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Abstract: In some applications with astronomical and survival data, dou-
bly truncated data are sometimes encountered. In this work we introduce
kernel-type density estimation for a random variable which is sampled un-
der random double truncation. Two different estimators are considered. As
usual, the estimators are defined as a convolution between a kernel func-
tion and an estimator of the cumulative distribution function, which may
be the NPMLE [2] or a semiparametric estimator [9]. Asymptotic properties
of the introduced estimators are explored. Their finite sample behaviour is
investigated through simulations. Real data illustration is included.
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1. Introduction

Truncated data play an important role in the statistical analysis of survival times
as well as in other fields like astronomy or economy. Double truncation of sur-
vival data occurs e.g. when only those individuals whose event time lies within a
certain subject-specific observational window are observed. An individual whose
event time is not in this interval is not observed and no information on this sub-
ject is available to the investigator. Because we are only aware of individuals
with event times in the observational window, the inference with truncated data
is based on sampling information from a conditional distribution. Hence, suit-
able corrections to account for the observational bias are needed. This problem
goes back to Turnbull [16].

Among the various existing problems of random truncation, literature has
mainly been focused on the left-truncation model or, more generally, in one-sided
truncation setups. Woodroofe [19] investigated the properties of the nonpara-
metric maximum-likelihood estimator (NPMLE) of the distribution function
(df) with left-truncated data, see also [3]. This estimator was further inves-
tigated by Stute [14], being also extended to the right-censored scenario (see
[15, 18] or [20], among many others). However, literature on random double
truncation is much scarcer. A possible reason is the absence of closed form esti-
mators; indeed, the existing methods for doubly truncated data are iterative and
computationally intensive, and these issues make difficult both the theoretical
developments and the practical implementations.

Efron and Petrosian [2] introduced the NPMLE of the df under double trunca-
tion, while Shen [12] formally established the uniform strong consistency and the
weak convergence of the NPMLE. Bootstrap methods to approximate the finite
sample distribution of the NPMLE with doubly truncated data were explored
in [8]. The semiparametric approach, in which the distribution of the truncation
times is assumed to belong to a given parametric family, was investigated in [9],
see also [13]. Interestingly, these authors showed that the semiparametric estima-
tor may outperform the NPMLE in the sense of the mean squared error (MSE).
An R package to compute the NPMLE of a doubly truncated df was presented
in [10]. However, for the best of our knowledge, estimation of a density function
observed under random double truncation has not been considered so far.

The rest of the paper is organized as follows. In Section 2 two new estimators
of a doubly truncated density function are introduced, and their main asymp-
totic properties are discussed. As usual in kernel smoothing, these estimators
are obtained as a convolution between a kernel function and an appropriate
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estimator of the cumulative df. The first estimator is purely nonparametric,
since it is based on the Efron and Petrosian’s NPMLE [2]; while the second
estimator is semiparametric, being constructed from the semiparametric cumu-
lative df proposed by Moreira and de Uña-Álvarez [9]. Section 3 provides a
simulation study in which the finite-sample properties of the two estimators are
investigated. In particular, we explore in much detail the role of the smoothing
parameter or bandwidth. Both estimators are critically compared in the sense of
the integrated MSE. In Section 4 we give a real data illustration of the proposed
methods. To this end, we use data on childhood cancer from Northern region of
Portugal [8]. Main conclusions and a final discussion are given in Section 5.

2. The estimators. Asymptotic properties

Let X∗ be the random variable of ultimate interest, with df F , and assume that
it is doubly truncated by the random pair (U∗, V ∗) with joint df T , where U∗

and V ∗ (U∗ ≤ V ∗) are the left and right truncation variables respectively. This
means that the triplet (U∗, X∗, V ∗) is observed if and only if U∗ ≤ X∗ ≤ V ∗,
while no information is available when X∗ < U∗ or X∗ > V ∗. It is assumed that
(U∗, V ∗) is independent of X∗. In the absence of such independence assumption,
the recovery of the distribution of X∗ is not possible in general. Martin and
Betensky [5] discussed a testing procedure for quasi-independence, a weaker
assumption under which the methods discussed here are still consistent. Let
(Ui, Xi, Vi), i = 1, . . . , n, denote the sampling information, these are iid data
with the same distribution of (U∗, X∗, V ∗) given U∗ ≤ X∗ ≤ V ∗. Introduce
α = P (U∗ ≤ X∗ ≤ V ∗), the probability of no-truncation. For any df W denote
the left and right endpoints of its support by aW = inf {t :W (t) > 0} and bW =
inf {t :W (t) = 1}, respectively. Let T1(u) = T (u,∞) and T2(v) = T (∞, v)
be the marginal df’s of U∗ and V ∗, respectively. When aT1

≤ aF ≤ aT2
and

bT1
≤ bF ≤ bT2

, F and T are both identifiable (see [19]).

In the following two Subsections we introduce respectively the NPMLE and
the semiparametric estimator of the df of X∗. Then, in Subsection 2.3 we con-
sider the problem of estimating the density function on the basis of these two
cumulative estimators.

2.1. The NPMLE of the cumulative df

Here, we assume without loss of generality, that the NPMLE is a discrete dis-
tribution supported by the set of observed data [16]. Let ϕ = (ϕ1, . . . , ϕn)
be a distribution putting probability ϕi on Xi, i = 1, . . . , n. Similarly, let ψ =
(ψ1, . . . , ψn) be a distribution putting joint probability ψi on (Ui, Vi), i = 1, . . . , n.
Under the assumption of independence between X∗ and (U∗, V ∗), the full like-
lihood, L(ϕ, ψ), can be decomposed as a product of the conditional likelihood
of the Xi’s given the (Ui, Vi)’s, say L1(ϕ), and the marginal likelihood of the
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(Ui, Vi)’s, say L2(ϕ, ψ):

L(ϕ, ψ) =
n∏

j=1

ϕj

Φj
×

n∏

j=1

Φjψj∑n
i=1 Φiψi

= L1(ϕ) × L2(ϕ, ψ) (2.1)

where Φi is defined through Φi =
∑n

m=1 ϕmJim, i = 1, . . . , n with Jim =
I[Ui≤Xm≤Vi] = 1 if Ui ≤ Xm ≤ Vi and equal to zero otherwise.

The conditional NPMLE of F [2] is defined as the maximizer of L1(ϕ) in equa-
tion (2.1): ϕ̂ = argmaxϕ L1(ϕ). Shen [12] proved that the conditional NPMLE
Fn(x) =

∑n
i=1 ϕ̂iI[Xi≤x] maximizes indeed the full likelihood, which can be also

written as the product

L(ϕ, ψ) =
n∏

j=1

ψj

Ψj
×

n∏

j=1

Ψjϕj∑n
i=1 Ψiϕi

= L∗
1(ψ)× L∗

2(ψ, ϕ)

where Ψi =
∑n

m=1 ψmI[Um≤Xi≤Vm] =
∑n

m=1 ψmJmi, for i = 1 . . . , n. Here,
L∗
1(ψ) denotes the conditional likelihood of the (Ui, Vi)’s given the Xi’s and

L∗
2(ψ, ϕ) refers to the marginal likelihood of theXi’s. Introduce ψ̂ = (ψ̂1, . . . , ψ̂n)

as the maximizer of L∗
1; then, Tn(u, v) =

∑n
i=1 ψ̂iI[Ui≤u,Vi≤v] is the NPMLE of

T [12].
The NPMLE of F also admits the representation

Fn(x) = αn

∫ x

aF

F ∗
n(dt)

Gn(t)

where F ∗
n is the ordinary empirical df of the Xi’s,

Gn(t) =

∫

{u≤t≤v}

Tn(du, dv)

is a nonparametric estimator for the conditional probability of sampling a life-
time X∗ = t, i.e. G(t) = P (U∗ ≤ t ≤ V ∗), and αn = (

∫∞

aF

G−1
n (t)F ∗

n (dt))
−1 is an

estimator for α. Shen [12] established the uniform strong consistency and the
weak convergence of Fn.

2.2. The semiparametric estimator of the cumulative df

In the semiparametric approach it is assumed that T belongs to a parametric
family of df’s {Tθ}θ∈Θ, where θ is a vector of parameters and Θ stands for the
parametric space. As a consequence, G(t) is parametrized as

Gθ(t) =

∫

{u≤t≤v}

Tθ(du, dv).

The parameter θ is estimated by the maximizer θ̂ of the conditional likelihood
of the (Ui, Vi)’s given the Xi’s, that is,

L∗
1(ψ) ≡ L∗

1(θ) =

n∏

i=1

gθ(Ui, Vi)

Gθ(Xi)
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where gθ(u, v) = ∂2

∂u∂vP (U
∗ ≤ u, V ∗ ≤ v) = Tθ(du, dv) stands for the joint

density of (U∗, V ∗) (assumed to exist).
Once θ is estimated, a semiparametric estimator for F is introduced through

Fθ̂(x) = αθ̂

∫ x

aF

F ∗
n(dt)

Gθ̂(t)
,

where αθ̂ = (
∫∞

aF

G−1

θ̂
(t)F ∗

n (dt))
−1. Moreira and de Uña-Álvarez [9] established

the asymptotic normality of both θ̂ and Fθ̂. They also showed by simulations
that Fθ̂ may perform much more efficiently than the NPMLE. As a drawback,
the semiparametric estimator requires preliminary specification of a parametric
family, which may eventually introduce a bias component when it is far away
from reality ([9]).

2.3. The density estimators

Introduce

fh(x) =

∫
Kh(x− t)Fn(dt) = αn

1

n

n∑

i=1

Kh(x −Xi)Gn(Xi)
−1 (2.2)

where Kh(t) = K(t/h)/h is the re-scaled kernel function and h = hn is a
deterministic bandwidth sequence with hn → 0. Note that (2.2) is a purely
nonparametric estimator of f , the density of X∗(assumed to exist). Introduce
also the semiparametric kernel density estimator

fθ̂,h(x) =

∫
Kh(x− t)Fθ̂(dt) = αθ̂

1

n

n∑

i=1

Kh(x−Xi)Gθ̂(Xi)
−1. (2.3)

Note that both estimators (2.2) and (2.3) correct the double truncation by
downweighting the Xi’s according to an estimation of the sampling probability
G(Xi). This is very intuitive, since the values with less probability of being
observed are receiving more mass. The case G(.) = 1 is possible; for example,
this happens whenever the left-truncation time U∗ is uniformly distributed in
a suitable interval and V ∗ − U∗ is degenerated. See our real data illustration.
In such a case, the correction for truncation vanishes and we obtain the usual
kernel density estimators.

Both Gn and Gθ̂ are
√
n-consistent estimators of G. For Gθ̂ this follows from

the
√
n-consistency of θ̂, provided that Gθ is a smooth function of θ ([9]). For

Gn, the result may be obtained by noting that

Gn(x) = α−1
n

∫ ∫

{u≤x≤v}

T ∗
n(du, dv)∫

{u≤t≤v} Fn(dt)
and αn =

∫ ∫
T ∗
n(du, dv)∫

{u≤t≤v} Fn(dt)
,

where T ∗
n is the ordinary empirical df of the truncation times. Hence,

√
n-

consistency of Gn is a consequence of that of Fn [12] and T ∗
n . Since both Gn
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and Gθ̂ approach to G at a
√
n-rate, which is faster than the nonparametric

rate
√
nh, the asymptotic properties of fh and fθ̂,h will be the same, and will

coincide with those of the estimator based on the true G. However, for the finite
sample case, some error improvements are expected when using fθ̂,h due to the
smaller variance associated to Gθ̂. This issue is illustrated in our simulations
section.

Introduce the asymptotically equivalent version of fh and fθ̂,h through

fh(x) =

∫
Kh(x− t)Fn(dt) = α

1

n

n∑

i=1

Kh(x −Xi)G(Xi)
−1 (2.4)

where

Fn(x) = α
1

n

n∑

i=1

G(Xi)
−1I[Xi≤x].

In the next result we establish the strong consistency and the asymptotic
normality of fh(x). We implicitly assume G(x) > 0 throughout this Section.

Theorem 2.1. (i) If K is bounded on a compact support, h is such that∑∞
n=1 exp(−ηhn) <∞ for each η > 0, G is continuous at x, and x is a Lebesgue

point of f , then fh(x) → f(x) with probability 1.
(ii) If, in addition to the conditions in (i), K is an even function, h =

o(n−1/5), G−1f has a second derivative which is bounded in a neighbourhood of
x, and f(x) > 0, then

(nh)1/2
(
fh(x)− f(x)

)
→ N(0, αG(x)−1f(x)R(K))

in distribution, where R(K) =
∫
K(t)2dt.

Proof. For (i) introduce f̃h(x) = αG(x)−1f0,h(x) where

f0,h(x) =
1

n

n∑

i=1

Kh(x−Xi).

By [1] we have f0,h(x) → f0(x) almost surely, where f0(x) = α−1G(x)f(x).
Now, if the support of K is contained in [−a, a],

∣∣∣fh(x) − f̃h(x)
∣∣∣ ≤ αf0,h(x) sup

x−ah≤y≤x+ah

∣∣G(y)−1 −G(x)−1
∣∣ ,

and the supremum goes to zero by the continuity of G at x. This ends with the
proof to (i). Statement (ii) is proved similarly to Section 2 of [11]; by following
such lines we obtain

(nh)1/2
(
fh(x)− Efh(x)

)
→ N(0, αG(x)−1f(x)R(K)).

Now, a two-term Taylor expansion (and the fact that K is even) gives Efh(x) =
f(x) +O(h2). Since nh5 → 0, this implies the claimed result.
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Remark. Formally, to derive the asymptotic normality of fh(x) and fθ̂,h(x)

from Theorem 2.1 (ii) we need the conditions

sup
y∈ξ(x)

∣∣αnGn(y)
−1 − αG(y)−1

∣∣ = oP ((nh)
−1/2)

or
sup

y∈ξ(x)

∣∣αθ̂Gθ̂(y)
−1 − αG(y)−1

∣∣ = oP ((nh)
−1/2)

respectively, where ξ(x) is a neighborhood of x. From the
√
n-consistency results

derived in [12] and [9], it is reasonable to conjecture that these two conditions
will hold under suitable regularity assumptions. The formal derivation of these
result falls, however, out of the scope of the present work.

The asymptotic mean and variance of (2.4) are given in the following result.
We refer to the following standard regularity assumptions.

(A1) The kernel function K is a density function with
∫
tK(t)dt = 0, µ2(K) =∫

t2K(t)dt <∞, and R(K) =
∫
K(t)2dt <∞.

(A2) The sequence of bandwidths h = hn satisfies h → 0 and nh → ∞ as
n→ ∞.

(A3) The functions f and G−1f are twice continuously differentiable around x.

Theorem 2.2. Under (A1)-(A3) we have, as n→ ∞,

E
[
fh(x)

]
= f(x) +

1

2
h2f ′′(x)µ2(K) + o(h2),

V ar
[
fh(x)

]
= (nh)−1αG(x)−1f(x)R(K) + o((nh)−1).

Proof. The proof follows standard steps. A second-order Taylor expansion of f
around x is used, and the assumptions on the kernel and the bandwidth are
enough to conclude. See e.g. [17].

Theorem 2.2 shows that the double truncation influences the variance of
fh(x), the bias being unaffected otherwise. More specifically, the variance of the
estimator is large at points x for which the relative probability of getting Xi

values around x (i.e. G(x)) is small. Usually one will be interested in the global
error of fh as an estimator of the entire curve f . This can be measured through
the integrated MSE, namely

MISE(fh) =

∫
MSE(fh(x))dx,

where

MSE(fh(x)) =
[
Efh(x)− f(x)

]2
+ V ar

(
fh(x)

)
.

Under regularity, we have from the previous results the following asymptotic
expression for the MISE(fh):

AMISE(fh) =
1

4
h4R (f ′′)µ2(K)2 + (nh)−1αR(K)

∫
G−1f
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where R (f ′′) =
∫
(f ′′)

2
. Because of the

√
nh-equivalence between Gn,Gθ̂ and

G, the same asymptotic expression will hold for fh and fθ̂,h under proper condi-
tions. Note that the conclusions of Theorem 2.2 do not automatically transfer to
the two proposed estimators since the (nonparametric or parametric) estimation
of the function G will influence the bias and the variance. However, heuristically,
one may argue that this influence will be negligible in the limit provided that
the proposed estimators and fh are asymptotically equivalent (Remark above).
See [4], Sec. 2.4.1, for similar argumentations. In Section 3, the real impact of
the estimation of G in the performance of fh and fθ̂,h will be explored through
simulations.

Interestingly, Hölder’s inequality gives α
∫
G−1f ≥ 1, which indicates that

the global error when estimating the density in the doubly truncated scenario
is at least as large as that pertaining to the no truncated situation. This does
not mean that for a particular x the MSE of fh(x) may not be smaller than
in the i.i.d. situation, since αG(x)−1f(x) < 1 may happen. Minimization of
AMISE(fh) w.r.t. h leads to the asymptotically optimal bandwidth

hAMISE =

[
αR(K)

∫
G−1f

R (f ′′)µ2(K)2

]1/5
n−1/5.

Of course, this expression depends on unknown quantities that must be esti-
mated in practice. There exist several criteria to select the bandwidth from the
data at hand. Although in this paper we do not propose any particular auto-
matic bandwidth selector, in Section 3 we investigate through simulations the
impact of the smoothing parameter in the performance of the two introduced
density estimators fh and fθ̂,h.

3. Simulation study

In this section we illustrate the finite sample behavior of both estimators, the
purely nonparametric estimator and the semiparametric estimator, through
simulation studies. We analyze the influence of the bandwidth in the estima-
tors’ mean integrated squared errors (MISEs), and we measure the amount of
efficiency which is gained through the using of the semiparametric informa-
tion.

We consider two different situations of double truncation, Case 1 and Case 2.
In Case 1, U∗, V ∗ and X∗ are mutually independent. In Case 2, we simulate U∗

and then we take V ∗ = U∗+ τ for some fixed constant τ > 0. Case 2 follows the
spirit of the childhood cancer data discussed in Section 4, when the recruited
observations are those with terminating events (cancer diagnosis) falling between
two specific dates. Three different models are simulated for Case 1 and two
models for Case 2. For Case 1, we take U∗ ∼ U(0, 1), V ∗ ∼ U(0, 1), X∗ ∼
U(0.25, 1) (Model 1.1), U∗ ∼ U(0, 1), V ∗ ∼ U(0, 1),X∗ ∼ 0.75N(0.5, 0.15)+0.25
(Model 1.2), and U∗ ∼ Exp(2), V ∗ ∼ Exp(2) (both truncated on the (0, 1)
interval), X∗ ∼ 0.75N(0.25, 0.15) + 0.25 (Model 1.3). For Case 2, we take τ =
0.25 and U∗ ∼ U(0, 1), X∗ ∼ 0.75Beta(3/4, 1) + 0.25 (Model 2.1) and U∗ ∼



Kernel density estimation with doubly truncated data 509

U(0, 1), X∗ ∼ 0.75N(0.5, 0.15) + 0.25 (Model 2.2). Note that when we move
from Model 1.1 (resp. 2.1) to Model 1.2 (resp. 2.2) we are changing the lifetime
distribution while fixing the distribution of the truncation variables; while when
we move from Model 1.2 to Model 1.3 or Model 2.2 we are maintaining the
same lifetime distribution but we change the truncation distribution. This will
be interesting when interpreting the simulation results. We also point out that,
due to the random truncation, in Models 1.1 - 1.3 relatively small and moderate
values of the lifetime are more probably observed, while in Models 2.1 and 2.2
there is no observational bias on X∗ (i.e. G(.) = 1; see Remark 2.1 in [9]). We
will recall this issue below.

For the computation of the semiparametric density estimator, as paramet-
ric information on (U∗, V ∗) we always consider a Beta(θ1, 1) for U

∗; besides, a
Beta(1, θ2) is considered for V ∗ in Case 1. An exception is Model 1.3 for which
we considered the product Exp(θ1) × Exp(θ2) (with the marginals truncated
on the (0, 1) interval) as parametric information on (U∗, V ∗). Note that these
parametric models include the several truncation distributions in the simula-
tions. For each Model, we simulate 1000 Monte Carlo trials with final sample
size n = 50, 100, 250 or 500. This means that, for each trial, the number of
simulated data is much larger than n, actually N ≈ nα−1 are needed on av-
erage, where recall that α stands for the proportion of no truncation. For the
simulated models, the proportion of truncation ranges between 44% and 88%.
More specifically, the following right and left truncation proportions occur: 37%
(right) and 44% (left) for Model 1.1; 38% and 40% for Model 1.2; 67% and 19%
for Model 1.3; 53% and 22% for Model 2.1; and 45% and 28% for Model 2.2.

In Table 1 we report the optimal bandwidths (in the sense of the MISE)
and the corresponding minimum MISE’s for both the nonparametric and the
semiparametric estimators. The theoretical MISE function is approximated by
the average of the ISEs along the M =1000 trials, namely

ISE(fh) =
1

M

M∑

m=1

∫
(fm

h − f)
2

and ISE(fθ̂,h) =
1

M

M∑

m=1

∫ (
fm
θ̂,h

− f
)2

where fm
h and fm

θ̂,h
are the nonparametric and the semiparametric estimators

when based on the m-th Monte Carlo trial.
From Table 1 it is seen that the optimal bandwidths and the MISEs decrease

when increasing the sample size; besides, the semiparametric estimator has an
error which is smaller than that pertaining the the nonparametric estimator.
It is also seen that the optimal bandwidths for the semiparametric estimator
are smaller than those of the nonparametric estimator, according to the ex-
tra amount of information. As the sample size grows, the relative efficiency
of the nonparametric estimator approaches to one; this is in agreement to the
asymptotic equivalence of the semiparametric and the nonparametric density
estimators discussed in Section 2. Interestingly, for finite sample sizes we see
that such relative efficiency may be as poor as 45% (Model 2.2, n = 50).

When comparing Models 1.1 and 1.2 - 1.3, one can appreciate that the den-
sity corresponding to the first one is not so well approximated by the two es-
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Table 1

Optimal bandwidths (hopt) and minimum MISEs of the density estimators: nonparametric
estimator (EP ) and semiparametric estimator (SP ). Averages along 1000 trials of a sample

size n

Model n hopt MISE(hopt)
EP SP EP SP

50 0.173 0.145 0.1449 0.1229
100 0.130 0.107 0.1174 0.0994

1.1 200 0.091 0.076 0.0890 0.0749
500 0.051 0.048 0.0537 0.0503

50 0.062 0.059 0.1281 0.1126
100 0.052 0.051 0.0817 0.0709

1.2 200 0.044 0.043 0.0480 0.0434
500 0.037 0.036 0.0240 0.0219

50 0.061 0.064 0.1512 0.1243
100 0.054 0.053 0.0855 0.0784

1.3 200 0.046 0.045 0.0539 0.0485
500 0.038 0.038 0.0282 0.0254

50 0.216 0.085 0.6940 0.5465
100 0.126 0.049 0.6142 0.4891

2.1 200 0.039 0.029 0.5181 0.4321
500 0.015 0.014 0.4054 0.3654

50 0.074 0.061 0.3091 0.1381
100 0.056 0.052 0.1587 0.0925

2.2 200 0.046 0.044 0.0748 0.0532
500 0.037 0.036 0.0385 0.0273

timators; this is because the strong boundary effects of the uniform density
(Model 1.1), which disappear when considering a Gaussian model (Models 1.2
- 1.3). Also, the difficulties for estimating the normal density in Case 2 (Model
2.2) are greater than under Models 1.2 - 1.3; this could be explained from the
above mentioned fact that Models 1.2 - 1.3 favor the observation of intermediate
lifetimes, so there is more sampling information around the density mode (the
difficult part to estimate). Model 2.1 is the one presenting the largest MISEs;
this Model 2.1 presents difficulties at the left boundary, where the density goes
to infinity.

In Table 2 we report the biases and the variances of the nonparametric and
semiparametric estimators at some selected time points, corresponding to the
quartiles of F , for sample sizes n=100, 500, along the 1,000 Monte Carlo trials.
It is seen that the squared bias is always of a smaller order when compared to the
variance, so the resulting mean squared errors (MSEs) are mainly determined
by the estimates’ dispersion. For all the cases, these local MSEs are smaller for
the semiparametric estimator. The biases and variances vary along the quar-
tiles; this is asymptotically explained by the influence of f ′′(x), respectively of
G(x)−1f(x), in these quantities, see Section 2. In particular, it is seen in Table 2
that the variance is larger around the median for a Gaussian X∗, according to
the larger value of f(x) at this point. On the other hand, when f is monotone
decreasing (Model 2.1), the maximum variance is obtained for the first quartile.
Finally, when f is constant (Model 1.1), the variance is mainly affected by the
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Table 2

Biases and variances of the nonparametric (EP ) and semiparametric (SP ) estimators at
the quartiles of F , for sample sizes n=100, 500, along the 1,000 Monte Carlo trials

EP SP

Model n x Bias Var Bias Var

F−1(0.25) 8.8410e− 3 5.1765e − 2 5.1060e− 3 3.5255e− 2

100 F−1(0.50) 6.0900e− 3 1.7031e − 2 2.8390e− 3 1.7072e− 2

F−1(0.75) 9.4299e− 3 2.7419e − 2 6.3700e− 3 2.3346e− 2

1.1 F−1(0.25) 9.6170e− 4 1.1310e − 2 6.5079e− 4 9.5263e− 3

500 F−1(0.50) 1.5788e− 5 7.9200e − 3 2.2007e− 5 6.6110e− 3

F−1(0.75) 1.5660e− 3 8.0260e − 3 1.2040e− 3 6.3681e− 3

F−1(0.25) 3.8800e− 2 8.8886e − 2 3.3440e− 2 7.8630e− 2

100 F−1(0.50) 5.7290e− 2 1.3225e − 1 5.0729e− 2 1.1735e− 1

F−1(0.75) 4.2376e− 2 7.6418e − 2 3.8279e− 2 6.4914e− 2

1.2 F−1(0.25) 1.0556e− 2 2.8360e − 2 1.0118e− 2 2.5919e− 2

500 F−1(0.50) 1.6255e− 2 4.3298e − 2 1.4832e− 2 4.0434e− 2

F−1(0.75) 1.0528e− 2 2.7050e − 2 9.5953e− 3 2.4545e− 2

F−1(0.25) 3.5583e− 2 9.0056e − 2 2.9126e− 2 7.8630e− 2

100 F−1(0.50) 5.2293e− 2 1.4219e − 1 5.3379e− 2 1.2808e− 1

F−1(0.75) 4.6260e− 2 7.9695e − 2 4.9428e− 2 7.3406e− 2

1.3 F−1(0.25) 1.1848e− 2 3.2927e − 2 7.2432e− 3 3.2749e− 2

500 F−1(0.50) 1.8393e− 2 5.0124e − 2 1.6762e− 2 4.7031e− 2

F−1(0.75) 1.1538e− 2 2.9824e − 2 1.5092e− 2 2.8965e− 2

F−1(0.25) 5.5585e− 2 1.5549e − 1 1.0686e− 2 7.3223e− 2

100 F−1(0.50) 4.3419e− 3 1.3165e − 2 5.2167e− 4 3.5620e− 3

F−1(0.75) 2.1435e− 2 2.3492e − 2 1.0987e− 2 1.6741e− 2

2.1 F−1(0.25) 9.1250e− 4 7.6020e − 2 1.2085e− 3 2.7803e− 2

500 F−1(0.50) 3.7228e− 5 3.0470e − 2 1.9261e− 5 1.5114e− 3

F−1(0.75) 7.4896e− 8 4.4823e − 2 1.3419e− 5 1.9288e− 2

F−1(0.25) 7.2066e− 2 1.7879e − 1 4.8455e− 2 8.9994e− 2

100 F−1(0.50) 9.2698e− 2 2.6047e − 1 6.1701e− 2 1.2074e− 1

F−1(0.75) 6.9243e− 2 1.7067e − 1 4.6376e− 2 1.0041e− 1

2.2 F−1(0.25) 1.4112e− 2 5.7963e − 2 1.1035e− 2 3.2729e− 2

500 F−1(0.50) 2.4046e− 2 7.3454e − 2 1.9882e− 2 4.0760e− 2

F−1(0.75) 1.4564e− 2 5.1570e − 2 1.1863e− 2 3.5576e− 2

function G, so a smaller dispersion is found at the median (corresponding to the
maximum value of G(x) = x(1 − x) for Model 1.1).

In Figures 1 to 5 we report for each simulated model: (i) the ratio between the
MISE’s of the semiparametric and the nonparametric estimators along a grid of
bandwidths (top row); (ii) the ratio between the MISE of the semiparametric
estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density together with its semiparametric and nonparametric
estimators averaged along the 1000 Monte Carlo trials (bottom row). From these
Figures 1 to 5 several interesting features are appreciated. First, for each given
smoothing degree, the MISE of the semiparametric estimator is less than that of
the nonparametric estimator; the relative benefits of using the semiparametric
information are more clearly seen when working with relatively smaller band-
widths, when the variance component of the MISE is larger. This illustrates how
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Fig 1. (i) The ratio between the MISE’s of the semiparametric and the nonparametric esti-
mators along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semi-
parametric estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density (solid line) together with its semiparametric (dashed line) and
nonparametric (dotted line) estimators averaged along the 1000 Monte Carlo trials (bottom
row) for Model 1.1.

the semiparametric estimator achieves a variance reduction w.r.t. the NPMLE.
The minimum relative efficiency of the nonparametric kernel density estimator
varies from about 0.4 to about 0.85, depending on the simulated model and the
sample size. Also importantly, we see that the ratios of the MISE’s approach
to one as the sample size increases. This was expected, since (as discussed in
Section 2) both estimators are asymptotically equivalent. However, even when
n = 500, the relative performance of the nonparametric estimator may be as
poor as 70% (Figure 5, top).

Second, from the middle rows of Figures 1 to 5, we see that the semiparamet-
ric estimator behaves more efficiently than the nonparametric estimator even
when the former uses a sub-optimal bandwidth. Indeed, for Models 1.1, 1.3, 2.1,
and 2.2 it becomes clear that there exists a large interval of suboptimal band-
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Fig 2. (i) The ratio between the MISE’s of the semiparametric and the nonparametric esti-
mators along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semi-
parametric estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density (solid line) together with its semiparametric (dashed line) and
nonparametric (dotted line) estimators averaged along the 1000 Monte Carlo trials (bottom
row) for Model 1.2.

widths which maintain the superiority of the semiparametric density estimator
with respect to the nonparametric estimator based on its optimal smoothing
parameter. Finally, the averaged estimators depicted in Figures 1-5 reveal that
the semiparametric estimator fits better the target than its nonparametric com-
petitor when the sample size is moderate.

Simulations above are informative about the relative performance of the two
proposed estimators when the parametric information on the truncation distri-
bution is correctly specified. However, in practice, some level of misspecifica-
tion in the parametric model may occur. To investigate the sensitivity of the
semiparametric estimator to some level of misspecification, we have repeated
the simulation of Model 1.1 but changing the U(0, 1) distribution of U∗ for a
Beta(1, a) distribution with a 6= 1, so the parametric information Beta(θ1, 1) on
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Fig 3. (i) The ratio between the MISE’s of the semiparametric and the nonparametric es-
timators along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semi-
parametric estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density (solid line) together with its semiparametric (dashed line) and
nonparametric (dotted line) estimators averaged along the 1000 Monte Carlo trials (bottom
row) for Model 1.3.

U∗ is misspecified. Results on the bandwidth, the MISE, and the local MSE of
both the semiparametric and nonparametric density estimators are reported in
Tables 3 and 4 for the case n=500 (results based on 1,000 trials). From Table 3,
it is seen that the semiparametric estimator may be still equivalent or even pre-
ferred to the nonparametric estimator when the misspecification level is small
(a = 1/2, 3/2). However, for a larger specification error (a = 1/5, 4), the MISE
of the semiparametric estimator is above that of the nonparametric one. Table 4
indicates that, when the parametric information is misspecified, the variance of
the semiparamtric estimator is still smaller than that of the nonparametric es-
timator; however, the bias of the semiparametric estimator may be one order of
magnitude greater than the bias of the nonparametric estimator which, overall,
explains the relative MISE results of Table 3.
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Fig 4. (i) The ratio between the MISE’s of the semiparametric and the nonparametric esti-
mators along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semi-
parametric estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density (solid line) together with its semiparametric (dashed line) and
nonparametric (dotted line) estimators averaged along the 1000 Monte Carlo trials (bottom
row) for Model 2.1.

Table 3

Optimal bandwidths (hopt) and minimum MISEs of the density estimators: nonparametric
estimator (EP ) and semiparametric estimator (SP ) along 1000 trials of sample size n =

500. Similar as Model 1.1, but U∗ is simulated as a Beta(1, a) random variable

a hopt MISE(hopt)
EP SP EP SP

1/5 0.056 0.070 0.0589 0.0675
1/2 0.052 0.057 0.0541 0.0543
1 0.051 0.048 0.0537 0.0503

3/2 0.061 0.052 0.0634 0.0603
4 0.065 0.070 0.0660 0.0877
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Fig 5. (i) The ratio between the MISE’s of the semiparametric and the nonparametric esti-
mators along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semi-
parametric estimator and the minimum MISE of the nonparametric estimator (middle row);
and (iii) the target density (solid line) together with its semiparametric (dashed line) and
nonparametric (dotted line) estimators averaged along the 1000 Monte Carlo trials (bottom
row) for Model 2.2.

4. Real data illustration

For illustration purposes, in this section we consider data on the age at diag-
nosis of childhood cancer. These data concern all the cases of childhood cancer
diagnosed in North Portugal between 1 January 1999 and 31 December 2003.
The age at diagnosis (ranging from 0 to 15 years old) is doubly truncated by
(U∗, V ∗), where V ∗ stands for the elapsed time (in years) between birth and
end of the study (31 December 2003), and U∗ = V ∗− 5. Information on the 406
diagnosed cases is entirely reported in [8].

The semiparametric and the nonparametric kernel estimators for the density
of X∗ computed from the n = 406 cases are given in Figure 6. The scale in the
horizontal axis comes from the transformation (t+5)/20, which has been used for
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Table 4

Biases and variances of the nonparametric (EP ) and semiparametric (SP ) estimators at
the quartiles of F , for sample size n=500, along the 1,000 Monte Carlo trials. Similar as

Model 1.1, but U∗ is simulated as a Beta(1, a) random variable

EP SP

a x Bias Var Bias Var

F−1(0.25) 1.4982e − 3 1.4867e − 2 3.3642e − 2 1.2064e− 2

1/5 F−1(0.50) 4.3399e − 5 1.1835e − 2 1.0519e − 2 7.9672e− 3

F−1(0.75) 1.8967e − 3 9.0937e − 3 5.4089e − 3 6.3632e− 3

F−1(0.25) 1.0153e − 3 1.2261e − 2 1.0150e − 2 1.2083e− 2

1/2 F−1(0.50) 2.7029e − 5 8.9601e − 3 2.6287e − 3 8.1996e− 3

F−1(0.75) 1.4592e − 3 8.6057e − 3 1.0019e − 3 6.3577e− 3

F−1(0.25) 9.6170e − 4 1.1310e − 2 6.5079e − 4 9.5263e− 3

1 F−1(0.50) 1.5788e − 5 7.9200e − 3 2.2007e − 5 6.6110e− 3

F−1(0.75) 1.5660e − 3 8.0260e − 3 1.2040e − 3 6.3681e− 3

F−1(0.25) 1.1167e − 3 1.5669e − 2 4.1202e − 4 1.0192e− 2

3/2 F−1(0.50) 2.5069e − 7 1.3452e − 2 5.0340e − 4 8.1815e− 3

F−1(0.75) 1.2744e − 3 8.7782e − 3 5.2861e − 3 8.4483e− 3

F−1(0.25) 9.4576e − 4 1.5646e − 2 2.0276e − 2 1.1506e− 2

4 F−1(0.50) 5.4599e− 10 1.4828e − 2 3.4105e − 6 8.5146e− 3

F−1(0.75) 1.5099e − 3 9.4355e − 3 3.9821e − 2 1.0618e− 2
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Fig 6. Kernel density estimators for the age at diagnosis, childhood cancer data (n = 406).
Nonparametric estimator (solid line), semiparametric estimator (dashed line), and naive es-
timator (dotted line).

the ages at diagnosis and the truncation variables. With this transformation,
the U∗ is supported on the (0, 1) interval. For the semiparametric estimator,
we assume a Beta(θ1, θ2) model for U∗, and the parameters are estimated by
maximizing the conditional likelihood of the truncation times (see Section 2 for
details). In this case the pair (U∗, V ∗) does not have a density, and the likelihood
L∗
1(θ) must be properly re-defined by substituting the density of U∗ for gθ in

that expression, see Remark 2.1 in [9] for further details.

Three different bandwidths are used: h = 0.02, h = 0.035, and h = 0.06.
As expected, more bumps appear as the smoothing degree decreases. For large
bandwidths, only two bumps remain, indicating the existence of two subgroups
of cases: early cancer detection and late detection (less frequent). For compar-
ison, the naive kernel density estimator which does not correct for the double



518 C. Moreira and J. de Uña-Álvarez
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Fig 7. Kernel density estimators for the age at diagnosis, childhood cancer data, for the
specific case of neuroblastoma (n = 38). Nonparametric estimator (solid line), semiparametric
estimator (dashed line), and naive estimator (dotted line).
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Fig 8. Left: Estimators Gn (dashed line) and G
θ̂
(dotted line) for the childhood cancer data.

Left: full sample. Right: neuroblastoma cases.

truncation is also reported. We see that the three estimators are close to each
other. This is not surprising, since previous analysis of these data have shown
that there is almost no observational bias on the age at diagnosis because of
the uniformity of U∗ [8]. This fact is also confirmed in Figure 8, left, in which a
fairly flat shape of Gn is seen.

For further illustration, in Figure 7 we provide these three estimators for a
subgroup of cases. Specifically, we consider the n = 38 diagnosed cases of neu-
roblastoma. For this subgroup the uniformity of U∗ is lost, and as a consequence
there exists some observational bias ([7], page 78). Certainly, Figure 8, right,
suggests that relatively small ages at diagnosis are more probably observed.
This explains the overestimation of the density carried out by the naive estima-
tor at the left tail. Unlike the naive estimator, both the nonparametric and the
semiparametric estimators which take the double truncation issue into account
declare a second mode at the right tail. These two estimators are similar on the
interval [0.25, 0.45] while differences appear from 0.45 on. In order to explain
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this, we report in Figure 8 the estimators Gn and Gθ̂ for the full data set and for
the neuroblastoma cases. Note that the semiparametric estimator is based on a
parametric specification of the truncation df; this introduces a bias term which
influences the shape of the final density estimator while reducing its variance.
Indeed, Figure 7, right, indicates that G−1

θ̂
is smaller than G−1

n at intermediate

values of X∗, while the contrary occurs at large times. This explains why the
semiparametric estimator locates the second mode more to the right. This bi-
asing effect of the parametric model is not appreciated when analyzing the full
data set because Gn and Gθ̂ are close to each other in this case (Figure 8, left).

5. Conclusions and final discussion

In this paper we have introduced kernel density estimation for a variable which is
observed under random double truncation. Two estimators have been proposed.
The first one is purely nonparametric, and it is defined as a convolution of a
kernel function with the NPMLE of the cumulative df. The second estimator
is semiparametric, since it is based on a parametric specification for the df
of the truncation times. Asymptotic properties of the two estimators have been
discussed, including a formula for the asymptotic mean integrated squared error
(MISE).

Both estimators are asymptotically equivalent in the sense of having the same
asymptotic MISE. However, for small and moderate sample sizes, we have seen
that the semiparametric estimator may outperform the nonparametric estima-
tor. More explicitly, the relative efficiency of the nonparametric estimator may
be as poor as 45% in special situations with small sample sizes. Moreover, in
special instances, the relative benefits of using the semiparametric approach are
clearly seen even when the sample size is as large as n = 500. Finally, our simula-
tion results have revealed that the semiparametric estimator may be preferable
even when based on a sub-optimal bandwidth. A real data illustration has been
provided.

A crucial issue in the construction of the semiparametric estimator is how to
choose the parametric model for the truncation distribution. Note that, rather
than the truncation distribution itself, the function G influences the shape of the
final estimator. Hence, an informal assessment of the parametric family may be
performed by plotting the empirical biasing function Gn together with the fitted
Gθ. Formal goodness-of-fit tests for a parametric model could be developed too,
and this problem is currently under research.

Since the bandwidth h plays a very important role in the performance of the
estimators, an interesting topic for future research is to investigate automatic
bandwidth selectors. Bandwidth selectors can be introduced from the asymp-
totic MISE expressions derived in Section 2, although other possible criteria
include bootstrap and cross-validation methods. Also, the application of kernel
smoothing to the estimation of the hazard rate function (another important
curve in Survival Analysis) in a doubly truncated setup is currently under in-
vestigation.
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