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1. Introduction

Statistical inference of point processes arises in diverse areas of application, such
as the biological and life sciences, astronomy, geology, ecology and economet-
rics, to name a few. For point processes on ℜ, both parametric and nonpara-
metric methods have been well-developed for various examples, including the
two archetypal models: Poisson point processes and renewal processes. Poisson
point processes are easily extended to higher dimensions, but the renewal model
has proved to be more of a challenge. On ℜ+, renewal times can be expressed as
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a sum of independent and identically distributed (i.i.d.) non-negative random
variables, and so the renewal model includes the Poisson process as a special
case. However, in higher dimensions, a sum of i.i.d non-negative random vectors
gives rise to a process with totally ordered jumps; this of course cannot include
the Poisson process.

A different approach to defining renewal properties on ℜ2
+ was taken in [9];

this more general model includes the Poisson process as well as the sum of i.i.d.
random vectors as special cases. The relation between the renewal model and
an inhomogeneous Poisson process was established in [7] and used to develop a
simple algorithm for simulations. In particular, certain “avoidance probabilities”
are shown to be the multidimensional analogue of the interarrival distribution
and therefore, to characterize the process. In [4], it was shown how to apply
the renewal model to environmental and other forms of spatial point process
data. For particular parametric models, maximum likelihood estimation of the
parameters defining the avoidance probabilities was described and applied to
two data sets. The model was further extended in [5] to a Markov renewal
mechanism that can be spatially dependent.

The goal of this paper is to develop nonparametric techniques for estimating
the avoidance probabilities of a spatial renewal process for both synchronous and
asynchronous data. (Synchronous data consists of a fixed number of renewals,
whereas asynchronous data consists of a single realization of the renewal process
over a fixed interval of time or region of space.) We shall make use of the theory
of multiparameter martingales to provide a unified approach to the analysis
of both types of data in one and two dimensions. In the case of synchronous
data on ℜ+, the martingale approach yields the usual empirical estimator of the
interarrival distribution. However, for synchronous data on ℜ2

+, the empirical
and martingale estimators of the avoidance probabilities are different and we will
see that the martingale estimator performs better than the empirical estimator.
For asynchronous data, successive renewals are censored by values that depend
on prior renewals (this is true in any dimension), and we will see that martingale
techniques adapt readily to this form of censored data; the resulting estimators
are new in both one and two dimensions.

We proceed as follows: in §2 we begin with generalities on point processes
and their characterization via random sets. We then move to the basic building
block of the spatial renewal model: the single line process. We consider its char-
acterization by avoidance probabilities and its martingale properties. Finally we
introduce the general renewal model and see that it is characterized by the law
of a single line process and the associated avoidance probabilities. In §3 and §4
we use multiparameter martingale methods to produce nonparametric estima-
tors of the avoidance probabilities of the renewal process, first for synchronous
data (§3) and then for asynchronous data (§4). The asymptotic properties of
the estimators are demonstrated analytically and empirically. We conclude with
some comments about future research directions in §5. Most of the empirical
results appear in the Appendix.
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2. Preliminaries on renewal point processes

2.1. Generalities on point processes

There are various characterizations of a point (or counting) process N on ℜd
+,

the positive quadrant of d-dimensional Euclidean space. We will always assume
that our point processes have no accumulation points, and so must be finite on
any bounded set. Likewise, it is assumed that point processes on ℜ2

+ are strictly
simple: i.e. all of the jump points are distinct and no two points fall on the same
horizontal or vertical line.

In what follows, ℜd
+ is equipped with the usual partial order: (s1, . . . , sd) =

s ≤ t = (t1, . . . , td) if and only if si ≤ ti ∀i = 1, . . . , d. Two points s, t ∈ ℜd
+ are

incomparable if s 6≤ t and t 6≤ s. Two sets A and B are incomparable if s and t
are incomparable ∀s ∈ A, ∀t ∈ B.

A point process N on ℜd
+ can be defined in terms of the random set ∆(N)

of its jump points. N can be viewed as a random measure on the Borel sets B:

N(B) :=
∑

τ∈∆(N)

I{τ ∈ B}, B ∈ B

or equivalently as a stochastic process on ℜd
+:

N(t) := N(At) =
∑

τ∈∆(N)

I{τ ≤ t}, t ∈ ℜd
+,

where At denotes the rectangle [0, t] = {s ∈ ℜd
+ : s ≤ t} (the strict “past” of t).

Since no ambiguity arises, we use the notation N for both the random measure
and the stochastic process. The law of N is determined by its finite dimensional
distributions; those of the stochastic process determine those of the random
measure and vice versa. Finally, N can also be characterized by the decreasing
sequence (ℜd

+ = ζ0 ⊇ ζ1 ⊇ ζ2 ⊇ · · · ) of random sets

ζk(N) := {t ∈ ℜd
+ : N(t) ≥ k}, k = 0, 1, 2, . . . , (1)

and it is this representation of N that leads to the generalization of the renewal
property. The law of the random set ζk(N) is determined by its finite dimensional
distributions: for t1, . . . , tn ∈ ℜd

+, n ≥ 1,

P (t1, . . . , tn ∈ ζk(N)) = P (N(t1) ≥ k, . . . , N(tn) ≥ k). (2)

It is important to note the following: if

min(B) = {t ∈ B : s 6≤ t ∀s ∈ B such that s 6= t}

for any Borel set B, then ζk(N) is determined by min ζk(N):

ζk(N) = ∪ǫ∈min ζk(N)Eǫ,
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where for t ∈ ℜd
+, Et := {s ∈ T : t ≤ s} (this is the strict “future” of t). Also,

min(ζ1(N)) ⊆ ∆(N),

but the same is not true of min(ζk(N)) for k > 1. Each point in min(ζk(N)) is
the supremum of exactly k points in ∆(N), and so

∆(N) ⊆ ∪k≥1 min(ζk(N)),

with equality if and only if the jump points ∆(N) are totally ordered.
To clarify the relationship between ∆(N) and the sets ζk in ℜ2

+, note that
ζk(N) ⊇ ζk+1(N) ⊇ ζ+k (N), where

ζ+k (N) := ∪ǫ,ǫ′∈min(ζk),ǫ 6=ǫ′ Eǫ∨ǫ′ .

If ζk(N) = ∅ or if min(ζk(N)) consists of a single point, then ζ+k (N) = ∅.
In ℜ2

+, ζk(N) \ ζ+k (N) is a collection of disjoint, incomparable rectangles, one
corresponding to each point in min(ζk(N)) (this point is the lower left corner of
the rectangle). Furthermore, sinceN is strictly simple, each point in min(ζ+k (N))
is a point in min(ζk+1(N)), but is not in ∆(N). In fact, it can be seen that in
general

min(ζk+1(N)) = min(ζ+k (N)) ∪min(∆(N) ∩ (ζk(N) \ ζ+k (N))o). (3)

(“(·)o” indicates the interior of a set.)
These ideas are illustrated in Figure 1. Actual jump points in ∆(N) are indi-

cated with “ t”, and the lower boundaries of ζ1(N) and ζ2(N) are depicted with
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Fig 1. Lower boundaries of the random sets ζ1(N), ζ+1 (N) and ζ2(N).



Estimation for a spatial renewal process 1453

solid lines. Note that the minimal points of ζ1(N) are τ
(1)
1 , τ

(1)
2 , τ

(1)
3 ∈ ∆(N).

The minimal points of ζ+1 (N) are indicated with “ ❞” (they are, respectively,

τ
(1)
1 ∨ τ

(1)
2 , τ

(1)
2 ∨ τ

(1)
3 , but are not elements of ∆(N)) and the lower boundary

of ζ+1 (N) is marked with a dotted line. Finally, the minimal points of ζ2(N) in-

clude min(ζ+1 (N)) as well as two new jump points τ
(2)
1 , τ

(2)
2 ∈ (∆(N)∩ (ζ1(N) \

ζ+1 (N))o).

2.2. Single line point processes

In generalizing the renewal property from one dimension to two, in [9] and [7]
it is noted that the most natural analogue of a single jump point process on
ℜ+ is a single line process on ℜ2

+, and this is the key to extending the renewal
property. To be specific, a single jump point process M on ℜ+ is defined by a
random variable τ ≥ 0, and we have

M(t) = I(τ ≤ t), t ∈ ℜ+.

In this case, ζ1(M) = [τ,∞) and ζk(M) = ∅, ∀k ≥ 2.
A single line processM onℜ2

+ is defined by a collection ∆(M) = {τ1, τ2, . . .} ⊂
ℜ2

+ of incomparable random points, and the corresponding point process is de-
fined by

M(t) =

∞
∑

i=1

I(τi ≤ t), t ∈ ℜ2
+.

Although in ℜ2
+ the sets ζk(M) are no longer necessarily empty for k ≥ 2, M is

characterized by ζ1(M), as it is in one dimension. In particular, it is easily seen
that

∆(M) = {τ1, τ2, . . .} = min(ζ1(M)).

The law of a single line process M on ℜ2
+ is determined by the law of ζ1(M),

or equivalently its complement - this is the collection of probabilities

P (t1, . . . , tn ∈ ζ1(M)c) = P (M(t1) = 0, . . . ,M(tn) = 0), t1, . . . , tn ∈ ℜ2
+, n ≥ 1.

(4)
This characterization can be greatly simplified in the following situation. For
s = (s1, s2), t = (t1, t2) ∈ ℜ2

+, define the following σ-fields:

F(t) = σ{M(s) : s ∈ At} = σ{M(s) : s1 ≤ t1 and s2 ≤ t2}
F1(t) = σ{M(s) : s1 ≤ t1},
F2(t) = σ{M(s) : s2 ≤ t2}.

Definition 2.1. We say that M satisfies condition (F4) if for all t ∈ ℜ2
+, the

σ-fields F1(t) and F2(t) are conditionally independent, given F(t).

Henceforth, it will be assumed that the single line process M on ℜ2
+ satisfies

(F4). The label (F4) was given to the property of conditional independence
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in the seminal paper [2], and now has become commonplace in the literature.
Intuitively, one can think of M as the initial points of infection in the spread
of an air-born disease under prevailing winds from the southwest: since there
are no points in [0, t1]× [t2,∞) southwest of [t1,∞)× [0, t2] and vice versa, the
behaviour of M in either region will not affect the other. The most important
consequence of the (F4) assumption is the following simplification of (4):

Lemma 2.2 ([10], Lemma 5.3). Let M be a single line process on ℜ2
+ satisfying

(F4). Then the law (i.e. the finite dimensional distributions) of M is uniquely
determined by the set of avoidance probabilities

P0(t) := P (M(t) = 0) = P (t ∈ ζ1(M)c), t ∈ ℜ2
+. (5)

On ℜ+, the avoidance probabilities of a single jump process are simply defined
by the survival probability of the jump τ : P0(t) = P (M(t) = 0) = P (τ > t). In
both one and two dimensions, we refer to P0 as the avoidance function of the
single jump or the single line process, respectively.

Avoidance probabilities can be expressed in terms of an intensity, which in
turn, has a martingale interpretation. For a single jump process on ℜ+, if τ has
continuous distribution F with density f , then P0(t) = e−Λ(t) where

Λ(t) =

∫ t

0

f(s)

1− F (s)
ds.

Let λ(s) := f(s)
1−F (s) ; λ is known as the intensity function (or hazard, in the

terminology of survival analysis) and Λ is the integrated intensity (hazard).
The process

M(t)−
∫ t

0

λ(s)I(τ ≥ s)ds

is a martingale with quadratic variation (cf. [11])

〈M〉(t) =
∫ t

0

λ(s)I(τ ≥ s)ds.

This interpretation has a natural extension to any single line process M on
ℜ2

+ that satisfies (F4). In analogy to the one dimensional case, for t ∈ ℜ2
+ define

Λ(t) := − lnP0(t).

It is an easy consequence of (F4) that Λ is a measure on ℜ2
+ and it will always

be assumed that Λ has a density λ. We refer to λ and Λ as the intensity and
integrated intensity, respectively, of M .

Just as is the case in one dimension, in two dimensions there is a planar
martingale associated with M . We begin with some notation: let M(t−) :=
M(At \ {t}) and define the increment of a function f : ℜ2 → ℜ on a rectangle
(s, t] = (s1, t1] × (s2, t2] by f(s, t] = f(t1, t2) − f(s1, t2) − f(t1, s2) + f(s1, s2).
Next, recall that

F(t) = σ{M(s) : s ∈ At} = σ{M(s) : s1 ≤ t1 and s2 ≤ t2}
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and define
F∗(t) = σ{M(s) : s1 ≤ t1 or s2 ≤ t2}.

Any process X that is F -adapted is

• a weak martingale if for every s ≤ t ∈ ℜ2
+,

E[X(s, t] | F(s)] = 0;

• a strong martingale if for every s ≤ t ∈ ℜ2
+,

E[X(s, t] | F∗(s)] = 0.

It is shown in Example 7.4 of [9] that if M is a single line process satisfying
(F4) with intensity λ, then

Γ(t) := M(t)−
∫

At

I{M(s−)=0}λ(s)d(s) (6)

is a strong martingale.
Furthermore, according to [2], a quadratic variation of a strong martingale

X is any process 〈X〉 that satisfies

E[(X(s, t])2|F(s)] = E[X2(s, t]|F(s)] = E[〈X〉(s, t]|F(s)] ∀s ≤ t.

(In other words, X2 − 〈X〉 is a weak martingale.) Just as in one dimension, a
quadratic variation for Γ is given by

〈Γ〉(t) =
∫

At

I{M(s−)=0}λ(s)ds. (7)

These martingale properties of the single jump and the single line processes
will be used to construct the nonparametric estimators in §3 and §4.

2.3. Renewal processes

In one dimension, the renewal property is very simply expressed as follows:
the times between successive renewals are i.i.d random variables. However, as
mentioned in the introduction, we take a different approach to defining the
renewal property for a point processN onℜ2

+, and now we make use of single line
processes and the random sets ζk(N) of (1). To motivate what follows, we show
how to express the renewal property on ℜ+ in terms of these concepts. First,
if N is a point process on ℜ+, let τ1, τ2, . . . denote the successive interarrival
times (i.e. the times between successive jumps of N). Next, for any set B ⊆ ℜd

+

and t ∈ ℜd
+ let

B ⊕ t = {b+ t : b ∈ B} and B ⊖ t = {b− t : b ∈ B}.

Now, returning to a point process N on ℜ+, the sets ζk(N) can be defined
recursively as

ζk+1(N) = [τk+1,∞)⊕min(ζk(N))
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where ζ0(N) = ℜ+; equivalently,

ζk+1(N) = ζ1(Mk+1)⊕min(ζk(N)) (8)

where M1,M2, . . . are the single jump processes associated with τ1, τ2, . . ., and
min(ζk(N)) =

∑k
j=1 τj . We know that N is a renewal process if and only if

τ1, τ2, . . . are i.i.d. In terms of the sets ζk(N), N is renewal if and only if given
ζk(N), the conditional distribution of the random set ζk+1(N) does not depend
on k.

Although this characterization of the renewal property may appear somewhat
unnatural in one dimension, it is the key to understanding how to make use of
single line processes to extend the renewal property to two dimensions. Let N
denote any point process on ℜ2

+ and as before, let ∆(N) denote the set of jump
points of N . The first line of N is the single line process N1 whose jump points
are the minimal jump points of N : i.e.

∆(N1) = min(∆(N)) = {τ ∈ ∆(N) : τ ′ 6≤ τ ∀τ ′ ∈ ∆(N) such that τ ′ 6= τ}.

In other words, N1 is the single line process defined by ζ1(N1) = ζ1(N).
Given a single line processM on ℜ2

+ satisfying (F4), we begin with N1 =D M
(i.e. N1 and M have the same avoidance function). For k ≥ 1, we recall that
ζk(N)\ζ+k (N) is a collection of disjoint, incomparable rectangles determined by
ζk(N). Therefore, given ζk(N), from (3) we see that the set ζk+1(N) is deter-
mined by single line processes, each of which consists of the set of minimal jump
points of N within one of these rectangles (see also Figure 1). The point process
N is renewal if (F4) is satisfied and the process is independently regenerated on
each of these rectangles, in each case according to the same law as M , suitably
shifted by the lower left corner of the rectangle.

Formally, we express these ideas as follows: for any strictly simple point pro-
cess N on ℜ2

+, we have

(ζk(N) \ ζ+k (N))o = ∪ǫ∈min ζk(N)Cǫ,

where the sets Cǫ are incomparable open rectangles; ǫ is the lower left corner of
Cǫ. For k = 0, ζ0(N) = ℜ2

+ and there is only one such set: C0 = (ℜ2
+)

o. Referring
to (3), we see that ζk+1(N) is determined by ∪ǫ∈min ζk(N) min(∆(N)∩Cǫ). Now,
for k ≥ 0 and ǫ ∈ min ζk(N) define the single line process Mǫ

∆(Mǫ) = min(∆(N) ∩ Cǫ)⊖ ǫ.

(Note: ∆(Mǫ) is empty if N has no jumps in Cǫ.)

Definition 2.3. The point process N on ℜ2
+ is renewal if there exists a single

line process M satisfying (F4) such that for every k ≥ 0, given ζk(N) the single
line processes Mǫ are independent for all ǫ ∈ min(ζk(N)) and

∆(Mǫ) =D (∆(M)) ∩ (Cǫ ⊖ ǫ). (9)
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For a renewal process N on ℜ2
+, we now have in analogy to (8) (and noting

that in ℜ+, ζ
+
k (N) = ∅ ∀k),

ζk+1(N) = ζ+k (N) ∪ ∪ǫ∈min ζk(N)(ζ1(Mǫ)⊕ ǫ). (10)

As shown in [9], for any single line process M there exists a unique renewal
point process N with first line N1 =D M . In fact, just as is the case in one
dimension, a renewal process N is a Poisson process if and only if the intensity
of N1 is constant (cf. [9]).

We now see that a spatial renewal process N is characterized by the law
of its first line N1, which in turn (under (F4)) is identified by its integrated
intensity function Λ, or equivalently, by its avoidance function P0. This fact is
analogous to the case of the renewal process in one dimension: it is characterized
by the law of its first jump, which is identified by its integrated hazard (the
integrated intensity) or its survival function (avoidance function). Finally, while
the integrated intensity refers to the single line process, we make the trivial
observation that the avoidance function is the same for both N and N1 since

P0(t) = P (N1(t) = 0) = P (N(t) = 0),

and so we refer to “the” avoidance function of N or N1 without ambiguity.

3. Nonparametric estimation for i.i.d. copies of a single line process
(synchronous data)

We now turn to the problem of estimating the avoidance probability function P0

of a renewal process on ℜ+ or ℜ2
+. The easiest situation is that of synchronous

data, where we fully observe a fixed number n of renewals - in other words, we
observe M1,M2, . . . ,Mn, n i.i.d. copies of the single line process M . As always,
we assume that (F4) is satisfied for processes on ℜ2

+.
Since P0(t) = P (M(t) = 0), it is clear that P0 can be estimated by the

corresponding empirical probabilities. We will discuss this further in subsection
§3.2. Alternatively, we can approach the problem using the relationship

P0(t) = e−Λ(t);

we first find a martingale estimator of Λ in §3.1, and then use a product limit to
find a second estimator of P0 in §3.2. As is well known from survival analysis,
the empirical and product limit estimators of P0 are identical in ℜ+; however,
this is not the case in ℜ2

+. The estimators of P0 will be compared in §3.2.

3.1. Estimator of Λ

Throughout this section, all statements are valid in both one and two dimen-
sions.
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To estimate the integrated intensity Λ we use the martingale properties of
M outlined in §2.2. Recall that

Γ(t) = M(t)−
∫

At

I{M(s−)=0}λ(s)ds

is a (strong) martingale with quadratic variation

〈Γ〉(t) =
∫

At

I{M(s−)=0}λ(s)ds.

Let M1, . . . ,Mn be i.i.d. copies of M . Then

Γn(t) :=

n
∑

i=1

(

Mi(t)−
∫

At

I{Mi(s−)=0}λ(s)ds

)

(11)

is a (strong) martingale with quadratic variation

〈Γn〉(t) =
n
∑

i=1

∫

At

I{Mi(s−)=0}λ(s)ds. (12)

Therefore, defining

Zn(s) =

n
∑

i=1

I{Mi(s−)=0}, (13)

we have
n
∑

i=1

Mi(dt)− Zn(t)λ(t)dt = Γn(dt).

Treating the martingale as noise and setting the right hand side of the preceding
equation to 0, we are led to the estimator d(Λ̂n(t)), where

d(Λ̂n(t)) =

∑n
i=1 Mi(dt)

Zn(t)
.

Finally, we arrive at a Nelson-Aalen-type estimator for the integrated intensity:

Λ̂n(t) =

∫

At

∑n

i=1 Mi(ds)

Zn(s)
=

n
∑

i=1

∫

At

Mi(ds)

Zn(s)
. (14)

We observe that Λ̂n is a discrete measure with support on the jump points of
M1, . . . ,Mn; the mass assigned to any jump point τ is equal to (Zn(τ))

−1.

Computational notes:

• Renewal processes on ℜ+: In one dimension, (14) simplifies as follows.
The point processes Mi each have exactly one jump τi; let τ(1) < τ(2) <
· · · < τ(n) denote the corresponding order statistics. Then Zn(τ(i)) =
1/(n− i+ 1) and (14) becomes

Λ̂n(t) =

n
∑

i=1

I{τ(i)≤t}

n− i+ 1
. (15)
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• Renewal processes on ℜ2
+: In two dimensions, the situation is more

complicated since in principle each point process Mi can have infinitely
many jumps. In practice, we observe n i.i.d. copies of M on some bounded
set AT . Number the Mi(T ) points of Mi lying in AT from left to right:
τi,1, τi,2, . . . , τi,Mi(T ) (note that Mi may not have any jump points in AT ).
For any t ∈ AT we have

∫

At

Mi(ds)

Zn(s)
=

Mi(T )
∑

j=1

I{τi,j∈At}

Zn(τi,j)
,

and so

Λ̂n(t) =

n
∑

i=1

Mi(T )
∑

j=1

I{τi,j∈At}(Zn(τi,j))
−1. (16)

If Mi(t) = 0, then the ith summand in (14) and (16) is 0. Next, consider
Zn(τi,j). Since Mi is a single line process, Mi(τi,j−) = 0 and so Zn(τi,j) ≥
1 and (16) is always well-defined. We have

Zn(τi,j) = 1 +
∑

k 6=i

I{Mk(τi,j−)=0}.

We now turn to the asymptotic behaviour of Λn, but first we need to intro-
duce some notation. Let C(AT ) denote the continuous functions on AT , and let
D(AT ) denote the space of cadlag functions for T ∈ ℜ+ and the Banach space
of all functions f : AT → ℜ continuous from the upper right quadrant and
with limits from the other quadrants for T ∈ ℜ2

+. Both C(AT ) and D(AT ) are
equipped with the sup norm. Products of these spaces will always be equipped
with a product norm. Note that the following theorem is valid in both one and
two dimensions, and the method of proof is identical in both cases.

Theorem 3.1. Consider n i.i.d. observations of a single jump process on ℜ+

(respectively, a single line process on ℜ2
+ satisfying (F4)). Assume that the in-

tensity λ is uniformly bounded above on AT . Then as n → ∞,

√
n(Λ̂n(·)− Λ(·)) →D GΛ

in D(AT ), where GΛ is a continuous mean zero Gaussian process on AT with
covariance function

Cov(GΛ(t), GΛ(s)) =

∫

At∩As

eΛ(u)λ(u)du.

Proof. In what follows, all variables s, t, u are in either ℜ+ or ℜ2
+; the proof is

identical in both cases.
Recalling the definition of Zn, note that

Λ(t) =

∫

At

∑n
i=1 λ(s)I{Mi(s−)=0}

Zn(s)
ds
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and so it is straightforward to see that

Λ̂n(t)− Λ(t) =

∫

At

Γn(ds)

Zn(s)
, (17)

where Γn is the (strong) martingale defined in (11).
We use the functional delta method to prove convergence. First, note that

both Γn and Zn are sums of i.i.d. processes and

E(Γn(·)) = 0, V ar(Γn(·)/
√
n) = E(〈Γn〉(·))/n =

∫

A·

e−Λ(u)λ(u)du,

E(Zn(·)/n) = P0(·) = e−Λ(·), V ar(Zn(·)/
√
n) = e−Λ(·)(1 − e−Λ(·)).

By the Jain-Marcus Theorem ([12], Example 2.11.13),

√
n

(

1

n
Γn(·),

1

n
Zn(·)− e−Λ(·)

)

→D (GΓ, GZ) (18)

in D(AT ) × D(AT ), where GΓ, GZ are tight, continuous mean zero Gaussian
processes. Continuity of both processes is a consequence of the easily verified
continuity of the corresponding variance functions (cf. [12], pg. 41).

Next, note that Λ̂n −Λ depends on the pair ( 1
n
Γn,

1
n
Zn) through the compo-

sition map

(a, b) −→
(

a,
1

b

)

−→
∫

1

b
da.

By Lemma 3.9.17 of [12] in the case of ℜ+ or Lemma 4.1 of [3] in the case
of ℜ2

+, this map is Hadamard-differentiable tangentially to C(AT ) × D(AT )
on a domain of the type {(a, b),

∫

|da| ≤ K, b ≥ ǫ} for given K and ǫ > 0,
at every (a, b) such that 1/b is of bounded variation. The pair ( 1

n
Γn,

1
n
Zn) is

contained in this domain with probability tending to 1 for K > 2E(M(T )) and
ǫ < P0(T ) = e−Λ(T ). The derivative map is given by (cf. [12], Example 3.9.19
and [3], pg. 1508)

(α, β) −→
∫

1

b
dα−

∫

β

b2
da,

where the first integral is defined by integration by parts if α is not of bounded
variation. Now apply the functional delta method with a ≡ 0, α = GΓ, b(·) =
P0(·) = e−Λ(·) and β = GZ to conclude that

√
n(Λ̂n(·)− Λ(·)) →D GΛ, where

GΛ(t) =

∫

At

dGΓ(s)

P0(s)
=

∫

At

eΛ(s)dGΓ(s). (19)

The covariance structure of GΛ is found by observing that GΛ(·) is also the
limit in distribution of

1√
n

∫

A·

eΛ(u)Γn(du), (20)
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a sum of i.i.d. processes. Therefore,

Cov(GΛ(t), GΛ(s)) = Cov

(
∫

At

eΛ(u)Γ(du),

∫

As

eΛ(u)Γ(du)

)

= E

[
∫

AT

IAt
(u)eΛ(u)Γ(du)×

∫

AT

IAs
(u)eΛ(u)Γ(du)

]

= E

[
∫

AT

IAt
(u)eΛ(u)IAs

(u)eΛ(u)〈Γ〉(du)
]

= E

[
∫

At∩As

e2Λ(u)I{M(u−)=0}λ(u)du

]

.

The second last equality above is standard for martingales on ℜ+; for strong
martingales on ℜ2

+, see [2], Theorem 2.2 (c). Now taking expectations, it is easy
to see that

Cov(GΛ(t), GΛ(s)) =

∫

At∩As

eΛ(u)λ(u)du.

3.2. Estimators of P0

We now proceed with finding nonparametric estimators of P0 in both ℜ+ and
ℜ2

+: first we look at empirical estimators and next we use the results of §3.1 to
find martingale estimators.

Method 1: Empirical probabilities

The easiest method is simply to use the empirical avoidance probability: denote

the empirical estimator of P0 by P̃
(n)
0 where for t ∈ ℜ+ (respectively, t ∈ ℜ2

+),

P̃
(n)
0 (t) :=

1

n

n
∑

i=1

I{Mi(t)=0}. (21)

Method 2: Product limit estimator (martingale approach)

Again, we use exactly the same approach in both ℜ+ and ℜ2
+. Defining the

product limit integral π as usual in one dimension and as in [1], equation
(10.3.11) (or [6], equation (28)) in two dimensions, by continuity of Λ we have

P0(t) = e−Λ(t) =πs∈At
(1− dΛ(s)) . (22)

This leads us to a product limit estimator P̂
(n)
0 :

P̂
(n)
0 (t) :=πs∈At

(

1− dΛ̂n(s)
)

. (23)
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Computational notes:

• Renewal processes on ℜ+: In one dimension, it is a well known result
in survival analysis when the data points are not subject to censoring, the
product limit and empirical estimators of the avoidance (survival) function

are identical: P̂
(n)
0 = P̃

(n)
0 .

• Renewal processes on ℜ2
+: The situation in two dimensions is different.

As before, we observe n i.i.d. copies of M on some bounded set AT . Using
the same notation as in (16), we have

P̂
(n)
0 (t) =

n
∏

i=1

Mi(T )
∏

j=1

(

1− I{τi,j∈At}(Zn(τi,j))
−1
)

. (24)

Unlike one dimension, this estimator is not equivalent to the empirical
estimator. Consider the following simple example on [0, 1]2: Let n = 2,
and suppose that M1 has 2 jump points, at (14 ,

1
2 ) and (12 ,

1
4 ), respectively,

while M2 has one jump at (34 ,
3
4 ). If t = (t1, t2), then

P̃
(n)
0 (t) =











1 if t ∈ {[0, 14 )× [0, 1]} ∪ {[0, 1]× [0, 14 )} ∪ {[0, 12 )× [0, 12 )}
1
2 if t ∈ {[ 14 , 3

4 )× [ 12 , 1]} ∪ {[ 12 , 1]× [ 14 ,
3
4 )}

0 if t ∈ [ 34 , 1]× [ 34 , 1]

,

while

P̂
(n)
0 (t) =



















1 if t ∈ {[0, 14 )× [0, 1]} ∪ {[0, 1]× [0, 14 )} ∪ {[0, 12 )× [0, 12 )}
1
2 if t ∈ {[ 14 , 1

2 )× [ 12 , 1]} ∪ {[ 12 , 1]× [ 14 ,
1
2 )}

1
4 if t ∈ {[ 12 , 3

4 )× [ 12 , 1]} ∪ {[ 12 , 1]× [ 12 ,
3
4 )}

0 if t ∈ [ 34 , 1]× [ 34 , 1]

.

The difference in the estimators results from the fact that P̃
(n)
0 (t) reflects

only whether or not any jump points of Mi fall into At whereas P̂
(n)
0 takes

into consideration the total number of jump points in Mi that fall into At.

As a result, we will see below that P̂
(n)
0 is to be preferred. In addition, the

martingale approach used to construct P̂
(n)
0 will be seen to adapt readily

to asynchronous data, while the empirical estimator does not.

Both estimators satisfy a central limit theorem (CLT). In one dimension, it is
the usual empirical central limit theorem applied to the survival function. In
two dimensions, we have the following:

Theorem 3.2. Let M1, . . . ,Mn be i.i.d. single line processes on ℜ2
+ satisfying

(F4) and with common intensity λ uniformly bounded above on AT . Let GΛ be
the Gaussian limit in Theorem 3.1. Then as n → ∞,

√
n(P̃

(n)
0 (·)− P0(·)) →D G̃P (·),

and √
n(P̂

(n)
0 (·)− P0(·)) →D GP =D P0(·)GΛ(·) = e−Λ(·)GΛ(·)
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in D(AT ), where G̃P and GP are both continuous mean zero Gaussian processes
on AT with the following covariance structures:

Cov(G̃P (t), G̃P (s)) = e−(Λ(t)+Λ(s))(eΛ(At∩As) − 1) (25)

and

Cov(GP (t), GP (s)) = e−(Λ(At)+Λ(As))

∫

At∩As

eΛ(u)λ(u)du. (26)

Proof. The CLT for P̃
(n)
0 follows from the Jain-Marcus Theorem ([12], Example

2.11.13) for sums of independent stochastic processes. The covariance structure
follows easily by observing that

Cov(I{M(t)=0}I{M(s)=0})

= P (M(At ∪ As) = 0)− P (M(At) = 0)P (M(As) = 0)

= e−Λ(At∪As) − e−(Λ(t)+Λ(s)) = e−(Λ(t)+Λ(s))(eΛ(At∩As) − 1).

Turning our attention to P̂
(n)
0 , we again make use of the functional delta

method. Hadamard differentiability of the product integral map P : D(AT ) →
D(AT ) defined by

P(f)(t) =πs∈At
(1 + df(s))

was established for two dimensions in [6], Theorem 3.2. An argument analogous
to that used in the one-dimensional case in [12], pg. 392, shows that

√
n(P̂

(n)
0 (·) − P0(·)) =

√
n
(

P(−Λ̂n)− P(−Λ)
)

→D P ′

−Λ(−GΛ)

= πs∈A·
(1− dΛ(s))

∫

A·

−dGΛ(u)

(1−∆Λ(u))
(27)

= e−Λ(·)

∫

A·

(−dGΛ) (28)

=D P0(·)GΛ(·).

The equality in (27) follows from equation (38) of [6] and so (28) follows by
continuity of Λ (“∆Λ(u)” in (27) denotes the mass assigned to the singleton u
by the measure Λ).

The covariance structure of GP follows immediately from that of GΛ.

Comparison of P̃
(n)
0 and P̂

(n)
0 for synchronous data on ℜ2

+

Asymptotically, both estimators are unbiased, but as noted previously, P̂
(n)
0 uses

more of the available information. We are also able to see that P̂
(n)
0 (t) has a

smaller asymptotic variance than P̃
(n)
0 (t)

Comment 3.3. For completeness, we have applied all the martingale arguments
to point processes on ℜ+ as well as on ℜ2

+. As observed above, for synchronous
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data on ℜ+, the product limit estimator of the survival probability S = 1 − F
coincides with the usual empirical survival function. However, we shall see in
the next section that the martingale approach provides a new estimator for
asynchronous data on ℜ+.

4. Nonparametric estimation for asynchronous data

In this section, we deal with estimation of the avoidance function given asyn-
chronous data: instead of fixing the number of renewals, we fix the set AT on
which the renewals are observed. For data on ℜ+, a simple generalization of
the empirical estimator is generally used, but given the more complex structure
of the renewal process on ℜ2

+, the martingale approach is more appropriate.
We shall see that asynchronous data is censored and the martingale methods
proposed in §3 readily adapt to this framework, just as they do in multivariate
survival analysis (cf. [8]). For clarity and a better understanding of the censoring
issue, we will begin with the martingale approach to estimation of P0 in one di-
mension in §4.1; this will motivate the approach taken in §4.2 for the estimator
of P0 in two dimensions.

4.1. Estimation of avoidance probabilities on ℜ+

We have a renewal process on ℜ+. The interarrival times are τ1, τ2, . . . where
the τi’s are i.i.d. F and the arrival times (renewals) are X1, X2, . . . where Xn =
∑n

i=1 τi. We assume that F is continuous with density f , and m := E[τ ] < ∞.
We observe the renewal process on AT = [0, T ]. Let N(T ) be the number of
renewals before T . Setting X0 = 0, define the backward recurrence time at T as
VT = T −XN(T ). We want to estimate the avoidance probability P0(t) = P (τ >
t) = 1− F (t). For any t > 0, define

I(t) :=

N(T )
∑

i=1

I{τi≤t}.

Method 1: Classic estimator of P0

According to Karr’s modified estimator of the interarrival distribution F ([11],
equation (8.13), pg. 313), an appropriate estimator is

P̂K
0 (t) =

{

1− I(t)
N(T )+1 , t ≤ VT

1− I(t)
N(T ) , t > VT

, (29)

where 0
0 is interpreted as 1. The estimator satisfies a CLT:

Theorem 4.1 ([11], Theorem 8.9). As T → ∞,
√
T (P̂K

0 (·)− P0(·)) →D ĜP

in D[0,∞) where ĜP is a continuous mean zero Gaussian process with covari-
ance function mP0(t)(1 − P0(s)) for 0 < s ≤ t < ∞.
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Method 2: Product limit estimator of P0 (martingale approach)
The following estimator will be justified using martingale techniques. With the
same notation as above, the martingale estimator of P0(·) is

P̂0(t) =







1− I(t)
N(T )+1 , t ≤ VT

[

N(T )−I(VT )+1
N(T )+1

]

·
[

N(T )−I(t)
N(T )−I(VT )

]

, t > VT

, (30)

where 0
0 is interpreted as 1.

The martingale estimator P̂0 is constructed as follows. Since we observe the
renewal process on the finite interval [0, T ], our observations of τ1, τ2, . . . are in
fact censored. τ1 is censored by T , τ2 is censored by T − τ1 = T − X1, τ3 is
censored by T − X2 and so on. In general, τi is censored by Di = max(T −
Xi−1, 0) = (T −Xi−1)

+ (set X0 = 0). We know that I{τi≤t} −
∫ t

0 λ(s)I{τi≥s}ds
is a martingale. Since Di is independent of τi, it is true that the stopped process
γi(t) := I{τi≤t∧Di} −

∫ t

0
λ(s)I{τi≥s}I{Di≥s}ds is also a martingale. We have

∞
∑

i=1

γi(t) =

∞
∑

i=1

(

I{τi≤t∧Di} −
∫ t

0

λ(s)I{τi≥s}I{Di≥s}ds

)

=
∞
∑

i=1

I{τi≤t∧(T−Xi−1)+} −
∫ t

0

λ(s)
∞
∑

i=1

I{s≤τi∧(T−Xi−1)+}ds

=

N(T )
∑

i=1

I{τi≤t} −
∫ t

0

λ(s)Z(s)ds, (31)

where

Z(s) :=
∞
∑

j=1

I{s≤τj∧(T−Xj−1)+} =

N(T )
∑

j=1

I{s≤τj} + I{s≤VT }. (32)

Equations (31) and (32) follow from the observation that τi ≤ (T −Xi−1)
+ ⇔

i ≤ N(T ), and so

τj ∧ (T −Xj−1)
+ =







τj , j ≤ N(T )
VT , j = N(T ) + 1
0, j > N(T ) + 1

.

The sum
∑∞

i=1 γi is the sum of martingales, and for each fixed t has mean 0
(by dominated convergence, as both terms on the right hand side of (31) have
expectations bounded above by E[N(T )]). Therefore, we will treat

∑∞
i=1 γi(t)

as noise and set (31) equal to 0. As before, this leads to the following estimator
of the integrated intensity:

Λ̂(t) =

N(T )
∑

i=1

I{τi≤t}

Z(τi)
.
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This in turn yields the corresponding product limit estimator of P0:

P̂0(t) =

N(T )
∏

i=1

(

1− I{τi≤t}

Z(τi)

)

=

N(T )
∏

i=1

(

1−
I{τ(i)≤t}

Z(τ(i))

)

, (33)

where τ(1) < τ(2) < · · · < τ(N(T )) are the order statistics associated with the τ ′is.
Letting s = τ(i) in (32),

Z(τ(i)) =

N(T )
∑

j=1

I{τ(i)≤τj} + I{τ(i)≤VT } = (N(T )− i+ 1) + I{τ(i)≤VT }. (34)

Substituting (34) in (33) and recalling the definition of I(t), we obtain

P̂0(t) =

N(T )
∏

i=1

(

1−
I{τ(i)≤t}

(N(T )− i+ 1) + I{τ(i)≤VT }

)

=

I(t)
∏

i=1

(

1− 1

(N(T )− i + 1) + I{τ(i)≤VT }

)

. (35)

Now, if t ≤ VT then τ(i) ≤ t ⇒ τ(i) ≤ VT ⇒ (N(T ) − i + 1) + I{τ(i)≤VT } =
N(T ) − i + 2 for every i, 1 ≤ i ≤ I(t). Therefore, by successive cancellation in
(35), if t ≤ VT ,

P̂0(t) = 1− I(t)

N(T ) + 1
.

On the other hand, if t > VT , note that I(VT ) ≤ I(t). If i ≤ I(VT ), then
(N(T ) − i + 1) + I{τ(i)≤VT } = N(T ) − i + 2, while for i > I(VT ), (N(T ) − i +
1) + I{τ(i)≤VT } = N(T ) − i + 1. Again, by successive cancellation in (35) (and
remembering that 0/0 = 1), if t > VT

P̂0(t) =
N(T )− I(VT ) + 1

N(T ) + 1
· N(T )− I(t)

N(T )− I(VT )
.

This yields (30).

Comparison of P̂K
0 and P̂0

Comparing the two estimators, we see that they agree if t ≤ VT . For t > VT (in
which case I(VT ) ≤ I(t)), if I(VT ) < N(T ), then

P̂0(t) =
N(T )

N(T ) + 1
· N(T )− I(VT ) + 1

N(T )− I(VT )
P̂K
0 (t);

in this case, P̂0(t) > P̂K
0 (t) if and only if 1 ≤ I(VT ) ≤ I(t) < N(T ). If t > VT

and I(VT ) = N(T ), then P̂0(t) = 1
N(T )+1 , while P̂K

0 (t) = 0 (since I(VT ) =

N(T ) ⇒ I(t) = N(t) for t > VT ). To summarize, P̂0(t) ≥ P̂K
0 (t), with strict

inequality if t > VT and 1 ≤ I(VT ) ≤ I(t) < N(T ) or I(VT ) = I(t) = N(T ). In
fact, the estimators are asymptotically equivalent:
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Lemma 4.2. As T → ∞,

sup
t∈ℜ+

|P̂0(t)− P̂K
0 (t)| →P 0.

Proof. We have seen that the estimators agree if t ≤ VT and that for t > VT ,

P̂0(t) =
N(T )

N(T ) + 1
·
[

1 +
1

N(T )− I(VT )

]

P̂K
0 (t).

Since N(T ) → ∞, it suffices to show that I(VT )
N(T ) converges in distribution to a

nonnegative random variable W which satisfies P (W < 1) = 1. By strong uni-
form consistency of P̂K

0 , (see [11], Proposition 8.8), it follows that with probabil-
ity 1, |(I(VT )/N(T ))− F (VT )| → 0. On the other hand, as the renewal process
converges to stationarity, VT converges in distribution to a random variable V
with density 1

m
(1 − F ). It follows that F (V ) < 1 with probability 1. Letting

W = F (V ) completes the proof.

Since the censoring Di depends on τ1, . . . τi−1, the martingales γi are not
independent, nor is Z the sum of i.i.d. processes. Consequently, we cannot apply
the same methods as in §3 to analyze the asymptotic behaviour of P̂0. However,
by Lemma 4.2, it follows that the asymptotic behaviour of P̂0 is identical to
that of P̂K

0 and we have the following (cf. Theorem 4.1):

Corollary 4.3. As T → ∞,
√
T (P̂0(·)− P0(·)) →D ĜP

in D[0,∞) where ĜP is a continuous mean zero Gaussian process with covari-
ance function mP0(t)(1 − P0(s)) for 0 < s ≤ t < ∞.

An empirical analysis of the estimators indicates that both P̂0 and P̂K
0 are

slightly biased upwards (see Tables 2-7 of Appendix A.1). However, comparing
the results in Tables 2-4, for example, it is clear that for a fixed t, the bias of
both estimators decreases as T increases. This being said, since P̂K

0 ≤ P̂0, P̂
K
0 is

preferred. However, the martingale approach developed here and in the preced-
ing section for two-dimensional synchronous data motivates the development of
a nonparametric estimator of avoidance probabilities for asynchronous data on
ℜ2

+. This is the topic of the next subsection.

4.2. Estimation of the integrated intensity and avoidance

probabilities on ℜ2
+

For renewal processes on ℜ2
+, the asynchronous data model arises from observ-

ing a renewal process N on a rectangle AT . Referring to (9) and (10), this is
equivalent to observing a random number of i.i.d. realizations of the single line
process M =D N1 restricted to (or censored by) rectangles of the form

AD(ǫ) := (Cǫ ∩ AT )⊖ ǫ,
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where D(ǫ) = min(T, sup(Cǫ)) ⊖ ǫ. In each case, the realization of M is inde-
pendent of the random point D(ǫ) ∈ ℜ2

+.
We use the same notation and martingale approach of §3: let M be a single

line process satisfying (F4) with intensity λ. M(t) −
∫

At
I{M(s−)=0}λ(s)ds is a

two-dimensional strong martingale. However, suppose that M is censored: we
only observe M on some (random) rectangle AD (i.e. for t ∈ ℜ2

+, we observe
M(t ∧D) = M(At ∩ AD)). If D ∈ ℜ2

+ is independent of M , then

γ(t) := M(t ∧D)−
∫

At

I{s≤D}I{M(s−)=0}λ(s)ds

=

∫

At

I{s≤D}M(ds)−
∫

At

I{s≤D}I{M(s−)=0}λ(s)ds

is also a strong martingale ([8], Theorem 3.12).
For the asynchronous data model, we number our (censored) observations of

M first by k (i.e. the realization of M (suitably translated) defines jump points
in a rectangle in (ζk \ ζ+k )o ∩ AT ) and then from left to right according to the
positions of the rectangles. With this numbering, we have an array (Mk,i) of
i.i.d. copies of M . Then, although Mk,i is subject to censoring by a random
point Dk,i which can depend on {Mh,j, h < k}, we have that Dk,i and Mk,i are
independent ∀k, i. As in §4.1, it follows that
∞
∑

k=1

∞
∑

i=1

γk,i(t) =

∞
∑

k=1

∞
∑

i=1

(

Mk,i(t ∧Dk,i)−
∫

At

I{s≤Dk,i}I{Mk,i(s−)=0}λ(s)ds

)

=

∞
∑

k=1

∞
∑

i=1

∫

At

I{s≤Dk,i}Mk,i(ds)

−
∫

At

λ(s)

(

∞
∑

k=1

∞
∑

i=1

I{s≤Dk,i}I{Mk,i(s−)=0}

)

ds (36)

is the sum of strong martingales. Of course, only finitely many terms in the sum
will be non-zero. Therefore, defining

Z(s) =

∞
∑

k=1

∞
∑

i=1

I{s≤Dk,i}I{Mk,i(s−)=0}, (37)

we have

∞
∑

k=1

∞
∑

i=1

I{t≤Dk,i}Mk,i(dt) − Z(t)λ(t)dt =

∞
∑

k=1

∞
∑

i=1

γk,i(dt).

Treating the sum of strong martingales as noise and setting the right hand side
of the above equation to 0, we are led to the estimator d(Λ̂(t)), where

d(Λ̂(t)) =

∑∞
k=1

∑∞
i=1 I{t≤Dk,i}Mk,i(dt)

Z(t)
.
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Finally, as in §3.1, we arrive at a Nelson-Aalen-type estimator for the integrated
intensity:

Λ̂(t) =

∫

At

∑∞
k=1

∑∞
i=1 I{s≤Dk,i}Mk,i(ds)

Z(s)
=

∞
∑

k=1

∞
∑

i=1

∫

At

I{s≤Dk,i}Mk,i(ds)

Z(s)
.

(38)
This leads us to the corresponding product limit estimator of the avoidance
probabilities:

P̂0(t) =πs∈At

(

1− dΛ̂(s)
)

. (39)

Computational notes: Letting the set of observed jump points ofMk,i be denoted
by ∆k,i := ∆(Mk,i) ∩ADk,i

, if τ ∈ ∆k,i, then

Z(τ) = 1 +
∑

(h,j) 6=(k,i)

I{τ≤Dh,j}I{Mh,j(τ−)=0}.

Finally, from (38) and (39) we have

Λ̂(t) =
∑

k

∑

i

∑

τ∈∆k,i

I{τ≤t}

Z(τ)
(40)

and

P̂0(t) =
∏

k

∏

i

∏

τ∈∆k,i

(

1− I{τ≤t}

Z(τ)

)

. (41)

Note that if ∆k,i is empty, then the corresponding term in the product is equal
to 1.

If T = (T1, T2), we conjecture that
√
T1T2(Λ̂ − Λ) and

√
T1T2(P̂0 − P0)

both satisfy functional CLTs as min(T1, T2) → ∞. The CLT for the avoidance
probability function would follow from that for the integrated intensity via the
functional delta method, as in Theorem 3.2. A CLT for Λ̂ would likely follow
from martingale techniques (CLTs are available for strong martingales), but also
would likely require convergence of N to some form of stationarity; this problem
has not yet been explored in the context of the spatial renewal process and is
well beyond the scope of this article. To support our conjecture, in Appendix
A.2 we present some empirical evidence of convergence to normality of P̂0 based
on simulations. While Figure 4 exhibits some unusual behaviour (perhaps due
to the quick convergence of the estimator to 0 as t goes to 0), these plots reveal
that for a fixed T , as t decreases, the plots become smoother and the estimates
seem to converge to normality. This is intuitive since as t decreases relative to
T , the amount of censoring present decreases.

4.3. Parametric and nonparametric comparison

Here we include a brief simulation study wherein we compare parametric and
nonparametric estimators of the integrated intensity Λ for asynchronous data
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Table 1

Average and Standard Errors (SE) of Parametric (Λ̃(t)) and Nonparametric (Λ̂(t))

Estimates of Λ(t) = λtα1 t
β

2

True Value Λ̃(t) Λ̂(t)
AT t λ α β Λ(t) Average SE Average SE

[0, 25]2 (1.00,1.00) 1.00 2.00 2.00 1.0000 1.0175 0.1045 0.8968 0.2948
[0, 25]2 (1.00,1.00) 0.75 1.50 1.50 0.7500 0.7585 0.0713 0.7005 0.2331
[0, 25]2 (1.00,1.00) 0.50 1.50 1.50 0.5000 0.5081 0.0470 0.4807 0.1278
[0, 25]2 (0.25,0.25) 1.00 1.50 2.00 0.0078 0.0078 0.0009 0.0077 0.0017
[0, 30]2 (0.25,0.25) 1.00 1.50 2.00 0.0078 0.0078 0.0007 0.0077 0.0014
[0, 30]2 (0.25,0.25) 2.00 2.00 2.00 0.0078 0.0078 0.0007 0.0077 0.0015
[0, 30]2 (0.10,0.10) 0.50 1.00 2.00 0.0005 0.0005 0.0001 0.0005 0.0003
[0, 30]2 (0.15,0.15) 1.00 1.00 2.00 0.0034 0.0034 0.0003 0.0033 0.0006
[0, 30]2 (0.75,0.75) 1.00 1.00 2.00 0.4219 0.4255 0.0339 0.4132 0.1076

for various AT and t in terms of bias and standard error. Specifically, for each
of 1000 simulated data, we compute the estimate found in (40) in the case of
nonparametric, and in the case of parametric, we estimate the model param-
eters using numerical maximum likelihood as outlined in [4] and evaluate the
function at the appropriate t. The model we consider is as found in [4], termed
multiplicative generalized homogeneous Poisson process, with integrated inten-
sity function as Λ(t) = λtα1 t

β
2 , λ, α, β > 0. As a measure of the performance of

both estimators, we find the average and empirical standard error of the 1000
estimates. We also include the true value of the integrated intensity function.
Naturally, the nonparametric estimators do not perform as well as the paramet-
ric. This is more noticeable when t is larger relative to T , due to the greater
number of censored renewals.

5. Conclusion

We have seen that martingale methods provide a unified approach to nonpara-
metric estimation of avoidance probabilities for renewal processes in both one
and two dimensions, regardless of the data structure (synchronous or asyn-
chronous). Directions for further research include:

• convergence to stationarity of the spatial renewal process
• a CLT for P̂0 in the case of asynchronous spatial renewal data
• smoothed estimators of Λ and P0

• semiparametric estimation of Λ and P0.

Appendix A: Empirical results

A.1. Empirical comparisons of P̂
K

0
and P̂0

The estimators P̂K
0 and P̂0 of §4.1 are compared in the following tables.
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Table 2

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,5] with Exp(1) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.8112 0.1610 0.8078 0.1639 0.7788
0.50 0.6552 0.2109 0.6461 0.2149 0.6065
1.00 0.4328 0.2367 0.4132 0.2394 0.3679
2.00 0.1765 0.2278 0.1588 0.2115 0.1353
3.00 0.0682 0.1812 0.0620 0.1682 0.0498
4.00 0.0188 0.1163 0.0182 0.1136 0.0183

Table 3

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,20] with Exp(1) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.7884 0.0916 0.7875 0.0919 0.7788
0.50 0.6197 0.1102 0.6164 0.1106 0.6065
1.00 0.3845 0.1119 0.3778 0.1118 0.3679
2.00 0.1460 0.0814 0.1384 0.0791 0.1353
3.00 0.0577 0.0566 0.0527 0.0521 0.0498
4.00 0.0212 0.0366 0.0188 0.0318 0.0183

Table 4

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,100] with Exp(1) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.7813 0.0412 0.7811 0.0412 0.7788
0.50 0.6103 0.0510 0.6096 0.0511 0.6065
1.00 0.3734 0.0498 0.3720 0.0498 0.3679
2.00 0.1411 0.0350 0.1396 0.0347 0.1353
3.00 0.0529 0.0231 0.0519 0.0227 0.0498
4.00 0.0195 0.0141 0.0189 0.0138 0.0183

Table 5

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,5] with Exp(1.25) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.7596 0.1687 0.7557 0.1712 0.7316
0.50 0.5858 0.2005 0.5749 0.2029 0.5353
1.00 0.3438 0.2046 0.3211 0.2011 0.2865
2.00 0.1170 0.1732 0.1002 0.1483 0.0821
3.00 0.0300 0.1124 0.0264 0.0992 0.0235
4.00 0.0057 0.0585 0.0052 0.0534 0.0067



1472 K. F. Davies and B. G. Ivanoff

Table 6

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,20] with Exp(1.25) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.7440 0.0869 0.7428 0.0874 0.7316
0.50 0.5544 0.1030 0.5513 0.1030 0.5353
1.00 0.3058 0.0988 0.3000 0.0977 0.2865
2.00 0.0922 0.0667 0.0869 0.0637 0.0821
3.00 0.0284 0.0392 0.0255 0.0357 0.0235
4.00 0.0072 0.0198 0.0067 0.0179 0.0067

Table 7

Averages and Standard Errors (SE) of Nonparametric Estimators of P0(t) based on 1000
Simulations of Renewal Processes on [0,100] with Exp(1.25) Interarrival Times

P̂0(t) P̂K
0 (t) True Value

t Average SE Average SE P0(t)
0.25 0.7345 0.0413 0.7342 0.0413 0.7316
0.50 0.5401 0.0442 0.5394 0.0442 0.5353
1.00 0.2900 0.0423 0.2888 0.0422 0.2865
2.00 0.0835 0.0248 0.0825 0.0246 0.0821
3.00 0.0248 0.0141 0.0243 0.0138 0.0235
4.00 0.0074 0.0078 0.0071 0.0076 0.0067

A.2. Behaviour of P̂0 for asynchronous data on ℜ
2
+

(!,!,!)=(1.00,2.00,2.00)
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Fig 2. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(1.00,2.00,2.00), t=(0.5,0.5)
(mean=0.9396, median=0.9405, sd=0.0105, true value=0.9394).
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Fig 3. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(1.00,2.00,2.00),
t=(0.25,0.25) (mean=0.99615, median=0.99623, sd=0.00103, true value=0.99610).
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Fig 4. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(1.00,2.00,2.00),
t=(0.15,0.15) (mean=0.99950, median=0.99952, sd=0.00028, true value=0.99949).
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Fig 5. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(0.25,1.00,1.00),
t=(0.75,0.75) (mean=0.86879, median=0.86963, sd=0.0178391, true value=0.868815).
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Fig 6. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(0.25,1.00,1.00), t=(0.5,0.5)
(mean=0.939415, median=0.939534, sd=0.0078288, true value=0.939413).
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Fig 7. Histogram of Estimates when AT=[0, 30]2 and (λ, α, β)=(0.25,1.00,1.00),
t=(0.25,0.25) (mean=0.98454, median=0.984573, sd=0.002117, true value=0.984496).
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