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1. Introduction

The single index model is an important generalization of the multiple linear re-
gression model with an unknown link function. It has been widely studied and
used to explore the complicated relation between the response and covariates
of interest (Horowitz, 2009), and may reflect the interaction within covariates.
To further effectively combine the interpretability of the multiple linear model
and the flexibility of the single index model, their hybrid, partially linear single
model (PLSIM), has been studied and applied for various complex data gen-
erated from biological and economic studies in the literature (Xia and Härdle,
2006; Yu and Ruppert, 2002). To the best of our knowledge, the first remarkable
work on PLSIM was done by Carroll et al. (1997), who proposed a backfitting
algorithm to estimate parameters of interest in a more general case; i.e., gener-
alized PLSIM. Yu and Ruppert (2002) argued that the estimators proposed by
Carroll et al. (1997) may be unstable, and suggested the penalized spline estima-
tion procedure. Xia and Härdle (2006) applied the minimum average variance
estimation (MAVE, Xia et al., 2002) to PLSIM and developed an effective al-
gorithm. More recently, Wang et al. (2010) studied estimation in PLSIM with
the additional assumptions imposed on model structure. Liang et al. (2010) pro-
posed a profile least squares (PrLS) estimation procedure. However, when these
methods are applied to deal with the case with diverging number of covariates,
one may encounter some challenges. For example, MAVE may meet the sparse-
ness problem as noted by Cui et al. (2011), and the PrLS estimation procedure
is not easy to implement in high-dimensional settings because this method needs
to minimize a high-dimensional nonlinear objective function. In this paper, we
propose a method for estimation and variable selection in PLSIM when the di-
mensions of the covariates diverge. We integrate dimension reduction principle
with a testing based variable selection approach.

There has been much work on the penalty based variable selection meth-
ods for semiparametric models with a diverging number of covariates. For ex-
ample, Xie and Huang (2009) and Ni et al. (2009) studied variable selection
for partially linear models (PLM), a special case of PLSIM, and established
the selection consistency and the asymptotic normality for their estimators.
They used respectively polynomial splines and smoothing splines to approxi-
mate the nonparametric function. Ravikumar et al. (2009) investigated high-
dimensional nonparametric sparse additive models, developed a new class of
algorithms for estimation and discussed the asymptotic properties of their es-
timators. Meier et al. (2009), Huang et al. (2010), and Li et al. (2012) studied
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variable selection for high-dimensional nonparametric sparse additive models.
Wang and Zhu (2011) derived almost necessary and sufficient conditions for
the estimation consistency of parameter estimators for single-index models in
“large p, small n” paradigms. See Fan and Li (2006) for a review on variable
selection for high-dimensional data. Only Liang et al. (2010) carried out variable
selection in the context of PLSIM using the smoothly clipped absolute deviation
penalty (SCAD, Fan and Li, 2001) to simultaneously select significant covariates
and estimate the corresponding parameters of interest. However, this method is
limited to the case with the fixed dimension of covariates.

As an effective way to deal with the problem of “curse of dimensionality”,
dimension reduction techniques overcome this problem through identifying the
subspace spanned by a few convex combinations of covariates, which can cap-
ture full information between response and covariates. This subspace is called
central dimension reduction space (CS, Cook, 1998). The focus is therefore on
the convex combinations, rather than the original covariate vector. If the con-
vex combinations are all forms of mean regression functions, this subspace is
called central mean subspace (Cook, 1998). For instance, the multiple linear
model has only one convex combination of covariates to affect response. A rich
list of literature includes Li (1991) for the sliced inverse regression (SIR), Cook
and Weisberg (1991) for sliced average variance estimation (SAVE), Li (1992)
for principal Hessian directions, Li and Wang (2007) for directional regression
(DR), Wang and Xia (2008) for sliced regression, Zhu, Wang, Zhu and Ferré
(2010) for discretization-expectation estimation, and Zhu, Zhu and Feng (2010)
for simple cumulative slicing estimation (CUME). There has also been interest in
investigating dimension reduction with a diverging number of covariates. As the
first attempt in this direction, Zhu et al. (2006) revisited SIR, whereas Zhu and
Zhu (2009b) suggested a weighted partial least squares method to cope with the
highly correlated covariates in semiparametric regressions. It was known that
these dimension reduction methods are usually unable to identify significant co-
variates that sometimes are of most interest, because these methods can identify
only the central subspace or central mean subspace for general cases with more
than one index. More recently, efforts have been made to incorporate dimension
reduction into variable selection procedure. Important results of these efforts
are the least squares approach for general multi-index models by Wu and Li
(2011) with the SCAD penalty, the least squares formulation by Yin and Cook
(2002), and coordinate-independent sparse estimation (CISE) by Chen et al.
(2010), in which the authors introduced a coordinate-independent penalty to a
least squares objective function formulated by Li (2007). The CISE is shown to
produce sparse solution with the oracle property.

In this paper, we first formulate the PLSIM in a dimension reduction frame-
work so that we can identify the direction of the nonzero coefficients. We then
invoke the sufficient dimension reduction principle and incorporate a coordinate-
independent penalty (Chen et al., 2010) to achieve a sparse dimension reduction.
In theory, we justify that our method is capable to correctly identify significant
covariates with probability approaching one. The selection helps us further de-
rive asymptotically normally distributed estimators of the nonzero coefficients.



2238 J. Zhang et al.

There is an interesting feature of the method that is of independent importance
in dimension reduction. Note that in this model, there are two corresponding
parameter vectors in the linear and single-index parts. When we formulate this
model as a bi-index model in a dimension reduction framework that will be seen
below, all existing dimension reduction approaches are to identify a CS (Cook,
1998) spanned by these two vectors. In other words, any basis vector in this
space is a linear combination of them, and then in general, these two parameter
vectors themselves cannot be identified. However, interestingly, we find that the
partially linear single-index model has a particular dimension reduction frame-
work. With it, we can identify the two parameter vectors of interest using only
one basis vector in the CS rather than identifying the entire space. This is very
different from all existing dimension reduction methods in the literature because
for bi-index models we usually have to determine two basis vectors to identify the
CS. This identification plays a key role in our procedure for variable selection.

We conduct Monte Carlo simulation experiments to examine the performance
of the proposed procedures with moderate sample sizes, and compare the per-
formance of the proposed methods based on two popular dimension reduction
procedures: SIR and CUME. Our simulation results advocate our theoretical
findings. The paper is organized as follows. In Section 2, we present the models
and the basic framework. In Section 3, we describe the rationale of the proposed
method, and present the asymptotic results including the selection and estima-
tion consistency and the asymptotic distributions of the estimators. Simulation
studies are reported in Section 4. In Section 5, we illustrate our proposed method
through a real data set. All the technical proofs of the asymptotic results are
postponed to the Appendix.

2. Models and dimension reduction framework

Let Y be the response variable and (Xτ ,Zτ )τ be the vector of covariates in
Rp ×Rq whose relationship with Y following PLSIM can be described as

Y = Xτβ0 + g(Zτθ0) + ε, (2.1)

where (β0, θ0) is an unknown vector in Rp × Rq equipped with the Euclidean
norm ‖ · ‖2, ε is the error with mean zero and finite variance, and g(·) is an
unknown univariate link function. For the sake of identifiability, we assume,
without loss of generality, that θ0 is unit and its first component is positive, i.e.,
the parameter space of θ0 is Θ =

{
θ = (θ1, θ2, . . . , θq)

τ , ‖θ‖2 = 1, θ1 > 0, θ ∈
Rq
}
. PLSIMs contain two important special cases. When q = 1, model (2.1)

reduces to a partially linear model (PLM), for which there is much work in the
literature, for example, Chen (1988); Engle et al. (1986); Heckman (1986), and
Speckman (1988). Härdle et al. (2000) gave a comprehensive review for PLM.
When β0 = 0, model (2.1) reduces to the single-index model. Ichimura (1993)
proposed a semiparametric least squares estimation and Härdle et al. (1993)
investigated the asymptotic normality of a kernel smoother based estimation.
Naik and Tsai (2001) investigated the model selection. Wang and Yang (2009)
proposed a regression spline based estimation method.
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Write T = (Xτ ,Zτ )τ ∈ R
pn+qn . The dimensions of both β0 and θ0, say pn

and qn respectively, may diverge with the sample size n. Note that model (2.1)
can be broadly formulated as a sufficient dimension reduction (SDR) model
(Zhu and Zhu, 2009a)

Y⊥⊥T|SτT, (2.2)

with

S =

(
β0 0pn×1

0qn×1 θ0

)
,

where ⊥⊥ indicates independence. That is, conditional on SτT, Y and T are
independent. β0 and θ0 can be estimated with the help of SDR principle, whose
major purpose is to seek a minimum CS subspace spanned by the columns of S.
So a SDR method does not provide estimators of β0 and θ0, instead two basis
vectors in the subspace in general which cannot distinguish the covariates of the
respective nonparametric and parametric components. Nevertheless, the two
directions β0/‖β0‖2 and θ0 in our setting may be identifiable since the central
subspace is two-dimensional and generated by S. More specifically speaking, any
vector in the central subspace is of form (c1β

τ
0 , c2θ

τ
0)

τ . That means that the sub-
vector consisting of the first pn components is related only to β0, while the sub-
vector consisting of the rest qn components is related only to θ0. Consequently,
when we use a SDR method to identify the central subspace, we can use such a
vector with some nonzero components in these two parts to respectively identify
β0/‖β0‖2 and θ0. Moreover, such a subspace uniquely exists and contains all
regression information of Y |T under the mild conditions (Cook, 1996a,b). Hence
we proceed identifying β0/‖β0‖2 and θ0 as follows.

As shown by Li (2007), most of the commonly used SDR methods can be
formulated as the following eigen-decomposition problem:

Σ−1/2MΣ−1/2b = λb,

where Σ is the covariance matrix of T, λ is the eigenvalue and b is the associ-
ated eigenvector, M is a nonnegative definite method-specific symmetric kernel
matrix. See Li (2007) for details on choices of M for various SDR methods.
Let λmax and u0 be the largest eigenvalue and the associated eigenvector of
Σ−1/2MΣ−1/2. Note that if λmax is nonzero, then v0 := Σ−1/2u0 ∈ span(S)
under some method-specific conditions on the marginal distribution of T such
as the linearity condition (Li, 1991). This statement implies that there exists a
vector ϕ = (ϕ1, ϕ2)

τ with ϕ1 and ϕ2 being nonzero such that v0 = Sϕ; that
is, the first pn elements of v0 is proportional to β0, and the last qn elements of
v0 to θ0. Once v0 is obtained, the estimates of the directions β0/‖β0‖2 and θ0

are obtained. In Appendix A.3, we discuss an identifiability assumption under
which ϕ1 and ϕ2 can be nonzero. Hence, the first eigenvector obtained by a
dimension reduction method can identify the two directions: β0/‖β0‖2 and θ0.
Furthermore, selecting significant components of X is equivalent to identifying
nonzero element of β0/‖β0‖2. Thus, we achieve variable selection procedure, and
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obtain estimated value of β0 by estimating the scalar ‖β0‖2 and the direction
β0/‖β0‖2.

Note that all the SDR methods aforementioned involve the whole original
covariates T. As a consequence, if pn → ∞ and qn → ∞, the estimated linear
combination vτ0T may be difficult to interpret and the significant covariates may
be hard to identify because all insignificant covariates are also included in the
estimated linear combination. To overcome this difficulty, we use the idea of
CISE to penalize v0 for obtaining a sparse estimator of v0 as follows.

Let {(Xi,Zi, Yi); 1 ≤ i ≤ n} be a sequence of independent and identically
distributed (i.i.d.) samples from model (2.1). Denote by T̄ and Σn the sample
mean and covariance matrix based on (T1, . . . ,Tn), which is defined similar to
T. Let ũn be the following minimizer; that is,

ũn = arg min
u∈R(pn+qn)

Qn(u;Gn,Σn) subject to uτu = 1, (2.3)

where Gn = Σ
−1/2
n MnΣ

−1/2
n and Qn(u;Gn,Σn) = −uτGnu + ρn(Σ

−1/2
n u)

with ρn(Σ
−1/2
n u) =

∑pn+qn
r=1 αr|[Σ−1/2

n u](r)|. Any dimension reduction based
kernel matrix can be applied such as SIR or SAVE. In this paper, we choose
Mn = 1

n

∑n
i=1 mn(Yi)m

τ
n(Yi), the sample version of the CUME based kernel

matrix (Zhu, Zhu and Feng, 2010), where mn(Yi) =
1
n

∑n
j=1(Tj−T̄)I(Yj ≤ Yi),

[Σ
−1/2
n u](r) is the rth element of Σ

−1/2
n u, and {αr ≥ 0, r = 1, . . . , pn + qn} are

the penalty parameters. Then, the estimator of v0 is defined as ṽn = Σ
−1/2
n ũn.

We choose matrix Mn because it is easy to implement and avoids selecting
other turning parameters in estimation such as the number of slices in SIR,
SAVE and DR. A theoretical justification of CUME has been provided by Zhu,
Zhu and Feng (2010) even when the dimensions pn and qn diverge with the
sample size.

3. Estimation and main results

3.1. Estimation Procedure for β0 and θ0

We formulate the estimation procedure in following steps.

Step 1. Apply the CUME based kernel matrix for the CISE variable selection
procedure (2.3) to obtain an estimator ṽn = (ṽτn,I , ṽ

τ
n,II)

τ , where ṽn,I =
(ṽn,1, . . . , ṽn,pn)

τ and ṽn,II = (ṽn,pn+1, . . . , ṽn,pn+qn)
τ .

Step 2. Check the first element of ṽn,II , and define the estimator of θ0 as θ̂0 =
sign(ṽn,pn+1)ṽn,II/‖ṽn,II‖2 to guarantee positiveness of the first element

of θ̂0.
Step 3. Let Γ̂i = Xτ

i ṽn,I , Λ̂i = Zτ
i θ̂0. We then use the “synthesis” data

{(Γ̂i, Λ̂i, Yi); 1 ≤ i ≤ n} to define an estimator κ̂ of the parameter κ in
the following partially linear model:

Yi ≈ κΓ̂i + g(Λ̂i) + εi.

Step 4. Define an estimator of β0 as β̂0 = κ̂ṽn,I .
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In Step 1, one may consider other SDR methods, such as SIR, SAVE or DR.
See Zhu, Zhu and Feng (2010) for a discussion on advantages and disadvantages
of these SDR methods. In Step 3, one can estimate the parameter κ with the
commonly used partially linear model techniques such as the kernel method
(Liang et al., 1999, 2004; Speckman, 1988) or spline method (Chen, 1988; Cuz-
ick, 1992; Wahba, 1984). It is remarkable that the proposed procedure does not
need any iteration, neither initial value. In contrast, spline method (Yu and
Ruppert, 2002) and MAVE (Xia and Härdle, 2006) need to delicately choose
initial values or iteration. Thus the proposed method is particularly computa-
tionally efficient compared to its competitors. The gain is substantial when pn
and qn diverge. The proposed procedure still has appealing asymptotic proper-
ties (see Sections 3.2-3.4 for details). Moreover, our numerical studies suggest
the good performance of our method.

It is noteworthy that if we study only estimation for model (2.1), we can still
use the dimension reduction principle to obtain the estimator ṽn = (ṽτn,I , ṽ

τ
n,II)

τ ,
Steps 2 and 3 to obtain the estimators of β0 and θ0, which are consistent and
asymptotically normal under mild conditions. This estimation method is of an
independent interest in dimension reduction area, and provides an alternative
way different from MAVE (Xia and Härdle, 2006) or profile likelihood based
(Liang et al., 2010) methods, which need iteration for implementation.

Without loss of generality, denote β0 = (βτ
10,β

τ
20)

τ , θ0 = (θτ
10, θ

τ
20)

τ , where
β10 and θ10 are p0 and q0 nonzero components of β0 and θ0, respectively, and
β20 and θ20 are two (pn − p0)- and (qn − q0) × 1-zero vectors. Assume that p0
and q0 are fixed. Accordingly, X0 and Z0 are the first p0 covariates of X and
the first q0 covariates of Z. Furthermore, by a simple permutation, let the first
(p0 + q0) elements of the eigenvector v0 correspond to the covariates (Xτ

0 ,Z
τ
0)

τ ,
denoted as v(0). Thus, v0 = (vτ(0), v

τ
(1))

τ , where v(0) = (vτ(0),I , v
τ
(0),II)

τ with v(0),I
and v(0),II corresponding to X0 and Z0, while v(1) is a (pn+qn−p0−q0)×1 zero
vector. Let T0 = (Xτ

0 ,Z
τ
0)

τ , Xτ
0 = (X1, . . . , Xp0), Z

τ
0 = (Z1, . . . , Zq0), Σ(0) =

Cov(T0). Suppose Ẏ is an independent copy of Y . Write m(0)(y) = E
{
T01(Y ≤

y)
}

and M(0) = Em(0)(Ẏ )mτ
(0)(Ẏ ). Write G(0) = Σ

−1/2
(0) M(0)Σ

−1/2
(0) and let

λ1, λ2, . . . , λp0+q0 be its eigenvalues ordered from the largest to the smallest, and

u
(1)
(0), u

(2)
(0), . . . u

(p0+q0)
(0) be the corresponding eigenvectors. Theorem 1 of Zhu, Zhu

and Feng (2010) shows that G(0) has only two nonzero eigenvalues λ1 > λ2 > 0.

That means λm ≡ 0 and u
(m)
(0) are the eigenvectors corresponding to the 0

eigenvalue for m ≥ 3.

With slight notation abuse, we redefine ṽn in the Algorithm as ṽn = (ṽτ
n(0̃)

,

ṽτ
n(1̃)

)τ , where ṽn(0̃) = (ṽτ
n(0̃),I

, ṽτ
n(0̃),II

)τ , ṽn(0̃),I and ṽn(0̃),II are the nonzero

components of ṽn,I and ṽn,II respectively. Let XI , ZI be the subset of the X,
Z with respect to ṽn(0̃),I , ṽn(0̃),II , and p̃0 and q̃0 be the lengths of ṽn(0̃),I and
ṽn(0̃),II respectively. So p̃0 and q̃0 are estimates of p and q instead of constants.

Analogously, define TI = (Xτ
I ,Z

τ
I )

τ , TiI = (Xτ
iI ,Z

τ
iI)

τ for i = 1, . . . , n.

In what follows, we write A⊗2 = AAT for any matrix or vector A. λmin(A)
and λmax(A) stand for the smallest and largest eigenvalues of A for any square
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matrix A. For any integer s, 0s and Is denote the zero and identity matrices of
size s.

3.2. Asymptotic property of ṽn

We first present the asymptotic results for the eigenvector ṽn.

Theorem 3.1. Let dn = max{pn, qn}. Assume that Conditions (A1) and (A2)
in the Appendix are satisfied, and furthermore

√
n max

r≤p0+q0
{αr} → 0 and d3n/n→

0, then the estimator ṽn satisfies

‖ṽn − v0‖2 = OP (
√
d2n/n).

Remark 1. This theorem indicates that by properly choosing the penalty pa-
rameters {αr}pn+qn

r=1 , the estimator is still consistent when pn and qn diverge at
a rate of o(n1/3), which is the same as that in the context of variable selection
for parametric (Fan and Peng, 2004) and semiparametric regressions (Zhu and
Zhu, 2009a). Furthermore, we can observe that if pn and qn are fixed, we obtain
a root-n estimator ṽn. This conclusion coincides with Theorem 1 of Chen et al.
(2010).

To investigate the oracle property of the estimator ṽn, we define the follow-
ing quantities. By replacing Ti with TiI , we define ΣnI , T̄I , GnI , and then
QnI(u;GnI ,ΣnI), ρnI , MnI , mnI(Yi) in the same way as the corresponding

quantities for (2.3). Write v̂In = Σ
−1/2
nI ûIn, where û

I
n is the following minimizer;

i.e.,

ûIn = arg min
u∈R(p̃0+q̃0)×1

QnI(u;GnI ,ΣnI) subject to uτu = 1.

In the following theorem, we state the oracle property of ṽn. Let An = {j :
ṽn,j 6= 0} and A0 = {1, 2, . . . , p0 + q0}.
Theorem 3.2. Under the conditions of Theorem 3.1, if

√
n max

r>p0+q0
{αr}/dn →

∞, then the estimator ṽn also satisfies

(i) P (An = A0) → 1.
(ii) ‖ṽn(0̃) − v̂In‖22 = oP (1/n).

Remark 2. Theorem 3.2(i) indicates that the estimator ṽn can consistently se-
lect relevant covariates. That is, with probability approaching 1, the estimators
of all zero elements of v0 go to zero. Theorem 3.2(ii) is different from Theorem
2(ii) in Chen et al. (2010), in which the authors established the oracle property
of the CISE procedure under the assumptions that the number of relevant co-
variates, q, is an unknown constant, while our p̃0 and q̃0 are both estimators
of p0 and q0. Accordingly, ṽn(0̃) and v̂In are two estimators on the basis of the
variable selection procedure. As a result, we can further use ṽn(0̃) for estimating
β0 and θ0, as required in Steps 2 and 3 in Section 3.1.



Partially linear single-index models 2243

We further consider the asymptotic distribution of ṽn(0̃), which is gener-
ally ignored in the literature of dimension reduction. Because Σ(0) is positive
definite, it has an orthogonal decomposition such as Σ(0) = P(0)Λ0P

τ
0 , where

Λ0 = diag
(
λ1(Σ(0)), . . . , λp0+q0(Σ(0))

)
consists of the eigenvalues of Σ(0), sat-

isfying λ1(Σ(0)) ≥ λ2(Σ(0)) ≥ · · · ≥ λp0+q0(Σ(0)) > 0, and the columns of
P(0) are the eigenvectors corresponding to Λ(0). Let B be a square matrix of

size p0 + q0, whose (s, t)th element is equal to −1/2λ
−3/2
s (Σ(0)) if s = t, and

λ−1/2
s (Σ(0))−λ

−1/2
t (Σ(0))

λs(Σ(0))−λt(Σ(0))
otherwise. Write

ℵ
Σ

−1/2

(0)

(T0) = P(0)

(
B⊙

[
Pτ

(0)

{(
T0 − ET0

)⊗2 − ET0

(
T0 − ET0

)τ}
P(0)

])
Pτ

(0),

where ⊙ is the Hadamard product operator. Furthermore, write

ℵM(0)
(T0, Y ) = 2

{
E
[
T01(Y ≤ Ẏ )mτ

(0)(Y )
∣∣ (T0, Y )

]
+ E

[
m(0)(Ẏ )Tτ

0

1(Y ≤ Ẏ )
∣∣ (T0, Y )

]
+m(0)(Y )mτ

(0)(Y )− 3M(0)

}
.

Φ0 = Σ
−1/2
(0)

{
Σ

1/2
(0) ℵΣ

−1/2

(0)

(T0)M(0) +M(0)ℵΣ
−1/2

(0)

(T0)Σ
1/2
(0)

+ ℵM(0)
(T0, Y )

}
Σ

−1/2
(0) .

We now present the asymptotic distribution of ṽn(0̃).

Theorem 3.3. Under the conditions of Theorem 3.2, the estimator ṽn(0̃) is
asymptotically normally distributed with covariance matrix Ω0, where

Ω0 = Var

(
Σ

−1/2
(0)

p0+q0∑

m=2

u
(m)
0 u

(m)τ
0 Φ0u

(m)
0

λ1 − λmI(m ≤ 2)
+ ℵ

Σ
−1/2

(0)

(T0)Σ
1/2
(0) v(0)

)
(3.1)

with I(D) being the indicator function of the set D.

3.3. Asymptotic distribution of the estimator of θ10

Write

π̃1 = (0p̃0
, Iq̃0),π1 = (0p0 , Iq0) and Jθ10 =

1

‖π1v(0)‖2
(
Iq0 − θ10θ

τ
10

)
.

Note that ṽn(0̃) = (ṽτ
n(0̃),I

, ṽτ
n(0̃),II

)τ , and ṽn(0̃),II is an estimator of v(0),II . Recall

that the first element of θ10 is assumed to be positive. Then the estimator of
θ10 can be defined as

θ̂10 = sign(ṽn(0̃),p̃0+1)
ṽn(0̃),II

‖ṽn(0̃),II‖2
= sign(ṽn(0̃),p̃0+1)

π̃1ṽn(0̃)

‖π̃1ṽn(0̃)‖2
.

Theorem 3.4. Under the conditions of Theorem 3.2, the estimator θ̂10 is
asymptotically normally distributed with mean θ10 and variance Jθ10π1Ω0π

τ
1Jθ10 .
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3.4. Asymptotic distributions of the estimators of κ and β10

We first state the estimation procedure for κ and its asymptotic distribution.
Write rY (t; ς) = E(Y |ςτZI = t). rXI (t; ς) is a p̃0-vector whose elements are
rXl

(t; ς), where rXl
(t; ς) = E(Xl|ςτZI = t) for l ∈ {j : ṽn(0̃),j 6= 0, 1 ≤ j ≤ p̃0},

and the local linear estimators of these elements are respectively denoted as
r̂Y (t; ς) = Ê(Y |ςτZI = t), r̂Xl

(t; ς) = Ê(Xl|ςτZI = t), r̂XI (t; ς) is a p̃0-vector
whose elements are r̂Xl

(t; ς), that is,

r̂Y (t; ς) =

∑n
i=1 ψi(t, ς)Yi∑n
i=1 ψi(t, ς)

, r̂Xl
(t; ς) =

∑n
i=1 ψi(t, ς)Xil∑n

i=1 ψi(t, ς)
,

for l ∈ {j : ṽn(0̃),j 6= 0, 1 ≤ j ≤ p̃0},

where ψi(t, ς) = Kh(ς
τZiI − t)

[
Vn,2(t, ς)− (ςτZiI − t)Vn,1(t, ς)

]
for i = 1, . . . , n,

Vn,j(t, ς) =
∑n

i=1Kh(ς
τZiI − t)(ςτZiI − t)j for j = 1, 2, Kh(·) = h−1K(·/h)

with the kernel function K(·) satisfying the conditions in the Appendix, and h
being a bandwidth.

In the following, denote X̆0 = X0 − E(X0|θτ
10Z0), Z̆0 = Z0 − E(Z0|θτ

10Z0),

and Σ
X̆0

= Cov
(
X̆0

)
. Furthermore, let π2 = (Ip0 ,0q0), π̃2 = (Ip̃0

,0q̃0), and

W =

(
σ2
εβ

τ
10ΣX̆0

β10, W12

Wτ
12, βτ

10ΣX̆0
π2Ωπτ

2ΣX̆0
β10

)
(3.2)

with

W12 = βτ
10E

{
εX̆0

( p0+q0∑

m=2

u
(m)τ
0 u

(m)τ
0 Φu

(m)
0

λ1 − λmI(m ≤ 2)
Σ

−1/2
(0)

+ vτ(0)Σ
1/2
(0) ℵΣ

−1/2

(0)

(T0)

)}
πτ

2ΣX̆0
β10.

The estimator κ̂ can be obtained through the local linear smoothing in Step 3;
that is,

κ̂ =
1
n

∑n
i=1

{
Yi− r̂Y (θ̂

τ

10ZiI ; θ̂10)
}{

XiI − r̂XI (θ̂
τ

10ZiI ; θ̂10)
}τ

(π̃2ṽn(0̃))

1
n

∑n
i=1

[{
XiI − r̂XI (θ̂

τ

10ZiI ; θ̂10)
}τ

(π̃2ṽn(0̃))
]2 . (3.3)

Theorem 3.5. In addition to the conditions of Theorem 3.2, assume that Con-
ditions (A3)-(A5) are satisfied. The estimator κ̂ is asymptotically normal with
variance

σ2
κ =

κ2

(βτ
10ΣX̆0

β10)
2
(1,−κ)W(1,−κ)τ . (3.4)

Finally we define an estimator of β10 as β̂10 = κ̂× (ṽn(0̃),I) = κ̂× (π̃2ṽn(0̃)),
and present its asymptotic distribution in the following theorem.
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Theorem 3.6. Under the conditions of Theorem 3.5, the estimator β̂10 is
asymptotically normal with covariance matrix:

Σβ10 = Var

{
βτ
10X̆0εβ10

βτ
10ΣX̆0

β10

− κ

(
β10β

τ
10ΣX̆0

βτ
10ΣX̆0

β10

− Ip0

)
π2

(
Σ

−1/2
(0)

p0+q0∑

m=2

u
(m)
0 u

(m)τ
0 Φ0u

(m)
0

λ1 − λmI(m ≤ 2)
+ ℵ

Σ
−1/2

(0)

(T0)Σ
1/2
(0) v(0)

)}
. (3.5)

4. Simulation studies

In this section, we report simulation results to evaluate the performance of
the proposed procedure. Two dimension reduction methods, SIR and CUME
have been adopted for a comparison. The number of slices for the SIR method
was chosen as 5. The experiments were repeated 500 times, each consisting of
n = 150 samples from the following two models:

Y = Xτβ0 + exp (Zτθ0) + ε, (4.1)

Y = Xτβ0 + 3 sin (Zτθ0) + ε. (4.2)

The first model has a monotonic link function for the single-index part and
the second link function is of high frequency. The dimensions of X and Z are
(10, 10), (30, 20), (20, 30), (50, 30) and (30, 50), respectively. The following three
cases were considered:

• Case 1. (Xτ ,Zτ )τ follows normal distribution N(0(pn+qn)×1, Ipn+qn), and
ε follows N(0, 0.12);

• Case 2. (Xτ ,Zτ )τ follows normal distribution N(0(pn+qn)×1,Σ), where

Σ = (σij) with σij = 0.5|i−j|, and ε is the same as in Case 1;
• Case 3. (Xτ ,Zτ )τ are the same as in Case 2, while ε is generated from
N
(
0, 0.12× (|X1|+ |Z1|)

)
, correlated with (Xτ ,Zτ )τ . Here X1, Z1 are the

first elements of X and Z, respectively.

To estimate the parameter κ in Step 3, we used the local linear smoother as men-
tioned in Section 3.3 to obtain nonparametric estimators Ê(Y |Λ̂) and Ê(X |Λ̂)
with the Epanechnikov kernel function K(t) = 3/4(1− t2)I(|t| ≤ 1). For select-
ing bandwidth h, the cross-validation criterion was applied (Fan and Gijbels,
1996, page 149). Following Chen et al. (2010), let

αr = α0

∣∣∣[Σ−1/2
n ûn](r)

∣∣∣
−̟

,

where ûn = arg min
u∈R(pn+qn)

(−uτGnu) subject to uτu = 1, and Gn was defined

in (2.3). That is, ûn is the first eigenvector of Gn with respect to it largest

nonzero eigenvalue, and [Σ
−1/2
n ûn](r) is the r-th component of Σ

−1/2
n ûn. α0 and
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̟ are positive tuning parameters that were selected by minimizing the following
BIC-type criterion (Chen et al., 2010):

f(α0, ̟) = −ṽτn(α0,̟)Mnṽn(α0,̟) +
logn

n
(N(α0,̟) − 1), (4.3)

where ṽn(α0,̟) denotes the estimator of v0 through (2.3) for a given pair (α0, ̟),
N(α0,̟) stands for the number of the non-zero elements of ṽn(α0,̟), log n/n is
the BIC-type factor, and Mn is the sample version of either the CUME kernel
matrix defined in (2.3) or the SIR kernel matrix: Cov[E{T − E(T|Y)}] when
these two methods are applied. This minimization can be easily solved by a
two-dimensional grid search. To simplify this minimization, Chen et al. (2010)
fixed ̟ = 0.5 in their simulation. But our numerical experience suggests that
the data-driven strategy performs better with a slight increase of computational
burden.

To measure the selection and estimation accuracy, we define ωu,β0 , ωc,β0 and
ωo,β0 as the proportions of underfitted, correctly fitted and overfitted models. In
the case of overfitted, the labeled “1”, “2” and “≥ 3” are the proportions of mod-
els including 1, 2 and more than 2 insignificant covariates. Denote by Medseβ0

the median of the squared error ‖β̂0−β0‖22, “Cβ0” and “INβ0” the average num-
ber of the zero coefficients that were correctly set to be zero, and the average
number of the non-zero coefficients that were incorrectly set to be zero, respec-
tively. In the same way, define the quantities ωu,θ0 , ωc,θ0, ωo,θ0, Medseθ0 , “Cθ0”,
and “INθ0”. Tables 1-4 report the values of these quantities under various con-
figurations when the true parameters are chosen as β0 = (3, 1.5, 0.5, 0, . . . , 0)τ

and θ0 = (1/
√
2, 1/

√
2, 0, . . . , 0). Overall, the SIR and CUME based procedures

successfully distinguish significant and insignificant covariates in the three cases.
That is, the values of “Cβ0” and “INβ0” are respectively close to the true values
(pn − 3) and 0, and the values of “Cθ0” and “INθ0” close to the true values
(qn − 2) and 0. For the linear components of X, the proportion of which the
model is correctly fitted (column ωc,β0) is above 70% in all the three cases even
when the number of the covariates increases to 50. The average proportions of
which the model is correctly fitted for the SIR and CUME based methods are
99.23% and 99.52%, respectively. The proportions of which the model is un-
derfitted (column ωu,β0) and overfitted (columns under ωc,β0) are about 20%
and 10%, respectively. In the overfitted case, the proportion of models including
1 insignificant covariate dominates the ones including 2 or more insignificant
covariates. The latter is nearly 0% in most situations. This indicates that our
method most likely selects model that is very close to the true one. Compared
with the SIR-based procedure, the CUME-based procedure performs better re-
garding model complexity with slightly higher proportions of correctly selected
model in most situations. However, it also more often inclines to underfitting.
A similar but better pattern can be observed from the results for the single-
index components. For instance, the proportions of correctly fitted models are
all about 80%, and the values of ωu,θ0 , ωc,θ0, ωo,θ0 are smaller, larger, and smaller
than the corresponding values of ωu,β0 , ωc,β0, ωo,β0, respectively.
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Table 1

Simulating results for model (4.1) when β0 = (3, 1.5, 0.5, 0, . . . , 0)τ . The performance of β̂.
The true Cβ0

value is equal to (pn − 3)

ωo,β0
(%) No of zeros

(pn, qn) Method ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseβ0
Cβ0

INβ0

Case 1

(10, 10) SIR 13.00 77.20 9.80 0.40 0.00 0.1620 6.862 0.130
(10, 10) CUME 10.60 81.80 7.60 0.00 0.00 0.1617 6.906 0.106
(30, 20) SIR 15.80 70.40 13.80 0.00 0.00 0.2108 26.784 0.158
(30, 20) CUME 16.00 77.40 6.20 0.40 0.00 0.2110 26.870 0.160
(20, 30) SIR 10.80 77.40 11.80 0.00 0.00 0.2038 16.842 0.108
(20, 30) CUME 15.00 77.80 6.80 0.40 0.00 0.2084 16.888 0.150
(50, 30) SIR 22.80 66.40 10.40 0.40 0.00 0.2380 46.758 0.228
(50, 30) CUME 21.40 68.20 10.40 0.00 0.00 0.2356 46.814 0.214
(30, 50) SIR 22.80 70.00 7.20 0.00 0.00 0.2479 26.872 0.228
(30, 50) CUME 22.40 72.20 5.40 0.00 0.00 0.2511 26.888 0.224

Case 2

(10, 10) SIR 12.80 77.60 9.40 0.40 0.00 0.1719 6.866 0.126
(10, 10) CUME 20.40 70.80 8.60 0.20 0.00 0.1955 6.860 0.204
(30, 20) SIR 22.60 69.40 7.80 0.20 0.00 0.2330 26.840 0.226
(30, 20) CUME 26.40 71.40 2.20 0.00 0.00 0.2504 26.934 0.264
(20, 30) SIR 19.40 74.20 6.40 0.00 0.00 0.2241 16.884 0.194
(20, 30) CUME 24.80 71.00 4.20 0.00 0.00 0.2540 16.928 0.248
(50, 30) SIR 22.20 69.40 8.20 0.20 0.00 0.2444 46.840 0.222
(50, 30) CUME 26.20 71.40 2.40 0.00 0.00 0.2576 46.948 0.262
(30, 50) SIR 21.60 72.40 5.60 0.40 0.00 0.2260 26.884 0.216
(30, 50) CUME 27.60 70.00 2.40 0.00 0.00 0.2547 26.954 0.276

Case 3

(10, 10) SIR 17.40 73.80 8.20 0.60 0.00 0.1937 6.844 0.174
(10, 10) CUME 24.40 72.00 3.60 0.20 0.00 0.2125 6.938 0.244
(30, 20) SIR 19.40 69.60 10.80 0.20 0.00 0.2130 26.826 0.194
(30, 20) CUME 26.20 71.00 2.80 0.00 0.00 0.2340 26.938 0.262
(20, 30) SIR 17.00 74.60 8.20 0.20 0.00 0.2071 16.862 0.170
(20, 30) CUME 25.00 71.00 4.00 0.00 0.00 0.2411 16.922 0.250
(50, 30) SIR 17.60 69.80 12.20 0.20 0.20 0.2241 46.792 0.176
(50, 30) CUME 23.80 72.40 3.80 0.00 0.00 0.2359 46.912 0.238
(30, 50) SIR 18.40 72.60 8.80 0.20 0.00 0.2090 26.858 0.184
(30, 50) CUME 27.40 70.20 2.40 0.00 0.00 0.2604 26.936 0.274

It is worth mentioning that the smaller value of β0 increases the chance of
choosing underfitted model. This may be common in variable selection procedure
in that the smaller parameters are hard to detect and easily to be penalized to
zero. To confirm this observation, we increased the third element of β0 to 1.5 but
keep θ0 the same as before. We run additional simulations and report the results
for the linear components when (pn, qn) = (30, 50), (50, 30) in Tables 5 and 6,
which indicate that, for the linear components β0, the proportions of underfitted
models and overfitted models decrease, while the proportion of correctly fitted
models increases and the estimation accuracy of β0 also gets improved.

5. Real Data Analysis

Now we illustrate the proposed method by analyzing a real dataset from an
economic growth study. The data include 59 potential covariates that describe
economic, political, social, and geographical characteristics of the countries from
1960-1992. Sala-I-Martin (1997) analyzed the data using a linear regression
model and found that 22 out of the 59 variables appear to be “significant”. As
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Table 2

Simulating results for model (4.1) when β0 = (3, 1.5, 0.5, 0, . . . , 0)τ . The performance of θ̂.
The true Cθ0 value is equal to (qn − 2)

ωo,θ0 (%) No of zeros
(pn, qn) Method ωu,θ0 (%) ωc,θ0 (%) “1 (%)” “2” (%) “≥ 3”(%) Medseθ0 Cθ0 INθ0

Case 1

(10, 10) SIR 0.20 91.00 8.60 0.20 0.00 0.0276 7.910 0.002
(10, 10) CUME 0.00 91.00 8.80 0.20 0.00 0.0127 7.908 0.000
(30, 20) SIR 0.00 83.20 16.60 0.20 0.00 0.0149 17.830 0.000
(30, 20) CUME 0.20 89.00 10.60 0.20 0.00 0.0141 17.890 0.002
(20, 30) SIR 0.20 89.80 10.00 0.00 0.00 0.0296 27.900 0.002
(20, 30) CUME 0.00 83.20 16.60 0.20 0.00 0.0146 27.830 0.000
(50, 30) SIR 0.40 85.20 14.00 0.40 0.00 0.0169 27.852 0.004
(50, 30) CUME 0.60 87.20 12.00 0.20 0.00 0.0139 27.874 0.006
(30, 50) SIR 0.40 76.00 23.00 0.60 0.00 0.0153 47.758 0.004
(30, 50) CUME 0.20 83.40 16.00 0.40 0.00 0.0165 47.832 0.002

Case 2

(10, 10) SIR 0.00 93.80 5.60 0.60 0.00 0.0264 7.932 0.000
(10, 10) CUME 0.60 93.40 5.80 0.20 0.00 0.0233 7.936 0.006
(30, 20) SIR 0.00 91.40 8.40 0.00 0.00 0.0284 17.914 0.000
(30, 20) CUME 2.00 93.60 4.40 0.00 0.00 0.0339 17.956 0.020
(20, 30) SIR 0.20 90.20 9.60 0.00 0.00 0.0240 27.904 0.002
(20, 30) CUME 1.20 94.60 4.20 0.00 0.00 0.0404 27.958 0.012
(50, 30) SIR 0.20 90.40 9.40 0.00 0.00 0.0313 27.906 0.002
(50, 30) CUME 1.20 96.00 2.80 0.00 0.00 0.0307 27.972 0.012
(30, 50) SIR 0.40 86.40 13.20 0.00 0.00 0.0304 47.866 0.004
(30, 50) CUME 1.60 92.80 5.60 0.00 0.00 0.0359 47.944 0.016

Case 3

(10, 10) SIR 0.02 92.20 7.60 0.00 0.00 0.0298 7.924 0.002
(10, 10) CUME 1.80 93.40 4.80 0.00 0.00 0.0331 7.952 0.018
(30, 20) SIR 0.00 90.80 9.20 0.00 0.00 0.0250 17.908 0.000
(30, 20) CUME 1.60 94.00 4.40 0.00 0.00 0.0341 17.954 0.016
(20, 30) SIR 0.40 86.60 12.60 0.40 0.00 0.0304 27.864 0.004
(20, 30) CUME 0.40 95.40 4.20 0.00 0.00 0.0358 27.958 0.004
(50, 30) SIR 0.80 88.60 10.40 0.20 0.00 0.0297 27.892 0.008
(50, 30) CUME 1.60 93.00 5.20 0.20 0.00 0.0366 27.944 0.016
(30, 50) SIR 0.60 83.00 16.20 0.20 0.00 0.0338 47.834 0.006
(30, 50) CUME 1.60 93.60 4.60 0.20 0.00 0.0442 47.950 0.016

a consequence, he had to fit 30,856 regressions per variable or a total of nearly
2 million regressions, which poses a computational challenge. Another concern
is whether the linear regression is proper, since other investigators found some
nonlinear structure between the covariates and the response (economic growth
gamma). As an illustrative purpose, we used model (2.1) and the proposed
procedure to examine the relationship between the response variable and 17
continuous covariates, which are listed in Table 7. We first fitted the response
Y and each covariate with local linear smoothing and obtained a 95% point-
wise confidence band, and also fitted a linear regression. If the linear straight
line was encompassed in the confidence band, we classified that covariate as
a linear component, and a single index one otherwise. As a result, we sug-
gested “h60”, “abslatit”, “urb60”, “lforce60” as single-index components. We
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Table 3

Simulating results for model (4.2) when β0 = (3, 1.5, 0.5, 0, . . . , 0)τ . The performance of β̂.
The true Cβ0

value is equal to (pn − 3)

ωo,β0
(%) No of zeros

(pn, qn) Method ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseβ0
Cβ0

INβ0

Case 1

(10, 10) SIR 19.20 79.20 1.60 0.00 0.00 0.1947 6.960 0.192
(10, 10) CUME 10.40 85.80 3.80 0.00 0.00 0.1796 6.940 0.104
(30, 20) SIR 19.60 79.00 1.40 0.00 0.00 0.2478 26.920 0.196
(30, 20) CUME 14.60 79.00 6.40 0.00 0.00 0.2157 26.858 0.146
(20, 30) SIR 21.60 76.20 2.20 0.00 0.00 0.2368 16.936 0.216
(20, 30) CUME 23.20 75.60 1.20 0.00 0.00 0.2206 16.956 0.232
(50, 30) SIR 21.60 73.60 4.80 0.00 0.00 0.2605 46.840 0.216
(50, 30) CUME 26.80 71.60 1.60 0.00 0.00 0.2607 46.882 0.268
(30, 50) SIR 23.20 74.00 2.80 0.00 0.00 0.2506 26.900 0.232
(30, 50) CUME 23.60 74.80 1.40 0.20 0.00 0.2372 26.956 0.236

Case 2

(10, 10) SIR 13.40 77.60 9.00 0.00 0.00 0.1598 6.874 0.134
(10, 10) CUME 21.00 75.20 3.80 0.00 0.00 0.1921 6.928 0.210
(30, 20) SIR 19.80 71.00 9.20 0.00 0.00 0.2237 26.830 0.198
(30, 20) CUME 18.00 75.20 6.80 0.00 0.00 0.1995 26.894 0.180
(20, 30) SIR 17.40 74.20 8.40 0.00 0.00 0.1987 16.878 0.174
(20, 30) CUME 23.60 73.20 3.20 0.00 0.00 0.2134 16.942 0.236
(50, 30) SIR 21.40 71.20 7.20 0.20 0.00 0.2171 46.844 0.214
(50, 30) CUME 26.60 72.20 1.20 0.00 0.00 0.2507 46.918 0.266
(30, 50) SIR 15.80 76.60 7.60 0.00 0.00 0.2115 26.862 0.158
(30, 50) CUME 28.00 69.00 3.00 0.00 0.00 0.2384 26.946 0.280

Case 3

(10, 10) SIR 14.20 77.60 8.20 0.00 0.00 0.1886 6.876 0.142
(10, 10) CUME 22.40 74.40 3.20 0.00 0.00 0.1901 6.940 0.224
(30, 20) SIR 19.40 73.20 7.40 0.00 0.00 0.2113 26.870 0.194
(30, 20) CUME 24.00 72.00 4.00 0.00 0.00 0.2341 26.932 0.240
(20, 30) SIR 15.20 75.80 8.80 0.20 0.00 0.1984 16.866 0.152
(20, 30) CUME 27.00 70.00 3.00 0.00 0.00 0.2353 16.932 0.270
(50, 30) SIR 15.60 71.40 13.00 0.00 0.00 0.2113 46.810 0.156
(50, 30) CUME 26.20 70.60 3.20 0.00 0.00 0.2417 46.934 0.262
(30, 50) SIR 17.60 76.20 6.20 0.00 0.00 0.2147 26.874 0.176
(30, 50) CUME 26.60 69.80 3.60 0.00 0.00 0.2593 26.934 0.266

then applied our procedure to estimate and select nonzero elements of (β0, θ0).
The final estimated values of (β0, θ0) and the standard errors based on 1000
bootstrap resamples are reported in Table 7, which show that the SIR-based
and CUME-based procedures select out the variables X1, X2, X4 and X6, and
the SIR-based procedure selects two more variable X11 and X12. The proce-
dures also distinguish two single-index variables: Z2 and Z4. We estimated the
nonparametric function g(·) by using the estimated values (β̂0,SIR, θ̂0,SIR), and

(β̂0,CUME, θ̂0,CUME) and show the estimated curves of g(·) in Figure 1, which
show a similar pattern but difference in magnitude.

As a referee suggested, we use the additive model and adaptive COSSO
method proposed by Lin and Zhang (2006) to select significant component. The
selected covariates are listed in Table 7, from which we can see that 5-fold
CV adaptive COSSO tends to select more covariates than our two dimension-
reduction based methods. All the unimportant covariates identified by the adap-
tive COSSO are also identified as unimportant covariates by the CUME dimen-
sion reduction based method. Moreover, the leave-one-out prediction error by
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Table 4

Simulating results for model (4.2) when β0 = (3, 1.5, 0.5, 0, . . . , 0)τ . The performance of θ̂.
The true Cθ0 value is equal to (qn − 2)

ωo,θ0
(%) No of zeros

(pn, qn) Method ωu,θ0
(%) ωc,θ0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseθ0 Cθ0
INθ0

Case 1

(10, 10) SIR 0.00 94.40 5.60 0.00 0.00 0.0061 7.944 0.000
(10, 10) CUME 0.00 94.20 5.80 0.00 0.00 0.0041 7.942 0.000
(30, 20) SIR 0.00 92.60 7.40 0.00 0.00 0.0052 17.926 0.000
(30, 20) CUME 0.00 89.60 10.40 0.00 0.00 0.0057 17.896 0.000
(20, 30) SIR 0.00 88.60 11.40 0.00 0.00 0.0057 27.886 0.000
(20, 30) CUME 0.00 90.40 9.60 0.00 0.00 0.0052 27.904 0.000
(50, 30) SIR 0.00 93.80 6.20 0.00 0.00 0.0064 27.938 0.000
(50, 30) CUME 0.00 94.40 5.60 0.00 0.00 0.0052 27.944 0.000
(30, 50) SIR 0.00 83.00 17.00 0.00 0.00 0.0061 47.830 0.000
(30, 50) CUME 0.00 91.20 8.80 0.00 0.00 0.0043 47.912 0.000

Case 2

(10, 10) SIR 0.20 93.00 6.60 0.20 0.00 0.0267 7.930 0.002
(10, 10) CUME 1.20 93.20 5.60 0.00 0.00 0.0285 7.944 0.012
(30, 20) SIR 1.00 90.60 8.40 0.00 0.00 0.0238 17.916 0.010
(30, 20) CUME 0.40 91.40 8.20 0.00 0.00 0.0319 17.918 0.004
(20, 30) SIR 1.20 87.20 11.40 0.20 0.00 0.0279 27.876 0.012
(20, 30) CUME 0.80 93.60 5.60 0.00 0.00 0.0304 27.944 0.008
(50, 30) SIR 0.00 91.00 9.00 0.00 0.00 0.0372 27.910 0.000
(50, 30) CUME 1.40 94.60 4.00 0.00 0.00 0.0330 27.960 0.014
(30, 50) SIR 0.80 87.60 11.60 0.00 0.00 0.0301 47.880 0.008
(30, 50) CUME 0.40 94.60 5.00 0.00 0.00 0.0324 47.950 0.004

Case 3

(10, 10) SIR 1.00 92.00 6.60 0.40 0.00 0.0221 7.924 0.010
(10, 10) CUME 1.00 96.20 2.80 0.00 0.00 0.0271 7.970 0.010
(30, 20) SIR 0.40 91.60 8.00 0.00 0.00 0.0275 17.920 0.004
(30, 20) CUME 1.60 95.20 3.20 0.00 0.00 0.0404 17.968 0.016
(20, 30) SIR 0.20 89.00 10.60 0.20 0.00 0.0269 27.890 0.002
(20, 30) CUME 0.60 95.20 4.00 0.20 0.00 0.0345 27.956 0.006
(50, 30) SIR 0.00 90.20 9.60 0.20 0.00 0.0313 27.900 0.000
(50, 30) CUME 0.60 95.40 4.00 0.00 0.00 0.0401 27.960 0.006
(30, 50) SIR 0.20 85.60 14.20 0.00 0.00 0.0327 47.858 0.002
(30, 50) CUME 0.60 94.40 5.00 0.00 0.00 0.0341 47.948 0.006

the adaptive COSSO procedure is 5.3597 × 10−4, while the leave-one-out pre-
diction error by the dimension-reduction based method are 2.0303× 10−4 with
SIR, and 1.7052×10−4 with CUME. Consequently, the CUME based dimension
reduction procedure has the smallest prediction error.

6. Discussion

We have proposed a dimension reduction based procedure for estimation and
variable selection in PLSIM when the dimensions of the covariates diverge with
the sample size. The procedure naturally inherits the advantages of sufficient
dimension reduction and PLM, and avoids computational complexity and lim-
itations in the existing estimation and variable selection methods for PLSIM.
However, the corresponding theory for the procedure is subject to the assump-
tion d3n/n → 0. The difficulty mainly comes from estimating the covariance
matrix. Like most dimension reduction methods, our method is limited to con-
tinuous covariates. Further investigations for the discrete covariates would be of
great value.
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Table 5

Simulating results for model (4.1) when β0 = (3, 1.5, 1.5, 0, . . . , 0)τ . The performance of β̂.
The true Cβ0

value is equal to (pn − 3)

ωo,β0
(%) No of zeros

(pn, qn) Method ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseβ0
Cβ0

INβ0

Case 1

(50, 30) SIR 0.00 91.00 9.00 0.00 0.00 0.1346 46.910 0.000
(50, 30) CUME 0.00 91.00 9.00 0.00 0.00 0.1747 46.910 0.000
(30, 50) SIR 0.00 96.00 4.00 0.00 0.00 0.1323 26.960 0.000
(30, 50) CUME 0.00 93.00 7.00 0.00 0.00 0.1840 26.930 0.000

Case 2

(50, 30) SIR 0.00 98.00 2.00 0.00 0.00 0.1550 46.980 0.000
(50, 30) CUME 0.00 94.00 6.00 0.00 0.00 0.2098 46.940 0.000
(30, 50) SIR 0.00 98.00 2.00 0.00 0.00 0.2115 26.980 0.000
(30, 50) CUME 0.00 99.00 1.00 0.00 0.00 0.1991 26.990 0.000

Case 3

(50, 30) SIR 0.00 96.00 4.00 0.00 0.00 0.2129 46.960 0.000
(50, 30) CUME 0.00 91.00 9.00 0.00 0.00 0.2224 46.910 0.000
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.2041 26.990 0.000
(30, 50) CUME 0.00 96.00 4.00 0.00 0.00 0.2213 26.960 0.000

ωo,θ0
(%) No of zeros

(pn, qn) Method ωu,θ0
(%) ωc,θ0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseθ0 Cθ0
INθ0

Case 1

(50, 30) SIR 1.00 97.00 2.00 0.00 0.00 0.0228 27.980 0.020
(50, 30) CUME 10.00 86.00 4.00 0.00 0.00 0.0354 27.960 0.100
(30, 50) SIR 4.00 90.00 6.00 0.00 0.00 0.0198 47.940 0.040
(30, 50) CUME 8.00 86.00 7.00 0.00 0.00 0.0360 47.940 0.080

Case 2

(50, 30) SIR 6.00 94.00 0.00 0.00 0.00 0.0336 28.000 0.100
(50, 30) CUME 1.00 95.00 4.00 0.00 0.00 0.0496 27.960 0.010
(30, 50) SIR 12.00 86.00 2.00 0.00 0.00 0.0347 47.980 0.200
(30, 50) CUME 6.00 91.00 3.00 0.00 0.00 0.0449 47.970 0.060

Case 3

(50, 30) SIR 6.00 94.00 0.00 0.00 0.00 0.0493 28.000 0.080
(50, 30) CUME 6.00 93.00 1.00 0.00 0.00 0.0575 27.990 0.060
(30, 50) SIR 0.00 98.00 2.00 0.00 0.00 0.0498 47.980 0.000
(30, 50) CUME 4.00 94.00 2.00 0.00 0.00 0.0530 47.980 0.040

Our estimation procedure needs to estimate covariance Σ or inverse covari-
ance matrix Σ−1/2. For high-dimensional settings like p >> n, it is always
assumed that covariance matrices is sparsity; that is, many entries of the off-
diagonal elements are zero and the number of nonzero off-diagonal entries grows
slowly. Under the sparsity condition, regularization and thresholding procedures
have been proposed to construct estimators of Σ and Σ−1 (Bickel and Levina,
2008a,b; Cai and Liu, 2011; Lam and Fan, 2009). However, there is little dimen-
sion reduction literature on such a setting because there are additional challenges
for estimating the dimension reduction kernel matrix M, besides estimating the
covariance Σ. For example, for the SIR dimension reduction method, one needs
to estimate Msir = Cov{E(Xτ , Zτ )τ |Y )} as well. But the usual assumptions
like off-diagonal elements being zero may be inappropriately to impose on Msir

directly. To the best of our acknowledge, only Zhu et al. (2006) recently investi-
gated estimation of Msir when the dimension is divergent but smaller than the
sample size. How to handle the settings like p >> n needs much more efforts
and warrants further study.
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Table 6

Simulating results for model (4.2) when β0 = (3, 1.5, 1.5, 0, . . . , 0)τ . The performance of β̂.
The true Cβ0

value is equal to (pn − 3)

ωo,β0
(%) No of zeros

(pn, qn) Method ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseβ0
Cβ0

INβ0

Case 1

(50, 30) SIR 0.00 93.00 7.00 0.00 0.00 0.1497 46.930 0.000
(50, 30) CUME 0.20 89.40 10.40 0.00 0.00 0.1844 46.896 0.002
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.1810 26.990 0.000
(30, 50) CUME 0.40 93.40 6.00 0.00 0.00 0.1928 26.940 0.004

Case 2

(50, 30) SIR 0.00 98.00 2.00 0.00 0.00 0.1651 46.980 0.000
(50, 30) CUME 1.00 95.00 4.00 0.00 0.00 0.1949 46.960 0.010
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.1810 26.990 0.000
(30, 50) CUME 0.04 95.20 4.40 0.00 0.00 0.1856 26.956 0.004

Case 3

(50, 30) SIR 0.00 100.00 0.00 0.00 0.00 0.1723 47.000 0.000
(50, 30) CUME 0.00 100.00 0.00 0.00 0.00 0.2113 47.000 0.000
(30, 50) SIR 1.00 97.00 2.00 0.00 0.00 0.2049 26.980 0.010
(30, 50) CUME 1.00 97.00 2.00 0.00 0.00 0.1861 26.980 0.010

ωo,θ0
(%) No of zeros

(pn, qn) Method ωu,θ0
(%) ωc,θ0

(%) “1 (%)” “2” (%) “≥ 3”(%) Medseθ0 Cθ0
INθ0

Case 1

(50, 30) SIR 0.00 95.00 5.00 0.00 0.00 0.0102 27.950 0.000
(50, 30) CUME 0.60 93.60 5.80 0.00 0.00 0.0097 27.942 0.006
(30, 50) SIR 6.00 92.00 2.00 0.00 0.00 0.0117 47.980 0.080
(30, 50) CUME 0.20 90.20 9.60 0.00 0.00 0.0083 47.904 0.002

Case 2

(50, 30) SIR 4.00 95.00 1.00 0.00 0.00 0.0348 27.990 0.060
(50, 30) CUME 2.00 97.00 1.00 0.00 0.00 0.0404 27.990 0.020
(30, 50) SIR 6.00 92.00 2.00 0.00 0.00 0.0470 47.980 0.080
(30, 50) CUME 2.40 95.60 2.00 0.00 0.00 0.0533 47.976 0.024

Case 3

(50, 30) SIR 9.00 89.00 2.00 0.00 0.00 0.0343 27.980 0.100
(50, 30) CUME 3.00 97.00 0.00 0.00 0.00 0.0514 28.000 0.040
(30, 50) SIR 14.00 86.00 0.00 0.00 0.00 0.0516 48.000 0.190
(30, 50) CUME 9.00 91.00 0.00 0.00 0.00 0.0527 47.990 0.100

It should be worth pointing out that the procedure developed in this paper
applies for fixed p0 and q0. Relax this case to infinite p0 andq0 would enhance the
applicability in real data analysis. But substantial efforts seem to need because
the current method relies on the asymptotic property for estimation of Σ, which
is valid only for fixed p0 and q0. To overcome this challenge, alternative approach
may be needed and is worth further studying.

We thank a referee for raising the question on which covariates for the linear
part and which for the single index part. There is little literature on linear versus
nonlinear forms for additive regression models (Zhang et al., 2011). Whether
their procedure works for PLSIM needs additional efforts and beyond the scope
of this paper. Currently, we use a guideline as follows. The effects of all the
continuous covariates are put in the single-index part and those of the discrete
covariates in the linear part. If the estimation results show that some of the
continuous covariate effects can be relocated in the linear part, then a new
model can be fitted with those continuous covariate effects moved to the linear
part. The procedure is iterated several times if needed.
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Table 7

Results for real data analysis. The estimated values and standard errors (SE) of β0 and
θ0. “AC” stands for “Adaptive COSSO”

Linear component

Variable X β̂0,SIR (SE, ×10−3) β̂0,CUME (SE, ×10−3) AC

X1 primary school enrollment rate
in 1960

0.0128 (0.2235) 0.0049 (0.1459)
√

X2 area index -0.0014 (0.0238) -0.0026 (0.0247)
√

X3 average rate of growth of
population between 1960 and 1990

N/A N/A

X4 number of years on open economy 0.0196 (0.1975) 0.0155 (0.149)
√

X5 number of revolutions and coups N/A N/A
√

X6 political rights -0.0013 (0.0286) -0.0018 (0.0272)
√

X7 index of civil liberties N/A N/A
√

X8 fraction of primary exports in total
exports in 1970

N/A N/A
√

X9 work index in 1960 N/A N/A
X10 fraction Catholic N/A N/A

√
X11 fraction Muslim 0.0037 (0.1534) N/A
X12 fraction Protestant -0.0008 (0.2156) N/A

√
X13 fraction GDP in mining N/A N/A

√

Single-index component

Variable Z θ̂0,SIR (SE) θ̂0,CUME (SE) AC
Z1 higher education enrollment rate

in 1960
N/A N/A

Z2 absolute latitude 0.4185 (0.0081) 0.294 (0.0082)
√

Z3 urbanization rate (fraction in cities) N/A N/A
Z4 lforce index in 1960 0.9082 (0.0294) 0.9558 (0.0292)

√

Appendix

In this Appendix, we state the assumptions and give the proofs of the main
results.

A.1. Assumptions

The following are the regularity conditions for our asymptotic results.

(A1) sup
1≤i≤pn

EX4
i < C0, sup

1≤j≤qn

EZ4
j < C1 for some constants C0 > 0, C1 > 0.

(A2) Σ = Cov(T) is positive definite, and all of its eigenvalues are bounded
between two positive c

¯
and C̄ for all pn and qn.

(A3) The function E(X0|θτ
10Z0 = θτ

10z0) and the density function fθτ
10Z0(θ

τ
10z0)

of the random variable θτ
10Z0 are both three times continuously differen-

tiable with respect to z0. The third derivatives are uniformly Lipschitz
continuous on Tθ10 = {θτz0 : θ ∈ Θ, z0 ∈ Z0 ⊂ R

p0}, where Z0 is a
compact support set. Furthermore, the density function fθτ

10Z0(θ
τ
10z) is

bounded away from 0 on Tθ10 .
(A4) The kernel function K(·) is a bounded, continuous and symmetric prob-

ability density function satisfying
∫∞
−∞ |u|jK(u)du < ∞ for j = 1, 2, and∫∞

−∞ u2K(u)du 6= 0. Moreover, K(·) satisfies a Lipschitz condition on R
1.

(A5) The bandwidth h satisfies h→ 0, and log2 n/nh2 → 0, and nh3 → ∞.
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Fig 1. The estimated curves (solid lines) of the single-index function g(·) and the associated
95% pointwise confidence intervals (dotted lines). The left panel: the SIR dimension reduction
method; the right panel: CUME dimension reduction method.

Condition (A1) is a technical condition imposed on the moments of X and
Z in the context of diverging parameters. See more detailed discussions in Zhu
and Zhu (2009a); Zhu et al. (2006). Condition (A2) is imposed on the covariance

matrix of (Xτ ,Zτ )τ to avoid the ill-conditioned problem of estimator Σ
−1/2
n .

Because Σ
−1/2
n is needed in the CISE estimation procedure, the full rank con-

dition of Σ guarantees that even when the dimensions of β0, θ0 diverge. Once

n is large enough, the estimator Σ
−1/2
n is of full rank, and Σn is invertible.

See more details in Remark 2 of Zhu et al. (2006). Condition (A3) entails the
density function fθτ

10Z0(·) is positive, which implies that the denominators in-
volved in the nonparametric estimators bounded away from 0. The three times
continuously derivatives of E(X0|θτ

10Z0 = θτ
10z0) and fθτ

10Z0(θ
τ
10z0) are stan-

dard smoothness conditions in nonparametric estimation. Condition (A4) is a
standard assumption in the nonparametric regression literature. The Gaussian
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and quadratic kernels satisfy this condition. Condition (A5) indicates that the
“optimal” bandwidth can be routinely used.

A.2. Notations and Definitions

As Chen et al. (2010) mentioned, the CISE procedure hinges operationally on
Grassmann manifold optimization. In order to prove the results of Theorems 3.1
and 3.2, we introduce some notations and definitions for ease of illustration.

Define the Stiefel manifold St(p, d) as

St(p, d) = {η ∈ R
p×d : ητη = Id}.

Let ⌊v⌋ be the subspace spanned by the columns of η, then η ∈ Gr(p, d),
where Gr(p, d) stands for the Grassmann manifold. The projection operator
L : Rp×d → St(p, d) onto the Stiefel manifold St(p, d) is defined to be

L(η) = arg min
µ∈St(p,d)

‖η − µ‖22.

The tangent space Tη(p, d) of η ∈ St(p, d) is defined by

Tη(p, d) =
{
γ ∈ R

p×d : γ = ηJ + ηcK, J ∈ R
d×d, J + Jτ = 0d×d,K ∈ R

(p−d)×d
}
,

where ηc ∈ R
p×(p−d) is the complement of η satisfying ητηc = 0 and (ηc)τηc =

I(p−d).

Next, we define the neighborhood of ⌊η⌋. For any matrix ω ∈ R
p×d and

δ ∈ R, the perturbed point around η in the Stiefel manifold can be expressed
by L(η + δω), and the perturbed point around ⌊η⌋ in the Grassmann manifold
can be expressed by ⌊L(η + δω)⌋. According to Lemma 8 of Manton (2002),
w can be uniquely decomposed as ω = ηJ + ηcK + ηD, where J ∈ R

d×d is a
skew-symmetric matrix, K ∈ R

(p−d)×d is an arbitrary matrix, and D ∈ R
d×d

is a symmetric matrix. As Chen et al. (2010) showed that, for a sufficiently
small δ, ⌊L(η + δω)⌋ = ⌊L(η + δηcK)⌋, which indicates that the movement
from ⌊η⌋ in the near neighborhood only depends on the ηcK. In other words,
it suffices to consider perturbed points like L(η + δϑ) in the following proofs,
where ϑ = ηJ + ηcK and ‖K‖t =

√
tr(KτK) = C for some given constant C,

tr(·) is the trace operator.

A.3. Identifiability

In this section we provide an identifiability condition to guarantee that we have
nonzero ϕ1 and ϕ2. To this end, let Y 0 be an independent copy of Y . Write

MX = EY 0

[
EX,Z,Y

{
(X − EX)I(Y ≤ Y 0)

}]⊗2
, MZ = EY 0

[
EX,Z,Y

{
(Z −

EZ)I(Y ≤ Y 0)
}]⊗2

and CX,Z = EY 0

[
EX,Z,Y

{
(X−EX)I(Y ≤ Y 0)

}
EX,Z,Y

{
(Z−

EZ)τ I(Y ≤ Y 0)
}]
, where EX,Z,Y and EY 0 stand for the expectation over

(X,Z, Y ) and Y 0, respectively. Let ΣX,Z = Cov(X,Z), and ΣX and ΣZ be
the covariance matrices of X and Z, respectively. Then we have the following
proposition.
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Proposition A.1. Suppose

βτ
0CX,Zθ0 6= βτ

0ΣX,Zθ0

βτ
0ΣXβ0

βτ
0MXβ0 and βτ

0CX,Zθ0 6= βτ
0ΣX,Zθ0

θτ
0ΣZθ0

θτ
0MZθ0.

(A.1)

Then ϕ1 6= 0 and ϕ2 6= 0.

Remark 3. (A.1) actually depicts the correlation relationship between
βτ
0XI(Y ≤ Y 0) and θτ

0ZI(Y ≤ Y 0). The proposition means that if we hope
the eigenvector corresponding to the largest eigenvalue λmax to recover two di-
rections β0 and θ0, then βτ

0XI(Y ≤ Y 0) and θτ
0ZI(Y ≤ Y 0) cannot be linearly

related to each other. This requirement is reasonable.

Proof of Proposition A.1. Note that the CUME based kernel matrix (Zhu, Zhu
and Feng, 2010) can be expressed as

M = EY 0

[
EX,Z,Y

{
TI(Y ≤ Y 0)

}]⊗2
=

(
MX CX,Z

Cτ
X,Z MZ

)
.

Recall Σ =
(

ΣX ΣX,Z

Στ
X,Z

ΣZ

)
, v0 = (βτ

0ϕ1, θ
τ
0ϕ2)

τ and Mv0 = λmaxΣv0. We have

the following two equations:

MXβ0ϕ1 + CX,Zθ0ϕ2 = λmaxΣXβ0ϕ1 + λmaxΣX,Zθ0ϕ2, (A.2)

Cτ
X,Zβ0ϕ1 +MZθ0ϕ2 = λmaxΣ

τ
X,Zβ0ϕ1 + λmaxΣZθ0ϕ2. (A.3)

Note that vτ0Σv0 = 1, then at least one of ϕ1, ϕ2 is non-zero. Without loss of
generality, we assume ϕ1 6= 0, but ϕ2 = 0. A direct simplification from (A.2)
and (A.3) yields that

MXβ0 = λmaxΣXβ0 and Cτ
X,Zβ0 = λmaxΣ

τ
X,Zβ0. (A.4)

Multiplying βτ
0 and θτ

0 from the left of (A.4), respectively, we have λmax =
βτ

0MXβ0

βτ

0ΣXβ0

and further

θτ
0C

τ
X,Zβ0 =

βτ
0MXβ0

βτ
0ΣXβ0

θτ
0Σ

τ
X,Zβ0, (A.5)

which contradicts condition (A.1). Then it is not possible that ϕ2 is zero. In
the same way, we can prove that when ϕ2 6= 0, ϕ1 6= 0 too. We complete the
proof.

A.4. Proof of Theorem 3.1

Recall Σn is the estimator of Σ defined in Section 2. Write ξ̃n = Σ
1/2
n ṽn, ξ

∗
0 =

Σ
1/2
n v0, ξ0 = Σ1/2v0. We finish the proof in two steps. In the first step we study



Partially linear single-index models 2257

the relationship between ‖ṽn−v0‖22 and ‖ξ̃n−ξ∗0‖22. In the second step we derive
the order of ‖ξ̃n − ξ∗0‖22.
Step A.1. From the definition of ṽn in Section 3.1, we can derive that

‖ṽn − v0‖22 = (ṽn − v0)
τ (ṽn − v0) = (Σ−1/2

n ξ̃n − Σ−1/2ξ0)
τ (Σ−1/2

n ξ̃n − Σ−1/2ξ0)

= ξ̃τn(Σ
−1/2
n − Σ−1/2)2ξ̃n + ξ̃τn(Σ

−1/2
n − Σ−1/2)Σ−1/2(ξ̃n − ξ0)

+ (ξ̃n − ξ0)
τΣ−1/2(Σ−1/2

n − Σ−1/2)ξ̃n + (ξ̃n − ξ0)
τΣ−1(ξ̃n − ξ0)

τ .

For any s× s symmetric matrix A and any s× 1 vector x, xτAx ≤ λmax(A)x
τx.

Note that Condition (A2) indicates λmin(Σ) > 0. Then by Cauchy-Schwarz
inequality and the equality ξ̃τnξ̃n = 1, we have

‖ṽn − v0‖22 ≤ ξ̃τn(Σ
−1/2
n − Σ−1/2)⊗2ξ̃n + 2λ−1

min(Σ)
{
ξ̃τn(Σ

−1/2
n − Σ−1/2)⊗2

ξ̃n
}1/2‖ξ̃n − ξ0‖2 + λ−1

min(Σ)‖ξ̃n − ξ0‖22
≤ λmax

{
(Σ−1/2

n − Σ−1/2)⊗2
}
+ 2λ−1

min(Σ)λ
1/2
max

{
(Σ−1/2

n − Σ−1/2)⊗2
}

‖ξ̃n − ξ0‖2 + λ−1
min(Σ)‖ξ̃n − ξ0‖22.

In the following, we show that λmax

{
(Σ

−1/2
n − Σ−1/2)⊗2

}
= OP (d

2
n/n). For

any symmetric matrix A and any positive semi-definite matrix B, we have the
following inequality:

λmin(B)λmax(AA
τ ) ≤ λmax(ABA

τ ) ≤ λmax(B)λmax(AA
τ ).

Taking A = Σ
1/2
n − Σ1/2, B = (Σ

1/2
n +Σ1/2)⊗2, we then have

λmax

{
(Σ1/2

n −Σ1/2)⊗2
}
≤ λmax

{
(Σn − Σ)⊗2

}

λmin

{
(Σ

1/2
n +Σ1/2)⊗2

} ≤ λ−1
min(Σ)λmax

{
(Σn −Σ)⊗2

}
.

Note that λmax

{
(Σn − Σ)⊗2

}
≤ ‖Σn − Σ‖2F . We know that all the elements of

(Σn − Σ) are of order OP (n
−1/2). It follows that ‖Σn − Σ‖F = E‖Σn − Σ‖F +

OP (
√

Var(‖Σn − Σ‖F )) = OP (
√
E‖Σn − Σ‖2F ) = OP

(
d2n/n

)
. Thus, we have

λmax

{
(Σ

1/2
n − Σ1/2)⊗2

}
=
(
d2n/n

)
. Furthermore, λmax

{
(Σ

−1/2
n − Σ−1/2)⊗2

}
=

λmax

(
Σ−1

n (Σ
1/2
n − Σ1/2)⊗2Σ−1

)
≤ λ−1

min(Σn)λ
−1
min(Σ)λmax

{
(Σ

1/2
n − Σ1/2)⊗2

}
=(

d2n/n
)
. These statements yield

‖ṽn − v0‖22 = OP

(
d2n
n

)
+OP

(
dn√
n

)
‖ξ̃n − ξ0‖2 + λ−1

min(Σ)‖ξ̃n − ξ0‖22.

Observe that

‖ξ̃n − ξ0‖22 ≤ 2‖ξ̃n − ξ∗0‖22 + 2‖ξ∗0 − ξ0‖22
≤ 2‖ξ̃n − ξ∗0‖22 + λmax

{
(Σ1/2

n − Σ1/2)⊗2
}

= 2‖ξ̃n − ξ∗0‖22 +OP (d
2
n/n).
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Then we have

‖ṽn − v0‖22 = OP

(
d2n
n

)
+OP

(
dn√
n

)
‖ξ̃n − ξ∗0‖2 + 2λ−1

min(Σ)‖ξ̃n − ξ∗0‖22. (A.6)

Step A.2. In this step, we show that ‖ξ̃n−ξ∗0‖22 = OP (d
2
n/n) and then we finally

obtain the result ‖ṽn − v0‖22 = OP (d
2
n/n) together with the result of (A.6). It

suffices to show that, for any given small ǫ > 0, there is a large constant C such
that, for large enough n,

P

{
inf

ϑ∈Tξ∗0
(pn+qn,1):‖K‖2=C

Qn

(
L

(
ξ∗0 +

dn√
n
ϑ

)
;Gn,Σn

)
> Qn(ξ

∗
0 ;Gn,Σn)

}

> 1− ǫ. (A.7)

Then we conclude that there exists a local minimizer ξ̃n of Qn(ϑ;Gn,Σn), with
probability approaching one, such that ‖ξ̃n − ξ∗0‖2 = OP (dn/

√
n).

Since ϑ ∈ Tξ∗0 (pn + qn, 1), we have ϑ = ξ∗c0 K, K ∈ R
(pn+qn−1). Thus, as

d2n/n→ 0, applying Lemma 1 of Chen et al. (2010), we have

Qn

(
L

(
ξ∗0 +

dn√
n
ϑ

)
;Gn,Σn

)
−Qn(ξ

∗
0 ;Gn,Σn)

=

{
ξ∗τ0 Gnξ

∗
0 −

(
ξ∗0 +

dn√
n
ϑ− d2n

2n
ξ∗0ϑ

τϑ+OP

(
d3n
n3

))τ

Gn

×
(
ξ∗0 +

dn√
n
ϑ− d2n

2n
ξ∗0ϑ

τϑ+OP

(
d3n
n3/2

))}

+

{
ρn

(
Σ−1/2

n

(
ξ∗0 +

dn√
n
ϑ− d2n

2n
ξ∗0ϑ

τϑ+OP

(
d3n
n3/2

)))

−ρn
(
Σ−1/2

n ξ∗0

)}

def
= Υ1n +Υ2n.

We first deal with Υ1n. Denote by 1n the (pn + qn) vector of ones.

Υ1n =
d2n
n
(ξ∗τ0 Gnξ

∗
0ϑ

τϑ− ϑτGnϑ)−
dn√
n
(2ϑτGnξ

∗
0)

+OP

(
d3n
n3/2

(ξ∗τ0 Gn1n + ϑτGnξ
∗
0ϑ

τϑ)

)

+OP

(
d4n
n2

(ϑτGn1n + ξ∗τ0 Gnξ
∗
0(ϑ

τϑ)2)

)

+OP

(
d5n
n5/2

ξ∗τ0 Gn1nϑ
τϑ

)
.

Note that ϑ = ξ∗c0 K, and ξ∗cτ0 ξ∗c0 = Ipn+qn−1, K
τK = C2. Similar to ‖Σn −

Σ‖2F = OP (d
2
n/n), we have ‖Mn −M‖2F = OP (d

2
n/n), and then λmax

{
(Mn −
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M)⊗2
}
= OP (d

2
n/n). It follows that

ξ∗τ0 Gnξ
∗
0ϑ

τϑ = vτ0 (Mn −M)v0ϑ
τϑ+ vτ0Mv0ϑ

τϑ

= vτ0 (Mn −M)v0K
τK + λ1K

τK

≥ C2

{
λ−1/2
max (Σ)OP

(
dn√
n

)
+ λ1

}
.

Next we consider the term ϑτGnϑ. Let v0, v1, . . . , vpn+qn−1 be the eigenvectors
defined by: Mv = λΣv. v0 and v1 are the eigenvectors corresponding to the
two largest eigenvalues λ1 and λ2, and v2, . . . , vpn+qn−1 are the eigenvectors
corresponding to the zero eigenvalues. Since the columns of v∗ = (Σ1/2v1, . . . ,
Σ1/2vpn+qn−1) consist of an orthogonal basis of Rpn+qn−1, there exists a B∗

such that ξ∗c0 = v∗B∗. Noting that v∗τv∗ = ξ∗cτ0 ξ∗c0 = Ipn+qn−1, we also have
B∗τB∗ = Ipn+qn−1. Thus,

ϑτGnϑ = Kτξ∗cτ0 Gnξ
∗c
0 K = KτB∗τv∗τGnv

∗B∗K

= KτB∗τv∗τ (Σ−1/2
n MnΣ

−1/2
n − Σ−1/2MΣ−1/2)v∗B∗K

+KτB∗τv∗τΣ−1/2MΣ−1/2v∗B∗K

≤ {KτB∗τB∗K}1/2
{
KτB∗τv∗τ

×
(
Σ−1/2

n MnΣ
−1/2
n − Σ−1/2MΣ−1/2

)⊗2

v∗B∗K
}1/2

+KτB∗τB∗Kλmax

(
v∗τΣ−1/2MΣ−1/2v∗

)
= COP

(
dn√
n

)
+ C2λ2.

Note that v∗τΣ1/2v0 = 0, then

ϑτGnξ
∗
0 = Kτξ∗cτ0 Σ−1/2

n (Mn −M)v0 +Kτξ∗cτ0 Σ−1/2
n Mv0

≤ {Kτξ∗cτ0 ξ∗c0 K}1/2
{
vτ0Σ

−1/2
n (Mn −M)⊗2Σ−1/2

n v0

}1/2

+ λ1K
τB∗τv∗τ (Σ−1/2

n − Σ−1/2)Σv0

≤ C
[
λ
−1/2
min (Σn)λ

−1/2
min (Σ)λ1/2max

{
(Mn −M)⊗2

}]

+ Cλ1λ
1/2
max

((
Σ−1/2

n − Σ−1/2
)⊗2
)

= COP

(
dn√
n

)
.

Furthermore,

ξ∗τ0 Gn1n = 1τnΣ
−1/2
n (Mn −M)v0 + 1τnΣ

−1/2
n Mv0

≤
√
1τn1n

{
vτ0 (Mn −M)Σ−1

n (Mn −M)v0
}1/2

+
√
1τn1nλ

1/2
max(v

τ
0ΣΣ

−1
n Σv0)

= OP (d
1/2
n ),

ϑτGn1n = Kcξ∗cτ0 Gn1n ≤
√
1τn1n{ϑτG⊗2

n ϑ}1/2 = OP (d
1/2
n ).



2260 J. Zhang et al.

Thus, we have

Υ1n ≥ d2n
n

{
C2(λ1 − λ2) + COP (1) + (C2 − C)OP

(
dn√
n

)}

+
d2n
n

{
OP

(√
d3n
n

)
+ λ1OP

(√
d5n
n2

)}
.

So if d3n/n → 0, as long as the constant C is sufficiently large, Υ1n is positive
because λ1 > λ2. In the following, we consider the second term Υ2n. Let er =
(0, 0, . . . , 0, 1, 0, . . . , 0)τ be a (pn+qn) vector with the rth element being 1 and 0

otherwise. Note that eτrΣ
−1/2
n ξ∗0 = eτrv0 = 0 for any r > p0+ q0 by the definition

of v0. Then we have

Υ2n =

pn+qn∑

r=1

{
αr

(∥∥∥∥∥e
τ
rΣ

−1/2
n

(
ξ∗0 +

dn√
n
ϑ− d2n

2n
ξ∗0ϑ

τϑ+OP

(
d3n
n3/2

))∥∥∥∥∥
2

−
∥∥∥erΣ−1/2

n ξ∗0

∥∥∥
2

)}

≥
p0+q0∑

r=1

{
αr

(∥∥∥∥∥e
τ
rΣ

−1/2
n

(
ξ∗0 +

dn√
n
ϑ− d2n

2n
ξ∗0ϑ

τϑ+OP

(
d3n
n3/2

))∥∥∥∥∥
2

−
∥∥∥erΣ−1/2

n ξ∗0

∥∥∥
2

)}

=

p0+q0∑

r=1

{
αrsign(e

τ
rv0)

×
(
dn√
n
eτrΣ

−1/2
n ϑ− d2n

2n
eτrv0ϑ

τϑ+ eτrΣ
−1/2
n 1nOP

(
d3n
n3/2

))}

≥ −
p0+q0∑

r=1

dn√
n

{
αrsign(e

τ
rv0)

×
(
Cλ−1

min(Σn) +
dn
2
√
n
C2 + λ−1

min(Σn)OP

(
d
5/2
n

n

))}

≥ −
√
n

dn
max

r≤p0+q0

{
αr

}
(p0 + q0)

d2n
n

×
(
Cλ−1

min(Σn) +
dn
2
√
n
C2 + λ−1

min(Σn)OP

(
d
5/2
n

n

))
.

Recall that
√
n max

r≤p0+q0

{
αr

}
→ 0. Then we have that Υ2n = oP (1)d

2
n/nC. Con-

sequently, Υ2n is dominated by Υ1n. This implies that the probability inequality
(A.7) holds, and the proof is completed.
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A.5. Proof of Theorem 3.2

Step B.1. To prove the first conclusion, we first show that there exists an
r > p0+q0 such that ṽn,r = 0. Suppose that all ṽn,r are non-zero for r > p0+q0.
Then, according to the proof of Theorem 2 in Chen et al. (2010), ṽn satisfies
the following equation:

2H̃nMnṽn = H̃nιn, (A.8)

where H̃n = Ipn+qn − Σn ṽnṽ
τ
nΣn

ṽτ
nΣ

2
nṽn

and ιn = (α1sign(ṽn,1), α2sign(ṽn,2), . . . , αpn+qn

sign(ṽn,pn+qn))
τ . It follows from the expression of H̃n that H̃n is an idempotent

matrix with rank pn+qn−1, and Σnṽn is the eigenvector of H̃n corresponding to
its eigenvalue 0. Let (l1, . . . , lpn+qn−1) be the eigenvectors of H̃n corresponding
to its eigenvalue 1. Thus, (Σnṽn, l1, . . . , lpn+qn−1) is an independent basis of
the space R

pn+qn .By using this independent basis, there exist two sequences of
constants {ar}pn+qn

r=1 , {a′r}pn+qn
r=1 such that Mnṽn = a0Σnṽn +

∑pn+qn−1
r=1 arlr,

and ιn = a′0Σnṽn +
∑pn+qn−1

r=1 a′rlr. Plugging these two expressions into (A.8),
we obtain that

2Mnṽn − 2a0Σnṽn = ιn − a′0Σnṽn. (A.9)

From (A.9), we obtain that for r > p0 + q0,

αrsign(ṽn,r) = 2eτrMnṽn − (2a0 − a′0)e
τ
rΣnṽn, (A.10)

where er is a (pn + qn) vector with 1 in the rth position and 0 elsewhere for
r > p0 + q0.

We have supposed that ṽn,r are non-zero for all r > p0+q0, then [sign(ṽn,r)]
2 =

1. Note that ṽτnΣnṽn = 1, ‖Σn −Σ‖F = Op (dn/
√
n), ‖ṽn − v0‖2 = Op (dn/

√
n)

and ‖Mn −M‖F = Op (dn/
√
n), from (A.10) we have

pn+qn∑

r=p0+q0+1

α2
r =

pn+qn∑

r=p0+q0+1

{
2erMnṽn − (2a0 − a′0)e

rΣnṽn
}2

≤
pn+qn∑

r=p0+q0+1

{
λ21λmax(Σ) +Op

(
dn√
n

)}
= O(dn). (A.11)

Furthermore,

ṽτnιn =

p0+q0∑

r=1

αr|ṽn,r|+
pn+qn∑

r=p0+q0+1

αr|ṽn,r| = 2ṽτnMnṽn − (2a0 − a′0)ṽ
τ
nΣnṽn,

ṽτnMnṽn = λ1v
τ
0Σv0 − (2a0 − a′0) +Op

(
dn√
n

)
= λ1 − (2a0 − a′0) +Op

(
dn√
n

)
.

As
√
n

dn
max

r≤p0+q0

{
αr

}
→ 0, we have αr = o

(
dn√
n

)
for r ≤ p0 + q0. Thus, we obtain

pn+qn∑

r=p0+q0+1

αr|ṽn,r| = λ1 − (2a0 − a′0) +Op

(
dn√
n

)
. (A.12)
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By the result of Theorem 3.1 and the definition of v0 = (βτ
0φ1, θ

τ
0φ2)

τ , we know
that ‖ṽn − v0‖22 = OP

(
d2n/n

)
and

∑pn+qn
r=p0+q0+1 |ṽn,r|2 = OP

(
d2n/n

)
. It follows

from (A.11) and (A.12) that

{
λ1 − (2a0 − a′0) +Op

(
dn√
n

)}2

≤
(

pn+qn∑

r=p0+q0+1

αr|ṽn,r|
)2

≤
(

pn+qn∑

r=p0+q0+1

α2
r

)(
pn+qn∑

r=p0+q0+1

|ṽn,r|2
)

= OP

(
d3n
n

)
.

Together with (A.12) and that
√
n min

r>p0+q0
{αr}/dn → ∞, we have

min
r>p0+q0

{|ṽn,r|} ≤
∑pn+qn

r=p0+q0+1 αr|ṽn,r|
dn min

r>p0+q0
{αr}

= oP

(√
1

dn

)
. (A.13)

So we have 1 = sign
(
minr>p0+q0{|ṽn,r|}

)
= sign

(
oP (
√
1/dn)

) P−→ 0, a con-
tradiction, which means that, as n → ∞, there is at least r0 > p0 + q0 such
that ṽn,r0 = 0 with probability going to 1. We now further confirm that, for all
r > p0 + q0, ṽn,r = 0 with probability going to 1. This can be proved in a way
similar to the proof of Theorem 2 in Chen et al. (2010). The details are omitted.
Step B.2. In this step, we show that ṽn(0̃) = v̂In(1 + oP (1/

√
n)), where ṽn(0̃) is

the first (p̃0 + q̃0) elements of ṽn. v̂
I
n = Σ

−1/2
nI ûIn, where û

I
n is the minimizer as

ûIn = arg min
u∈R(p̃0+q̃0)×1

QnI(u;GnI ,ΣnI) subject to uτu = 1, (A.14)

where, QnI(u;GnI ,ΣnI) = −uτGnIu + ρnI(Σ
−1/2
nI u). Write ˜̺ = max

r≤p̃0+q̃0

{αr}.
Similar to the proof of Theorem 3.1, we first prove that, for large n and arbi-
trarily small ǫ > 0, there exists a sufficiently large constant C such that

P
{

inf
ϑI∈TûI

n
(p̃0+q̃0,1):‖KI‖2=C

QnI

(
L
(
ûIn + ˜̺ϑI

)
;GnI ,ΣnI

)

> QnI

(
ûIn;GnI ,ΣnI

)}
> 1− ǫ. (A.15)

Applying Lemma 1 (ii) of Chen et al. (2010), we have

QnI

(
L
(
ûIn + ˜̺ϑI

)
;GnI ,ΣnI

)
−QnI(û

o
n;GnI ,ΣnI)

=

{
ûIτn GnI û

I
n −

(
ûIn + ˜̺ϑI − 1

2
˜̺2ûInϑ

IτϑI +OP (˜̺
3)

)τ

GnI

×
(
ûIn + ˜̺ϑI − 1

2
˜̺2ûInϑ

IτϑI +OP (˜̺
3)

)}

+

{
ρnI

(
Σ

−1/2
nI

(
ûIn + ̺ϑI − 1

2
˜̺2ûInϑ

IτϑI +OP (˜̺
3)

))
− ρnI(Σ

−1/2
nI ûIn)

}

def
= Ξn1 + Ξn2.
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Using the arguments similar to the proofs of Υn1 and Υn2 in Theorem 3.1,
we have Ξn1 = C2 ˜̺2(λ̃1 − λ̃2) + oP (˜̺

2) and Ξn2 = CoP (˜̺
2), where λ̃1 and

λ̃2 are the two largest eigenvalues of GnI . Note that P (An = A0) → 1 in

Step B.1, thus, on the set {An = A0}, we have λ̃1
P→ λ1 and λ̃2

P→ λ2.
So λ̃1 > λ̃1 holds in probability, which implies that the probability inequal-
ity (A.15) holds for large C. On the set {An = A0}, following the similar

arguments in Theorem 2 of Chen et al. (2010), Σ
1/2
nI ṽn(0̃) is also a local min-

imizer of QnI(u;GnI ,ΣnI). The inequality (A.15) implies that the local min-

imizer Σ
1/2
nI ṽn(0̃) satisfies ‖Σ1/2

nI ṽn(0̃) − ûIn‖22 = OP (˜̺
2). Note that on the set

{An = A0}, p̃0 = p0, q̃0 = q0, so
√
n ˜̺ =

√
n̺ = oP (1) and ‖Σ1/2

nI ṽn(0̃) − ûIn‖22 =

oP (1/n). Thus, ‖ṽn(0̃)− v̂In‖22 = (Σ
1/2
nI ṽn(0̃)−Σ

1/2
nI v̂

I
n)

τΣ−1
nI (Σ

1/2
nI ṽn(0̃)−Σ

1/2
nI v̂

I
n) ≤

λ−1
min(ΣnI)‖Σ1/2

nI ṽn(0̃) − ûIn‖22 = oP (1/n). We complete the proof.

A.6. Proof of Theorem 3.3

Define Ti0 = (Xτ
i0,Z

τ
i0)

τ with Xτ
i0 = (Xi1, . . . , Xip0), and Zτ

i0 = (Zi1, . . . , Ziq0)
for i = 1, . . . , n. By replacing Ti by Ti0, we define Σn(0), T̄0, Gn(0), ρn(0) and
Mn(0), mn(0)(Yi) in the same way as the corresponding quantities for (2.3),

and denote û
(1)
n as the first eigenvector of Gn(0) corresponding to its largest

eigenvalue. WriteG(0) = (gij) for 1 ≤ i, j ≤ (p0+q0). The standard perturbation
theory gives the following chain-rule formulas (Zhu and Fang, 1996):

∂u(0)

∂gij
=

p0+q0∑

m=2

u
(m)
(0) u

(m)τ
(0)

(
∂G(0)/∂gij

)
u
(m)
(0)

λ1 − λm
.

Recall that the eigenvalues of G(0) satisfy λ1 ≥ λ2 ≥ λ3 = · · · = λp0+q0 = 0.
Thus, by the argument similar to Zhu and Fang (1996), we have the following
expression:

√
n
(
û(1)n − u(0)

)
(A.16)

=
√
n

p0+q0∑

m=2

u
(m)
(0) u

(m)τ
(0)

(
Gn(0) −G(0)

)
u
(m)
0

λ1 − λm
+ oP

(√
n‖Gn(0) −G(0)‖L1

)
,

where ‖A‖L1 =
∑

1≤s,t,≤k |ast| for any k × k matrix A = (ast)1≤s,t,≤k.
We now establish an asymptotic expansion of Gn(0) − G(0). Write Cn1 =

(Σ
−1/2
n(0) − Σ

−1/2
(0) )M(0)Σ

−1/2
(0) , Cn2 = Σ

−1/2
(0) (Mn(0) − M(0))Σ

−1/2
(0) , and Cn3 =

Σ
−1/2
(0) (Mn(0)−M(0))(Σ

−1/2
n(0) −Σ

−1/2
(0) )+(Σ

−1/2
n(0) −Σ

−1/2
(0) )(Mn(0)−M(0))Σ

−1/2
(0) +

(Σ
−1/2
n(0) −Σ

−1/2
(0) )(Mn(0)−M(0))(Σ

−1/2
n(0) −Σ

−1/2
(0) )+(Σ

−1/2
n(0) −Σ

−1/2
(0) )M(0)(Σ

−1/2
n(0) −

Σ
−1/2
(0) ). Then we have

√
n(Gn(0) −G(0)) =

√
n(Σ

−1/2
n(0) Mn(0)Σ

−1/2
n(0) − Σ

−1/2
(0) M(0)Σ

−1/2
(0) )

=
√
n
{
Cn1 +Cτ

n1 +Cn2

}
+
√
nCn3.
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Applying the asymptotic expansion of Σ
−1/2
n(0) −Σ

−1/2
(0) in Lemma 2.4 of Yu et al.

(2011), we have

√
n
(
Σ

−1/2
n(0) − Σ

−1/2
(0)

)
=

1√
n

n∑

i=1

ℵ
Σ

−1/2

(0)

(Ti0) +OP

(
1√
n

)
.

Thus,

√
n
(
Cn1 +Cτ

n1) =
√
n

{
(Σ

−1/2
n(0) − Σ

−1/2
(0) )M(0)Σ

−1/2
(0)

+Σ
−1/2
(0) M(0)(Σ

−1/2
n(0) − Σ

−1/2
(0) )

}

=
1√
n

n∑

i=1

{
ℵ
Σ

−1/2

(0)

(Ti0)M(0)Σ
−1/2
(0)

+Σ
−1/2
(0) M(0)ℵΣ

−1/2

(0)

(Ti0)

}
+ oP (1).

It follows from (A.15) in Zhu, Zhu and Feng (2010) that

√
n
(
Mn(0) −M(0)

)
=

1√
n

n∑

i=1

ℵM (Ti0, Yi) +OP

(
1√
n

)
.

So

√
nCn2 =

1√
n

n∑

i=1

Σ
−1/2
(0) ℵM (Ti0, Yi)Σ

−1/2
(0) + oP (1).

From the asymptotic expansions of Σ
−1/2
n(0) −Σ

−1/2
(0) and Mn(0) −M(0), we con-

clude that
√
nCn3 = oP (1). As a consequence, we have

√
n
(
Gn(0) −G(0)

)
=

1√
n

n∑

i=1

Σ
−1/2
(0)

{
Σ

1/2
(0) ℵΣ

−1/2

(0)

(Ti0)M(0)

+M(0)ℵΣ
−1/2

(0)

(Ti0)Σ
1/2
(0) + ℵM (Ti0, Yi)

}
Σ

−1/2
(0) + oP (1)

def
=

1√
n

n∑

i=1

Φi0 + oP (1).

Note that on the set {An = A0}, Gn(0) = GnI , Σn(0) = ΣnI , Mn(0) = MnI ,
p̃0 = p0 and q̃0 = q0. As eigenvalue decomposition is a linear operator, the
condition

√
n min

r≤p0+q0
{αr} → 0 and the perturbation theory entail that

∥∥ûIn −

û
(1)
n

∥∥
2
= oP (1/

√
n) on the set {An = A0}. Then, by (A.16), we have
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√
n
(
ûIn − u(0)

)
=

√
n

p0+q0∑

m=2

u
(m)
0 u

(m)τ
0

(
Gn(0) −G(0)

)
u
(m)
0

λ1 − λm

+ oP
(√
n‖Gn(0) −G(0)‖L1

)

=
1√
n

n∑

i=1

p0+q0∑

m=2

u
(m)
0 u

(m)τ
0 Φi0u

(m)
0

λ1 − λm
+ oP (1).

From Theorem 3.2 and λm = 0 for m ≥ 3, we know that
√
n(ṽn(0̃)− v(0)) equals√

nΣ
−1/2
n(0) (û

I
n − u(0)) +

√
n(Σ

−1/2
n(0) − Σ

−1/2
(0) )Σ

1/2
(0) v(0), which can be expressed as

1√
n

n∑

i=1

{
Σ

−1/2
(0)

p0+q0∑

m=2

u
(m)
0 u

(m)τ
0 Φi0u

(m)
0

λ1 − λmI(m ≤ 2)
+ ℵ

Σ
−1/2

(0)

(
Ti(0)

)
Σ

1/2
(0) v(0)

}
+ oP (1).

(A.17)

Together with P (An = A0) → 1 and (A.17),
√
n(ṽn(0̃) − v̂0) converges to

N(0(p0+q0)×1,Ω0) in distribution. We complete the proof.

A.7. Proof of Theorem 3.4

Recall that Jθ10 = 1/‖π1v(0)‖2Iq0 − 1/‖π1v(0)‖32
[
π1v(0)

]⊗2
. On the set {An =

A0}, π̃1 = π, p̃0 = p0 and q̃0 = q0 and P (An = A0) → 1. Using Delta method
and expression (A.17), we have

√
n

(
π̃1ṽn(0̃)

‖π̃1ṽn(0̃)‖2
− π1v(0)

‖π1v(0)‖2

)
L−→ N(0q0×1,Jθ10π1Ω0π

τ
1Jθ10).

Note that π1v(0) =
(
v(0),p0+1, v(0),p0+2, . . . , v(0),p0+q0

)τ
, and this is proportional

to θ10. From the asymptotic expression given in (A.17), we have

√
n
(
ṽn(0̃),p̃0+1 − v(0),p0+1

)
L−→ N(0, σ2

p0+1)

for some σ2
p0+1. Since v(0),p0+1 is non-zero, and when w 6= 0 the sign function

sign(w) is a continuous function and the first derivation of sign(w) is zero, it
follows that

√
n
(
sign(ṽn(0̃),p̃0+1)− sign(v(0),p0+1)

)
L−→ 0,

i,e, sign(ṽn(0̃),p̃0+1) = sign(v(0),p0+1) + oP (1/
√
n). Note that sign(v(0),p0+1)×

π1v(0)
‖π1v(0)‖2

= θ10. As a consequence, we have

√
n
(
θ̂10 − θ10

)
=

√
n
(
sign(ṽn(0̃),p̃0+1)π̃1ṽn(0̃)/‖π̃1ṽn(0̃)‖2 − θ10

)
,

which converges to N(0q0×1,Jθ10π1Ω0π
τ
1Jθ10) in distribution. We complete the

proof.
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A.8. Proof of Theorem 3.5

Step C.1. The numerator of κ̂ can be decomposed as:

1

n

n∑

i=1

{
Yi − r̂Y (θ̂

τ

10ZiI ; θ̂10)
}{

XiI − r̂XI (θ̂
τ

10ZiI ; θ̂10)
}τ

(π̃2ṽn(0̃))

=

[
1

n

n∑

i=1

{Yi − rY (θ
τ
10ZiI ; θ10)} {XiI − rXI (θ

τ
10ZiI ; θ10)}τ (π2v(0))

+
1

n

n∑

i=1

{Yi − rY (θ
τ
10ZiI ; θ10)} {XiI − rXI (θ

τ
10ZiI ; θ10)}τ

(π̃2ṽn(0̃) − π2v(0))

]
+Rn1

def
= In1 +Rn1,

where

Rn1 =
1

n

n∑

i=1

{Yi − rY (θ
τ
10ZiI ; θ10)}

{
rXI (θ

τ
10ZiI ; θ10)− r̂XI (θ̂

τ

10ZiI ; θ̂10)
}τ

(π̃2ṽn(0̃))

+
1

n

n∑

i=1

{
rY (θ

τ
10ZiI ; θ10)− r̂Y (θ̂

τ

10ZiI ; θ̂10)
}

{XiI − rXI (θ
τ
10ZiI ; θ10)}τ (π̃2ṽn(0̃))

+
1

n

n∑

i=1

{
rY (θ

τ
10ZiI ; θ10)− r̂Y (θ̂

τ

10ZiI ; θ̂10)
}

{
rXI (θ

τ
10ZiI ; θ10)− r̂XI (θ̂

τ

10ZiI ; θ̂10)
}τ

×(π̃2ṽn(0̃))
def
= R

(1)
n1 +R

(2)
n1 +R

(3)
n1 .

Recall that on the set {An = A0}, p̃0 = p0, q̃0 = q0, π̃2 = π2, ZiI = Zi0 and
XiI = Xi0 for i = 1, . . . , n, and rXI (t; ς) = rX0 (t; ς), r̂XI (t; ς) = r̂X0 (t; ς). Using
β10 = κ× (π2v(0)) and the result in Theorem 3.3 that ṽn(0̃)−v(0) = OP (1/

√
n),

we can obtain the following asymptotic expression:

In1 = κ(π2v(0))
τ 1

n

n∑

i=1

X̆i0X̆
τ
i0(π2v(0)) +

1

n

n∑

i=1

εiX̆
τ
i0(π2v(0))

+ κ(π2v(0))
τ 1

n

n∑

i=1

X̆i0X̆
τ
i0

{
π2(ṽn(0̃) − v(0))

}
+ oP

(
1√
n

)
.

Next, we show that Rn1 is of order oP (1/
√
n). First, we deal with R

(1)
n1 on the

set {An = A0}.
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R
(1)
n1 =

1

n

n∑

i=1

(εi + βτ
10X̆i0) {rX0(θ

τ
10Zi0; θ10)− r̂X0(θ

τ
10Zi0; θ10)}τ (π̃2ṽn(0̃))

+
1

n

n∑

i=1

(εi + βτ
10X̆i0)

{
r̂X0(θ

τ
10Zi0; θ10)− r̂X0 (θ̂

τ

10Zi0; θ̂10)
}τ

(π̃2ṽn(0̃))

def
= R

(1)A
n1 +R

(1)B
n1 .

By applying Proposition 1(iii) in Cui et al. (2011), we can obtain that

r̂X0(θ
τ
10Zi0; θ10)− r̂X0 (θ̂

τ

10Zi0; θ̂10) (A.18)

=
{
r′X0

(θτ
10Zi0; θ10) Z̆i0 +OP

(√
h4 + n−1h−3

)}τ

(θ̂10 − θ10).

Thus, (A.18) entails that R
(1)B
n1 = oP (1/

√
n). Now, we consider the first term

R
(1)A
n1 on the set {An = A0}, which can be expressed as follows.

R
(1)A
n1 =

1

n

n∑

i=1

1

n

n∑

j=1

(εi + β
τ
10X̆i0)

{
ψj(θ

τ
10Zi0, θ10)

(
rX0(θ

τ
10Zi0, θ10)−Xj0

)

1
n

∑n
j=1 ψj(θ

τ
10Zi0, θ10)

}τ

(π̃2ṽn(0̃)).

We first derive asymptotic expansions of Vn,0(θ
τ
0Zi0, θ10), Vn,1(θ

τ
10Zi0, θ10) and

Vn,2(θ
τ
10Zi0, θ10), which were defined in the first paragraph of Section 3.4, and

then that of ψj(θ
τ
10Zi0, θ10) for j = 1, . . . , n. It follows from the arguments

similar to the proof of Theorem 3.1 in Fan and Gijbels (1996) that, as h → 0
and nh→ ∞,

E
{∣∣∣

1

n
Vn,2(θ

τ
10Zi0, θ10)− fθτ

10Z0(θ
τ
10Zi0)

∣∣∣
}2

= O

(
h4 +

1

nh

)
,

E
{∣∣∣

1

nh
Vn,1(θ

τ
10Zi0, θ10)− hf ′

θτ
10Z0

(θτ
10Zi0)

∫
K(w)w2dw

∣∣∣
}2

= O

(
h6 +

1

nh

)
,

E
{∣∣∣

1

nh2
Vn,2(θ

τ
10Zi0, θ10)− fθτ

10Z0(θ
τ
10Zi0)

∫
K(w)w2dw

∣∣∣
}2

= O

(
h4 +

1

nh

)
.

Thus, R
(1)A
n1 can be asymptotically expressed as

R
(1)A
n1 =

1

n2

n∑

i=1

n∑

j=1

Kh(θ
τ
10Zj0 − θτ

10Zi0)
(
εi + βτ

10X̆i0

)

{
rX0 (θ

τ
10Zi0, θ10)−Xj0

fθτ
10Z0(θ

τ
10Zi0)

}τ

× (π2v(0))(1 + oP (1)).

We know that, if nh2 → ∞,

1

nh2

n∑

i=1

K(0)(εi + βτ
10X̆i0)

{rX0(θ
τ
10Zi0, θ10)−Xi0}τ (π1v(0))

fθτ
10Z0(θ

τ
10Zi0)

= oP (1/
√
n)
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by the law of large numbers. Using the arguments similar to those used by Zhu

and Fang (1996), we can prove that the summation for i 6= j within R
(1)A
n1 is a

standard U-statistic with a varying kernel with the bandwidth h; that is,

2cn
n(n− 1)

∑

1≤i<j≤n

H
{
(Xi0, θ

τ
10Zi0, εi), (Xj0, θ

τ
10Zj0, εj)

}
(1 + oP (1)),

where cn = (n−1)/n. Note thatK(·) is a symmetric function and the symmetric
U-statistic kernel is H

{
(Xi0, θ

τ
10Zi0, εi), (Xj0, θ

τ
10Zj0, εj)

}
given as

1

2

{(
εi + βτ

10X̆i0

)
(rX0(θ

τ
10Zi0, θ10)−Xj0)

fθτ
10Z0(θ

τ
10Zi0)

+

(
εj + βτ

10X̆j0

)
(rX0(θ

τ
10Zj0, θ10)−Xi0)

fθτ
10Z0(θ

τ
10Zj0)

}τ

× (π2v(0))Kh(θ
τ
10Zj0 − θτ

10Zi0).

Using the projection of U-statistics (Serfling, 1980, Section 5.3.1), we obtain
that

R
(1)A
n1 =

1

n

n∑

i=1

H∗(Xi0, θ
τ
10Zi0, εi)(1 + oP (1)) + oP

(
1√
n

)

with H∗(Xi0, θ
τ
10Zi0, εi) being E[H{(Xi0, θ

τ
10Zi0, εi), (Xj0, θ

τ
10Zj0, εj)}|(Xi0,

θ
τ
10Zi0, εi)], which can be expressed as

1

2

εi + βτ
10X̆i0

fθτ
10Z0(θ

τ
10Zi0)

{
(r′

X0
(θτ10Zi0, θ10)f

′
θτ
10Z0

(θτ
10Zi0)

+
1

2
r′′
X0

(θτ
10Zi0, θ10)fθτ

10Z0(θ
τ
10Zi0)

}
h2.

Note that EH∗(Xi0, θ
τ
10Zi0, εi) = 0, then 1/

√
n
∑n

i=1 H
∗(Xi0, θ

τ
10Zi0, εi) =

OP (1)h
2. It follows from h→ 0 that

√
nR

(1)A
n1 = oP (1). Using a similar analysis

to the proof for R
(1)
n1 , we obtain

√
nR

(2)
n1 = oP (1). Applying Lemma A.4 in Wang

et al. (2010) and Cauchy-Schwarz inequality, we have, as (logn)2/(nh2) → 0,

R
(3)
n1 ≤ 1

n

[
n∑

i=1

{
rY (θτ

10Zi0; θ10)− r̂Y (θ̂
τ

10Zi0; θ̂10)
}2
]1/2

×
(

n∑

i=1

[{
rX0 (θ

τ
10Zi0; θ10)− r̂X0(θ̂

τ

10Zi0; θ̂10)
}τ

π̃2ṽn(0̃)

]2
)1/2

= OP

(
logn

nh

)
= oP

(
1√
n

)
.

So on the set {An = A0}, we have that R
(1)
n1 , R

(2)
n1 and R

(3)
n1 are all oP (1/

√
n).

Again as P (An = A0) → 1, we obtain that Rn1 = oP (1/
√
n).
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Step C.2. We now decompose the denominator of κ̂ on the set {An = A0} as
follows.

1

n

n∑

i=1

[{
Xi0 − r̂X0(θ̂

τ

10Zi0; θ̂10)
}τ

(π̃2ṽn(0̃))
]2

=

[
1

n

n∑

i=1

(π2v(0))
τ X̆i0

X̆τ
i0(π2v(0)) +

2

n

n∑

i=1

(π1v(0))
τ X̆i0X̆

τ
i0{(π̃2ṽn(0̃) − π2v(0))}

]
+Rn2

def
= In2 +Rn2.

Similar to the analysis of Rn1, we obtain that Rn2 = oP (1/
√
n). Recalling that

the asymptotic expression of ṽn(0̃) in (A.17) and P (An = A0) → 1, we have

(
Fn1

Fn2

)
def
=

(
1√
n

∑n
i=1 εiβ

τ
10X̆i0

βτ
10ΣX̆0

[√
n(π̃2ṽn(0̃) − π2v(0))

]
)

L−→ N (02×1,W) ,

where W is defined in (3.2). As a consequence, we have

√
n

(
In1 − 1

nκ
∑n

i=1 β
τ
10X̆i0X̆

τ
i0β10

In2 − 1
nκ2

∑n
i=1 β

τ
10X̆i0X̆

τ
i0β10

)
=

(
1/κ 1
0 2/κ

)(
Fn1

Fn2

)

L−→ N (0,W∗) ,

where W∗ =
(
1/κ 1
0 2/κ

)
W

(
1/κ 0
1 2/κ

)
.

We have shown that
√
nRn1 = oP (1),

√
nRn2 = oP (1), and

1
n

∑n
i=1 β

τ
10X̆i0 ×

X̆τ
i0β10 = βτ

10ΣX̆0
β10, a.s. The asymptotic distribution of κ̂ can be obtained by

the following expression and a direct calculation:

√
n(κ̂−κ) =

√
n

(
In1 +Rn1

In2 +Rn2
− κ

)
=

√
n

(
In1
In2

− κ

)
+ oP (1)

=
√
n

(
In1
In2

−
1

nκ
∑n

i=1 β
τ
10X̆i0X̆

τ
i0β10

1
nκ2

∑n
i=1 β

τ
10X̆i0X̆τ

i0β10

)
+ oP (1)

L−→ N
(
0, σ2

κ
)
.

A.9. Proof of Theorem 3.6

Note that on the set {An = A0}, p̃0 = p0, q̃0 = q0, then

√
n
(
β̂10 − β10

)
=

√
n
{
κ̂× (π̃2ṽn(0̃))− κ× (π2v(0))

}

=
√
n(κ̂− κ)×

(
π2v(0)

)
+ κ

{√
n
(
π̃2ṽn(0̃) − π2v(0)

)}
+ oP (1) .

(A.19)
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Taylor expansion implies

√
n(κ̂− κ) =

√
n
(
In1 −

1

nκ

n∑

i=1

βτ
10X̆i0X̆

τ
i0β10

) κ2

βτ
10ΣX̆0

β10

−
√
n
(
In2 −

1

nκ2

n∑

i=1

βτ
10X̆i0X̆

τ
i0β10

) κ3

βτ
10ΣX̆0

β10

+ oP (1)

=
κ2

βτ
10ΣX̆0

β10

(
1

κ
Fn1 + Fn2

)
− 2

κ

κ3

βτ
10ΣX̆0

β10

Fn2 + oP (1).

It follows that

√
n(κ̂− κ) =

κ

βτ
10ΣX̆0

β10

Fn1 −
κ2

βτ
10ΣX̆0

β10

Fn2 + oP (1). (A.20)

Note that β10 = κ× (π2v(0)). A combination of (A.17), (A.19) and (A.20) and
P (An = A0) → 1 yields

√
n
(
β̂10 − β10

)
=

β10

βτ
10ΣX̆0

β10

Fn1 −
κβ10

βτ
10ΣX̆0

β10

Fn2

+ κ

{√
n
(
π̃2ṽn(0̃) − π2v(0)

)}
+ oP (1)

L−→ N (0,Σβ10) .

We complete the proof.
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