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Abstract: Binary data with high-dimensional covariates have become more
and more common in many disciplines. In this paper we consider the max-
imum likelihood estimation for logistic regression models with a diverging
number of covariates. Under mild conditions we establish the asymptotic
normality of the maximum likelihood estimate when the number of covari-
ates p goes to infinity with the sample size n in the order of p = o(n). This
remarkably improves the existing results that can only allow p growing in
an order of o(nα) with α ∈ [1/5, 1/2] [12, 14]. A major innovation in our
proof is the use of the injective function.
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1. Introduction

High dimensional logistic regression models have attracted much attention re-
cently as binary data with a diverging number of covariates are becoming more
and more common in many disciplines. Let y be a binary response variable and
x = (x1, . . . , xp)

⊤ be the vector of covariate whose relationship with y can be
described as

logit{P (y = 1|x)} = x⊤β, (1.1)
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where β = (β1, . . . , βp)
⊤ is a vector of unknown parameters. We are interested

in the high-dimensional case when p diverges with the sample size n. Hence we
may use pn when needed to emphasize the dependence of p on n.

Logistic models are standard and powerful tools to describe the relationship
between a binary response variable and a set of covariates. Estimation and in-
ference based on the maximum likelihood estimation in logistic regression have
been well studied in theory and widely used in practice [6, 9–11]. Recently, logis-
tic regression models have been applied to analyze high-dimensional data where
p may diverge with n [3, 4, 7, 13]. These papers primarily focus on developing
various variable selection procedures. The success of these procedures relies on
certain sparsity assumption that allows only a small number of covariates to
have nonzero effects. Correspondingly, the asymptotic theories in these papers
are devoted to the investigation of selection property like the well-known oracle
property. In summary, the contribution of these work is the successful reduction
of the possibly ultra-high dimension (p >> n) estimation problem to a problem
with much lower dimensions (p = o(n)).

Despite these developments, theoretical properties of the maximum likelihood
estimator (MLE) in a general setting of high dimensional β with p = o(n) are
not established yet. [3] offered some insights for a special case when all the
components of the true β are nonzero and all the components of its MLE are
not too close to zero. [14] considered generalized estimating equation analysis of
clustered binary data with a diverging number of covariates. Particularly, she
showed that the GEE estimator is consistent when the dimension diverges in the
order of o(n1/2) and its arbitrary linear combination is asymptotically normal
when the dimension diverges in the order of o(n1/3).

Our paper aims to fill in this important gap by showing the asymptotic
normality of the MLE of high-dimensional β under mild conditions that only
require p/n → 0. A critical step in our theoretical derivation is an innovative
use of the injective function.

The rest of the paper is organized as follows. We present the asymptotic
normality result for high-dimensional logistic regression models in Section 2,
and give the proof in Section 3. We conclude the paper with some discussions
in Section 4.

2. MLE with diverging dimension

Let F(v) = {1 + exp(−v)}−1 be the logistic distribution function. Then the
log-likelihood function is

L(β) =
n∑

i=1

[
yi log{F(x⊤

i β)} + (1− yi) log{1−F(x⊤
i β)}

]
. (2.1)

The maximum likelihood estimator β̂n of β is the solution to

Ln(β) =
∂L
∂β

(β) =

n∑

i=1

xi{yi −F(x⊤
i β)} = 0. (2.2)
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Let H(v) be the derivative of F(v). For any function η, denote ηi(β) = η(x⊤
i β)

and ηi = η(x⊤
i β0), for instance, Hi(β) = H(x⊤

i β), Fi = Fi(β0). Let Gn(β) =∑n
i=1 xiHi(β)x

⊤
i and Sn =

∑n
i=1 xix

⊤
i .

When p is fixed, [2] studied asymptotic normality of the maximum likeli-

hood estimator β̂n under mild assumptions. [15] considered the same problem
under weaker assumptions. With a diverging pn, the problem becomes much
more complicated and has not been investigated yet. Two questions need to be
answered. First, are there any random variables such that (2.2) holds in proba-
bility? Second, if so, are these random variables still asymptotically normal and
under what conditions? Our theorem below addresses these two questions. The
tool we use to prove the existence is a local inverse function theorem developed
by [1], who studied strong consistency of maximum quasi-likelihood estimators
in generalized linear models, and the idea once used in [15].

In what follows, λmax(A) and λmin(A) denote the maximum and minimum
eigenvalues for a matrix A respectively, and A,j and Aj, the jth column and row
of matrix A. A1 ≥ A2 means A1 − A2 is semi-positive definite for two matrices
A1 and A2. C will be a generic constant with different values in different places.
Let ‖ · ‖2 be the standard Euclidean norm on Rn.

The following conditions are imposed to obtain Theorem 1.

Assumption.

(A1) pn/n → 0
(A2) maxi,j |xij | < ∞ and there exist two positive constants cmin and Cmax

such that cminn ≤ λmin(Sn) ≤ λmax(Sn) ≤ Cmaxn.

To the best of our knowledge, condition (A1) is the weakest assumption on
the order of pn comparing to the assumptions of pn = o(n1/2) or o(n1/3) in the
existing literature; see, e.g., [14] and the references therein. It might be very
difficult to improve the order without any further assumptions such as sparsity.
To bound the covariates, [14] requires supi,j |xij | = O(

√
pn). When pn is a

constant, this bound coincides with ours in condition (A2). When pn diverges
with n, our bound is a bit more restrictive. With our bound, one can always
find a positive constant c00 < 1/2 such that

c00 ≤ max
1≤i≤n

F(x⊤
i β0){1−F(x⊤

i β0)} ≤ 1− c00. (2.3)

For example, the right-hand side 1− c00 of (2.3) can always be replaced by 3/4.
Equation (2.3) indicates that, for any pn-vector v,

c00v
⊤Snv ≤ v⊤

n∑

i=1

xiHi(β)x
⊤
i v ≤ (1− c00)v

⊤Snv.

The rest of condition (A2) bounds the eigenvalues of Sn. This is a stability
assumption to ensure Sn/n is not ill-conditioned. This assumption is needed for

asymptotic investigation of β̂ even in the designs with fixed number of covariates
[1, 8]. Similar conditions are required in establishing asymptotic normality of
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the maximum likelihood estimation for GLM with fixed number of covariates
[see, for example, 1].

Theorem 1. Suppose Assumptions (A1)-(A2) hold. Then there exist a sequence

of random variables β̂n such that

P{Ln(β̂n) = 0} → 1 (2.4)

and

u⊤G1/2
n (β̂n − β0)

D−→ N(0, 1), (2.5)

where u is an unit pn-vector, and Gn = Gn(β0).

The first part indicates that with probability tending to 1, there exists a
solution of the equation Ln(β) = 0, while the second part ensures that this
solution is asymptotically normal.

3. Proof of the main result

3.1. Technical Lemmas

We state or prove several preliminary lemmas first. In the following, ‖ · ‖ always
refers to the l2-norm ‖ · ‖2.
Lemma 1. [5] If F is continuously differentiable in a convex interval of IR,
then

F (t2)− F (t1) = (t2 − t1)

∫ 1

0

dF

ds
|s=t1+u(t2−t1)du,

where t1, t2 ∈ IR.

Lemma 2. [1] Let Υ be a smooth injection from IRpn to IRpn with Υ(x0) = y0

and inf‖x−x0‖=δ ‖Υ(x)− y0‖ ≥ R. Then for any y with ‖y− y0‖ ≤ R, there is
an x with ‖x− x0‖ ≤ δ such that Υ(x) = y.

Lemma 3. Under the conditions of Theorem 1, we have

sup
β∈Nn(δ)

|u⊤G−1/2
n Qn(β)G

−1/2
n u− 1| → 0, (3.6)

where Qn(β) = ∂Ln(β)/∂β
⊤ and Nn(δ) = {β : ‖G1/2

n (β − β0)‖ ≤ δ}.
Proof. Let εi = yi −F(x⊤

i β0) and σ2
i = var(εi). A direct calculation yields

u⊤G−1/2
n Qn(β)G

−1/2
n u− 1 = An(β)−Bn − Cn(β), (3.7)

whereAn(β) = u⊤G
−1/2
n Gn(β)G

−1/2
n u−1,Bn =

∑n
i=1 u

⊤G
−1/2
n xix

⊤
i G

−1/2
n uεi,

Cn(β) =
∑n

i=1 u
⊤ G

−1/2
n xix

⊤
i G

−1/2
n u{Fi − Fi(β)}. We will show that each of

these three terms approaches to zero on Nn(δ).



1842 H. Liang and P. Du

Let H = diag(H1, . . . , Hn) and recall X = (x1, . . . ,xn)
⊤. Then

max
1≤i≤n

‖G−1/2
n xi‖2 = max

1≤i≤n
x⊤
i G

−1
n xi

= max
1≤i≤n

x⊤
i (X

⊤HX
⊤)−1xi

≤ max
1≤i≤n

x⊤
i λ

−1
min(H)(X⊤

X)−1xi

≤ c−1
00 c

−1
minn

−1 max
1≤i≤n

x⊤
i xi

= O(n−1pn), (3.8)

and

max
1≤i≤n

‖x⊤
i (β − β0)‖ ≤ max

1≤i≤n
‖G−1/2

n xi‖‖G1/2
n (β − β0)‖

= O(n−1/2p1/2n δ). (3.9)

In addition,

n∑

i=1

‖u⊤G−1/2
n xi‖2 =

n∑

i=1

u⊤G−1/2
n xix

⊤
i G

−1/2
n u

= u⊤G−1/2
n SnG

−1/2
n u

= u⊤(XHX
⊤)−1/2Sn(XHX

⊤)−1/2u

≤ c−1
00 u

⊤(XX⊤)−1/2Sn(XX
⊤)−1/2u = c−1

00 . (3.10)

Note that

|An(β)| = u⊤G−1/2
n {Gn(β)−Gn(β0)}G−1/2

n u

= u⊤G−1/2
n

n∑

i=1

xiH
(1)
i (β∗)x⊤

i (β − β0)x
⊤
i G

−1/2
n u

≤ u⊤G−1/2
n

n∑

i=1

xiC2‖x⊤
i (β − β0)‖x⊤

i G
−1/2
n u

≤ C2 max
1≤i≤n

‖x⊤
i (β − β0)‖

n∑

i=1

‖u⊤G−1/2
n xi‖2.

Then (3.9) and (3.10) indicate that supβ∈Nn(δ)
‖An(β)‖ → 0.

To show |Bn| → 0, it suffices to show var(Bn) → 0 as n → ∞ because
E(Bn) = 0. The latter is true since

var(Bn) =

n∑

i=1

(u⊤G−1/2
n xix

⊤
i G

−1/2
n u)2σ2

i

≤
n∑

i=1

‖u⊤G−1/2
n xi‖2‖x⊤

i G
−1/2
n u‖2σ2

i

≤ max
1≤i≤n

‖u⊤G−1/2
n xi‖2

n∑

i=1

‖x⊤
i G

−1/2
n u‖2σ2

i → 0. (3.11)
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Similar to the arguments for An(β), we may prove

sup
β∈Nn(δ)

‖Cn(β)‖ ≤ max
1≤i≤n

‖x⊤
i (β − β0)‖

n∑

i=1

‖u⊤G−1/2
n xi‖2 → 0.

3.2. Proof of Theorem 1

The proof consists of three steps. We establish the asymptotic normality of
Ln(β0) in the first step, and prove (2.4) in the second step. In the third step, we

justify that u⊤G
1/2
n (β̂n−β0) can be approximated as a combination of Ln(β0),

and thus complete the proof of the theorem.
Step 1. We will show

u⊤G−1/2
n Ln(β0)

D−→ N(0, 1). (3.12)

Let ξi = u⊤G
−1/2
n xiεi. It is easy to verify that E(ξi) = 0. It now suffices to

prove that (Lindeberg’s condition), for any ζ > 0, as n → ∞,

gn(ζ) =

n∑

i=1

E{|ξi|2I(|ξi|>ζ)} → 0. (3.13)

Let ani = u⊤G
−1/2
n xi. Similar to (3.10), we can show that max1≤i≤n ‖ani‖2 → 0.

Also (3.10) showed that
∑n

i=1 ‖ani‖2 is bounded. Combining these with the
Cauchy-Schwartz inequality and (2.3) ensures (3.13). The central limiting the-
orem then yields (3.12).
Step 2. By Lemma 1, we have

Ln(β)− Ln(β0) = −Q∗
n(β)(β − β0), (3.14)

where Q∗
n(β) =

∫ 1

0 Qn(β0 + s(β− β0))ds. Furthermore, it follows from Lemma
3 that

sup
β∈Nn(δ)

|u⊤G−1/2
n Q∗

n(β)G
−1/2
n u− 1| → 0 (3.15)

and

sup
β

1
,β

2
∈Nn(δ)

|u⊤G−1/2
n Q∗

n(β1,β2)G
−1/2
n u− 1| → 0, (3.16)

where Q∗
n(β1,β2) =

∫ 1

0
Qn(β1 + s(β2 − β1))ds.

Next, we prove that for any ζ > 0 there is a δ > 0 such that when n is large
enough

P{there is β̂n ∈ Nn(δ) such that Ln(β̂n) = 0} > 1− ζ (3.17)
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Write ∂Nn(δ) = {β : ‖G1/2
n (β−β0)‖ = δ}. Note that ‖G1/2

n (β−β0)‖/δ = 1 for
β ∈ ∂Nn(δ). By the Cauchy-Schwartz inequality, we have that for any δ > 0,

inf
β∈∂Nn(δ)

(β − β0)
⊤Q∗

n(β)
⊤G−1

n Q∗
n(β)(β − β0)

≥ inf
β∈∂Nn(δ)

δ2{(β − β0)
⊤Q∗

n(β)
⊤(β − β0)/δ

2}2. (3.18)

It follows from (3.15) that, for any ǫ > 0 and δ > 0, there is a c0 ∈ (0, 1)
independent of δ, such that

P

{
inf

‖e‖=1,β∈∂Nn(δ)
e⊤G−1/2

n Q∗
n(β)

⊤G−1/2
n e ≥ c0

}
> 1− ǫ

4
. (3.19)

(3.14), (3.18), and (3.19) indicate that, for any δ > 0 such that

P

{
inf

β∈∂Nn(δ)
‖u⊤G−1/2

n {Ln(β)− Ln(β0)}‖ ≥ c0δ

}
> 1− ǫ

4
. (3.20)

Taking δ = (4/ǫ)1/2/c0 and using the Markov inequality and (3.12) yield

P{‖u⊤G1/2
n Ln(β0)‖ ≤ c0δ} ≥ 1− E‖u⊤G−1/2

n Ln(β0)‖2/(c0δ)2

≥ 1− 1/(c0δ)
2 = 1− ǫ

4
. (3.21)

Write En =
{
‖u⊤G

−1/2
n Ln(β0)‖ ≤ infβ∈∂Nn(δ)

‖u⊤G
−1/2
n {Ln(β)− Ln(β0)}‖

}
.

(3.20) and (3.21) imply that

P (En) > 1− ǫ

2
. (3.22)

Write E∗
n = {det{Q∗

n(β1,β2)} 6= 0 for all β1,β2 ∈ Nn(δ)}. Then (3.16) indi-
cates that

P (E∗
n) > 1− ǫ

2
. (3.23)

Lemma 1 indicates that the map: β → u⊤G
−1/2
n Ln(β) is an injection for β ∈

Nn(δ) on the set E∗
n. Using Lemma 2 we know that, on En ∩E∗

n, there is a β̂n

such that

β̂n ∈ Nn(δ) and Ln(β̂n) = 0 (3.24)

(3.17) follows from (3.22)-(3.24). Then (2.4) holds.

Step 3. (2.4) means that Ln(β0) = Q∗
n(β̂n)(β̂n − β0). As a result, we know

that

G1/2
n (β̂n − β0) = {G−1/2

n Q∗
n(β̂n)G

−1/2
n }−1G−1/2

n Ln(β0).



MLE in logistic regression with a diverging dimension 1845

Furthermore, we can show by using (3.15) that
[
u⊤{G−1/2

n Q∗
n(β̂n)G

−1/2
n }−1 − u⊤

]
u → 0.

Thus, we have

u⊤G1/2
n (β̂n − β0) = u⊤G−1/2

n Ln(β0) + op(1). (3.25)

(2.5) therefore follows from (3.25), (3.17), and (3.12). We complete the proof of
Theorem 1.

4. Discussion

In a rather general setting, we have established the asymptotic normality for
maximum likelihood estimators in logistic regressionmodels with high-dimensional
covariates. We believe that the procedure can be extended to other generalized
linear models and similar theoretical results may be established with straightfor-
ward derivations. One potential complication for other generalized linear mod-
els is that the response y may not be bounded as in logistic regression models.
Other possible extensions are to the Cox model, robust regression, and proce-
dures based on quasi-likelihood functions. Further effort is needed to build up
similar procedure and theoretical results under these settings.
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