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Abstract: In this paper, we construct a family of nonparametric mul-
tivariate multisample tests based on depth rankings. These tests are of
Kruskal-Wallis type in the sense that the samples are variously ordered.
However, unlike the Kruskal-Wallis test, these tests are based upon a depth
ranking using a statistical depth function such as the halfspace depth or
the Mahalanobis depth, etc. The types of tests we propose are adapted to
the depth function that is most appropriate for the application. Under the
null hypothesis that all samples come from the same distribution, we show
that the test statistic asymptotically has a chi-square distribution. Some
comparisons of power are made with the Hotelling T 2, and the test of Choi
and Marden (1997). Our test is particularly recommended when the data
are of unknown distribution type where there is some evidence that the
density contours are not elliptical. However, when the data are normally
distributed, we often obtain high relative power.

Keywords and phrases: Data depth, multivariate nonparametric tests,
Kruskal-Wallis test, depth-depth plot.

Received April 2011.

1. Introduction

Generalizations of the univariate procedures based on ranks and signs for test-
ing the equality of two or more populations to multivariate framework have
been an interesting and important problem in statistics. Over the years sev-
eral generalizations have been proposed. Most papers extend univariate rank
procedures to multivariate problems using componentwise signs or ranks.(e.g.
Bennett (1962), Bickel (1965), Chatterjee (1966), Puri and Sen (1971)). These
procedures are not affine invariant, or even rotationally invariant, and, as Bickel
(1965) pointed out, performance can be low relative to the normal theory tests if
the components are highly correlated. Subsequent papers developed rotationally
invariant and affine invariant multivariate sign, signed rank, and rank tests. See
Blumen (1958), Brown and Hettmansperger (1987), Brown and Hettmansperger
(1989), Chaudhuri and Sengupta (1993), Choi and Marden (1997), Dietz (1982),
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Hettmansperger et al. (1994), Hettmansperger and Oja (1994), Hettmansperger
et al. (1997), Hettmansperger et al. (1998), Hodges (1955), Hössjer and Croux
(1995), Liu and Singh (1993), Möttönen et al. (2003), Möttönen and Oja (1995),
Oja (1999), Oja and Nyblom (1989), Peters and Randles (1990), Peters and Ran-
dles (1991), Randles (1989), Randles (2000), Randles and Peters (1990), Um and
Randles (1998), Zuo and He (2006).

In Section 2 we discuss briefly different types of existing multivariate multi-
sample tests based on different types of rank vectors. Section 3 is devoted to a
discussion on the different notions of data depth. The depth ranking based on
data depth is given in section 4. In Section 5 we construct a new multivariate
multisample test based on the depth ranking discussed in Section 4 and investi-
gate its properties. In Section 6.1, via simulation, we investigate the asymptotic
distribution of the test statistic, and in Section 6.2, we compare power of the
test with some of the other tests, including generalized T 2 Hotelling. Finally, in
Section 7, we apply the proposed test to a real data set.

2. Multivariate Kruskal-Wallis type tests

Consider comparing t absolutely continuous multivariate distributions Fk, k =
1, 2, . . . , t. The hypothesis to be tested, say H0, specifies that

H0 : F1(x) = F2(x) = · · · = Ft(x) for all x .

Under H0, the common distribution function shall be represented by F . The
alternative hypothesis H1 to H0 says that H0 does not hold. For j = 1, . . . , t,
assume that Xij , i = 1, . . . , nj , denotes a random sample of size nj from a
d-variate population Fj .

For the assumption that the distributions are d-variate normal with com-
mon unknown covariance matrix Σ and different mean vectors, Lawley (1938)
and Hotelling (1951) introduced an affine equivariant test statistic which is
well known as the generalized Hotelling’s T 2. Hotelling (1951) showed that the
asymptotic null distribution of Hotelling’s T 2 is chi-square with d(t− 1) degree
of freedom.

The standard univariate and nonparametric test for one way analysis of vari-
ance is the Kruskal-Wallis test (Kruskal (1952), Kruskal and Wallis (1952)).
Puri and Sen (1971) proposed a multivariate extension of the Kruskal-Wallis
test based on a component-wise ranking. However, unlike the Hotelling’s T 2, it
is not affine equivariant. It is only invariant under the coordinate-wise mono-
tone transformation. Thus its performance will depend on the form of the co-
variance matrix and the direction of shift. The efficiency of the test based on
the component-wise ranks becomes really poor in the case of highly correlated
components. See Bickel (1965) for a general discussion on the procedures based
on the component-wise ordering.

Choi and Marden (1997) developed a multivariate multi-sample test based on
average gradient vectors of the Euclidean norm. For each d-variate observation
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Xi, its rank vector is defined by

R(Xi) =
1

n

n∑

j 6=i

Xi −Xj

||Xi −Xj ||
.

Choi and Marden’s test statistic based on gradients of the Euclidean norm are
not affine equivariant, but they are equivariant under orthogonal transforma-
tions. As discussed in Brown (1983), and Choi and Marden (1997), the efficiency
of a test based on these gradients is increasing with the dimension in the case of
the multivariate spherical distributions. Re-scaling one of the components, i.e.
moving from a spherical case to an elliptical case, may however highly reduce
the efficiency (see Brown (1983), and Chakraborty et al. (1998)).

Hettmansperger et al. (1998) constructed an affine equivariant asymptotically
distribution free multivariate multi-sample test by introducing a multivariate
centered rank function based on the Oja (1983) criterion function and discussed
its properties. For each d-variate observation Xi, Oja’s centered rank vector is
defined by

R(Xi) = d!

(
N

d

)−1 ∑

i1<···<id

▽volume(Xi,Xi1 , . . . ,Xid) ,

where ▽ is the gradient operator, and volume(x,x1, . . . ,xd) is the volume of
the simplex with vertices x, x1, . . . , xd in R

d.
Um and Randles (1998) developed an affine equivariant nonparametric mul-

tivariate multisample test based on interdirections. Interdirections were intro-
duced in Randles (1989), Peters and Randles (1990), and Randles and Peters
(1990) to construct distribution free multivariate signed, signed-rank, and two
sample tests. Interdirections measure the angular distance between two obser-
vation vectors relative to the rest of the data. The tests based on interdirections
are distribution free over the class of all elliptically symmetric distributions.

When there are only two populations, say F1 and F2, Liu and Singh (1993)
introduced a quality index, Q(F1, F2), based on data depth to measure the
overall “outlyingness” of population F2 relative to population F1. They showed
that the empirical quality index Q(F̂1, F̂2) produces a Wilcoxon type rank sum
testing procedure to test equality of F1 and F2 when they belong to a location
and scale family. The asymptotic distribution of this rank sum statistic, which
was conjectured in Liu and Singh (1993), is proved in Zuo and He (2006).

The tests listed above are distribution free for large samples. In small sam-
ple cases, the tests are conditionally distribution free, or distribution free over
a class of elliptically symmetric distributions. In Section 5, we will construct
another asymptotically, as well as conditionally distribution free multivariate
multi-sample test. In addition, this test can be constructed so as to be affine
equivariant. The test statistic has an asymptotic chi-square distribution with
t − 1 degrees of freedom in many standard settings. A graphical technique to
compare two distributions known as the depth-depth plot, or DD-plot in short,
is introduced in Liu et al. (1999).
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In view of the large number of available tests, the introduction of another one
needs some explanation. Our multisample test can be viewed as a formal multi-
sample extension of the DD-plots of Liu et al. (1999). Our family of tests also
has several desirable features. First, it allows the researcher to flexibly choose
a depth function for the analysis that most appropriately combines the ad-
vantages of equivariance, robustness and computational convenience. In other
words, there is no one prescription for all contexts, but rather an overall ap-
proach that can be tailored to the context. Secondly, the test is based upon
ranking multidimensional data. Rank statistics have the advantage that they
are essentially dimensionless, being positive integer values. This property of
ranking is especially useful if a data set is pre-processed before analysis by a di-
mension reduction technique such as PCA. The effects of the PCA on the ranks
of the data can be studied directly because they are dimension-free. Vector ranks
are not dimensionless, making the effects of PCA and other dimension-changing
methods more difficult to interpret. Like other generalizations of the Kruskal-
Wallis test, the proposed multivariate depth rank based tests are sensitive to
location shifts and also sensitive to other departures in varying degrees.

3. Statistical depth functions

Let F be the class of all (Borel measurable) distributions on R
d. In the defini-

tions of some depth functions below, it will be assumed that certain moments
exist. In these case, an additional appropriate restriction must be placed on F
to make the definition meaningful.

A typical depth function will be a bounded nonnegative function of the
form D : R

d × F → R. For any random vector Y, let FY denote the dis-
tribution of Y. A depth function D will be said to be affine equivariant if
D(Ax+ b, FAX+b) = D(x, FX) holds for any random vector X in R

d, any d×d
nonsingular matrix A, and any vectors x and b in R

d. In most, but not all
cases, we shall expect D(x, F ) to be a quasi-concave function of x, maximised
somewhere in the center of the distribution F and vanishing at infinity. The
sample version of D( · , F ) is denoted by D(x, F̂ ), where F̂ is the empirical dis-
tribution based on the sample. Let X = {X1,X2, . . . ,Xn} be a random sample

from d−dimensional distribution F, and F̂ its empirical distribution. We use
P

F
to represent the probability measure corresponding to the distribution F ,

and E
F

to represent expectation with respect to that probability measure. A

typical depth function will be continuous in the sense that D(x, F̂ ) → D(x, F )
whenever the sample size goes to infinity under random sampling from F . How-
ever, if empirical convergence is simply replaced by weak convergence, many
depth functions are not continuous in this (now stronger) sense. We may loosely
define the robustness of a depth function to be a measure of its continuity under
various types of convergence of F̂ to F . The more that D is continuous under a
variety of types of convergence, the more robust D is.

The Mahalanobis depth is perhaps the most common depth function asso-
ciated with multivariate normal theory. Following Rao (1988), for a positive
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definite d × d matrix M , we shall define the Mahalanobis norm (Mahalanobis
(1936)) || · ||M as

||x||M =
√
x′ M−1 x, for all x ∈ R

d. (1)

The Mahalanobis depth is defined as

MD(x, F ) =
1

1 + ||x− µ(F )||2Σ(F )

,

where F is a given distribution and µ(F ) and Σ(F ) are any corresponding loca-

tion and covariance measures, respectively. The Mahalanobis depth MD( · , F̂ )
is not robust. Robust alternatives to the usual mean vector and covariance ma-
trix are available such as Rousseeuw’s minimum covariance determinant (MCD),
or the minimum volume ellipsoid (MVE) estimates (see Rousseeuw (1983) and
Rousseeuw and Leroy (1987)). If the robustness of the Mahalanobis depth is

desired, we can define a robust version RMD(· , F̂ ) by using these robust esti-
mates.

The spatial depth (Gower (1974), Brown (1983)) of a point x in R
d is defined

as

SD(x, F ) =
1

1 + E
F
||x−X|| . (2)

It is easy to see that SD(x, F ) is invariant under orthogonal transformations.
A modification of the Euclidean norm used to define the spatial depth function
yields an affine invariant version. The spatial depth function may be modified
to an affine invariant version,

ASD(x, F ) =
1

1 + EF [||x−X||Σ(F )]
, (3)

where Σ(F ) is the covariance matrix of F and || . ||Σ(F ) denotes the Mahalanobis
norm given by (1). Once again, if the robustness of the affine spatial depth is

desired, we can define a robust version RASD(x, F̂ ) by replacing Σ̂ with a
robust estimate such as the MCD, or MVE.

Another depth function which is used in this paper is the halfspace depth.
The halfspace depth (Hodges (1955), Tukey (1975), Donoho (1982)) at a point
x ∈ R

d with respect to F is defined to be

HSD (x, F ) = inf
u∈Rd

P
F
(Hx,u) = inf

||u||=1
P

F
(Hx,u) ,

where Hx,u = {y ∈ R
d ; u′y ≥ u′x} is a closed halfspace. Several proper-

ties of the halfspace depth discussed by Donoho and Gasko (1992), Rousseeuw
and Ruts (1999), Small (1987), Zuo and Serfling (2000). The computational is-
sues are discussed in Rousseeuw and Ruts (1996), Rousseeuw and Ruts (1998),
Rousseeuw and Struyf (1998), and Ruts and Rousseeuw (1996).

For an overview on other depth functions, we refer the reader to Small (1990)
and Zuo and Serfling (2000)
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4. Depth based ranking

For a univariate sample the ranking of data is clear and unambiguous. If X1, . . . ,
Xn is a random sample from a continuous random variableX , we can place them
in increasing order, as X(1) < · · · < X(n). The rank of Xi is the number of data
points less than or equal Xi, that is

R(Xi) = #{Xj : Xj ≤ Xi} ,

where #A represents the cardinality or the number of elements in the set A.
These are linear ordering and ranking, respectively. An alternative method of
ordering and ranking the sample is to order the observations in relation to their
absolute deviation, or distance, from some reference point, M . If M < X(1) the
ordering is the same as that just described. If M is in the body of the data, e.g.
at the median, quite a different ordering arises. Such distance ranking (Barnett
(1976)) is seldom directly considered for univariate data, but it has an appeal
in the multivariate context.

For a d-variate (d ≥ 2) sample X1, . . . ,Xn, there is no natural linear ranking,
but one can use the notion of data depth to introduce depth ranking. Given a
depth function D and a distribution function F , one can compute the depths of
all the sample points X1, . . . ,Xn, namely

D(X1, F ), . . . , D(Xn, F )

and order them according to increasing depth values. This gives a depth ranking
of the sample points. The rank of Xi is

R(Xi) = #{j ; D(Xj , F ) ≤ D(Xi, F )}. (4)

The implication of (4) is that a larger rank is associated with a more central

position with respect to the data cloud.
With the exception of Mahalanobis depth and spatial depth, many empirical

depth functions can have ties in ranks. Traditional solutions to ties in ranks
are available here and will not affect the asymptotic properties which will be
investigated later. It is necessary that for large sample sizes, the proportion of
data tied at a given value goes to zero. We may choose to break ties at random
or to assign an average rank simultaneously to all tied values. Both methods
have merits and difficulties that we shall not pursue here. We refer the reader to
Lehmann and D’abrera (2006), and Hollander and Wolfe (1999) for the theory
of averaged ranks.

Obviously, different distribution functions yield different rankings. Of par-
ticular interest is the depth-based ranking using the empirical depth D( · , F̂ ).
Suppose X1, . . . ,Xn is a random sample from some unknown distribution F .
We shall write Ri and R∗

i for the ranks of Xi based upon the empirical depth

D( · , F̂ ) and theoretical depth D( · , F ), respectively. We naturally expect Ri

to be an empirical approximation to R∗
i . However, this will not be true without

some additional regularity, which we shall discuss later.
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5. A depth based Kruskal-Wallis type test

Liu et al. (1999) introduced the depth-depth (DD) plot as a two dimensional
graphical technique for visual comparison of two d-dimensional distributions
based on their respective samples. They showed that different distributional
differences, such as difference in location, scale, skewness and kurtosis can be
associated with different patterns in DD-plots. Koshevoy (2001), and Struyf and
Rousseeuw (1999) showed that some depth functions characterize distributions.
These results motivate formal depth based test statistics for comparing two or
more multivariate distributions.

We can tabulate data as in Table 1.
As earlier, under H0 we shall let the common distribution to be F . Let F̂j

denote the empirical distribution of the j-th sample Xj = {X1 j , . . . ,Xnj j},
so that F̂ = n−1

∑t
j=1 nj F̂j , where n =

∑
nj . Also, X =

⋃t
j=1 Xj . Let Dij =

D(Xij , F̂ ) be the depth ofXij for i = 1, 2, . . . , nj and j = 1, 2, . . . , t with respect

to F̂ . Similarly, let Dij(k) = D(Xij , F̂k). Finally, write D∗
ij = D(Xij , F ).

Let Rij be the depth rank of Xij with respect to the depth function D( · , F̂ ).
These ranks are summarized in Table 2.

Under the null hypothesis H0 : F1 = · · · = Ft = F , assuming no ties, we have

PrH0
(Rij = r) =

{
n−1 if r = 1, . . . , n

0 otherwise,

and for (i, j) 6= (i′, j′)

PrH0
(Rij = r, Ri′ j′ = r′) =

{
1

n(n−1) if r 6= r′

0 otherwise.

Table 1

Data from t d-variate distributions

Treatments
1 2 . . . t

X11 X12 . . . X1t

X21 X22 . . . X2t

...
...

. . .
...

Xn11
Xn22

. . . Xntt

Table 2

Depth ranks based on pooled sample

Treatments
1 2 . . . t

R11 R12 . . . R1t

R21 R22 . . . R2t

...
...

. . .
...

Rn11
Rn22

. . . Rntt
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Now let

R.j =

nj∑

i=1

Rij and R.j =
R.j

nj

, (5)

so it can be easily shown that

E
H0

(R·j) =
nj(n+ 1)

2
,

V ar
H0

(R·j) =
nj(n− nj)(n+ 1)

12
,

Cov
H0

(R·j , R·j′) =
−njnj′(n+ 1)

12
, j 6= j′ .

Now consider

Kj =

[
R·j − E

H0
(R.j)

]2

V ar
H0

(R.j)

=
12nj

(n− nj)(n+ 1)

(
R·j −

n+ 1

2

)2

.

(6)

Similar to the univariate Kruskal-Wallis test, we consider the test statistic to
be the weighted average of Kj’s, i.e.

K =

t∑

j=1

(
1− nj

n

)
Kj

=
12

n(n+ 1)

t∑

j=1

R2
·j

nj

− 3(n+ 1) . (7)

Note that, under the null hypothesis K is distribution free. Unfortunately, the
test based on K is not powerful against location shift alternatives. See Chenouri
(2004), Liu and Singh (2006), and Chenouri et al. (2011). In order to construct
a powerful test for location shift alternatives, we must consider ranking methods
which have better sensitivity when samples are separated by a location shift. As
an alternative, let us consider the depths Dij(k) = D(Xij , F̂k) and ranks Rij(k)
for i = 1, 2, . . . , nj and j, k = 1, 2, . . . , t, as described above. Table 3 summarizes
the ranks Rij(k), for any k = 1, . . . , t.

Table 3

Depth ranks based on the sample k

Treatments
1 2 . . . t

R11(k) R12(k) . . . R1t(k)
R21(k) R22(k) . . . R2t(k)

...
...

. . .
...

Rn11
(k) Rn22

(k) . . . Rntt(k)
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Unlike the ranks Rij , the ranks Rij(k) have some power to distinguish the
observations in sample k from those in sample j where j 6= k. Thus it seems
reasonable to construct a test statistic H(k), say, based upon the ranks Rij(k) in
a manner analogous to the construction of K as in formulas (6) and (7) above.
We can then try to pool the test statistics H(1), . . . , H(t) together so as to
create some overall test statistic for the null hypothesis that all samples have
the same distribution. This suggests that we define

Hj(k) =
12nj

(n− nj)(n+ 1)

(
R̄·j(k)−

n+ 1

2

)2

(8)

by analogy with formula (6). Then

H(k) =
t∑

j=1

(
1− nj

n

)
Hj(k)

=
12

n(n+ 1)

t∑

j=1

nj

(
R̄·j(k)−

n+ 1

2

)2
(9)

could be considered as a test statistic, but it depends on the choice of k. To
overcome this problem, define

H =
1

t

t∑

k=1

H(k)

=
12

n(n+ 1)t

t∑

k=1

t∑

j=1

nj

(
R̄·j(k)−

n+ 1

2

)2

=
12

n(n+ 1)t

t∑

k=1

t∑

j=1

R2
·j(k)

nj

− 3(n+ 1) . (10)

The null hypothesis is to be rejected when the value of the test statistic H is
very large.

Now we shall investigate the asymptotic behavior of the test statisticH under
the null hypothesis. We will need some regularity conditions which we shall now
consider.

Assumption 1. Let G be any distribution, and let Ĝ be the empirical distri-

bution based upon any random sample of size m from G. As m goes to infinity,

D(x, Ĝ) converges to D(x, G) uniformly in x ∈ R
d in probability in the sense

that

sup
x∈Rd

∣∣∣D(x, Ĝ)−D(x, G)
∣∣∣ p→ 0

as n → ∞.

In particular, we may have m = n or nk, and Ĝ = F̂ or F̂k, respectively. This
assumption is true for many depth functions such as the spatial, Mahalanobis,
halfspace, simpilicial, projection depths.
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Recall that as nk → ∞, k = 1, . . . , t (and thus n → ∞), the Glivenko-Cantelli
theorem (see Pollard 1984) implies that

sup
x∈Rd

|F̂k(x) − F̂ (x)| a.s.−−→ 0 .

Therefore under the null hypothesis, from the Assumption 1 we have

sup
x∈Rd

∣∣∣D(x, F̂ )−D(x, F̂k)
∣∣∣ p→ 0 .

This motivates the following assumption.

Assumption 2. For any k = 1, . . . , t, H(k)−K
p−→ 0 .

In section 6 we will check Assumption 2 through simulations.

The Assumptions 1 and 2 in turn imply that H − K
p−→ 0 . Since K ∼

χ2
(t−1), thus in turn we have the following proposition, where we state that the

asymptotic distribution of H is χ2(t − 1), i.e. H is asymptotically distribution
free.

Proposition 1. Suppose for all i that ni/n → λi as n → ∞ for some numbers

λi > 0, then under the null hypothesis and Assumptions 1 and 2

H =
1

t

t∑

k=1

H(k) =
12

n(n+ 1)t

t∑

k=1

t∑

j=1

R2
·j(k)

nj

− 3(n+ 1).

has a large sample chi-square distribution with t− 1 degrees of freedom.

In small samples, although the test statistic H is not distribution free under
the null hypothesis, we can still do a permutation test of Fisher to approximate
p-values (see Efron and Tibshirani, 1993, and Ernst, 2004) based on the test
statistic H . In what follows we explain how to use this procedure.

1. Compute H based on the data X1, X2, . . . , Xt and denote it by Hobs,
where

Xj = {X1 j , X2 j , . . . , Xnj j} , j = 1, . . . , t

2. Permute the combined sample Y = X1 ∪X2 · · · ∪Xt a total of B times, for
B sufficiently large.

3. For all of B permutations, treat the first n1 vectors as the X1 sample,
the next n2 vectors as the X2 sample, . . . , and the last nt vectors as the
Xt sample. Let X

∗
j (b) = {X∗

1 j(b), . . . , X
∗
nj j(b)}, j = 1, . . . , t be the bth

permutation for b = 1, 2, . . . , B.
4. Compute the value of the test statistic H for each permutation. Denote

these by H∗
b , b = 1, 2, . . . , B. Thus the empirical distribution of H∗

b s can
be used to approximate the null distribution of H .

Note that to approximate the p-value PHo
(H ≥ Hobs) one can use

P̂Ho
(H ≥ Hobs) =

1

B

B∑

b=1

I(H∗
b ≥ Hobs) . (11)
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Thus the power functional of this α-level permutation test is

Π(G) = P
G

(
P̂Ho

(H ≥ Hobs) ≤ α
)

(12)

where G is the joint distribution of the t populations. Under Ho, Π(G) ap-
proximates the type I error and for an specific alternative Π(G) provides an
approximation of power at G. For a given G one can apply a Monte Carlo
method to estimate Π(G).

To end this section it is worthwhile to mention that, H is affine invariant, if
the underlying depth function is affine equivariant. The test statistic H is also
robust against outliers, especially when the underlying depth function is robust.

6. Monte Carlo studies

6.1. Investigating the asymptotic distribution of H

In Table 4 we have simulation studies of Assumption 2. We have considered two
sample problems with sample sizes n1 = n2 = 25, 50, 100, 200, . . . , 1000. The
following five bivariate models have been considered:

• Model (I) refers to the case that both samples have be drawn from the
standard bivariate normal distribution N2((0, 0)

′, I), where I refers to the
identity matrix.

• Model (II) is a mixture of two bivariate normal distributions with mixing
probability ǫ = 0.80. Both samples have been taken from 0.80N2((0, 0)

′, I)+
0.20N2((6, 6)

′, I).
• Model (III) is a mixture of two bivariate normal distributions with mixing
probability ǫ = 0.80. Both samples have been taken from 0.80N2((0, 0)

′, I)+
0.20N2((6, 6)

′,Σa), where

Σa =

(
1 0.6
0.6 1

)
.

• Model (IV) is the bivariate t distribution t((0, 0)′, I, 3), Johnson and Kotz
(1972).

• Model (V) is the bivariate t distribution t((0, 0)′, I, 1) or C((0, 0)′, I).

Table 4

Monte Carlo estimates of EH0
|H−K| under different models and depth functions, for d = 2

Depth function

Model RMD RASD HSD

(I) 10.13n−0.85 13.25n−0.92 43.97n−0.91

(II) 7.78n−0.95 7.81n−0.94 38.02n−0.86

(III) 6.79n−0.92 7.55n−0.94 41.63n−0.89

(IV) 6.37n−0.81 8.18n−0.88 41.81n−0.94

(V) 4.24n−0.81 4.71n−0.86 37.90n−0.98
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Fig 1. Scatter plots of log(ÊH0
|H−K|) versus log(n) for Models (I) and (II) based on RMD

and RASD (using the MCD estimates with breakdown point of 0.5) and HSD.

The underlying depth functions in our simulation study are robust Mahalonobis
depth (RMD), robust affine spatial depth (RASD), and the halfspace or Tukey
depth (HSD).

Figure 1 shows that the logarithm of ÊH0
|H−K| goes to −∞ roughly linearly

in the logarithm of the sample size, indicating that EH0
|H −K| roughly obeys

a power law in n. Table 4 provides the exponent in this power law for each
model and depth function. As we see in this table, when the sample sizes are

increasing, ÊH0
|H −K| → 0. This implies that H −K

p−→ 0.

6.2. Monte Carlo power study

In this section we display results from a Monte Carlo power study for the cases
d = 2, 6, 10. The underlying depth functions in our simulation study are RMD,
RASD, and HSD. In addition to our proposed statistic H in Section 5, we
examine the performance of Hotelling’s T 2 statistic, the spatial statistic CM
suggested by Choi and Marden (1997) and K. Note that the test statistics H ,
K, and T 2 are affine invariant, but CM is not. All the simulations are done for the
two-sample case with equal numbers of multivariate observations for two groups.
In tables 5 to 8, we present some Monte Carlo results based on 1, 000 trials. Table
5 reports the results of permutation tests for d = 2 and small sample sizes. Tables
6, 7, 8 report the results using the asymptotic distribution for large sample sizes
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Table 5

Permutations tests: observed relative frequency of rejecting H0, d = 2

Test statistics

Scenario n1 = n2 c T 2 CM HRMD HRASD

(1) 25
0 0.042 0.040 0.048 0.043

1 0.995 0.993 0.773 0.838

(2) 25
1 0.042 0.040 0.048 0.043

2 0.038 0.038 0.474 0.482

(3) 25
0 0.042 0.040 0.048 0.043

0.9 0.067 0.074 0.795 0.812

(4) 25
0 0.059 0.059 0.053 0.046

2 0.704 0.951 0.993 0.986

(5) 25
0 0.059 0.059 0.053 0.046

2 0.624 0.898 0.994 0.998

(6) 25
0 0.038 0.033 0.040 0.040

2 0.282 0.435 0.686 0.813

(7) 25
0 0.056 0.050 0.058 0.055

1 0.194 0.610 0.270 0.320

(8) 25
1 0.050 0.054 0.057 0.053

3 0.065 0.077 0.334 0.334

(9) 25
∞ 0.042 0.040 0.048 0.043

1 0.057 0.066 0.529 0.514

in dimensions d = 2, 6, 10, respectively. For each trial, we generate a data set
under the null hypothesis and a data set under the alternative hypothesis. Each
data set consists of two samples which are generated from two d-dimensional
distributions. For the null hypothesis these distributions are identical and for the
alternative hypothesis they are different. Each sample from every distribution
is of size n = 25 for permutation tests and n = 50, 100 for asymptotic tests in
d = 2. The sample sizes for d = 6, 10 are given in Tables 7 and 8, respectively.
The nominal significant level α = 0.05 is used. In each case displayed in Tables
6, 7, 8, the cutoff point for the nominal significant level is calculated using the
asymptotic distribution under the null hypothesis. So, for our proposed test H
and also K we use the chi-square cutoff point, χ2

(1,α), and for CM, use χ2
(d,α),

where χ2
(df,α) is the upper αth point of the χ2

(df) distribution. For the Hotelling

test, we use the cutoff value ((n−2)d/(n−1−d))Fd,n−1−d,α, where Fa,b,α is the
upper αth point of the Fa,b distribution. This cut-off value is the exact value
under the multivariate normal assumption. The entries in each table are the
proportions of times each statistic exceeded its asymptotic critical value.

In Table 5 to 8, different scenarios are considered.

• Scenario (1) refers to a multivariate normal distribution, where the first
sample is taken from the standard multivariate normal distributionN(0, I)
and the second sample is taken from the multivariate normal N(c1, I)
with mean vector c1, and identity covariance matrix I, for c ∈ R. Here
0 = (0, . . . , 0)′ and 1 = (1, . . . , 1)′, are the d-dimensional vectors of 0’s
and 1’s, respectively. The null hypothesis corresponds to c = 0.
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Table 6

Observed relative frequency of rejecting H0, d = 2

Scenario n1 = n2 c T 2 CM KRMD KRASD KHSD HRMD HRASD HHSD

(1)

50
0.00 0.039 0.034 0.047 0.047 0.049 0.049 0.055 0.131
0.50 0.881 0.871 0.063 0.048 0.046 0.289 0.305 0.678
0.75 0.996 0.994 0.048 0.037 0.025 0.737 0.79 0.968

100
0.00 0.049 0.047 0.054 0.056 0.052 0.052 0.054 0.092
0.50 0.997 0.997 0.057 0.049 0.049 0.446 0.477 0.771
0.75 1.000 1.000 0.064 0.042 0.024 0.951 0.971 0.999

(2)

50
1.00 0.039 0.034 0.047 0.047 0.049 0.049 0.055 0.131
0.60 0.059 0.055 0.569 0.569 0.548 0.536 0.555 0.682
0.40 0.049 0.055 0.963 0.962 0.958 0.962 0.966 0.982

100
1.00 0.049 0.047 0.054 0.056 0.052 0.052 0.054 0.092
0.60 0.039 0.040 0.879 0.881 0.880 0.863 0.860 0.897
0.40 0.048 0.053 1.000 1.000 1.000 1.000 1.000 1.000

(3)

50
0.00 0.039 0.034 0.047 0.047 0.049 0.049 0.055 0.131
0.70 0.051 0.048 0.267 0.262 0.191 0.409 0.412 0.697
0.90 0.054 0.062 0.917 0.919 0.725 0.979 0.982 0.998

100
0.00 0.049 0.047 0.054 0.056 0.052 0.052 0.054 0.092
0.70 0.049 0.053 0.517 0.512 0.431 0.661 0.675 0.838
0.90 0.062 0.066 0.998 0.998 0.974 1.000 1.000 1.000

(4)

50
0.00 0.048 0.052 0.046 0.059 0.049 0.061 0.051 0.134
1.00 0.407 0.920 0.071 0.284 0.418 0.789 0.794 0.983
1.50 0.755 0.998 0.091 0.494 0.611 1.000 0.999 1.000

100
0.00 0.050 0.055 0.059 0.043 0.053 0.054 0.052 0.098
1.00 0.727 0.999 0.080 0.521 0.734 0.989 0.987 1.000
1.50 0.975 1.000 0.108 0.795 0.918 1.000 1.000 1.000

(5)

50
0.00 0.048 0.052 0.046 0.059 0.049 0.061 0.051 0.134
1.00 0.331 0.879 0.066 0.382 0.578 0.794 0.858 0.993
1.50 0.642 0.984 0.095 0.587 0.841 0.998 1.000 1.000

100
0.00 0.050 0.055 0.059 0.043 0.053 0.054 0.052 0.098
1.00 0.558 0.993 0.060 0.638 0.905 0.981 0.993 1.000
1.50 0.925 1.000 0.088 0.867 0.987 1.000 1.000 1.000

(6)

50
0.00 0.046 0.047 0.054 0.048 0.046 0.053 0.036 0.185
1.00 0.165 0.373 0.081 0.632 0.538 0.290 0.846 0.944
1.50 0.272 0.566 0.196 0.799 0.808 0.836 0.988 0.997

100
0.00 0.050 0.052 0.052 0.039 0.041 0.049 0.044 0.106
1.00 0.258 0.652 0.074 0.907 0.850 0.563 0.992 0.992
1.50 0.549 0.884 0.209 0.980 0.977 0.990 1.000 1.000

(7)

50
0.00 0.014 0.045 0.052 0.053 0.054 0.043 0.043 0.075
0.75 0.064 0.688 0.070 0.068 0.078 0.177 0.204 0.554
1.00 0.129 0.923 0.075 0.079 0.079 0.513 0.549 0.831

100
0.00 0.018 0.049 0.052 0.057 0.053 0.043 0.042 0.062
0.75 0.069 0.955 0.071 0.068 0.070 0.362 0.392 0.674
1.00 0.134 1.000 0.065 0.058 0.062 0.863 0.868 0.932

(8)

50
0.00 0.014 0.045 0.052 0.053 0.054 0.043 0.043 0.075
2.00 0.013 0.051 0.321 0.319 0.306 0.290 0.286 0.396
3.00 0.015 0.042 0.641 0.642 0.627 0.633 0.633 0.718

100
0.00 0.018 0.049 0.052 0.057 0.053 0.043 0.042 0.062
2.00 0.013 0.036 0.530 0.535 0.517 0.546 0.548 0.587
3.00 0.016 0.043 0.923 0.920 0.909 0.910 0.907 0.919

(9)

50
∞ 0.039 0.034 0.047 0.047 0.049 0.049 0.055 0.131
3 0.051 0.047 0.218 0.224 0.206 0.217 0.215 0.310
1 0.023 0.048 0.807 0.807 0.783 0.791 0.787 0.819

100
∞ 0.049 0.047 0.054 0.056 0.052 0.052 0.054 0.092
3 0.047 0.045 0.372 0.375 0.366 0.409 0.404 0.454
1 0.028 0.053 0.971 0.969 0.966 0.978 0.980 0.979
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Table 7

Observed relative frequency of rejecting H0, d = 6

Scenario n1 = n2 c T 2 CM KRMD KRASD HRMD HRASD

(1) 300
0.00 0.047 0.043 0.051 0.050 0.056 0.062
0.25 1.000 1.000 0.048 0.046 0.526 0.606
0.50 1.000 1.000 0.050 0.049 1.000 1.000

(2) 300
1.00 0.047 0.043 0.051 0.050 0.056 0.062
0.60 0.056 0.048 1.000 1.000 1.000 1.000

(4) 200
0.00 0.044 0.049 0.044 0.046 0.050 0.061
0.50 0.276 0.976 0.081 0.662 0.989 0.996

(5) 200
0.00 0.044 0.049 0.044 0.046 0.050 0.061
0.50 0.190 0.960 0.058 0.762 0.988 0.998

(6) 200
0.00 0.037 0.039 0.060 0.058 0.054 0.040
0.50 0.201 0.695 0.052 0.864 0.781 0.413

(7) 200

0.00 0.010 0.037 0.045 0.046 0.046 0.045
0.25 0.027 0.756 0.061 0.060 0.061 0.061
0.50 0.100 1.00 0.066 0.064 0.258 0.293
0.75 0.253 1.000 0.081 0.078 0.993 0.994

(8) 200
1.00 0.010 0.037 0.045 0.046 0.046 0.045
2.00 0.013 0.041 0.937 0.938 0.941 0.944

(9) 300
∞ 0.047 0.043 0.051 0.050 0.056 0.062
3 0.039 0.056 0.976 0.976 0.970 0.971
1 0.026 0.041 1.000 1.000 1.000 1.000

(10) 200
1 0.010 0.037 0.045 0.046 0.046 0.045
3 0.021 0.039 0.972 0.970 0.944 0.944
∞ 0.017 0.052 1.000 1.000 1.000 1.000

Table 8

Observed relative frequency of rejecting H0, d = 10

Scenario n1 = n2 c T 2 CM KRMD KRASD HRMD HRASD

(1) 500
0 0.059 0.058 0.061 0.061 0.088 0.098

0.25 1.000 1.000 0.051 0.051 0.999 1.000

(2) 500
1.00 0.059 0.058 0.061 0.061 0.088 0.098
0.80 0.062 0.062 1.000 1.000 1.000 1.000
0.60 0.052 0.052 1.000 1.000 1.000 1.000

(4) 500
0.00 0.052 0.057 0.055 0.051 0.049 0.051
0.25 0.172 0.857 0.070 0.0752 0.727 0.967

(5) 500
0.00 0.052 0.057 0.055 0.051 0.049 0.051
0.25 0.122 0.792 0.065 0.858 0.727 0.99

(6) 500
0.00 0.064 0.062 0.041 0.052 0.055 0.065
0.25 0.101 0.426 0.058 0.758 0.552 0.350

(7) 500
0.00 0.011 0.024 0.047 0.047 0.048 0.049
0.25 0.052 1.000 0.051 0.052 0.078 0.076
0.50 0.234 1.000 0.059 0.058 0.953 0.963

(8) 500
1 0.011 0.024 0.047 0.047 0.048 0.049
1.5 0.014 0.049 0.924 0.924 0.914 0.916
2 0.015 0.046 1.000 1.000 1.000 1.000

(9) 500
∞ 0.059 0.058 0.061 0.061 0.088 0.098
3 0.046 0.045 1.000 1.000 0.999 0.999
1 0.017 0.057 1.000 1.000 1.000 1.000

(10) 500
1 0.011 0.024 0.047 0.047 0.048 0.049
3 0.019 0.058 1.000 1.000 1.000 1.000
∞ 0.018 0.057 1.000 1.000 1.000 1.000
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• Scenario (2) refers again to a multivariate normal distribution, but this
time the first sample is taken from the standard multivariate normal distri-
bution N(0, I). The second sample is taken from the multivariate normal
N(0, c I) with the same mean 0 but the covariance matrix is given by c I,
for c > 0. The null hypothesis corresponds to c = 1.

• Scenario (3) refers to a bivariate normal distribution, while the first sample
is taken from the standard bivariate normal distribution N((0, 0)′, I). The
second sample is taken from the bivariate normal with the same mean
(0, 0)′ but the covariance matrix is given by

(
1 c
c 1

)
.

The null hypothesis corresponds to c = 0.
• Scenario (4) refers to a mixture of two multivariate normal distributions
with mixing probability ǫ = 0.8. The first sample is taken from 0.8N(0, I)+
0.2N(61, I) and the second sample from 0.8N(c1, I)+ 0.2N((6+ c)1, I).
The null hypothesis corresponds to c = 0.

• Scenario (5) refers to a mixture of two multivariate normal distributions
with mixing probability ǫ = 0.8. The first sample is taken from 0.8N(0, I)+
0.2N(61, I) and the second sample from 0.8N(c1, I) + 0.2N(61, I). The
null hypothesis corresponds to c = 0.

• Scenario (6) refers to a mixture of two multivariate normal distributions
with mixing probability ǫ = 0.6. The first sample is taken from 0.6N(0, I)+
0.4N(61, I) and the second sample from 0.6N(c1, I) + 0.4N(61, I). The
null hypothesis corresponds to c = 0.

• Scenario (7) refers to the multivariate t distribution, where the first sample
is taken from t(0, I, 1), which is multivariate Cauchy, and the second
sample is from t(c1, I, 1). The null hypothesis corresponds to c = 0.

• Scenario (8) refers to the multivariate t distribution, where the first sample
is taken from t(0, I, 1) and the second sample is from t(0, cI, 1). The null
hypothesis corresponds to c = 1.

• In scenario (9), the first sample is taken from the standard multivariate
normal and the second sample is from t(0, I, c). The null hypothesis cor-
responds to c = ∞.

• In scenario (10), the first sample is taken from t(0, I, 1) and the second
sample is from t(0, I, c). The null hypothesis corresponds to c = 1.

In Table 5, which is the permutation test, the entries are calculated by random
shuffling 1000 times. Therefore, the entries are typically close but not exactly at
the nominal value of 0.05. In Table 6, under the null hypothesis, the asymptotic
approximations to the distributions of the test statistics are satisfactory except
for HHSD. For this particular case, the ranks of data points with tied depths have
been averaged rather than randomly broken. This may affect the asymptotic
calculations as seen. Therefore, we have chosen to omit HHSD in Tables 7 and 8.

All tests, except those for K (namely, KRMD, KRASD, KHSD), which are
designed for scale shifts, perform well in the case of scenario (1) for all dimensions
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studied. In this scenario, Hotelling’s T 2 and CM, which are designed for location
shifts, perform extremely well. As we see, depth-based tests (HRMD, HRASD,
HHSD) using H perform well using different depth functions under variety of
differently shaped distributions. While it does not always have the power that
tests tailored to specific assumptions may have, it is reasonably robust against
distribution location, shape and many other alternatives. Of course, this is true
provided the central regions (as defined by the depth contours) do not overlap
too much.

7. Example

A data set given by Johnson and Wichern (1988, p. 261-262) is examined here
using the statistics T 2, and our proposed depth-based test H using MD depth.
The data set originally was taken from Jolicoeur and Mosimann (1960), who
studied the relationship of size and shape for painted turtles. Table 9 contains
their measurements on the carapace of n1 = 24 female and n2 = 24 male turtles.
This data set was partially analyzed in Hettmansperger et al. (1998).

We treat observations as two independent samples from trivariate distribu-
tions. We consider a test for H0 : F1 = F2 where F1 and F2 are the respective
trivariate distributions. To see that whether the trivariate normality is a reason-
able assumption for the female and male populations or not, we generate two

Table 9

Carapace measurements (mm) for painted turtles

Female Male
Length Width Height Length Width Height
(X11) (X12) (X13) (X21) (X22) (X23)
98 81 38 93 74 37
103 84 38 94 78 35
103 86 42 96 80 35
105 86 42 101 84 39
109 88 44 102 85 38
123 92 50 103 81 37
123 95 46 104 83 39
133 99 51 106 83 39
133 102 51 107 82 38
133 102 51 112 89 40
134 100 48 113 88 40
136 102 49 114 86 40
138 98 51 116 90 43
138 99 51 117 90 41
141 105 53 117 91 41
147 108 57 119 93 41
149 107 55 120 89 40
153 107 56 120 93 44
155 115 63 121 95 42
158 115 62 127 96 45
159 118 63 128 95 45
162 124 61 131 95 46
177 132 67 135 106 47
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Fig 2. Depth-Depth plots to justify the normality assumption of the female and male distri-
butions.

samples of size 100 from trivariate normal distributions with mean vectors and
covariance matrices being estimated by the sample means and covariance ma-
trices of the female and male data. We use the Mahalonobis depth to compute
the depth values of the pooled data points. Figure 2 represents the depth-depth
plots (see Liu et al. (1999)) and also ranked depth-depth plots for the female
and male samples. In these plots, the x and y axes represent the depth values
of the pooled data with respect to the generated samples and to the female and
male data points respectively. We see that all plots are concentrated along the
diagonal line. This indicates that the normality can be a reasonable assumption
for both female and male samples. These elliptical structures of the two distri-
butions are also clear from the pairwise scatter plots in Figure 3. Hence it is
reasonable to use the Mahalanobis depth and not worry about tied ranks. An
eyeball investigation of the pairwise scatter plots also reveals that, in addition
to a location shift, two populations have different dispersion parameters.

To carry out the the test, we compute the depth of each data point in the
pooled data set with respect to the female and then male samples. So we have

H(1) =
12

n(n+ 1)

2∑

j=1

nj

(
R̄·j(1)−

n+ 1

2

)2

= 12.14328

H(2) =
12

n(n+ 1)

2∑

j=1

nj

(
R̄·j(1)−

n+ 1

2

)2

= 28.30102
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Fig 3. Scatter plots of the carapace data male and female.

and then finallyH = H(1)+H(2)
2 = 20.22215. Comparing with the percentiles of a

chi-square distribution with t−1 = 1 degrees of freedom we see that the asymp-
totic P-value is 7× 10−6. We easily reject the null hypothesis H0 : F1 = F2.

Based on 1,000,000 random permutations of the numbers 1, 2, . . . , 48, the
P-value is estimated to be less than 10−6. Figure 4 represents the depth-depth
plot to compare the female and male populations, which visually justifies our
finding based on the test statistic. Assuming multivariate normality, which seems
reasonable from the depth-depth plots in Figure 2, the Hotelling’s T 2 gives the
P-value 0.
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Fig 4. Depth-Depth plot to compare the female and male populations.
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