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Abstract: Consider estimating an n × p matrix of means Θ, say, from
an n × p matrix of observations X, where the elements of X are assumed
to be independently normally distributed with E(xij) = θij and constant
variance, and where the performance of an estimator is judged using a p×p

matrix quadratic error loss function. A matrix version of the James-Stein
estimator is proposed, depending on a tuning constant a. It is shown to
dominate the usual maximum likelihood estimator for some choices of a

when n ≥ 3. This result also extends to other shrinkage estimators and
settings.
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1. Introduction

Shrinkage estimators are usually set in the context of vector data. In the simplest
version the data follow a normal distribution x ∼ Nn(θ, In), where θ is an
n-dimensional column vector of parameters. That is, the xi are independent
normal variates from N(θi, 1). Let θ̂ be an estimator of θ. There are two natural
loss functions in this setting: the n× n matrix loss

Lmatrix,n(θ̂, θ) = (θ̂ − θ)(θ̂ − θ)T , (1.1)

and the scalar loss function

Lscalar(θ̂, θ) =

n
∑

i=1

(θ̂i − θi)
2. (1.2)
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The n× n matrix loss function focuses on the error for each linear combination
of the elements of θ; the scalar loss function pools the errors across the elements
of θ.

It is well-known that under the matrix loss function, the simple unbiased
estimator θ̂0 = x is admissible since domination in the matrix norm would
imply domination in one dimension. Hence under the matrix norm there is no
estimator with a smaller risk function for all θ. However, for scalar loss when
n ≥ 3, it is possible to improve upon θ̂0 through shrinkage by “borrowing
strength” across the elements of x.

Next consider the matrix case where a matrix X(n×p) of observations from a
matrix normal distribution with mean Θ and identity covariance matrix is avail-
able. That is, xij ∼ N(θij , 1) independently for i = 1, . . . , n and j = 1, . . . , p.
There are several loss functions that might be considered in this situation. We
shall focus on two choices: the p× p matrix loss

Lmatrix,p(Θ̂,Θ) = (Θ̂−Θ)T (Θ̂ −Θ), (1.3)

and the scalar loss function

Lscalar(Θ̂,Θ) = tr{(Θ̂−Θ)T (Θ̂−Θ)} =
∑

ij

(θ̂ij − θij)
2. (1.4)

There are also n × n and np × np versions of the matrix loss which will not
concern us here.

The matrix loss function (1.3) accommodates estimators which borrow
strength across rows but not columns; the scalar loss function (1.4) accom-
modates estimators which borrow strength across rows and columns. It seems
most natural to use the matrix choice when the rows measure commensurate
quantities while the columns are qualitatively different. For example, the data
might represent the performance of n different schools on p = 2 variables such as
academic performance and the socio-economic background of the student body.

The matrix loss function (1.3) for matrix data is the focus of this paper.
Some authors have considered the use of shrinkage methods in a matrix setting;
see, e.g. Efron and Morris (1972, 1976); Haff (1977); Zheng (1986); Ghosh and
Shieh (1991), Tsukuma and Kubokawa (2007); Tsukuma (2009). However, these
papers use the scalar loss function (1.4). The current paper seems to give the
first results showing that shrinkage can yield improvements over Θ̂0 = X with
the matrix loss function (1.3).

Section 2 reviews the situation for vector data x in a setting which generalizes
the simple normal case set out here. Section 3 gives our new results for matrix
data X and the matrix loss function (1.3). A discussion of the implications of
our results is given in Section 4.

2. Review of the vector case

If x(n × 1) is a random vector with mean θ, then a shrinkage estimator of θ
takes the form

θ̂a = x− ag(x;u), (2.1)
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where a > 0 is a tuning parameter, and g(x, u) (n×1) is a “shrinkage function”,
depending on the data x, and possibly on extra information in an auxiliary
random variable u. If the auxiliary random variable is not present, the notation
for the shrinkage function can be simplified to g(x). In Section 3 for n × p
matrix data, the the auxiliary information will be generalized to a p-dimensional
random vector u.

Let F (x, u) denote the joint distribution of x and u, depending on θ. The
classic James-Stein estimator (Stein, 1956; James and Stein, 1961) is a special
case in the setting x ∼ Nn(θ, σ

2In), n ≥ 3. When σ2 is known, the shrinkage
function is given by

g(x) = σ2(n− 2)x/||x||2; (2.2)

note the auxiliary random variable is not present in this case. When σ2 is un-
known, the shrinkage function is given by

g(x, u) = {u/(ν + 2)}(n− 2)x/||x||2, (2.3)

where u ∼ σ2χ2
ν is an auxiliary random variable independent of x which is used

to estimate σ2.
The objective in shrinkage estimation is to estimate the vector parameter θ,

where the performance of an estimator θ̂ = θ̂(x) is judged by the scalar loss

function (1.2) and associated risk function Rscalar(θ̂, θ) = EF {Lscalar(θ̂, θ)}.
In order to guarantee that the shrinkage estimator dominates the simple

unbiased estimator θ̂0 = x, the usual strategy is to demonstrate the “cross-
product inequality”

EF {(x− θ)Tg} ≥ EF (g
Tg) > 0, (2.4)

for all θ, where g = g(x, u) is a function of the random vector x (and of u when
present). The last inequality has been included to ensure that g is nontrivial.
Throughout the paper we assume that x and g(x, u) have finite second moments.
In particular, this property is true when x is normally distributed and n ≥ 3.
Then the following well-known result holds.

Theorem 1. Let x(n × 1) be a random vector and u be an auxiliary random
variable such that EF (x) = θ under a probability model F depending on θ. Also
suppose there exists a shrinkage function g = g(x, u) such that the cross-product

inequality (2.4) holds. Then the shrinkage estimator θ̂a in (2.1) dominates the

simple estimator θ̂0 = x under the scalar loss function (1.2) provided the tuning
parameter a satisfies 0 < a < 2.

Proof. Write δ = EF {(x − θ)Tg} and γ = EF (g
Tg), so δ ≥ γ > 0. Then the

risk takes the form

Rscalar(θ̂a, θ) = EF {(x− θ − ag)T (x − θ − ag)}
= EF {(x− θ)T (x− θ)} − 2aδ + a2γ

≤ EF {(x− θ)T (x− θ)} − 2aγ + a2γ

< EF {(x− θ)T (x− θ)} = Rscalar(θ̂0, θ),

(2.5)

provided 0 < a < 2.
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For the James-Stein estimator with g(x) given by (2.2), Stein’s Lemma (Stein,
1981) states that the cross-product inequality (2.4) for known σ2 holds for n ≥ 3
and is actually an equality. That is, if x ∼ Nn(θ, σ

2In), n ≥ 3, then

σ2EF

[

{xT (x− θ)/||x||2
}

= (n− 2)σ4EF

{

1/||x||2
}

= σ2A, say, (2.6)

where A = A(λ2) depends on λ2 = θ
T
θ/σ2 and 0 < A < ∞. Stein’s Lemma

can be proved using integration by parts (e.g. Efron and Morris (1976) or Stein
(1981)). An equality also holds in the analogue of (2.6) for the unknown σ2 case
since E(u) = νσ2, E(u2) = ν(ν+2)σ2 in (2.3). Hence Theorem 1 for the James-
Stein estimator, in both the known and unknown σ2 cases, can be strengthened
to conclude that the optimal value of the tuning constant is a = 1, uniformly
over all θ.

As a simple example where the cross-product inequality is strict, consider a
Baranchik-type estimator (Baranchik, 1970) with

g(x) =
{

(n− 2)r(||x||2)/||x||2)
}

x,

where r(||x||2) is differentiable, bounded between 0 and 1, and strictly increas-
ing. Then under normality, x ∼ Nn(θ, In), n ≥ 3,

EF

{

(x− θ)Tg(x)
}

= EF

{

(n− 2)2
r(||x||2)
||x||2 + 2(n− 2)r′(||x||2)

}

> EF

{

(n− 2)2
r2(||x||2)
||x||2

}

= EF

{

||g(x)||2
}

.

3. Matrix data

Suppose the data take the form of an n × p matrix X , plus auxiliary random
variables u = (u1, . . . , up)

T , when present. Let Θ = EF (X) denote the n ×
p matrix of means, where F denotes the joint distribution of X and u. The
objective is to estimate Θ under the p× p matrix quadratic loss function (1.3).
Let x(j) denote the jth column of X .

Suppose that for each column j = 1, . . . , p, there is a shrinkage function
g(j) = g(j)(x(j), uj). A natural estimator is the “diagonal shrinkage estimator”,
defined by applying the vector shrinkage estimator separately to each column
of X . That is, define Θ̂a = Θ̂a(X) in terms of its columns θ̂a,(j) by

θ̂a,(j) = θ̂a(x(j), uj) (3.1)

using (2.1). Note that the shrinkage applied to each column does not depend on
the data in other columns. We use the term “diagonal” because in the setting
(2.2) the estimator can also be written in matrix form using a diagonal matrix,

Θ̂a = XD, D = diag(dj), dj = 1− aσ2(n− 2)/||x(j)||2, j = 1, . . . , p.

Given two estimators Θ̂(1) and Θ̂(2) depending on X , say that Θ̂(1) strictly dom-
inates Θ̂(2) if Rmatrix(Θ̂

(1),Θ) < Rmatrix(Θ̂
(2),Θ) for all Θ, where “<” means
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that the difference between the right- and left-hand sides is a positive-definite
matrix. The following theorem is the main result of this paper.

Theorem 2. Let X(n × p) be a random matrix and u = (u1, . . . , up)
T be a

vector of auxiliary random variables such that EF (X) = Θ under a probability
model F depending on Θ, and the data {x(j), uj} are independent for different
j. Suppose there exist shrinkage functions g(j) = g(j)(x(j), uj) such that the
cross-product inequality (2.4) holds for each j = 1, . . . , p. Then the shrinkage
estimator Θ̂a in (3.1) dominates the simple estimator Θ̂0 = X under the matrix
loss function (1.3) provided the tuning parameter a satisfies 0 < a < 2/p.

Proof. The proof makes use of the following inequality, where α is a p×1 vector
and G is an n× p matrix with columns g(j), j = 1, . . . , p,

p
∑

j,k=1

αjαkg
T
(j)g(k) ≤

p
∑

j,k=1

|αj | |αk| ||gj || ||g(k)||

=







p
∑

j=1

|αj | ||g(j)||







2

≤ p

p
∑

j=1

α2
j ||g(j)||2.

(3.2)

The two inequalities follow from two versions of the Cauchy-Schwarz inequality.
To show Θ̂a dominates Θ̂0 = X for a particular choice of a, we need to show

that
Rmatrix(Θ̂a,Θ) < Rmatrix(Θ̂0,Θ) for all Θ.

Equivalently we need to show that

α
TRα < nαT Inα = n for all Θ, (3.3)

where R = Rmatrix(Θ̂a,Θ) and α is an arbitrary standardized p-dimensional
vector, αT

α = 1.
The left-hand side of (3.3) can be written as

p
∑

j,k=1

αjαkEF

{

(

θ̂a,(j) − θ(j)

)T (

θ̂a,(k) − θ(k)

)

}

(3.4)

=

p
∑

j,k=1

αjαkEF

[

{(

x(j) − θ(j)

)

− ag(j)

}T {(

x(k) − θ(k)

)

− ag(k)

}

]

(3.5)

=

p
∑

j=1

α2
j

[

EF

{

(

x(j)−θ(j)

)T (

x(j)−θ(j)

)

}

− 2aδj

]

+ a2
p

∑

j,k=1

αjαkEF

(

gT
(j)g(k)

)

(3.6)

≤
p

∑

j=1

α2
j

[

EF

{

(

x(j) − θ(j)

)T (

x(j) − θ(j)

)

}

− 2aδj + a2pγj

]

(3.7)
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≤
p

∑

j=1

α2
j

[

EF

{

(

x(j) − θ(j)

)T (

x(j) − θ(j)

)

}

− 2aγj + a2pγj

]

(3.8)

< α
TR0α = n, (3.9)

for 0 < a < 2/p, where δj = EF {(x(j) − θ(j))
Tg(j)} and γj = EF (g

T
(j)g(j)), so

δj ≥ γj > 0. In going from (3.5) to (3.6) notice that many of the off-diagonal
terms vanish because the different columns are independent and EF (x(j) −
θ(j)) = 0. Equation (3.7) follows from (3.6) by the Cauchy-Schwarz based in-
equality (3.2). Equation (3.9) follows from (3.8) by simple properties of quadratic
functions.

Comments

(a) The allowable interval for a decreases with p. This property is related to
the result that for a matrix loss function, it is harder to dominate the
maximum likelihood estimator than for a scalar loss function.

(b) For the James-Stein case, the p-dimensional result is less powerful than the

one-dimensional result. In one dimension a = 1 is optimal; θ̂1 dominates
θ̂a for all other choices of a. In contrast, if p > 1 there is no single choice
of a for Θ̂a which dominates all other choices.

(c) Further, at least for the James-Stein case, the interval (0, 2/p) is the best
possible interval for a. If a < 0 or a > 2/p, it is possible to find values of
Θ such that Θ̂a does not dominate Θ̂0.
Here is a simple construction in the case of known variance σ2 = 1. Recall
xij ∼ N(θij , 1) independently for i = 1, . . . , n, j = 1, . . . , p. Let αj =

1/
√
p, j = 1, . . . , p. Let θ

∗ be a n-vector of unit size, θ∗T
θ
∗ = 1, and

suppose all of the columns of Θ are equal to the same multiple of θ
∗,

θ(j) = κθ∗. For large κ it is straightforward to show that

δj = γj = EF (g
T
(j)g(j)) = (m2/κ2) +O(1/κ4)

for all j, where m = n−2. Further (3.2) becomes an equality in this setting
so that the risk in (3.3) reduces to

α
TRα = n− 2a(m2/κ2) + a2(m2/κ2)p+O(1/κ4). (3.10)

Ignoring the remainder term, the quadratic function of a in (3.10) is less
than n for 0 < a < 2/p and exceeds n for a < 0 or a > 2/p. Hence for any
specific choice of a < 0 or a > 2/p, αTRα > n for sufficiently large κ.
The same argument works for the case of unknown σ2.

(d) In the vector case, if the shrinkage function g is re-scaled to cg for some
constant c > 0, then the cross-product inequality needs minor adjustment
and the allowable interval for the tuning parameter a changes from (0, 2)
to (0, 2/c). The scaling convention for the cross-product inequality chosen
in this paper has been made to make the treatment of different columns
as consistent as possible in the extension to the matrix case.
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(e) Efron and Morris (1972) proposed the “matrix” James-Stein estimator

θ̂
MJS

= X{Ip − (n− p− 1)S−1}, S = XTX,

and investigated its properties under the scalar loss function (1.2). How-
ever, its properties under the matrix loss function (1.3) are unknown.

4. Discussion

For the classic vector James-Stein estimator there are several ingredients in
the formulation of the problem and the estimator such as the following: (a)
normality of the data, (b) uncorrelated components, (c) the specific choice (2.2)
for the shrinkage function g, and (d) the assumption that the range of possible
values for θ spans all of Rn.

Each of these ingredients can be relaxed, either individually or in combina-
tion. Here are some examples.

(a) relax normality to (i) more general spherical distributions (Brandwein
and Strawderman, 1991; Cellier and Fourdrinier, 1995) or (ii) independent
components (Shinozaki, 1984);

(b) allow correlated normal or more general elliptic distributions (Fourdrinier,
Strawderman and Wells, 2003);

(c) use other shrinkage estimators such as (i) subspace shrinkage, or more gen-
erally (ii) Bayes or generalized Bayes estimators based on superharmonic
prior distributions (Stein, 1981);

(d) relax the range of possible values for θ from all of Rn to a specified cone
(Fourdrinier, Strawderman and Wells, 2006).

In each case the improved performance of the shrinkage estimator is justified
by a version of the cross-product inequality. Hence in each case there is an
immediate extension to the matrix case.

Another important direction in which the paper might be extended is to
allow dependence between the columns. For simplicity limit attention to the
normal case. Thus let X(n × p) follow an np-dimensional normal distribution
with mean E(X) = Θ, with independent rows and with common covariance
matrix Σ within each row.

(a) (Known Σ) In this case, it is straightforward to adapt the results of this
paper. Let B be a matrix square root of Σ−1, so that BBT = Σ−1.
Then Y = XB has independent columns. Hence the methodology of Sec-
tion 3 can be applied to Y to yield an estimator Φ̂a of Φ = ΘB. Back-
transforming yields an estimator Θ̂a = Φ̂aB

−1 which dominates Θ̂0 in the
matrix sense (1.3), provided 0 < a < 2.

(b) (Unknown Σ) When Σ needs to be estimated by an auxiliary random
matrix, it is an open question whether or not there exist any shrinkage
estimators which can be guaranteed to improve on the simple estimator
Θ̂0. Simply replacing Σ by an estimate in (a) seems to lead to intractable
calculations.
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(c) (Choice of basis) Even when Σ is known there is an interesting side issue.
The matrix B in (a) is defined only up to a multiplication on the left by
a p× p orthogonal matrix, with each choice defining a different estimator.
Thus the methodology of Section 3 defines a whole family of estimators,
each with the same statistical properties. It is not clear whether it might
be possible to combine them in some way to yield a superior estimator.
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