

⌈rq⌉∑

i=0

(⌈rq⌉
i

)
(2d)

i
2

i∏

j=1

(
j − 1

2

) 1
2

,

where the empty product is defined to equal one. Finally, (27) implies

‖K ∗ f − f‖qLq(PX) ≤ Cr,q ‖g‖Lp(Rd) ω
q
r,Lqs(Rd)

(
f,
γ

2

)

for Cr,q :=
∑⌈rq⌉

i=0

(
⌈rq⌉
i

)
(2d)

i
2
∏i

j=1

(
j − 1

2

) 1
2 .

Proof of Lemma 2.3. We define, for all j ∈ N and x ∈ X ,

gj (x) :=

(
2

jγ
√
π

) d
2

K γ√
2

(
x

j

)
. (31)
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By [30, Proposition 4.46] we obtain

gj ∗ f ∈ Hjγ (X) ⊂ Hγ (X)

for all j ∈ N. Due to the properties of the convolution, we finally obtain

K ∗ f =
r∑

j=1

(
r

j

)
(−1)1−j j−

d
2

(
γ
√
π
)− d

2 (gj ∗ f) ∈ Hγ (X) .

Moreover, for the estimation of the norm we have

‖K ∗ f‖Hγ
≤

r∑

j=1

j
d
2

∥∥∥∥∥

(
r

j

)
(−1)

1−j

(
2

j2γ2π

) d
2

exp

(
−2 ‖·‖22
j2γ2

)
∗ f
∥∥∥∥∥
Hjγ

≤
r∑

j=1

j
d
2

(
r

j

)(
jγ

√
π
)− d

2 ‖f‖L2(Rd)

=
(
γ
√
π
)− d

2 (2r − 1) ‖f‖L2(Rd) ,

where we used [30, Proposition 4.46] in the first two steps. Finally, for all x ∈ X
and f ∈ L∞

(
R

d
)
, Hölder’s inequality implies

|K ∗ f (x)| ≤ sup
x̂∈X

|K ∗ f (x̂)|

≤ sup
x̂∈X

∫

Rd

|K (x̂− t) f (t)| dt

≤ ‖f‖L∞(Rd)

r∑

j=1

(
r

j

)
sup
x̂∈X

∫

Rd

(
2

j2γ2π

) d
2

exp

(
−2 ‖x̂− t‖22

(jγ)2

)
dt

= (2r − 1) ‖f‖L∞(Rd) .

5.2. Proofs related to the least squares SVMs

To be able to prove the new oracle inequality of Theorem 3.1 we need to control
the capacity of Hγ in terms of entropy numbers. For the sake of completeness,
we start by recalling entropy numbers (cf. [6] or [30, Definition A.5.26] for more
information).

Definition 5.1. Let S : E → F be a bounded, linear operator between the
normed spaces E and F and i ≥ 1 be an integer. Then the i-th (dyadic) entropy
number of S is defined by

ei (S) := inf




ε > 0 : ∃t1, . . . , t2i−1 ∈ SBE such that SBE ⊂
2i−1⋃

j=1

(tj + εBF )






where the convention inf ∅ := ∞ is used.
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Immediately, [30, Theorem 7.34] and [30, Corollary 7.31] yield the following
lemma regarding the capacity of Hγ , where DX is the empirical distribution
associated to the data set DX := (x1, . . . , xn) ∈ Xn.

Lemma 5.2. Let PX be a distribution on X ⊂ Bℓd2
, kγ be the Gaussian RBF

kernel over X with width γ ∈ (0, 1] and Hγ be the associated RKHS. Then, for
all ε > 0 and 0 < p < 1, there exists a constant cε,p ≥ 0 such that

EDX∼Pn
X
ei (id : Hγ → L2 (DX)) ≤ cε,pγ

−
(1−p)(1+ε)d

2p i−
1
2p

for all i ≥ 1 and n ≥ 1.

With the help of the above lemma we are now able to deduce an oracle
inequality for the least squares loss by specializing [30, Theorem 7.23], which
will later be used to prove Theorem 3.1.

Theorem 5.3. Let X ⊂ Bℓd2
, Y := [−M,M ] ⊂ R be a closed subset with M > 0

and P be a distribution on X × Y . Furthermore, let L : Y × R → [0,∞) be the
least squares loss, kγ be the Gaussian RBF kernel over X with width γ ∈ (0, 1]
and Hγ be the associated RKHS. Fix an f0 ∈ Hγ and a constant B0 ≥ 4M2

such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed ρ ≥ 1, λ > 0, ε > 0 and p ∈ (0, 1),
the SVM using Hγ and L satisfies

λ ‖fD,λ,γ‖2Hγ
+RL,P( ÛfD,λ,γ)−R∗

L,P

≤9
(
λ‖f0‖2Hγ

+RL,P(f0)−R∗
L,P

)
+Cε,p

γ−(1−p)(1+ε)d

λpn
+

(
3456M2+15B0

)
(1+ln 3)ρ

n

with probability Pn not less than 1−e−ρ, where Cε,p is a constant only depending
on ε, p and M .

Proof. First of all, note that, for all t ∈ R and y ∈ [−M,M ], the least squares
loss satisfies L(y,Ût ) ≤ L (y, t), i.e. it can be clipped at M > 0 (see [32, Section
1]). Furthermore, the least squares loss is locally Lipschitz continuous with the
local Lipschitz constant |L|a,1 = 2 (a+M) for a > 0 in the sense of [30, Defi-
nition 2.18]. See [30, Example 7.3] to verify that the least squares loss satisfies
the supremum bound

L (y, t) = (y − t)
2 ≤ 4M2

and the variance bound

EP(L ◦ Ûf − L ◦ f∗
L,P)

2 ≤ 16M2
EP(L ◦ Ûf − L ◦ f∗

L,P)

for all y ∈ Y, t ∈ [−M,M ] and f ∈ Hγ with constants B := 4M2, V := 16M2

and ϑ := 1. Consequently, the assertion follows from [30, Theorem 7.23] and
Lemma 5.2 with Cε,p := C(max{cε,p, 4M2})2p, cε,p as in Lemma 5.2 and a
constant C ≥ 1 which corresponds to the constant K of [30, Theorem 7.23].
Finally, a variable transformation adjusts Pn not to be less than 1− e−ρ.
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Now, we can prove the oracle inequality introduced in Theorem 3.1 on the
basis of Theorem 5.3.

Proof of Theorem 3.1. First of all, we want to apply Theorem 5.3 for f0 :=
K ∗ f∗

L,P, where f
∗
L,P is a Bayes decision function w.r.t. L and P and

K (x) :=

r∑

j=1

(
r

j

)
(−1)

1−j 1

jd

(
2

γ2π

) d
2

exp

(
−2 ‖x‖22
j2γ2

)

for all x ∈ R
d. The assumption f∗

L,P ∈ L2

(
R

d
)
and Theorem 2.3 immediately

yield

f0 = K ∗ f∗
L,P ∈ Hγ .

Furthermore, because of f∗
L,P ∈ L∞

(
R

d
)
and Theorem 2.3, the estimate

|K ∗ f∗
L,P (x) | ≤ (2r − 1) ‖f∗

L,P‖L∞(Rd)

holds for all x ∈ X . This implies, for all (x, y) ∈ X × Y ,

L(y,K ∗ f∗
L,P (x)) = (y −K ∗ f∗

L,P (x))2

= y2 − 2y(K ∗ f∗
L,P (x)) + (K ∗ f∗

L,P (x))2

≤M2 + 2M (2r − 1) ‖f∗
L,P‖L∞(Rd) + (2r − 1)

2 ‖f∗
L,P‖2L∞(Rd)

≤ 4r max{M, ‖f∗
L,P‖L∞(Rd)}2

and

‖L ◦ f0‖∞ = sup
(x,y)∈X×Y

|L (y, f0 (x))|

= sup
(x,y)∈X×Y

∣∣L
(
y,K ∗ f∗

L,P (x)
)∣∣

≤ 4r max{M, ‖f∗
L,P‖L∞(Rd)}2 =: B0 .

Furthermore, (12) and Theorem 2.2 yield

RL,P (f0)−R∗
L,P = RL,P(K ∗ f∗

L,P)−R∗
L,P

=
∥∥K ∗ f∗

L,P − f∗
L,P

∥∥2
L2(PX)

≤ Cr,2 ‖g‖Lq(Rd) ω
2
r,L2s(Rd)

(
f∗
L,P,

γ

2

)

≤ Cr,2 ‖g‖Lq(Rd) c
2γ2α ,

where we used

ωr,L2s(Rd)

(
f∗
L,P,

γ

2

)
≤ cγα
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for γ > 0, α ≥ 1, r = ⌊α⌋ + 1, and a constant c > 0 in the last step, which in
turn immediately results from the assumption f∗

L,P ∈ Bα
2s,∞(Rd). By Theorem

2.3 we know

‖f0‖Hγ
= ‖K ∗ f∗

L,P‖Hγ
≤
(
γ
√
π
)−d

2 (2r − 1) ‖f∗
L,P‖L2(Rd) .

Therefore, Theorem 5.3 and the above choice of f0 yield, for all fixed ρ ≥ 1,
λ > 0, ε > 0, and p ∈ (0, 1), that the SVM using Hγ and L satisfies

λ ‖fD,λ,γ‖2Hγ
+RL,P

(
ÛfD,λ,γ

)
−R∗

L,P

≤ 9
(
λ
(
γ
√
π
)−d

(2r − 1)2 ‖f∗
L,P‖2L2(Rd) + Cr,2 ‖g‖Lq(Rd) c

2γ2α
)

+ Cε,p
γ−(1−p)(1+ε)d

λpn
+

(
3456M2 + 15·4rmax{M, ‖f∗

L,P‖L∞(Rd)}2
)
(1 + ln 3)ρ

n

≤ C1λγ
−d + 9Crc

2γ2α + Cε,p
γ−(1−p)(1+ε)d

λpn
+
C2ρ

n
(32)

with probability Pn not less than 1 − e−ρ and with constants Cε,p as in The-

orem 5.3, Cr := Cr,2 ‖g‖Lq(Rd), C1 := 9 (2r − 1)
2
π− d

2 ‖f∗
L,P‖2L2(Rd), and C2 :=

(ln(3) + 1)
(
3456M2 + 15 · 4r max{M, ‖f∗

L,P‖L∞(Rd)}2
)
.

Remark 5.4. Consider the case M ≥ 1 in the proof of Theorem 3.1. Then we
have

C2 ≤M2(ln(3) + 1)
(
3456 + 15 · 4r max{1, ‖f∗

L,P‖L∞(Rd)}2
)

as well as

Cε,p = (max{cε,p, 4M2})2p ·max{3K̃, 2B}

by Theorem 5.3 and [30, Theorem 7.23], where cε,p is independent of M , B =
4M2, and

K̃ = max{c1|L|pM,1V
1−p
2 , c2|L|2pM,1B

1−p} = max{4c1M, 41+pc2M
2} = ĉM2

with Lipschitz constant |L|M,1 = 4M and V = 16M2. Since

Cε,p = (max{cε,p, 4M2})2p ·max{3ĉM2, 8M2}
≤ (max{cε,p, 4})2pmax{3ĉ, 8}M2+4p ,

we can rewrite (32) such that

λ ‖fD,λ,γ‖2Hγ
+RL,P

(
ÛfD,λ,γ

)
−R∗

L,P

≤ CM2+4p

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn
+
ρ

n

)
,

where the positive constant C is independent of M , λ, γ, ρ, and n.



32 M. Eberts and I. Steinwart

With the help of the oracle inequality achieved in Theorem 3.1 the learning
rate stated in Corollary 3.2 can be shown in a few steps.

Proof of Corollary 3.2. In a first step, Theorem 3.1 can be applied which yields

λn ‖fD,λn,γn
‖2Hγn

+RL,P

(
ÛfD,λn,γn

)
−R∗

L,P

≤ C1λnγ
−d
n + 9Crc

2γ2αn + Cε,p
γ
−(1−p)(1+ε)d
n

λpnn
+
C2ρ

n

≤ C̃ρ
(
λnγ

−d
n + γ2αn + γ−(1−p)(1+ε)d

n λ−p
n n−1 + n−1

)

for all ε > 0 and p ∈ (0, 1) with probability Pn not less than 1 − e−ρ and a

constant C̃ := max
{
C1, 9Crc

2, Cε,p, C2

}
. In a next step the sequences

λn = c1n
−1

and

γn = c2n
− 1

2α+d

with arbitrary constants c1 > 0 and c2 > 0 yield

λnγ
−d
n + γ2αn + γ−(1−p)(1+ε)d

n λ−p
n n−1 ≤ c3n

− 2α
2α+d

+ 2αp+ε(1−p)d
2α+d ≤ c3n

− 2α
2α+d

+ξ ,

where c3 > 0 is a constant and ξ ≥ 2αp+ε(1−p)d
2α+d . With this, we finally obtain

λn ‖fD,λn,γn
‖2Hγn

+RL,P

(
ÛfD,λn,γn

)
−R∗

L,P ≤ C̃ρ
(
c3n

− 2α
2α+d

+ξ + n−1
)

≤ Cρn− 2α
2α+d

+ξ

with the constant C := C̃ (c3 + 1).

Next, we want to prove Theorem 3.3. To this end, we need the following
technical lemma.

Lemma 5.5. We fix finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an ǫn-net of
(0, 1] and Γn is an δn-net of (0, 1] with 0 < ǫn ≤ n−1, δn > 0, 1 ∈ Λn, and
1 ∈ Γn. Then, for all ε > 0, p ∈ (0, 1), d > 0, α > 0 and all n ≥ 1, we have

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
≤ c

(
n− 2α

2α+d
+ξ + δ2αn

)
,

where ξ > 0 depends on ε and p, and c > 0 is a constant independent of n, Λ,
ǫn, Γ, and δn.

Proof. Without loss of generality, we may assume that Λn and Γn are of the form
Λn = {λ1, . . . , λm} and Γn = {γ1, . . . , γl} with λm = 1 and γl = 1 as well as
λi−1 < λi and γj−1 < γj for all i = 2, . . . ,m and j = 2, . . . , l. Furthermore, we fix
a minimizer (λ∗, γ∗) of the function (λ, γ) → λγ−d+γ2α+n−1λ−pγ−(1−p)(1+ε)d
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defined on [0, 1]2. [30, Lemma A.1.6.] shows that λ∗ = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d

with a constant c1 > 0. This implies ǫn ≤ 1
c1
λ∗. With λ0 := 0 and γ0 := 0 it is

easy to see that

λi − λi−1 ≤ 2ǫn and γj − γj−1 ≤ 2δn (33)

hold for all i = 1, . . . ,m and j = 1, . . . , l. Furthermore, there exist indices
i ∈ {1, . . . ,m} and j ∈ {1, . . . , l} such that λi−1 ≤ λ∗ ≤ λi and γj−1 ≤ γ∗ ≤ γj .
Together with (33) this yields λ∗ ≤ λi ≤ λ∗ + 2ǫn and γ∗ ≤ γj ≤ γ∗ + 2δn.
Using this result and [30, Lemma A.1.6.], we obtain

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)

≤ λiγ
−d
j + γ2αj + n−1λ−p

i γ
−(1−p)(1+ε)d
j

≤ (λ∗ + 2ǫn) (γ
∗)

−d
+ (γ∗ + 2δn)

2α
+ n−1 (λ∗)

−p
(γ∗)

−(1−p)(1+ε)d

≤ (1 +
2

c1
)λ∗ (γ∗)−d + (γ∗ + 2δn)

2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d

≤ c2

(
λ∗ (γ∗)−d + (γ∗)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d + δ2αn

)

= c2 min
λ,γ∈[0,1]

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
+ c2δ

2α
n

≤ c2 c3 n
− 2α

2α+2αp+dp+(1−p)(1+ε)d + c2δ
2α
n

≤ c
(
n− 2α

2α+2αp+dp+(1−p)(1+ε)d + δ2αn

)

≤ c
(
n− 2α

2α+d
+ξ + δ2αn

)

with constants c2 > 0, c3 > 0 and c := max {c2 c3, c2} independent of n, Λ, ǫn,
Γ, and δn.

Proof of Theorem 3.3. Let m be defined by m :=
⌊
n
2

⌋
+ 1, i.e. m ≥ n

2 . Then
Theorem 3.1 yields with probability Pm not less than 1− |Λn × Γn| e−ρ

RL,P( ÛfD1,λ,γ)−R∗
L,P ≤ c1

2

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpm
+
ρ

m

)

≤ c1

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn
+
ρ

n

)
(34)

for all (λ, γ) ∈ Λn × Γn simultaneously. Here, c1 > 0 is a constant independent
of n, ρ, λ, and γ. Furthermore, [30, Theorem 7.2], n − m ≥ n

2 − 1 ≥ n
4 , and

ρn := ρ+ ln(1 + |Λn × Γn|) yield

RL,P( ÛfD1,λD2 ,γD2
)−R∗

L,P

< 6

(
inf

(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗
L,P

)
+ 512M2 ρn

n−m
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< 6

(
inf

(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗
L,P

)
+ 2048M2ρn

n
(35)

with probability Pn−m not less than 1 − e−ρ. With (34), (35), and Lemma 5.5
we can conclude

RL,P( ÛfD1,λD2 ,γD2
)−R∗

L,P

< 6

(
inf

(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗
L,P

)
+ 2048M2ρn

n

≤ 6c1

(
inf

(λ,γ)∈Λn×Γn

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn

)
+
ρ

n

)
+ 2048M2ρn

n

≤ 6c1

(
c
(
n− 2α

2α+d
+ξ + δ2αn

)
+
ρ

n

)
+ 2048M2ρn

n

≤
(
6c1c+ 6c1ρ+ 2048M2ρn

)
n− 2α

2α+d
+ξ + 6c1cδ

2α
n

≤
(
12c1c+ 6c1ρ+ 2048M2ρn

)
n− 2α

2α+d
+ξ

with probability Pn not less than 1−(1 + |Λn × Γn|) e−ρ. With a variable trans-
formation Pn can be adjusted such that it is not less than 1− e−ρ.

For the least squares loss it finally remains to prove learning rates in the case
of unbounded noise.

Proof of Theorem 3.6. By (17), we obtain

Pn

({
D ∈ (X × Y )n : max

i∈{1,...,n}
{|εi|} ≤ cρl

})
≥ 1−

n∑

i=1

P
(
|εi| > cρl

)

≥ 1− e−(ρ−lnn) .

Thus, we have

Pn

({
D ∈ (X × Y )n : max

i∈{1,...,n}
{|εi|} ≤ c (ρ̂+ lnn)

l

})
≥ 1− e−ρ̂ ,

i.e. with probability Pn not less than 1 − e−ρ̂ we have |yi| ≤ Mn for all
i ∈ {1, . . . , n}. Therefore, the usual LS-SVM with belatedly clipped decision
function at Mn is with probability Pn not less than 1− e−ρ̂ clipped regularized
empirical risk minimization (CR-ERM) in the sense of [30, Definition 7.18]. Since
in the proof of [30, Theorem 7.20] the CR-ERM property is used exactly once,
namely at the very beginning of the proof, while the rest of the proof only con-
siders clipped decision functions independently of whether they are CR-ERMs
or not, the oracle inequality of [30, Theorem 7.20] holds for Ŷ := [−Mn,Mn]
modulo a set of probability Pn not less than 1− e−ρ̂. Analogously to Theorem
3.1 we then obtain that

λ ‖fD,λ,γ‖2Hγ
+RL,P( ÛfD,λ,γ)−R∗

L,P ≤ CM2+4p
n

(
λγ−d + γ2α+

γ−(1−p)(1+ǫ)d

λpn
+
ρ

n

)
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holds with probability Pn not less than 1− e−ρ̄ − e−ρ̂, where ρ̄ ≥ 1, ǫ > 0, and
p ∈ (0, 1). Here we used Remark 5.4 to determine how the arising constants
depend on Mn. Together with Corollary 3.2 and (a + b)c ≤ (2ab)c for a, b ≥ 1
and c > 0 this yields

λ ‖fD,λ,γ‖2Hγ
+RL,P( ÛfD,λ,γ)−R∗

L,P

≤ Ĉρ̄M2+4p
n n− 2α

2α+d
+ξ

= Ĉρ̄
(
2c (ρ̂+ lnn)

l
)2+4p

n− 2α
2α+d

+ξ

≤ Ĉρ̄ 26(1+l)c6ρ̂2l(1+2p)n− 2α
2α+d

+ξ (lnn)
2l(1+2p)

≤ Cρ̄ρ̂2l+ξ′ n− 2α
2α+d

+ξ̂

for ξ, ξ̂, ξ′ > 0, and n ≥ 3 with probability Pn not less than 1− e−ρ̄ − e−ρ̂.

5.3. Proofs related to SVMs for quantile regression

Let Q be a distribution on R with suppQ ⊂ [−1, 1] and, for τ ∈ (0, 1), Lτ be
the τ -pinball loss. We define the inner Lτ -risk by

CLτ ,Q(t) :=

∫

Y

Lτ (y, t) dQ(y), t ∈ R,

and the minimal inner Lτ -risk by C∗
Lτ ,Q

:= inft∈R CLτ ,Q(t). With this definition
we first present an estimate of the inner Lτ -risk in the following lemma and
afterwards we can prove Theorem 4.7 that estimates the excess risk.

Lemma 5.6. Let Q be a distribution on R with suppQ ⊂ [−1, 1] that has a
τ-quantile of upper type q > 1. For τ ∈ (0, 1), let F ∗

τ,Q consist of singletons, i.e.
there exists an t∗ ∈ R with F ∗

τ,Q = {t∗}. Furthermore, let Q({t∗}) = 0. Then

CLτ ,Q(t)− C∗
Lτ ,Q ≤ bQ

q
|t− t∗|q

holds for all t ∈ R.

Proof. [31, Proposition 4.1] yields

CLτ ,Q(t
∗ + t)− C∗

Lτ ,Q =

∫ t

0

Q ((t∗, t∗ + s)) ds ≤
∫ t

0

bQs
q−1ds ≤ bQ

q
tq

and

CLτ ,Q(t
∗ − t)− C∗

Lτ ,Q =

∫ t

0

Q ((t∗ − s, t∗)) ds ≤
∫ t

0

bQs
q−1ds ≤ bQ

q
tq (36)

for all t ≥ 0. With this, we have, for t ≥ t∗,

CLτ ,Q(t)− C∗
Lτ ,Q = CLτ ,Q(t

∗+(t− t∗))− C∗
Lτ ,Q ≤ bQ

q
(t− t∗)q =

bQ
q
|t− t∗|q .

The case t < t∗ follows analogously with (36).
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Proof of Theorem 4.7. With Lemma 5.6 and the choice Q := P( · |x) for all
x ∈ X , we obtain

RLτ ,P(f)−R∗
Lτ ,P

=

∫

X

∫

Y

Lτ (y, f(x)) dP(y|x)dPX(x)−
∫

X

∫

Y

Lτ (y, f
∗
τ,P(x)) dP(y|x)dPX(x)

=

∫

X

CLτ ,P( · |x)(f(x)) − C∗
Lτ ,P( · |x) dPX(x)

≤
∫

X

bP( · |x)

q
|f(x)− f∗

τ,P(x)|q dPX(x)

= q−1‖bP( · |x)‖Lp(PX)‖f − f∗
τ,P‖qLu(PX)

for every f : X → [−1, 1].

Proof of Theorem 4.8. By [30, Section 9.3 and Lemma 2.23] we know that, for
all τ ∈ (0, 1), the τ -pinball loss Lτ is Lipschitz continuous and can be clipped
at M = 1 for Y := [−1, 1]. Furthermore, for all τ ∈ (0, 1), the supremum bound
is satisfied for the τ -pinball loss, since

Lτ (y, t) = max{τ, 1− τ}|y − t| ≤ 2 =: B

holds for all y ∈ Y and all t ∈ [−1, 1]. By Lemma 5.2 we know that, for all ε > 0
and 0 < ς < 1, there exists a constant cε,ς ≥ 0 such that

EDX∼Pn
X
ei (id : Hγ → L2 (DX)) ≤ cε,ςγ

− (1−ς)(1+ε)d
2ς i−

1
2ς

for all i ≥ 1 and n ≥ 1.
Since we assume that there exist constants ϑ ∈ [0, 1] and V ≥ B2−ϑ = 22−ϑ

such that the variance bound (22) is satisfied for all f : Rd → R, we can apply
[30, Theorem 7.23]. To this end, we choose f0 := K ∗ f∗

τ,P, where K : Rd → R

is defined by (8). Theorem 2.3 and the assumption f∗
τ,P ∈ L2(R

d) then imply
f0 ∈ Hγ and

‖f0‖Hγ
≤ (γ

√
π)−

d
2 (2r − 1)‖f∗

τ,P‖L2(Rd) .

Next, the assumption f∗
τ,P ∈ L∞(Rd) together with Theorem 2.3 yields

|K ∗ f∗
τ,P(x)| ≤ (2r − 1)‖f∗

τ,P‖L∞(Rd) (37)

for all x ∈ X . Furthermore, for all (x, y) ∈ X × Y , the latter implies

Lτ (y,K ∗ f∗
τ,P(x)) ≤ |y −K ∗ f∗

τ,P(x)|
≤ 1 + (2r − 1)‖f∗

τ,P‖L∞(Rd)

≤ 2ra ,
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where a := max{1, ‖f∗
τ,P‖L∞(Rd)}. With this, we obtain

‖Lτ ◦ f0‖∞ = sup
(x,y)∈X×Y

|Lτ (y,K ∗ f∗
τ,P(x))| ≤ 2ra =: B0 ,

where B0 = 2ra ≥ 2 = B. In addition, we have to estimate the excess risk
RLτ ,P(f0) − R∗

Lτ ,P
. To this end, we apply Theorem 4.7 and Theorem 2.2 and

derive

RLτ ,P(f0)−R∗
Lτ ,P ≤ q−1‖bP( · |x)‖Lp(PX)‖f0 − f∗

τ,P‖qLu(PX)

= q−1‖bP( · |x)‖Lp(PX)‖K ∗ f∗
τ,P − f∗

τ,P‖qLu(PX)

≤ q−1‖bP( · |x)‖Lp(PX)

(
Cr,u‖g‖Lw(Rd)ω

u
r,Lus(Rd)(f

∗
τ,P,

γ

2
)
) q

u

≤ q−1‖bP( · |x)‖Lp(PX)C
q
u
r,u‖g‖

q
u

Lw(Rd)
cqγqα ,

where we used f∗
τ,P ∈ Bα

us,∞(Rd). Finally, [30, Theorem 7.23] yields that, for all
fixed ρ > 0 and λ > 0, the SVM using Hγ and Lτ satisfies

λ ‖fD,λ,γ‖2Hγ
+RLτ ,P

(
ÛfD,λ,γ

)
−R∗

Lτ ,P

≤ 9(λ‖f0‖2Hγ
+RLτ ,P(f0)−R∗

Lτ ,P)

+ c1

(
c2ςε,ςγ

−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+ 3

(
72V ρ

n

) 1
2−ϑ

+
15B0ρ

n

≤ 9


λ(2r − 1)2(γ

√
π)−d‖f∗

τ,P‖2L2(Rd) +
‖bP( · |x)‖Lp(PX)C

q
u
r,u‖g‖

q
u

Lw(Rd)
cq

q
γqα




+ c1

(
c2ςε,ςγ

−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+ 3

(
72V ρ

n

) 1
2−ϑ

+
15 · 2raρ

n

≤ C

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)

with probability Pn not less than 1 − e−ρ and a constant C > 0 depending
on ‖f∗

τ,P‖L2(Rd), ‖f∗
τ,P‖L∞(Rd), r, d, q, p, ‖bP( · |x)‖Lp(PX), ‖g‖Lw(Rd), ε, ς , ϑ,

and V .

With the help of the just proven oracle inequality we now derive the learning
rates of Corollary 4.9.

Proof of Corollary 4.9. Theorem 4.8 yields

λn ‖fD,λn,γn
‖2Hγn

+RL,P

(
ÛfD,λn,γn

)
−R∗

L,P

≤ c



λnγ−d
n + γqαn +

(
γ
−(1−ς)(1+ε)d
n

λςnn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n



 ,
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where c > 0 is a constant. In addition, the sequences

λn = c1n
− qα+d

qα(2−ϑ)+d

and

γn = c2n
− 1

qα(2−ϑ)+d

with arbitrary constants c1 > 0 and c2 > 0 yield

λnγ
−d
n + γqαn +

(
γ
−(1−ς)(1+ε)d
n

λςnn

) 1
2−ς−ϑ+ϑς

≤ c3n
− qα

qα(2−ϑ)+d
+ qαϑρ+εd(1−ρ)

(qα(2−ϑ)+d)(2−ρ−ϑ+ϑρ)

≤ c3n
− qα

qα(2−ϑ)+d
+ξ ,

where c3 > 0 is a constant and ξ ≥ qαϑρ+εd(1−ρ)
(qα(2−ϑ)+d)(2−ρ−ϑ+ϑρ) . With this, we finally

obtain

λn ‖fD,λn,γn
‖2Hγn

+RL,P

(
ÛfD,λn,γn

)
−R∗

L,P

≤ c

(
c3n

− qα

qα(2−ϑ)+d
+ξ +

( ρ
n

) 1
2−ϑ

+
ρ

n

)

≤ Cρn− qα

qα(2−ϑ)+d
+ξ

with probability Pn not less than 1− e−ρ and with the constant C := c(c3 +2).

To prove Theorem 4.10 we need the following lemma.

Lemma 5.7. We fix finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an ǫn-net of
(0, 1] and Γn is an δn-net of (0, 1] with 0 < ǫn < n−1, δn > 0, 1 ∈ Λn, and
1 ∈ Γn. Then, for all ε > 0, ς ∈ (0, 1), ϑ ∈ [0, 1], q ∈ [1,∞), d > 0, α > 0, and
all n ≥ 1, we have

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γqα +

(
λ−ςn−1γ−(1−ς)(1+ε)d

) 1
2−ς−ϑ+ϑς

)

≤ c
(
n− qα

qα(2−ϑ)+d
+ξ + δqαn

)

with ξ > 0 depending on ε and ς, and a constant c > 0 independent of n, Λ, ǫn,
Γ, and δn.

Proof. Let (λ∗, γ∗) be the minimizer of the function

(λ, γ) → λγ−d + γqα +
(
λ−ςn−1γ−(1−ς)(1+ε)d

) 1
2−ς−ϑ+ϑς
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defined on [0, 1]2. [30, Lemma A.1.6.] shows that

λ∗ = c1n
− qα+d

qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d

with a constant c1 > 0. This implies ǫn ≤ 1
c1
λ∗. Now the proof follows analo-

gously to the proof of Lemma 5.5.

Proof of Theorem 4.10. Let m be defined by m :=
⌊
n
2

⌋
+ 1, i.e. m ≥ n

2 . There-
fore, Theorem 4.8 yields with probability Pm not less than 1− |Λn × Γn| e−ρ

RLτ ,P(
ÛfD1,λ,γ)−R∗

Lτ ,P

≤ c1
2

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςm

) 1
2−ς−ϑ+ϑς

+
( ρ
m

) 1
2−ϑ

+
ρ

m

)

≤ c1

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)
(38)

for all (λ, γ) ∈ Λn×Γn simultaneously. Here, c1 > 0 is a constant. Furthermore,
[30, Theorem 7.2], n−m ≥ n

2 − 1 ≥ n
4 , and ρn := ρ+ ln(1 + |Λn × Γn|) yield

RLτ ,P(
ÛfD1,λD2 ,γD2

)−R∗
Lτ ,P

< 6

(
inf

(λ,γ)∈Λn×Γn

RLτ ,P(
ÛfD1,λ,γ)−R∗

Lτ ,P

)
+ 4

(
8V ρn
n−m

) 1
2−ϑ

< 6

(
inf

(λ,γ)∈Λn×Γn

RLτ ,P(
ÛfD1,λ,γ)−R∗

Lτ ,P

)
+ 4

(
32V ρn
n

) 1
2−ϑ

(39)

with probability Pn−m not less than 1 − e−ρ. With (38), (39), and Lemma 5.7
we can conclude

RLτ ,P(
ÛfD1,λD2 ,γD2

)−R∗
Lτ ,P

< 6

(
inf

(λ,γ)∈Λn×Γn

RLτ ,P(
ÛfD1,λ,γ)−R∗

Lτ ,P

)
+ 4

(
32V ρn
n

) 1
2−ϑ

≤ 6c1 inf
(λ,γ)∈Λn×Γn

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

)

+ 6c1

( ρ
n

) 1
2−ϑ

+ 6c1
ρ

n
+ 4

(
32V ρn
n

) 1
2−ϑ

≤ 6c1

(
c
(
n− qα

qα(2−ϑ)+d
+ξ + δqαn

)
+
( ρ
n

) 1
2−ϑ

+
ρ

n

)
+ 4

(
32V ρn
n

) 1
2−ϑ

≤
(
6c1(2c+ ρ

1
2−ϑ + ρ) + 4 (32V ρn)

1
2−ϑ

)
n− qα

qα(2−ϑ)+d
+ξ

with probability Pn not less than 1−(1 + |Λn × Γn|) e−ρ. With a variable trans-
formation Pn can be adjusted such that it is not less than 1− e−ρ.



40 M. Eberts and I. Steinwart

Proof of Theorem 4.11. If ϑ := min{ 2
q ,

p
p+1}, we know by [31, Theorem 2.8]

that, for all f : X → [−1, 1], there exists an f∗
τ,P : X → [−1, 1] with f∗

τ,P(x) ∈
F ∗
τ,P(x) for PX-almost all x ∈ X such that the variance bound (22) is satisfied

with V = 22−ϑqϑ‖ν−1‖ϑLp(Px)
. Since F ∗

τ,P consists of singletons, the variance

bound is fulfilled for all f : X → [−1, 1] with f∗
τ,P.

Proof of Corollary 4.12. For q = 2 and p = ∞, Theorem 4.11 and Corollary 4.9
immediately yield ϑ = 1, V = 4‖κ−1‖L∞(PX), and, for every ξ > 0,

Pn
(
RLτ ,P(

ÛfD,λ,γ)−R∗
Lτ ,P ≤ Cρn− 2α

2α+d
+ξ
)
≥ 1− e−ρ

with a constant C > 0. Finally, the self calibration inequality (19) yields

‖ ÛfD,λ,γ − f∗
τ,P‖2L2(PX) ≤ 4‖κ−1‖L∞(PX)

(
RLτ ,P( ÛfD,λ,γ)−R∗

Lτ ,P

)

≤ C′ρ n− 2α
2α+d

+ξ

for all ξ > 0 and C′ := 4‖κ−1‖L∞(PX)C.
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