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1. Introduction

This paper is concerned with nonparametric density estimation in a specific
inverse problem. Observations are not directly available from the target dis-
tribution, but suffer from both measurement errors and the so-called pile-up
effect. The pile-up effect refers to some right-censoring, since an observation is
defined as the minimum of a random number of i.i.d. variables from the target
distribution. The pile-up distribution is thus the result of a nonlinear distortion
of the target distribution. In our setting we also take into account measurement
errors, that is the pile-up effect applies to the convolution of the target density
and a known error distribution. The aim is to estimate the target density in
spite of the pile-up effect and additive noise.

The pile-up model is encountered in time-resolved fluorescence when lifetime
measurements are obtained by the technique called Time-Correlated Single-
Photon Counting (TCSPC) [20]. The fluorescence lifetime is the duration that
a molecule stays in the excited state before emitting a fluorescence photon
[17, 26]. The distribution of the fluorescence lifetimes associated with a sample
of molecules provides precious information on the underlying molecular pro-
cesses. Lifetimes are used in various applications as e.g. to determine the speed
of rotating molecules or to measure molecular distances. This means that the
knowledge of the lifetime distribution is required to obtain information on phys-
ical and chemical processes.

In the TCSPC technique, a short laser pulse excites a random number of
molecules, but for technical reasons, only the arrival time of the very first fluo-
rescence photon striking the detector can be measured, while the arrival times
of the other photons are unobservable. The arrival time of a photon is the sum
of the fluorescence lifetime and some noise, which is some random time due
to the measuring instrument as e.g. the time of flight of the photon in the
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photon-multiplier tube. Hence, TCSPC observations can be described by a pile-
up model with measurement errors. The goal is to recover the distribution of
the lifetimes of all fluorescence photons from the piled-up observations.

Until recently TCSPC was operated in a mode where the pile-up effect is
negligible. However, a shortcoming of this mode is that the acquisition time is
very long. Recent studies have made clear that from an information viewpoint it
is a better strategy to operate TCSPC in a mode with considerable pile-up effect
[23, 24]. Consequently, an estimation procedure is required that takes the pile-up
effect into account. The concern of this paper is to provide such a nonparametric
estimator of the target density and furthermore to include measurement errors
in the model in order to deal with real fluorescence data. Therefore, we develop
adequate deconvolution strategies for the correction in the pile-up model and
test those methods on simulated data as well as on real fluorescence data.

It is noteworthy that the pile-up model is connected to survival analysis, since
it can be considered as a special case of the nonlinear transformation model [25].
Indeed, it is straightforward to extend the methods proposed in this paper to
this more general case. Moreover, the model can also be viewed as a biased data
problem with known bias, see [7]. Nonetheless, the consideration of additional
measurement errors is new and fruitful. Since there are now two sources of mis-
measurement, we have to face real technical difficulties to preserve standard
deconvolution rates: either a loss is admitted, or the sample has to be split in
two independent parts. Finally, we show that deconvolution methods can be
used to complete the study in the spirit of [14, 22, 13] or [10]. These techniques
are of unusual use in both survival analysis and pile-up model studies. Numerical
results confirm the adequacy of these methods in practice.

In Section 2, the model is described, together with the main assumptions.
Then the nonparametric estimation strategy to recover the target density in the
pile-up model with measurement errors is presented. In Section 3, the properties
of the estimator are described, which are mainly risk bounds for the estimator.
The rates obtained in this framework depend on the smoothness of the error
density and on the choice of a cut-off parameter. Furthermore, a cut-off selection
strategy is proposed in Section 4 to achieve an adequate bias-variance trade-off.
In Section 5 the performance of the methods is assessed via simulations and by
an application on a dataset of fluorescence lifetime measurements. All proofs
are relegated to Section 6.

2. Pile-up model with measurement errors and assumptions

2.1. Notations

In the following, for u and v two functions, we denote by u ◦ v the function
x 7→ u ◦ v(x) := u(v(x)). If u is bijective, we denote by u−1 the inverse of the
function u, that is the function such that (u−1 ◦u)(x) = (u ◦u−1)(x) = x for all
x. We also denote by u̇ the derivative of u and by ü the second-order derivative
of u, when they exist.
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If u and v are real valued and square-integrable, we define the convolution
product u ⋆ v of u and v by (u ⋆ v)(x) =

∫
u(x− t)v(t)dt and the scalar product

〈u, v〉 by 〈u, v〉 =
∫
u(t)v(t)dt. If the functions are complex valued, the conjugate

of v is used instead of simply v. If u is integrable, we define the Fourier transform
of u by u∗(t) =

∫
e−itxu(x)dx. We recall that for u and v integrable and square-

integrable functions, (u ⋆ v)∗ = u∗v∗. Moreover, Parseval’s formula gives the
useful relations

(u∗)∗(x) = (2π)u(−x) and

∫
u∗(t)v̄∗(t)dt = (2π)

∫
u(x)v̄(x)dx ,

where z̄ denotes the conjugate of the complex number z.

2.2. The pile-up model with measurement error

We consider experiments that provide observations

Z1, . . . , Zn (1)

of independent identically distributed (i.i.d.) random variables with common
density g and cumulative distribution function (c.d.f.) G. The random variables
Zk follow the model defined by

Zk = min{Y1,k + η1,k, . . . , YNk,k + ηNk,k} , k = 1, . . . , n , (2)

where

[M1] the (Yi,k)i,k≥1 are i.i.d. random variables with density f and c.d.f. F ,
[M2] the (ηi,k)i,k≥1 are i.i.d. with density fη, which is assumed to be known

and such that f∗
η does not vanish (i.e. f∗

η (t) 6= 0 for all t ∈ R),
[M3] the random variables Nk take their values in N∗ = {1, 2, . . .}, are i.i.d.

with the same distribution as N and such that E(N) < +∞. We denote
by Mθ(u) = E(uN ) =

∑∞
k=1 u

kP(N = k), for u ∈ [0, 1], the probability
generating function associated with N1, and we assume that the function
Mθ is known, up to some possible parameter θ.

[M4] (Yi,k)i,k≥1, (ηi,k)i,k≥1 and (Nk)k≥1 are independent.

Our aim is to estimate the density f of the random variables Yi,k from the
observations (1). Note that the random variables Nk are not observed.

Model (2) differs from a compound Poisson process in two aspects: the Zj ’s

are defined by a minimum instead of a sum
∑Nj

i=1 Yi,j and we have additional
noise measurements η. Thus decompounding as in [27] or [8] does not apply.
Note also that the assumption f∗

η (t) 6= 0 rules out uniform type distributions,
for which specific methods have recently been developed (see [15, 12]).

Main example In the fluorescence application it is assumed that the number
N of photons per excitation cycle follows a Poisson distribution with known
parameter θ. Note that the events where no photon is detected, i.e. N = 0, are
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discarded from the sample. Hence, we consider a Poisson distribution restricted
on N∗ with renormalized probability masses given by

P(N = k) =
1

eθ − 1

θk

k!
.

Generally, θ is considered as known. Then the functions Mθ and Ṁθ are known
as well and given by Mθ(u) = (eθu− 1)/(eθ − 1) and Ṁθ(u) = θeθu/(eθ− 1). We
will discuss how θ is estimated and the cost of the substitution in Sections 3.3
and 4.2.

We shall also provide a discussion about the assumption that fη is known in
Section 4.3.

2.3. Definition of the estimator

It is easy to see that the c.d.f. G verifies

1−G(z) = P(Z1 > z) =

∞∑

k=1

P(N1 = k)P

(
min
1≤i≤k

(Yi,1 + ηi,1) > z

)

=

∞∑

k=1

P(N1 = k)[P(Y1,1 + η1,1 > z)]k .

Therefore, if we denote by FY +η the c.d.f. of Y1,1 + η1,1, we get

G(z) = 1−Mθ ◦ (1− FY +η)(z) . (3)

In [23] and in the absence of noise, G is referred to as the pile-up distribution
function. Recalling that Mθ is bijective, we deduce from (3) that

FY +η(z) = 1−M−1
θ ◦ (1−G)(z) . (4)

The assumption E(N1) < +∞ on N1 implies that Ṁθ exists with ∀u ∈ [0, 1],
Ṁθ(u) = E(N1u

N1−1). Consequently, derivation can be applied on both sides of
relation (4) and by using that the derivative of M−1

θ is equal to 1/Ṁθ ◦M−1
θ ,

we get for fY+η denoting the density of Y1,1 + η1,1,

fY+η(z) = wθ ◦G(z)g(z) with wθ(z) =
1

Ṁθ ◦M−1
θ (1− z)

. (5)

Note that since Mθ is assumed to be known, the weight function wθ is also
known. Moreover, equation (5) implies that moments of the target distribution
of Y1,1 are related to moments of the pile-up distribution of Z. Namely, for any
measurable bounded function h, we have

E(h(Y1,1 + η1,1)) = E(wθ ◦G(Z1)h(Z1)) . (6)
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Since Y1,1 and η1,1 are independent, we have fY+η = f ⋆ fη. By taking the
Fourier transform and using that f∗

η does not vanish, we get for all t ∈ R

f∗(t) =
f∗
Y+η(t)

f∗
η (t)

,

and by the Fourier inverse formula

f(z) =
1

2π

∫
eizt

f∗
Y+η(t)

f∗
η (t)

dt .

Therefore, we propose the following estimator of f

f̂m(z) =
1

2π

∫ πm

−πm

eizt
f̂∗
Y+η(t)

f∗
η (t)

dt , (7)

where the cutoff πm is required to ensure convergence of the integral. We use
(5) and more precisely (6) to find an estimator of f∗

Y+η. Indeed, we have

f∗
Y+η(t) = E(e−it(Y1,1+η1,1)) = E(e−itZ1wθ ◦G(Z1)) ,

yielding

f̂∗
Y+η(t) =

1

n

n∑

k=1

wθ ◦ Ĝn(Zk)e
−itZk , with Ĝn(z) =

1

n

n∑

k=1

1{Zk≤z} . (8)

The estimate Ĝn is the standard empirical c.d.f.. We note that, since wθ ◦
Ĝn(Z(k)) = wθ(k/n) when Z(k) denotes the k-th order statistic associated with
(Z1, . . . , Zn) satisfying Z(1) ≤ · · · ≤ Z(n), we can equivalently write

f̂∗
Y+η(t) =

1

n

n∑

k=1

wθ(k/n)e
−itZ(k) .

In the literature such weighted sums of order statistics are known as L-statistics.
Now, gathering (7) and (8), we get the estimator

f̂m(z) =
1

2π

∫ πm

−πm

eizt
1
n

∑n
k=1 wθ ◦ Ĝn(Zk)e

−itZk

f∗
η (t)

dt (9)

=
1

2πn

n∑

k=1

wθ ◦ Ĝn(Zk)

∫ πm

−πm

eit(z−Zk)

f∗
η (t)

dt

=
1

2πn

n∑

k=1

wθ(k/n)

∫ πm

−πm

eit(z−Z(k))

f∗
η (t)

dt .

The last two expressions show clearly why the cutoff is necessary: it is known
that the Fourier Transform of a density tends to zero near infinity, i.e. here f∗

η (t)
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tends to zero when t gets large and thus, the integral over R can not be defined.
It is worth noting that the estimate given by formula (9) is real-valued: indeed,
taking its conjugate leads to the same formula by virtue of the symmetry of the
integration interval.

We can also see why the estimator f̂m is going to involve technical difficulties
for the theoretical study. Indeed, we apply simultaneously three approximations:

1. the unknown c.d.f. G is approached by its empirical version,
2. we deal with the pile-up effect by using weights wθ ◦ Ĝn(Zk), which can,

by the way, be related to bias corrections in survival analysis,
3. we deal with measurement errors by applying a deconvolution operator

involving a cut-off parameter, · 7→ 1
2π

∫ πm

−πm
eit·/f∗

η (t)dt.

It is interesting to mention that the estimator can be seen as a weighted
kernel deconvolution estimator. Indeed, by setting h = 1/m, we have

f̂m(z) =
1

n

n∑

k=1

wθ ◦ Ĝn(Zk)K̃h(z − Zk), K̃h(z) =
1

2π

∫
eizt

K∗(th)

f∗
η (t)

dt, (10)

where the kernel K is in this case the particular sinus cardinal kernel satisfy-
ing K∗(t) = 1|t|≤π. This makes a link with many other works in the kernel
deconvolution setting, see [13, 14, 11].

3. Study of the estimator

3.1. Risk bound on the estimator

In addition to assumptions [M1]-[M4], we require

[M5] P(N = 1) 6= 0 and E(N2) < +∞ .

The assumption P(N = 1) 6= 0 is required to ensure that Ṁθ(0) 6= 0 and thus
wθ(u) is well defined for u ∈ [0, 1]. More specifically, the method does not work
if P(N = 1) = 0: we can see from (5), that then, the link between the densities
would fail for z = 1.

Note that, if P(N = 1) = 1, then there is no pile-up effect and the problem
becomes a pure deconvolution question. The assumption E(N2) < +∞ ensures
that M̈θ is well defined. In other words, under [M5], we can see that for all
u ∈ [0, 1],

0 < Ṁθ(0) = P(N = 1) < Ṁθ(u) < Ṁθ(1) = E(N) < +∞ , (11)

and

0 ≤ M̈θ(0) = 2P(N = 2) ≤ M̈θ(u) ≤ M̈θ(1) = E[N(N − 1)] < +∞ .

This implies that for all u ∈ [0, 1],

0 < wθ(0) =
1

Ṁθ(1)
=

1

E(N)
≤ wθ(u) ≤ wθ(1) =

1

Ṁθ(0)
=

1

P(N = 1)
< ∞ .
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Moreover, noting that

ẇθ(u) = M̈θ ◦M−1
θ (1− u)/[Ṁθ ◦M−1

θ (1− u)]3 ,

we also have, for all u ∈ [0, 1],

0 ≤ ẇθ(u) ≤
supu∈[0,1] M̈θ(u)

infu∈[0,1][Ṁθ(u)]3
≤ E[N(N − 1)]

[P(N = 1)]3
< +∞ .

Lastly, it is convenient to mention that, still under [M5], wθ is Lipschitz contin-
uous, i.e.

∃cw,θ > 0 such that ∀x, y ∈ [0, 1], |wθ(x) − wθ(y)| ≤ cw,θ|x− y| , (12)

and clearly, we can take

cw,θ =
E[N(N − 1)]

[P(N = 1)]3
.

Remark 3.1. In the more general nonlinear transformation model the function
M : [0, 1] → [0, 1] in (3) is not necessarily a probability generating function, but
any function M such that G given by (3) is a c.d.f. [25]. That is G is still the
result of a distortion of the target distribution F , but the interpretation as a
minimum is no longer valid. Those models are studied in survival analysis. The
estimators proposed in this paper for the pile-up model are also applicable for
nonlinear transformation models.

We now provide a risk bound for the estimator defined in (9).

Proposition 3.1. Consider the model given by (1)-(2) under Assumptions
[M1]–[M5]. Let fm denote the function verifying f∗

m = f∗
1[−πm,πm]. Then

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + C
∆η(m)

n
where ∆η(m) =

1

2π

∫ πm

−πm

du

|f∗
η (u)|2

,

(13)
and

C = 2

(∫ 1

0

w2
θ(u)du+ 2c2w,θ

)
≤ 2

(
1

P(N = 1)
+ 2

(
E[N(N − 1)]

[P(N = 1)]3

)2
)
.

In the evaluation of C, we use that
∫ 1

0 w2
θ(u)du =

∫ 1

0 (1/Ṁθ(u))du. In the
bound on C, we can see that the smaller P(N = 1), the larger the bound. On

the opposite, if P(N = 1) = 1, then cw,θ = 0 and
∫ 1

0
w2

θ(u)du = 1 and C is
minimal.

Moreover, when reading the estimator under the form (10), it is clear that the
Central Limit Theorem for L-statistics proved in [23] (see Appendix B, Theorem
5 and Proposition 1 therein) can be applied to obtain asymptotic normality

results for
√
n(f̂m(z) − fm(z)) with computable variance, this is illustrated in

Section 5. We will also use in the simulations the proposals given in [5].
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Note that ‖f − fm‖2 = (2π)−1
∫
|u|≥πm |f∗(u)|2du and thus this quantity

is clearly decreasing when m increases. On the contrary, the variance term
∆η(m)/n is increasing with m. Hence (13) is a bias-variance decomposition,
and a compromise is required for the choice of m.

Another remark is in order. Obviously, the variance depends crucially on
the rate of decrease to 0 of f∗

η near infinity. For instance, if fη is the standard

normal density, the variance is proportional to
∫
|u|≤πm

eu
2

du/n. Whereas for

the Laplace distribution where fη(x) = e−|x|/2, we have 1/f∗
η (u) = 1 + u2 and

a variance of order O(m5/n).

3.2. Other ways to view the estimator

The estimator f̂m can also be obtained in a different way. It is classical to define
a density estimator as the minimizer over a set of functions h of a contrast
γn(h) which is an approximation of ‖h−f‖2−‖f‖2 = ‖h‖2−2E[h(Y )]. Writing
E[h(Y )] = 〈h, f〉 = (2π)−1〈h∗, f∗

Y 〉 = (2π)−1〈h∗, f∗
Y1+η1

/f∗
η 〉 suggests to consider

functions h in
Sm = {h, support(h∗) ⊂ [−πm, πm]}

and the contrast

γn(h) = ‖h‖2 − 1

π

∫
h∗(−u)

f̂∗
Y1+η1

(u)

f∗
η (u)

du ,

where f̂∗
Y1+η1

is given by (8). Now we can see that the estimator f̂m minimizes

the contrast γn. Indeed, note that f̂∗
m(u) = f̂∗

Y1+η1
/f∗

η (u) 1[−πm,πm](u) and

thus f̂m ∈ Sm. By Parseval’s formula 〈h, f̂m〉 = (2π)−1〈h∗, f̂∗
m〉. This yields that

γn(h) = ‖h‖2 − 2〈h, f̂m〉 = ‖h− f̂m‖2 − ‖f̂m‖2. Therefore,

f̂m = arg min
h∈Sm

γn(h).

Another expression of the estimator is obtained by describing more precisely
the functional spaces Sm on which the minimization is performed. To that aim,
let us define the sinc function and its translated-dilated versions by

ϕ(x) =
sin(πx)

πx
and ϕm,j(x) =

√
mϕ(mx− j) , (14)

where m is an integer that can be taken equal to 2ℓ. It is well known that
{ϕm,j}j∈Z is an orthonormal basis of the space of square integrable functions
having Fourier transforms with compact support in [−πm, πm] [19, p.22]. In-
deed, as ϕ∗(u) = 1[−π,π](u), an elementary computation yields that ϕ∗

m,j(x) =

m−1/2e−ixj/m
1[−πm,πm](x). Thus, the functions ϕm,j are such that

Sm = Span{ϕ
m,j

, j ∈ Z} = {h ∈ L2(R), supp(h
∗) ⊂ [−mπ,mπ]} .
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For any function h ∈ L2(R), let Πm(h) denote the orthogonal projection of h
on Sm given by Πm(h) =

∑
j∈Z

am,j(h)ϕm,j with am,j(h) =
∫
R
ϕm,j(x)h(x)dx.

As am,j(h) = (2π)−1〈ϕ∗
m,j , h

∗〉, it follows that Πm(h)∗ = h∗
1[−πm,πm], and thus

fm = Πm(f). Since f̂m minimizes γn, this yields that the estimator f̂m can be
written in the following convenient way

f̂m =
∑

j∈Z

âm,jϕm,j with âm,j =
1

2π

∫
ϕ∗
m,j(−u)

f̂∗
Y1+η1

(u)

f∗
η (u)

du . (15)

Consequently, ‖f̂m‖2 =∑j |âm,j|2.
Finally, one can see that

∑
j∈Z

ϕ∗
m,j(u)ϕm,j(x) = e−ixu

1|x|≤πm. This is an-
other way to see that (15) and (7) actually define the same estimator.

Remark 3.2. An interesting remark follows from equation (15). In the case
where no noise has to be taken into account, i.e. f∗

η (u) ≡ 1, the integral in

(15) becomes
∫
ϕ∗
m,j(−u)e−iuZkdu = 2πϕm,j(Zk) and it follows that âm,j =

(1/n)
∑n

k=1 ϕm,j(Z(k))w(k/n).

3.3. Semi-parametric Poisson setting

Clearly, Assumption [M5] is fulfilled in our main Poisson example. In this case,
the weight function wθ writes

wθ(u) =
1− e−θ

θ(1 − u(1− e−θ))
, (16)

with corresponding constant cw,θ = (eθ − 1)2/θ in (12). It is interesting to note
that P(N = 1) = θ/(eθ − 1) is a decreasing function of θ. As we have seen that
many important bounds depend on 1/P(N = 1), we conclude that the smaller θ,
the better the estimation procedure. We shall see in Section 5, that this remark
is confirmed by the simulation experiments.

In practice, even if physicists consider θ as known, it is in fact estimated as
follows.

In the fluorescence setting, N has indeed a classical Poisson distribution on
{0, 1, . . .} with parameter θ. That means, that there are excitations that are
not followed by the emission of photons. In this case, we set the variable to a
default value, here +∞. More precisely, observations Z1, . . . , Zn are i.i.d. and
defined by

Zj =

{
min{Y1,j + η1,j , . . . , YNj,j + ηNj ,j} , if Nj > 0
+∞ , if Nj = 0.

,

Therefore, one can use the proportion of observations Zj equal to +∞ to esti-
mate the Poisson parameter θ. As P(Z1 = +∞) = P(N1 = 0) = e−θ, a natural
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estimator of θ is given by

θ̂ = − log


 1

n+ 1

n∑

j=1

1{Zj = +∞}+ 1

n+ 1


 = log

(
n+ 1

#{Zj = +∞}+ 1

)
.

(17)

Now the following question naturally arises. Let θ̂ be a consistent estimator
of θ, we can wonder what conditions ensure a satisfactory behavior of

f̂m,θ̂(z) =
1

2π

∫ πm

−πm

eizt
1
n

∑n
k=1 wθ̂ ◦ G̃n(Zk)e

−itZk

f∗
η (t)

dt ,

G̃n(z) =
1

n+ 1

n∑

k=1

1{Zk≤z} .

(18)

In fact, we can extend the result of Proposition 3.1 under the following con-
dition:

[M6] (i) θ ∈ [0, θmax], E[(θ̂ − θ)2k] ≤ C1/n
k for k = 1, 2, 1 + 2a ,

(ii) sup
u∈[0,1]

sup
θ∈[0,2θmax]

∣∣∣∣
∂wθ(u)

∂θ

∣∣∣∣ ≤ C2(θmax) < +∞ ,

(iii) sup
u∈[0, n

n+1 ]

sup
θ∈R+

∣∣∣∣
∂wθ(u)

∂θ

∣∣∣∣ ≤ C3n
a , for some integer a ≥ 1.

Then, the following result holds.

Proposition 3.2. Consider the model given by (1)-(2) under Assumptions
[M1]–[M6]. Then

E

(
‖f̂m,θ̂ − f‖2

)
≤ ‖f − fm‖2 + C4

∆η(m)

n
, (19)

where

C4 = 3

(∫ 1

0

w2
θ(u)du+ 4c2w,θ + C1C2(θmax) +

C1C3

θ6max

)
,

and C1, C2, C3 are defined in [M6].
Moreover, in the Poisson case, if we assume that θ belongs to [0, θmax], then

θ̂ defined by (17) satisfies [M6] with C2(θmax) = e2θmax , C3 = 2 and a = 1.

We can see that inequality (19) extends inequality (13) for known θ with
simply increased multiplicative constant.

3.4. Discussion on the type of noise

To determine the rate of convergence of the MISE, it is necessary to specify the
type of the noise distribution. Let us consider two examples.
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Fig 1. Normalized histogram based on a sample of the noise distribution (solid line) and the

fitted density (dashed line) having the form of (20) with α̂ = 0.961, β̂ = 0.941, ν̂ = 5.74,
τ̂ = 5.89.

First, the noise distribution can be exponential with density given by fη(x) =
θe−θx

1x>0 , for some θ > 0. Then we have f∗
η (u) = θ/(θ + iu), |f∗

η (u)|2 =
1/(1 + u2/θ2) and ∆η(m) = m+ π2m3/(3θ2).

In the fluorescence setting, we found that TCSPC noise distributions can be
approximated by densities of the following form

fη(x) =

(
αν

α− β
e−νx − βτ

α− β
e−τx

)
1{x>0} , (20)

with constraints α > β, ν < τ , βτ/(αν) ≥ 1. Figure 1 presents a dataset
with 259,260 measurements from the noise distribution of a TCSPC instrument
(independently from the fluorescence measurements) and the corresponding es-
timated density having form (20) obtained by least squares fitting. Even though
the fit is not perfect, the estimated density captures the main features of the
dataset. Thus densities of the form (20) can be considered as a good approxi-
mative model of the noise distribution in the fluorescence setting. In the general
case of (20) we have

f∗
η (u) =

αν

α− β

1

ν + iu
− βτ

α− β

1

τ + iu
.

In the simulation study we will consider a noise distribution of the form (20)
with parameters α = 2, β = 1, ν = 1, τ = 2. In this case we get

|f∗
η (u)|2 =

4

(1 + u2)(4 + u2)
and ∆η(m) = m+

5

12
π2m3 +

1

20
π4m5 .

(21)
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From the application viewpoint it is hence interesting to consider the class
of noise distributions η whose characteristic functions decrease in the ordinary
smooth way of order γ, denoted by η ∼ OS(γ), defined by

c0(1 + u2)−γ ≤ |f∗
η (u)|2 ≤ C0(1 + u2)−γ . (22)

Clearly, we find that ∆η(m) = O(m2γ+1).

3.5. Rates of convergence on Sobolev spaces

In classical deconvolution the regularity spaces used for the functions to estimate
are Sobolev spaces defined by

C(a, L) =
{
g ∈ (L1 ∩ L2)(R),

∫
(1 + u2)a|g∗(u)|2du ≤ L

}
.

If f belongs to C(a, L), then

2π‖f − fm‖2 =

∫

|u|≥πm

|f∗(u)|2du =

∫

|u|≥πm

(1 + u2)a|f∗(u)|2/(1 + u2)adu

≤ (1 + (πm)2)−aL ≤ L(πm)−2a .

Therefore, if f ∈ C(a, L) and η ∼ OS(γ), Proposition 3.1 implies that

E(‖f̂m − f‖2) ≤ C1m
−2a + C2n

−1m2γ+1.

The optimization of this upper bound provides the optimal choice of m by
mopt = O

(
n1/(2a+2γ+1)

)
with resulting rate E(‖f̂m−f‖2) = O

(
n−2a/(2a+2γ+1)

)
.

More formally, one can show the following result.

Proposition 3.3. Assume that the assumptions of Proposition 3.1 are sat-
isfied and that f ∈ C(a, L) and η ∼ OS(γ) (see (22)). Then for mopt =
O(n1/(2a+2γ+1)), we have

E(‖f̂mopt
− f‖2) = O(n−2a/(2a+2γ+1)) .

Obviously, in practice the optimal choice mopt is not feasible since a and part
of the constants involved in the order are unknown. Therefore, another model
selection device is required to choose a relevant f̂m in the collection.

4. Automatic cutoff selection

4.1. Adaptive result

The general method consists in finding a data driven penalty pen(.) such that
the following model

m̂ = arg min
m∈Mn

{γn(f̂m) + pen(m)} (23)
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achieves a bias-variance trade-off, where Mn has to be specified. Usually, the
penalty has the same order as the variance term, while γn(f̂m) = −‖f̂m‖2 ap-
proximate the squared-bias ‖f − fm‖2 = ‖f‖2−‖fm‖2 up to the constant ‖f‖2.

Here in contrast to this general approach our result involves an additional
log(n)-factor in the penalty compared to the variance order, which implies a
loss with respect to the expected rate derived in Section 3.5. This is certainly
due to the complexity of the problem which involves three sources of errors.

Theorem 4.1. Consider the model given by (1)-(2) under Assumptions [M1]–
[M5]. Assume that f is square integrable on R and η ∼ OS(γ). Consider the

estimator f̂m̂ with model m̂ defined by (23) with penalty

pen(m) = κ

(∫ 1

0

w2
θ(u)du+ κ′c2w,θ log(n)

)
∆η(m)

n
, (24)

where κ and κ′ are numerical constants. Assume moreover that η is ordinary
smooth, i.e. η ∼ OS(γ), and that the model collection is described by

Mn = {m ∈ N,∆η(m) ≤ n} = {1, . . . ,mn} .

Then, there exist constants κ, κ′ such that

E

(
‖f̂m̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + pen(m)

)
+ C′ log(n)

n
, (25)

where C is a numerical constant and C′ depends on cw,θ and the bounds on wθ.

The numerical constants κ and κ′ are calibrated via simulations. In practice,
to compute m̂ by (23), we approximate γn(f̂m) = −‖f̂m‖2 = −∑j∈Z

|âm,j |2 by

−
∑

|j|≤Kn
|âm,j |2, where the sum is truncated to Kn of order n. We refer to

[10] for theoretical justifications of this truncation, see also [4].
A better result can be obtained with additional technicalities in the proof and

under slightly stronger assumptions: the price to pay for avoiding the log-loss
in the penalty and thus in the rate.

Theorem 4.2. Assume that all assumptions of Theorem 4.1 hold. In addi-
tion, assume that E(N3) < +∞ and that Ĝn(z) is estimated with a sample
(Z−j)1≤k≤n independent of (Zk)1≤k≤n and from the same distribution G. Then
inequality (25) can be obtained with

pen(m) = κ̃

(∫ 1

0

w2
θ(u)du + κ̃′

∫ 1

0

ẇ2
θ(u)du

)
∆η(m)

n
(26)

for some numerical constants κ̃, κ̃′.

Of course, the result in Theorem 4.2 requires to split the sample, but in the
fluorescence context, this is feasible since very large samples are available. The
assumption that E(N3) < +∞ is a weak constraint and is fulfilled in our main
Poisson example. Then we can see that there is no longer the log(n) factor in the
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penalty, so that the estimator can reach the optimal rate without loss. Indeed,
following steps analogous to Section 3.5, we can easily see that, if f belongs to
a Sobolev space C(a, L), then the order of the right-hand side of inequality (25)
is O

(
(n/ log(n))−2a/(2a+2γ+1)

)
in Theorem 4.1 and of order O

(
n−2a/(2a+2γ+1)

)

in Theorem 4.2.

4.2. Adaptive estimation in the semi-parametric Poisson case

Here we consider that N follows a Poisson distribution with parameter θ, which
we estimate by θ̂ defined in (17). Then we consider f̂m,θ̂ as given by (18). From
the theoretical point of view, the adaptive procedure gets slightly complicated
by the fact that the penalty becomes a random quantity. In this case, we can
prove the following result.

Theorem 4.3. Consider the model given by (1)-(2) and N ∼ P(θ), under
Assumptions [M1]–[M5] and θ ∈ [0, θmax]. Assume that f is square integrable

on R and η ∼ OS(γ). Consider the estimator f̂m̂,θ̂ given by (18) with model m̂

defined as m̂ = argminm∈Mn
{γn(f̂m,θ̂) + p̂en(m, θ̂)} with θ̂ given by (17) and

penalty

p̂en(m, θ̂) = κ̃

(∫ 1

0

w2
θ̂
(u)du+ κ̃′(c2

w,θ̂
+ e3θmax) log(n)

)
∆η(m)

n
, (27)

where κ and κ′ are some numerical constants. Assume moreover that η is ordi-
nary smooth, i.e. η ∼ OS(γ), and that the model collection is described by

Mn = {m ∈ N,∆η(m) ≤ n} = {1, . . . ,mn} .

Then, there exist constants κ̃, κ̃′ such that

E

(
‖f̂m̂,θ̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + p̂en(m, θ)

)
+ C′ log(n)

n
, (28)

where C is a numerical constant and C′ depends on cw,θ and the bounds on wθ.

The bound given by (28) has the same order as in the one-sample result for
known θ. The penalty is now given by (27) which looks like (24) in the known θ
case, with only a slight increase. Therefore, the estimation strategies are robust
to a missing parameter estimation.

4.3. Discussion about unknown noise density

In the fluorescence set-up, the noise distribution fη is generally unknown. How-
ever, independent, large samples of the noise distribution are available. Hence
one may still use the procedure proposed above by replacing f∗

η with the es-

timate f̂∗
η (u) =

∑M
k=1 e

−iuη−k/M, where (η−k)1≤k≤M denotes the independent
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noise sample. In [9] the same substitution is considered for deconvolution meth-
ods. It is shown that for ordinary smooth noise this leads to a risk bound
exactly analogous to the one given in (25). The main constraint given in [9] is
that M ≥ n1+ǫ, for some ǫ > 0. As the noise samples provided in the fluores-
cence setting have huge size, this condition is certainly fulfilled in our practical
examples. In the following numerical study we consider the estimator with both
the exact f∗

η and an estimated f̂∗
η . We refer to [9] for details on the procedure.

Theoretical justifications are beyond the scope of this paper, but would clearly
require a considerable amount of work due to our additional measurement errors
(pile-up effect and c.d.f. estimation).

5. Numerical results for simulated and real data

In this section we first give details on the practical implementation of the esti-
mation method. Then a simulation study is conducted to test the performance
of the method in different settings. Finally, an application to a sample of fluo-
rescence data shows that the estimation method gives satisfying results on real
measurements.

5.1. Practical computation of estimators

For practical computation of the estimator f̂m proposed in Section 3, the pre-
sentation of the estimator in the sinc basis given by (15) is convenient. So one
has to compute the coefficients âm,j. For j ≥ 0, they can be approximated as
follows

âm,j =
1

2π

∫
ϕ∗
m,j(−u)

f̂∗
Y1+η1

(u)

f∗
η (u)

du = (−1)j
√
m

2

∫ 2

0

eiπjv
f̂∗
Y1+η1

(πm(v − 1))

f∗
η (πm(v − 1))

dv

≈ (−1)j
√
m

T

T−1∑

t=0

ei2πjt/T
f̂∗
Y1+η1

(πm(2tT − 1))

f∗
η (πm(2t/T − 1))

= (−1)j
√
m(IFFT(H))j = ăm,j ,

where IFFT(H) is the inverse fast Fourier transform of the T -vector H whose

t-th entry equals f̂∗
Y1+η1

(πm(2t/T − 1))/f∗
η (πm(2t/T − 1)). Similarly, for j < 0

the coefficients âm,j are approximated by ăm,j = (−1)j
√
m(IFFT(H))j .

The integral ∆η(m) appearing in the penalty term pen(m) defined in (24) is
explicitly known if fη is known (see Section 3.4). In the case where we only have

an estimator f̂η, ∆η(m) can be approximated by a Riemann sum of the form

(m/S)
S∑

s=0

|f̂∗
η (−πm(1 − 2s

S
))|−2.

Then the best model m̂ is selected as the point of minimum of the criterion
given in (23). Finally, we obtain the estimator f̂m̂ =

∑T
j=−T ăm̂,jϕm̂,j with the

sinc functions ϕm,j defined in (14).
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Fig 2. True density and 25 estimated curves. Estimation by deconvolution with sinc basis
for different noise levels and different levels of the pile-up effect. Numbers below the figures
indicate mean and standard deviation of the selected model m̂.

Figure 2 presents the visual summary of our simulation results. We imple-
mented the estimation method when f has one of the following forms:

1. a Gamma(3, 3) p.d.f given by 1/(2!33)x2 exp(−x/3)1x>0, to have a bench-
mark with a smooth distribution,

2. an exponential p.d.f. given by (1/3) exp(−x/3)1x>0,
3. a Pareto(1/4, 1, 0) p.d.f. given by (1 + x/4)−5

1x>0,
4. a Weibull(1/4, 3/4) p.d.f. given by (3/4)(1/4)−3/4x−1/4 exp(−(4x)3/4)1x>0.

The last two densities are inspired by chemical results about fluorescence phe-
nomena given in [1, 2].



Adaptive density estimation in the pile-up model 2019

5.2. Simulation study

Implementation of the estimation method The adaptive estimator de-
scribed in Section 3 is tested with the numerical constants κ = 1 and κ′ = 0.001
in (24) and with N following a Poisson distribution. The value of κ′ is very
small and makes the logarithmic term in general negligible except when c2w,θ

is large (for instance c2w,θ ≈ 416 for θ = 2). The results are given in Figure 2.
The observations are such that Y + η with η = σε. In the first row, the pile-up
effect is almost negligible (θ = 0.01), but σ is rather large. That is, the first row
illustrates the performance of the deconvolution step of the estimation proce-
dure. In contrast, for the last row, σ is taken to be small, but the pile-up effect
is significant (θ = 2), in order to see how the estimator copes with the pile-up
effect. The second row is an intermediate situation, illustrating how the estima-
tor performs when the variance of the noise and the pile-up effect are both non
negligible.

The 25 curves indicate variability bands for the estimation procedure. They
show that the estimator is quite stable, especially in the last rows. Moreover, the
selected model order m̂ is different from one example to the other. Globally the
selected cutoff m̂ increases when going from example 1 to 4. That means that
the estimator adapts to the peaks that are more and more difficult to recover.

In Table 1 the MISE of the estimation procedure is analyzed. The table
gives the empirical mean and standard deviation of the MISE obtained over 100
simulated datasets. This is done for the same four examples of distributions as
above. We compare the error for the estimator using the exact noise distribution
to the estimator based on an approximation of the noise distribution based on
an independent noise sample of size 500. Moreover, we study the influence of
the noise distribution on the estimator. Therefore, we consider, on the one hand
exponential noise with variances σ2 ∈ {0.2, 1}, and on the other hand density
(20) with α = 2, β = 1, ν = 1, τ = 2 (multiplied with adequate constants to
have the same variance σ2 as for the exponential distributions).

From Table 1 it is clear that increasing the variance of the noise distribu-
tion increases the error. Furthermore, changing the type of the noise does not
influence a lot the estimation procedure. Indeed, the second case (20) is just
slightly less favorable than the exponential distribution. This difference is in
accordance with Proposition 3.3 that holds with γ = 1 for the exponential and
with γ = 2 for the other density. The comparison with the results based on an
approximated noise distribution (second lines) reveals that there is rarely a dif-
ference between the two methods. Indeed, using an approximation of the noise
does not corrupt the results, in some cases we even observe an improvement of
the error. We show in Figure 3 that it is indispensable to take into account both
the pile-up correction (which is omitted in (b) where w(k/n) is replaced by 1 )
and the deconvolution correction (which is omitted in (c) where the estimation
is done with the method of [7] with the trigonometric basis, see also Remark
3.2). Thus, we conclude from these simulation results for the fluorescence set-
ting that it is justified to use an estimate of the noise instead of the theoretical
distribution.
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Table 1

100 × mean MISE and standard deviation in parentheses, sample size n = 1000. First lines
correspond to exact noise distribution, second lines give results obtained with estimated

noise distribution with additional noise sample of size 500

Exponential noise

(σ2, θ) (0.2, 0.5) (0.2, 1.5) (0.2, 2) (1, 0.5) (1, 1.5) (1, 2)
Gamma .063 (.042) .081 (.045) .112 (.026) .061 (.039) .088 (.040) .115 (.028)

.063 (.042) .081 (.045) .112 (.026) .061 (.039) .087 (.040) .115 (.028)

Exponential 1.11 (0.22) 1.20 (0.26) 1.45 (0.21) 1.36 (0.26) 1.40 (0.24) 1.67 (0.27)
1.11 (0.22) 1.19 (0.25) 1.46 (0.21) 1.36 (0.27) 1.40 (0.24) 1.67 (0.27)

Pareto 4.25 (0.82) 4.55 (0.58) 5.45 (0.84) 6.62 (1.5) 6.58 (0.95) 8.09 (1.2)
4.23 (0.83) 4.56 (0.61) 5.47 (0.83) 6.62 (1.6) 6.58 (1.0) 8.09 (1.2)

Weibull 10.6 (6.7) 9.46 (5.0) 9.22 (2.7) 21.4 (4.1) 26.7 (5.6) 39.5 (5.9)
8.54 (4.7) 9.40 (4.8) 9.30 (2.3) 22.1 (4.8) 26.7 (5.7) 40.1 (5.7)

Bi-exponential noise

(σ2, θ) (0.2, 0.5) (0.2, 1.5) (0.2, 2) (1, 0.5) (1, 1.5) (1, 2)
Gamma .060 (.032) .075 (.040) .113 (.023) .061 (.048) .088 (.043) .114 (.025)

.060 (.032) .075 (.040) .113 (.023) .062 (.048) .089 (.043) .114 (.025)

Exponential 1.06 (0.20) 1.14 (0.17) 1.49 (0.26) 1.23 (0.27) 1.37 (0.28) 1.62 (0.28)
1.06 (0.20) 1.14 (0.16) 1.48 (0.25) 1.25 (0.26) 1.37 (0.28) 1.62 (0.27)

Pareto 4.15 (0.76) 4.31 (0.69) 5.08 (0.71) 6.08 (1.5) 6.41 (1.1) 7.43 (1.0)
4.14 (0.77) 4.30 (0.69) 5.07 (0.72) 6.11 (1.6) 6.49 (1.2) 7.45 (1.1)

Weibull 10.2 (6.1) 8.89 (5.6) 8.29 (2.1) 24.7 (3.9) 29.4 (4.5) 40.1 (5.2)
8.25 (4.3) 8.75 (5.4) 8.31 (2.2) 24.9 (4.3) 29.5 (4.9) 40.4 (5.3)
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Fig 3. (a) Estimation with pile-up correction and deconvolution. (b) No pile-up correction.
(c) No deconvolution.

Influence of the distribution of N Table 2 illustrates the effect on the
MISE of different laws of N , namely a Poisson distribution, a geometric dis-
tribution Geo(p) and a uniform distribution on {1, . . . , k0}. The first rows give
the MISE and associated variance over 300 repetitions when the expected mean
E[N ] is fixed. We see that the geometric distribution corresponds to the small-
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Table 2

Comparison of the MISE and associated variance based on 300 repetitions for different laws
of N , namely Poisson distribution Poi(θ), geometric distribution Geo(p) and uniform
distribution on {1, . . . , k0}. The target distribution f is a Gamma Γ(2, 2) and a Pareto
Par(4, 4), respectively. The additive noise η is exponentially distributed with σ = 0.7

E[N ] = 4, Γ(2, 2), n = 1.000

MISE
parameter P(N = 1) mean×103 variance×103

Poisson distribution θ = 3.92 0.079 5.91 0.0101
Geometric distribution p = 0.25 0.25 3.85 0.0046
Uniform distribution k0 = 7 0.14 4.91 0.0066

P(N = 1) = 0.10, Par(4, 4), n = 2.000

MISE
parameter E[N ] mean×103 variance×103

Poisson distribution θ = 3.62 3.72 4.51 0.0019
Geometric distribution p = 0.10 10 4.64 0.0025
Uniform distribution k0 = 10 5.5 4.21 0.0017

est MISE, whereas the Poisson distribution has the worst performance. We note
that at the same time the geometric distribution has the highest probability
P(N = 1) and the Poisson distribution the lowest. We have seen that this prob-
ability plays a key role in the theoretical study of the estimator. The last rows
of Table 2 refer to the case where the probability P(N = 1) is the same for
the three distributions of N . Despite the differences of the three distributions
(see e.g. the different associated values of E[N ]), the performance of the estima-
tor in terms of the MISE is quite the same. This confirms that the probability
P(N = 1) is the decisive characteristic of the law of N for the performance of
the estimator.

About confidence intervals Lastly, Figure 4 shows confidence intervals
with confidence level 0.90 obtained by different procedures for data (n = 1000
and n = 4000) from a Gamma Γ(2, 2)-distribution in the Poisson case (with
θ = 0.55). Figure 4 (a) represents asymptotic confidence intervals for fm(z)

based on a result on the asymptotic normality of
√
n(f̂m(z)−fm(z)) and a con-

sistent estimator of the limit variance (see [23]). To obtain confidence intervals of
f(z), we adapted the approach of [5] for the construction of confidence bands in
a different context. The procedure consists in computing asymptotic confidence
intervals from the result on the asymptotic normality of

√
n(f̂m(z) − fm(z)),

however, by selecting a larger m than the one proposed by our data-driven
model selection tool m̂. This kind of under smoothing leads to larger intervals
that contain f(z) with the required confidence level when the parameters of the
procedure are well tuned. The same technique of under smoothing in combina-
tion with bootstrapping the quantity

√
n(f̂m(z)− fm(z)) yields the confidence

intervals of f(z) in Figure 4 (c). The construction of confidence bands for f is
beyond the scope of this paper, as it requires a non trivial analysis of a process
involving L-statistics.
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Fig 4. (a) Asymptotic confidence intervals for fm(z). (b) Asymptotic confidence intervals for
f(z). (c) Bootstrap confidence intervals for f(z).

5.3. Application to fluorescence measurements

We finally apply the estimation procedure to real fluorescence lifetime measure-
ments obtained by TCSPC. The data analyzed here are graphically presented
in Figure 5 (a) by the histogram of the fluorescence lifetime measurements and
the histogram of the noise distribution based on a sample obtained indepen-
dently from the fluorescence measurements. The sample size of the fluorescence
measurements is n = 1, 743, 811. The same sample of the noise distribution has
already been considered in Figure 1, where it is compared to the parameterized
density given by (20). In this setting the true density is known to be an exponen-
tial distribution with mean 2.54 nanoseconds and the Poisson parameter equals
0.166. The knowledge of the true density allows to evaluate the performance of
our estimator. More details on the data and their acquisition can be found in [21].

We apply the estimator of Section 3 with the sinc basis to this dataset. We
recall that the numerical constants are κ = 1 and κ′ = 0.001. Figure 5 (b) shows
the estimation result in comparison to the exponential density with mean 2.54.
We observe that the estimated function is quite close to the ‘true’ one. This
indicates that the estimation procedure takes the errors present in the real data
adequately into account and that the modeling by the pile-up distortion and
additive measurement errors is appropriate.

We conclude that the estimation method proposed in this paper has a satisfac-
tory behavior in various settings and give rather good results on both synthetic
and real data.
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Fig 5. (a) Fluorescence lifetime measurements (solid line) and independent sample of the
noise distribution (dashed). (b) Density estimator (solid) and ‘true’ exponential density with
mean 2.54 (dashed).

6. Proofs

6.1. Proof of Proposition 3.1

We have ‖f̂m − f‖2 = (2π)−1‖f̂∗
m − f∗‖2 = (2π)−1(‖f̂∗

m − f∗
m‖2 + ‖f∗

m − f∗‖2)
since they have disjoint supports. Next, by the Parseval formula and triangular
inequality, we get

‖f̂∗
m − f∗

m‖2

=

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkwθ ◦ Ĝn(Zk)− E(e−iuZkwθ ◦G(Zk))

]∣∣∣∣∣

2

(29)

≤ 2

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkwθ ◦ Ĝn(Zk)− e−iuZkwθ ◦G(Zk)

]∣∣∣∣∣

2

+ 2

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkwθ ◦G(Zk)− E(e−iuZkwθ ◦G(Zk))

]
∣∣∣∣∣

2

.

(30)

The expectation of the first term on the right-hand side of (30) is less than or
equal to

2

n

n∑

k=1

∫ πm

−πm

du

|f∗
η (u)|2

E(|wθ ◦ Ĝn(Zk)− wθ ◦G(Zk)|2)

≤ c2w,θE

(
‖Ĝn −G‖2∞

) ∫ πm

−πm

du

|f∗
η (u)|2

≤ 2πc1c
2
w,θ

∆η(m)

n
,

by using E(‖Ĝn − G‖2k∞) ≤ ck/n
k (see e.g. Lemma 6.1 p. 462, [6] which is a

straightforward consequence of [18]). Here c2 = 2 for Ĝn and c2 = 4 for G̃n
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and more generally, ck is a numerical constant that depends on k only. The
expectation of the second term on the right-hand side of (30) is a variance and
less than or equal to

2

n

∫ πm

−πm

du

|f∗
η (u)|2

Var(e−iuZ1wθ ◦G(Z1)) ≤ 4π
∆η(m)E[(wθ ◦G(Z1))

2]

n
.

Gathering the terms completes the proof of Proposition 3.1.

6.2. Proof of Proposition 3.2

Equation (30) now writes

‖f̂∗
m − f∗

m‖2 ≤ 3

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZk(wθ̂ ◦ G̃n(Zk)− wθ ◦ G̃(Zk))

]∣∣∣∣∣

2

+ 3

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkwθ ◦ G̃n(Zk)− e−iuZkwθ ◦G(Zk)

]∣∣∣∣∣

2

+ 3

∫ πm

−πm

du

|f∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkwθ ◦G(Zk)− E(e−iuZkwθ ◦G(Zk))

]
∣∣∣∣∣

2

:= 3(T1 + T2 + T3) .

The last two terms T2 and T3 of the right-hand-side are exactly the ones found
in the proof of Proposition 3.1 and they already have been studied. Next we
have

T3 ≤ ∆η(m)
1

n

n∑

k=1

E

[(
wθ̂

(
k

n+ 1

)
− wθ

(
k

n+ 1

))2
]

.

This term is split is two parts:

E

[(
wθ̂

(
k

n+ 1

)
− wθ

(
k

n+ 1

))2

1θ̂∈[0,2θmax]

]

≤ sup
u∈[0,1]

sup
θ∈[0,2θmax]

∣∣∣∣
∂wθ(u)

∂θ

∣∣∣∣
2

E[(θ̂ − θ)2]

≤ C2(θmax)
C1

n
,

by using [M6] (i) for k = 1 and (ii). Moreover, using now [M6] (i) for k = 2+ a
and (iii), we get

E

[(
wθ̂

(
k

n+ 1

)
− wθ

(
k

n+ 1

))2

1θ̂≥2θmax

]

≤ C3n
2aE

(
|θ̂ − θ|21{|θ̂−θ|>θmax}

)

≤ C3n
2aE[(θ̂ − θ)2+4a]

θ4amax

≤ C1C3

n
.
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The two above bounds added to the ones of the proof of Proposition 3.1 implies
inequality (19) and the first part of Proposition 3.2.

For the second part of the result, related to the Poisson case, if θ ∈ [0, θmax],

then we have E[(θ̂ − θ)2k] ≤ C1/n
k for k = 1, 2, 3 and C1 depends on θ, θmax,

which ensures (i). We skip the proof of this result which uses classical tools.
Besides, for (ii), we compute

∂wθ(u)

∂θ
=

−(1− e−θ − θe−θ)/θ2 + u(1− e−θ)2/θ2

[1− u(1− e−θ)]2
,

and as −(1− e−θ − θe−θ)/θ2 takes values in [−1/2, 0] and (1− e−θ)2/θ2 belongs
to [0, 1], we have

−1/2

[1− u(1− e−θ)]2
≤ ∂wθ(u)

∂θ
≤ u

[1− u(1− e−θ)]2
.

Therefore, we get |∂wθ(u)/∂θ| ≤ max(u, 1/2)/[1 − u(1 − e−θ)]2, which yields
C2(θmax) = e2θmax in (ii). Lastly,

sup
θ∈R+

∣∣∣∣
∂wθ(u)

∂θ

∣∣∣∣ ≤
1

1− u
,

and thus the sup for u ∈ [0, n/(n+1)] is n+1 so that C3 = 2 and a = 1 in (iii)
suits.

6.3. Proof of Theorem 4.1

We have the following decomposition of the contrast for functions s, t in Sm,

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s)− 2Rn(t− s) , (31)

where

νn(t) =
1

2πn

n∑

k=1

∫
t∗(−u)

[
e−iuZk (w ◦G)(Zk)− E(e−iuZk (w ◦G)(Zk))

]

f∗
η (u)

du ,

(32)
and

Rn(t) =
1

2πn

n∑

k=1

∫
t∗(−u)e−iuZk

f∗
η (u)

du [(w ◦ Ĝn)(Zk)− (w ◦G)(Zk)] . (33)

Now, the definition of f̂m̂ implies that, ∀m ∈ Mn,

γn(f̂m̂) + pen(m̂) ≤ γn(fm) + pen(m) .

Thus, with decomposition (31) where we take t = f̂m̂ and s = fm, this can be
rewritten as follows

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂) + 2Rn(f̂m̂ − fm) .
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Using this and and that 2xy ≤ x2/θ+ θy2 for all nonnegative x, y, θ, we obtain

‖f − f̂m̂‖2 ≤ ‖f − fm‖2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂) + 2Rn(f̂m̂ − fm)

≤ ‖f − fm‖2 + pen(m) + 2‖f̂m̂ − fm‖ sup
t∈Sm̂+Sm,‖t‖=1

|νn(t)| − pen(m̂)

+ 2‖f̂m̂ − fm‖ sup
t∈Sm̂+Sm,‖t‖=1

|Rn(t)|

≤ ‖f − fm‖2 + pen(m) +
1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈Sm̂+Sm,‖t‖=1

[νn(t)]
2

− pen(m̂) +
1

8
‖f̂m̂ − fm‖2 + 8 sup

t∈Sm̂+Sm,‖t‖=1

[Rn(t)]
2 .

As ‖f̂m̂ − fm‖2 ≤ 2(‖f̂m̂ − f‖2 + ‖fm − f‖2), this yields

1

4
E[‖f − f̂m̂‖2] ≤ 7

4
‖f − fm‖2 + pen(m) + 4E

(
sup

t∈Bm,m̂

[νn(t)]
2

)

−E(pen(m̂)) + 8E

(
sup

t∈Bm,m̂

[Rn(t)]
2

)
, (34)

where νn(t) and Rn(t) are defined by (32) and (33) and Bm = {t ∈ Sm, ‖t‖ = 1},
and Bm,m′ = {t ∈ Sm + Sm′ , ‖t‖ = 1}. Following a classical application of
Talagrand Inequality in the deconvolution context for ordinary smooth noise
[10], we deduce the following Lemma.

Lemma 6.1. Under the Assumptions of Theorem 4.1,

E

(
sup

t∈Bm,m̂

[νn(t)]
2 − p1(m, m̂)

)

+

≤ c

n
,

where p1(m,m′) = 2E((wθ ◦ G)2(Z1))∆η(m ∨ m′)/n = 2(
∫ 1

0 w2
θ(u)du)∆η(m ∨

m′)/n.

Moreover for the study Rn(t) we have the following Lemma.

Lemma 6.2. Under the assumptions of Theorem 4.1,

E

(
sup

t∈Bm,m̂

[Rn(t)]
2 − p2(m, m̂)

)
≤ 0 ,

where p2(m,m′) = c2w,θ∆η(m ∨m′) log(n)/n.

It follows from the definition of pi(m,m′), i = 1, 2, that there exist numerical
constants κ and κ′, namely κ, κ′ ≥ 8, such that 4p1(m,m′) + 8p2(m,m′) ≤
pen(m) + pen(m′).
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Now, starting from (34), we get, by applying Lemmas 6.1 and 6.2,

1

4
E[‖f − f̂m̂‖2] ≤ 7

4
‖f − fm‖2 + pen(m) + 4E

(
sup

t∈Bm,m̂

[νn(t)]
2 − p1(m, m̂)

)

+

+ 8E

(
sup

t∈Bm,m̂

[Rn(t)]
2 − p2(m, m̂)

)
+ E[4p1(m, m̂) + 8p2(m, m̂)− pen(m̂)]

≤ 7

4
‖f − fm‖2 + 2pen(m) +

c

n
.

Therefore we get (1/4)E[‖f − f̂m̂‖2] ≤ (7/4)‖f − fm‖2 + 2pen(m) + c/n. This
completes the proof of Theorem 4.1.

Proof of Lemma 6.2. First we remark that, with Cauchy-Schwarz inequality, we
have

|Rn(t)|2 =
1

4π2

∣∣∣∣∣

∫
t∗(−u)

f∗
η (u)

(
1

n

n∑

k=1

e−iuZk [(wθ ◦ Ĝn)(Zk)− (wθ ◦G)(Zk)]

)
du

∣∣∣∣∣

2

≤ 1

4π2

∫
|t∗(u)|2du

∫ π(m∨m̂)

−π(m∨m̂)

du

|f∗
η (u)|2

(
1

n

n∑

k=1

|(wθ ◦ Ĝn)(Zk)− (wθ ◦G)(Zk)|2
)
.

Then Parseval Formula gives ‖t∗‖2 = 2π‖t‖2 and we find

sup
t∈Bm,m̂

|Rn(t)|2 ≤ c2w,θ∆η(m ∨ m̂)

(
1

n

n∑

k=1

|Ĝn(Zk)−G(Zk)|2
)

≤ c2w,θ∆η(m ∨ m̂)‖Ĝn − Ĝ‖2∞ .

We define ΩG by

ΩG = {
√
n‖Ĝn −G‖∞ ≤

√
log(n)} . (35)

Now, we know from [18] that

P(
√
n‖Ĝn −G‖∞ ≥ λ) ≤ 2e−2λ2

. (36)

This implies that P(Ωc
G) ≤ 2/n2.

Now, we write supt∈Bm,m̂
|Rn(t)|2 = R1+R2 by inserting the indicator func-

tions 1ΩG
and 1Ωc

G
where ΩG is defined by (35). Therefore

E

(
sup

t∈Bm,m̂

[Rn(t)]
2 − p2(m, m̂)

)
≤ E(R1 − p2(m, m̂)) + E(R2)

≤ c2w,θE

(
∆η(m ∨ m̄)(‖Ĝn − Ĝ‖2∞1ΩG

− log(n)

n
)

)
(37)

+ c2w,θ∆η(mn)E(‖Ĝn −G‖2∞1Ωc
G
) .
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Next (‖Ĝn − Ĝ‖2∞1ΩG
− log(n)/n)) ≤ 0 by definition of ΩG for the first right-

hand-side term of (37). For the second term, ∆(mn) ≤ n by the definition of
mn, ‖Ĝn −G‖∞ ≤ 1 and it follows from (36) that P(Ωc

G) ≤ 2/n2. Therefore

E

(
sup

t∈Bm,m̂

[Rn(t)]
2 − p2(m, m̂)

)
≤ c2w,θnP(Ω

c
G) ≤ 2c2w,θ/n .

Gathering the bounds gives the result of Lemma 6.2.

6.4. Proof of Theorem 4.2

The additional assumptions are used to provide a new bound in Lemma 6.2,
which is now replaced by

Lemma 6.3. Assume that Ĝn is estimated with a sample Z− = (Z−j)1≤j≤n

independent of (Zj)1≤j≤n and that ẅ exists and is bounded. Then we have

E

((
sup

t∈Bm,m̂

[Rn(t)]
2 − κ̃”

∫
ẇ2∆η(m ∨ m̂)

n

)

+

)
≤ c

n
.

Proof of Lemma 6.3. By Taylor formula, we write

R2
n(t) ≤ 2(R2

n,1(t) +R2
n,2(t)) ,

where

Rn,1(t) =
1

n

n∑

j=1

∫
(Ĝn(Zj)−G(Zj))ẇ(G(Zj))e

−iuZj
t∗(−u)

f∗
η (u)

du

and

Rn,2(t) =
1

2n

n∑

j=1

∫
(Ĝn(Zj)−G(Zj))

2ẅ(θj)e
−iuZj

t∗(−u)

f∗
η (u)

du ,

where θj is a random element in (G(Zj), Ĝn(Zj)). Therefore,

E

(
sup

t∈Bm,m̂

[Rn,2(t)]
2

)
≤ E

(
sup

t∈Bmn

[Rn,2(t)]
2

)

≤ ‖ẅ‖2∞E(‖Ĝn −G‖4∞)∆η(mn)

≤ ‖ẅ‖2∞
∆η(mn)

n2
≤ ‖ẅ‖2∞

n
.

Now, the main part of the study is for Rn,1(t). We split the process into two
other processes:

ϑn,1(t) = Rn,1(t)− E(Rn,1(t)|Z−) and ϑn,2(t) = E(Rn,1(t)|Z−) .
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We first study ϑn,1, which is a centered empirical process given Z− and which
is studied given Z−. We apply a Talagrand inequality to this process after the
transformation

E−

((
sup

t∈Bm,m̂

[Rn,1(t)]
2 − κ̃1

∫
ẇ2∆η(m ∨ m̂)

n

)

+

)

≤
∑

m′∈Mn

E−

((
sup

t∈Bm,m′

[Rn,1(t)]
2 − κ̃1

∫
ẇ2∆η(m ∨m′)

n

)

+

)
. (38)

Now, we apply Talagrand Inequality as recalled in Appendix. We have there-
fore three quantities to bound, denoted by H1, b1, v1 with obvious reference to
Theorem 7.1. We denote by E−(.) = E(.|Z−).

E−

(
sup

t∈Bm,m′

ϑ2
n,1(t)

)

≤ E−



∫ ∣∣∣∣∣∣

1

n

n∑

j=1

[
(Ĝn −G)(Zj)ẇ ◦G(Zj)e

−iuZj

− E((Ĝn −G)(Z1)ẇ ◦G(Z1)e
−iuZ1 )

]∣∣∣
2 1|u|≤π(m∨m′)

|f∗
η (u)|2

du

)

=
1

n

∫
1|u|≤π(m∨m′)Var

−
(
(Ĝn(Z1)−G(Z1))ẇ ◦G(Z1)e

−iuZ1

) du

|f∗
η (u)|2

≤ 1

n

∫
1|u|≤π(m∨m′)E

−
(
(ẇ ◦G(Z1))

2
) du

|f∗
η (u)|2

du

=

∫
(ẇ)2∆η(m ∨m′)

n
:= H2

1 ,

since (Ĝn(z)−G(z))2 ≤ 1.
Next it is rather straightforward that b1 = ‖ẇ‖∞

√
∆η(m ∨m′) gives a second

bound.
Lastly, the most tedious term is v1.

Var−
(∫

(Ĝn(Z1)−G(Z1))ẇ ◦G(Z1)e
−iuZ1

t∗(−u)

f∗
η (u)

du

)

≤ E−

(
(Ĝn(Z1)−G(Z1))

2(ẇ ◦G(Z1))
2

∣∣∣∣
∫

eiuZ1
t∗(u)

f∗
η (u)

du

∣∣∣∣
2
)

≤ ‖ẇ‖2∞E

(∣∣∣∣
∫

e−iuZ1
t∗(−u)

f∗
η (u)

du

∣∣∣∣
2
)

≤ ‖ẇ‖2∞
∫∫

g∗(u− v)
t∗(u)t∗(v)

f∗
η (u)f

∗
η (v)

dudv
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≤ ‖ẇ‖2∞
(∫∫

|t∗(u)t∗(v)|2dudv
∫∫

1|u|≤π(m∨m′)1|v|≤π(m∨m′)

× |g∗(u − v)|
|f∗

η (u)f
∗
η (v)|2

dudv

)1/2

≤ ‖ẇ‖2∞ sup
|v|≤π(m∨m′)

1

|f∗
η (v)|

√
∆η(π(m ∨m′))

∫
|g∗|

≤ ‖ẇ‖2∞(

∫
|g∗|)1/2

√
π(m ∨m′)∆η(π(m ∨m′)) := v1 ,

where the term
√
π(m ∨m′) is obtained thanks to the OS assumption stated in

(22) which implies that there are two constants c1, c2 such that

sup
|v|≤πm

1

|f∗
η (v)|

≤ c1(1 + (πm)2)γ/2 and ∆η(m) ≥ c2(1 + (πm)2)γ+1/2 .

Now we use (38) and the Talagrand inequality recalled in Lemma 7.1, and we
get

E−

((
sup

t∈Bm,m̂

ϑ2
n,1(t)− 4

∫
(ẇ)2

∆η(m ∨ m̂)

n

)

+

)

≤ C1‖w′‖2∞
n

∑

m′∈Mn

(
∆η(m ∨m′) exp

(
−c2

‖ẇ‖2
‖ẇ‖2∞

√
π(m ∨m′)

)

+
∆(m ∨m′)

n
exp

(
−c3

‖ẇ‖
‖ẇ‖∞

√
n

))
.

The bound is of order 1/n since we have
∑

m∈Mn

∆η(m) exp(−cm1/2) ≤ Σ < +∞ .

Lastly, as nothing in the bound is depending on Z−, taking the expectation
w.r.t. the global distribution of the Z−j ’s gives the same result with a usual
expectation (E−(.) replaced by E).

Next, we study the second process and we write

ϑn,2(t) = E(Rn,1(t)|Z−)

=

∫ (∫
Ĝn(z)−G(z))ẇ(G(z))e−iuzg(z)dz

)
t∗(−u)

f∗
η (u)

du

=
1

n

n∑

j=1

∫ (∫
(1(Z−j≤z) −G(z))ẇ(G(z))e−iuzg(z)dz

)
t∗(−u)

f∗
η (u)

du .

We can see that ϑn,2(t) is another centered empirical process, to which we also
apply the Talagrand inequality. We denote here by H2, b2 and v2 the bounds
that we have to exhibit for applying the inequality.
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First we find that

E

(
sup

t∈Bm,m′

ϑ2
n,2(t)

)

≤ E



∫ ∣∣∣∣∣∣

1

n

n∑

j=1

(∫
(1(Z−j≤z) −G(z))ẇ(G(z))e−iuzg(z)dz

)∣∣∣∣∣∣

2

1|u|≤π(m∨m′)

|f∗
η (u)|2

du




≤ 1

n

∫
Var

(∫
(1(Z−1≤z)ẇ(G(z))e−iuzg(z)dz

)
1|u|≤π(m∨m′)′

|f∗
η (u)|2

du

≤ 1

n

∫ 1

0

(ẇ(x))2dx∆η(m ∨m′) := H2
2 ,

since (
∫ 1

0 |ẇ|(x)dx)2 ≤
∫ 1

0 ẇ2(x)dx. Clearly, b2 = ‖ẇ‖
√
∆η(m ∨m′) suits.

Again, the search for v2 is more difficult.

Var

(∫ (∫
(1(Z−1≤z) −G(z))ẇ(G(z))e−iuzg(z)dz

)
t∗(−u)

f∗
η (u)

du

)

≤ E

[∣∣∣∣
∫ (∫

1(Z−1≤z)ẇ(G(z))e−iuzg(z)dz

)
t∗(−u)

f∗
η (u)

du

∣∣∣∣
2
]

≤ E

[∫∫ (∫∫
1(Z−1≤z)ẇ ◦G(z)e−iuzg(z)1(Z−1≤t)ẇ ◦G(t)eivtg(t)dzdt

)

t∗(−u)t∗(−v)

f∗
η (u)f

∗
η (v)

dudv

]

=

∫∫ ∫∫
G(z ∧ t)ẇ ◦G(z)ẇ ◦G(t)e−i(uz−vt)g(z)g(t)dzdt

t∗(−u)t∗(−v)

f∗
η (u)f

∗
η (v)

dudv

=

∫∫
θ∗(u,−v)

t∗(−u)t∗(−v)

f∗
η (u)f

∗
η (v)

dudv ,

where

θ∗(u,−v) =

∫∫
G(z ∧ t)ẇ ◦G(z)ẇ ◦G(t)e−i(uz−vt)g(z)g(t)dzdt .

Therefore we obtain the bound

Var

(∫ (∫
(1(Z−1≤z) −G(z))ẇ ◦G(z)e−iuzg(z)dz

)
t∗(−u)

f∗
η (u)

du

)

≤ sup
|u|≤π(m∨m′)

1

|f∗
η (u)|2

(∫∫
|θ∗(u,−v)|2dudv

∫∫
|t∗(−u)t∗(−v)|2dudv

)1/2

≤ π(m ∨m′)∆η(m ∨m′)‖θ‖2 ,
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by using the OS assumption (22) as previously and since ‖θ∗‖2 = 2π‖θ‖2. But
we have

‖θ‖2 =

∫∫
[G(z ∧ t)ẇ ◦G(z)ẇ ◦G(t)g(z)g(t)]2dzdt ≤

(∫
|ẇ|(x)dx

)2

≤ ‖ẇ‖2 .

Thus

v2 = c‖ẇ‖2(m ∨m′)∆(m ∨m′) .

Therefore, we can apply Talagrand’s inequality as previously and we get

E

((
sup

t∈Bm,m̂

ϑ2
n,2(t)− 4

∫
(ẇ)2

∆η(m ∨m′)

n

)

+

)
≤ C/n ,

since ∑

m∈Mn

∆η(m) exp(−cm) ≤ Σ < +∞ .

6.5. Proof of Theorem 4.3

We start with decomposition (31) again, and following the same line as in the
proof of Theorem 4.1 relation (34) is replaced by

1

4
E[‖f − f̂m̂,θ̂‖2] ≤ 7

4
‖f − fm‖2 + E(p̂en(m, θ̂)) + 4E

(
sup

t∈Bm,m̂

[νn(t)]
2

)

− E(p̂en(m̂, θ̂)) + 8E

(
sup

t∈Bm,m̂

[Tn(t)]
2

)
, (39)

where νn(t) is defined by (32) and Tn(t) = Rn(t) +Un(t) with Rn(t) defined by
(33) and

Un(t) =
1

2πn

n∑

k=1

∫
t∗(−u)e−iuZk

f∗
η (u)

du [(wθ̂ ◦ Ĝn)(Zk)− (wθ ◦G)(Zk)] .

Next, we note that if θ ∈ [0, θmax] and θ̂ ∈ [0, 2θmax],

∫ 1

0

(wθ̂(u)− wθ(u))
2du ≤ C(θmax)(θ̂ − θ)2

and also (cw,θ̂ − cw,θ)
2 ≤ C(θmax)(θ̂ − θ)2. Therefore, we denote by

Ωθ = {ω ∈ Ω, θ̂(ω) ≤ 2θmax} = {θ̂ ≤ 2θmax} .
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Using the assumption on the collection of models ensuring that ∆η(m)/n ≤ 1,
we obtain that uniformly in m,

E

(
p̂en(m, θ̂)1Ωθ

)
≤ C(θ, θmax)

n
+ 2E (p̂en(m, θ)1Ωθ

) ,

E (p̂en(m, θ)1Ωθ
) ≤ C(θ, θmax)

n
+ 2E

(
p̂en(m, θ̂)1Ωθ

)
, (40)

by using that E[|θ̂ − θ|2k] ≤ c/nk.
Now, we add to Lemmas 6.1 and 6.2, the following result for the study Un(t).

Lemma 6.4. Under the assumptions of Theorem 4.1, there exists a numerical
constant κ′ such that

E

(
sup

t∈Bm,m̂

[Un(t)1Ωθ
]2 − p3(m, m̂)1Ωθ

)
≤ c

n
,

where

p3(m,m′) = κ′C2(θmax)e
θmax

∆η(m ∨m′)

n
log(n) . (41)

It follows from the definition of pi(m,m′), i = 1, 2, 3, that there exist numer-
ical constants κ and κ′, namely κ, κ′ ≥ 16, such that

4p1(m,m′) + 16p2(m,m′) + 16p3(m,m′) ≤ 1

2
p̂en(m, θ) +

1

2
p̂en(m′, θ) .

Note that p1 and p2 depend also on θ. Now, starting from (39), we get, by
applying Lemmas 6.1, 6.2, and 6.4, that on Ωθ, the following inequalities hold.

1

4
E[‖f − f̂m̂,θ̂‖21Ωθ

]

≤ 7

4
‖f − fm‖2 + 5

2
p̂en(m, θ) + 4E

(
sup

t∈Bm,m̂

[νn(t)]
2 − p1(m, m̂)

)

+

+ 16E

(
sup

t∈Bm,m̂

[Rn(t)]
2 − p3(m, m̂)

)

+ 16E

(
sup

t∈Bm,m̂

[Un(t)1Ωθ
]2 − p3(m, m̂)1Ωθ

)

+ E

[(
4p1(m, m̂) + 16p2(m, m̂) + 16p3(m, m̂)− 1

2
p̂en(m̂, θ)

)
1Ωθ

]

+ E

[(
1

2
p̂en(m̂, θ)− p̂en(m̂, θ̂)

)
1Ωθ

]
+

C(θ, θmax)

n

≤ 7

4
‖f − fm‖2 + 5

2
p̂en(m, θ) +

c

n
,

by using (40). Therefore we get

E[‖f − f̂m̂‖21Ωθ
] ≤ 7‖f − fm‖2 + 10p̂en(m, θ) + c/n . (42)
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On the other hand, we have ‖f̂m̂,θ̂ − f‖2 ≤ 2‖f̂m̂,θ̂‖2 + 2‖f‖2 and

‖f̂m̂,θ̂‖2 ≤ ∆η(m ∨ m̂)

(
1

n

n∑

k=1

wθ̂

(
k

n+ 1

))2

.

We know that ∆η(m ∨ m̂) ≤ n by definition of Mn and

0 ≤ 1

n

n∑

k=1

wθ̂

(
k

n+ 1

)
≤
∫ 1

1
n

wθ̂(u)du ≤
∫ 1

0

wθ̂(u)du = 1.

Therefore ‖f̂m̂,θ̂‖2 ≤ n and

E(‖f̂m̂,θ̂ − f‖21Ωc
θ
) ≤ 2(n+ ‖f‖2)P(|θ̂ − θ| > θmax)

≤ 2(n+ ‖f‖2)E(|θ̂ − θ|4)
θ4max

≤ C(θmax, ‖f‖)
n

. (43)

Gathering (42) and (43) completes the proof of Theorem 4.3.

Proof of Lemma 6.4. We follow the same line as in the proof of Lemma 6.2 and
we obtain similarly:

sup
t∈Bm,m̂

|Un(t)|21Ωθ
≤ ∆η(m ∨ m̂)

1

n

n∑

k=1

∣∣∣∣wθ̂

(
k

n+ 1

)
− wθ

(
k

n+ 1

)∣∣∣∣
2

1Ωθ

≤ C2(θmax)∆η(m ∨ m̂)(θ̂ − θ)2.

We define ΩU by

ΩU = {|θ̂ − θ| ≤ un,θ} , with un,θ = κ′ vθ
√
log(n)

e−θ
√
n

.

We obtain supt∈Bm,m̂
|Un(t)|21Ωθ

≤ (U1 + U2)1Ωθ
by inserting in the above

bound 1ΩU
and 1Ωc

U
so that

E

(
( sup
t∈Bm,m̂

|Un(t)|2 − p3(m, m̂))1Ωθ

)
≤ E((U1 − p3(m, m̂))1Ωθ

) + E(U21Ωθ
)

≤ 0 + nC2(θmax)E((θ̂ − θ)21Ωθ
1ΩC

U
)

≤ C2(θmax)
√
C1P

1/2(Ωc
U ) , (44)

for p3(m,m′) as in (41) and κ′ ≥ 1.

Since ∀x ≥ 0, ex ≥ 1 + x and e−x ≥ 1 − x, by denoting δk = 1(Zk = +∞),
we get
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P(Ωc
U ) = P

(∣∣∣∣∣log
(

1

n+ 1
+

1

n+ 1

n∑

k=1

δk

)
− log (E(δ1))

∣∣∣∣∣ > un,θ

)

= P

(
1

n+1 + 1
n+1

∑n
k=1 δk

E(δ1)
≥ eun,θ or

1
n+1 + 1

n+1

∑n
k=1 δk

E(δ1)
≤ e−un,θ

)

≤ P

(∣∣∣∣∣
1

n+1 + 1
n+1

∑n
k=1 δk

E(δ1)
− 1

∣∣∣∣∣ ≥ un,θ

)

= P

(∣∣∣∣∣
1

n+ 1
(1− E(δ1)) +

1

n+ 1

n∑

k=1

(δk − E(δk))

∣∣∣∣∣ ≥ un,θE(δ1)

)

≤ P

(∣∣∣∣∣
1

n+ 1

n∑

k=1

(δk − E(δk))

∣∣∣∣∣ ≥ un,θE(δ1) +
2

n

)

≤ P

(∣∣∣∣∣
1

n

n∑

k=1

(δk − E(δk))

∣∣∣∣∣ ≥ un,θE(δ1)

)
.

The Bernstein inequality ensures now that for well chosen κ′, we have the
above probability less than C/n2 which, inserted in (44) completes the proof of
Lemma 6.4.

7. Appendix

The Talagrand inequality The following result follows from the Talagrand
concentration inequality given in [16] and arguments in [3] (see the proof of their
Corollary 2 page 354).

Lemma 7.1 (Talagrand Inequality). Let Y1, . . . , Yn be independent random
variables, let νn,Y (f) = (1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable

class of uniformly bounded measurable functions. Then for ǫ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v

n
e−K1ǫ

2 nH2

v +
98b2

K1n2C2(ǫ2)
e
−

2K1C(ǫ2)ǫ

7
√

2
nH
b

)
,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤ b, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v .

By standard denseness arguments, this result can be extended to the case
where F is a unit ball of a linear normed space, after checking that f 7→ νn(f)
is continuous and F contains a countable dense family.
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