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PROPER LOCAL SCORING RULES

BY MATTHEW PARRY1, A. PHILIP DAWID AND STEFFEN LAURITZEN

University of Otago, University of Cambridge and University of Oxford

We investigate proper scoring rules for continuous distributions on the
real line. It is known that the log score is the only such rule that depends on
the quoted density only through its value at the outcome that materializes.
Here we allow further dependence on a finite number m of derivatives of the
density at the outcome, and describe a large class of such m-local proper
scoring rules: these exist for all even m but no odd m. We further show that
for m ≥ 2 all such m-local rules can be computed without knowledge of the
normalizing constant of the distribution.

1. Introduction. A scoring rule S(x,Q) is a loss function measuring the
quality of a quoted distribution Q, for an uncertain quantity X, when the real-
ized value of X is x. It is proper if it encourages honesty in the sense that the
expected score EX∼P S(X,Q), where X has distribution P , is minimized by the
choice Q = P .

Traditionally, a scoring rule has been termed local if it depends on the den-
sity function q(·) of Q only through its value, q(x), at x. With this definition,
any proper local scoring rule is equivalent to the log score, S(x,Q) = − lnq(x).
However, we can weaken the locality condition by allowing further dependence
on a finite number m of derivatives of q(·) at x, and this introduces many further
possibilities. We term m the order of the rule.

In this paper we describe a large class of such order-m proper local scoring
rules for densities on the real line. These turn out to depend on the density q(·) in
a way that is insensitive to a multiplicative constant, and hence can be computed
without knowledge of the normalizing constant of q .

Hyvärinen (2005) proposed a method for approximating a distribution P on
X = R

k by a distribution Q in a specified family P of distributions by minimizing
d(P,Q) over Q ∈ P , where

d(P,Q) = 1

2

∫
dx p(x)|∇ lnp(x) − ∇ lnq(x)|2(1)

with ∇ denoting gradient. Since q enters this expression only through ∇ lnq , it is
clear that the minimization only requires knowledge of q up to a multiplicative fac-
tor. Using integration by parts, Hyvärinen (2005) further showed that minimization
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of the divergence d(P,Q) in (1) is equivalent to mimimizing

S(P,Q) = EP

{
� lnq(X) + 1

2 |∇ lnq(X)|2}
[where � denotes the Laplacian operator

∑k
i=1 ∂2/(∂xi)

2], which is a scoring rule
of the type discussed in this paper: see Section 2.5 below.

The plan of the paper is as follows. In Section 2 we introduce proper scoring
rules, with some examples and applications. Section 3 formalizes the notion of a
local function, its representations and derivatives. In Section 4 we apply integra-
tion by parts and the calculus of variations to develop a “key equation,” which is
further investigated in Section 5 through an analysis of fundamental differential
operators associated with local functions. Section 6 describes the solutions to the
key equation, which we term “key local scoring rules,” in terms of a homogeneous
function φ. In Section 7 we point out that distinct choices of φ can generate the
same scoring rule, and consider some implications; in particular, we show that key
m-local scoring rules exist for any even order m, but for no odd order. Section 9
examines when this construction does indeed yield a proper local scoring rule, con-
cavity of φ being crucial. Section 10 devotes further attention to boundary terms
arising in the integration by parts. In Section 11 we study how the problem and its
solution transform under an invertible mapping of the sample space, and develop
an invariant formulation.

1.1. Related work. In this paper we are concerned with characterizing m-local
proper scoring rules, for all orders m. Since there are no such rules of order 1, or-
der 2 scoring rules constitute the simplest nontrivial case, and as such are likely to
be the most useful in practice. In a companion paper to this one, Ehm and Gneiting
(2012) conduct a deep investigation of order 2 proper local rules, using an elegant
construction complementary to ours. They also describe a general class of densities
for which the boundary terms vanish.

The present paper confines attention to absolutely continuous distributions on
the real line. The notion of local scoring rule has an interesting analogue for a
discrete sample space equipped with a given neighborhood structure. The theory
for that case is developed in an accompanying paper [Dawid, Lauritzen and Parry
(2012)]; it exhibits both close parallels with, and important differences from, the
continuous case considered here.

2. Scoring rules. Suppose You are required to express Your uncertainty about
an unobserved quantity X ∈ X by quoting a distribution Q over X , after which
Nature will reveal the value x of X. A scoring rule or score S [Dawid (1986)] is a
special kind of loss function, intended to measure the quality of your quote Q in
the light of the realized outcome x: S(x,Q) is a real number interpreted as the loss
You will suffer in this case. The principles of Bayesian decision theory [Savage
(1954)] now enjoin You to minimize Your expected loss. If Your actual beliefs
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about X are described by a probability distribution P , You should thus quote that
Q that minimizes S(P,Q) := EX∼P S(X,Q). The scoring rule S is termed proper
(relative to a class P of distributions over X ) when, for any fixed P ∈ P , the
minimum over Q ∈ P is achieved at Q = P ; it is strictly proper when, further, this
minimum is unique. Thus, under a proper scoring rule, honesty is the best policy.

Associated with any proper scoring rule S are a (generalized) entropy function
H(P ) := S(P,P ) and a divergence function d(P,Q) := S(P,Q) − H(P ). Un-
der suitable technical conditions, proper scoring rules and their associated entropy
functions and divergence functions enjoy certain properties that serve to character-
ize such “coherent” constructions [Dawid (1998)]: S(P,Q) is affine in P and is
minimized in Q at Q = P ; H(P ) is concave in P ; d(P,Q) − d(P,Q0) is affine
in P , and d(P,Q) ≥ 0, with equality achieved at Q = P .

If two scoring rules differ by a function of x only, then they will yield the iden-
tical divergence function. In this case we will term them equivalent [note that this
is a more specialized usage than that of Dawid (1998)].

A fairly arbitrary statistical decision problem can be reduced to one based on a
proper scoring rule. Let L : X × A → R be a loss function, defined for outcome
space X and action space A. Letting P be a class of distributions over X such that
L(P,a) := EX∼P L(X,a) exists for all a ∈ A and P ∈ P , define, for P,Q ∈ P
and x ∈ X ,

S(x,Q) := L(x, aQ),(2)

where aP := arg infa∈A L(P,a) is a Bayes act with respect to P (supposed to
exist, and selected arbitrarily if nonunique). Then S is readily seen to be a proper
scoring rule, and the associated entropy function is just the Bayes loss: H(P ) =
infa∈A L(P,a).

In this paper we focus attention on the case that X is an interval on the real line
and any Q ∈ P has a density q(·) with respect to Lebesgue measure on X . We
may then define S(x,Q) in terms of q . However, since q is only defined almost
everywhere we must take care that any manipulations performed either involve a
preferred version of q , or yield the same answer when q is changed on a null set.
This will always be the case in this paper.

2.1. Bregman scoring rule. Since any decision problem generates a proper
scoring rule there is a very great number of these. Certain forms are of special
interest or simplicity. Here we describe one important class of such rules for the
case that every Q ∈ P has a density function q(·) with respect to a dominating
measure μ over X .

Let φ : R+ → R be concave and differentiable. The associated (separable) Breg-
man scoring rule is defined by

S(x,Q) := φ′{q(x)} +
∫

dμ(y) [φ{q(y)} − q(y)φ′{q(y)}].(3)
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It can be shown that these are the only proper scoring rules having the form
S(x,Q) = ξ{q(x)} − k(Q) [Dawid (2007)].

Taking expectations, we obtain

S(P,Q) =
∫

dμ(x) [{p(x) − q(x)}φ′{q(x)} + φ{q(x)}].
It follows that H(P ) = ∫

dμ(x)φ{p(x)} and so, assuming H(P ) is finite, the cor-
responding (separable) Bregman divergence [Bregman (1967), Csiszár (1991)]—
also termed U -divergence [Eguchi (2008)]—is

d(P,Q) =
∫

dμ(x)
([φ{q(x)} + {p(x) − q(x)}φ′{q(x)}] − φ{p(x)}).(4)

The integrand is nonnegative by concavity of φ. Therefore, the separable Bregman
scoring rule is a proper scoring rule, and strictly proper if φ is strictly concave.

2.2. Extended Bregman score. A straightforward generalization of the above
Bregman construction is obtained on replacing φ : R+ → R throughout by φ : X ×
R

+ → R, such that, for each x ∈ X , φ(x, ·) : R+ → R is concave. Such ex-
tended Bregman rules are the only proper scoring rules of the form S(x,Q) =
ξ{x, q(x)} − k(Q) [Dawid (2007)].

2.3. Log score. For φ(s) ≡ −s ln s we obtain the logarithmic scoring rule, or
log score, defined by

S(x,Q) = − lnq(x).

This is essentially the only scoring rule of the form S(x,Q) = ξ{x, q(x)}
[Bernardo (1979), Dawid (2007)]. For this case we obtain

H(P ) = −
∫

dμ(x)p(x) lnp(x),

the Shannon entropy, and

d(P,Q) =
∫

dμ(x)p(x) ln
p(x)

q(x)
,(5)

the Kullback–Leibler divergence.

2.4. Parameter estimation. Let Q = {Qθ } ⊆ P be a smooth parametric
family of distributions. Given data (x1, . . . , xn) in X with empirical distribu-
tion P̂ , one way to estimate θ is by minimizing some divergence criterion:
θ̂ := arg minθ d(P̂ ,Qθ). When the divergence function is derived from a scoring
rule, this is equivalent to minimizing the total empirical score:

θ̂ = arg min
θ

n∑
i=1

S(xi,Qθ),(6)
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in which form it remains meaningful even if P̂ /∈ P , when d(P̂ ,Qθ) is undefined.
The corresponding estimating equation is

n∑
i=1

σ(xi, θ) = 0(7)

with σ(x, θ) := ∂S(x,Qθ)/∂θ . For a proper scoring rule it is straightforward to
show that the estimating equation (7) is unbiased [Dawid and Lauritzen (2005)]
and, as a result, θ̂ is typically consistent, though not necessarily efficient; it may
also display some degree of robustness. Equation (7) delivers an M-estimator
[Huber (1981), Hampel et al. (1986)]. Statistical properties of the estimator are
considered by Eguchi (2008) for the special case of minimum Bregman (U -) di-
vergence estimation, and readily extend to more general cases.

2.5. Hyvärinen scoring rule. Hyvärinen (2005) showed that minimization of
the divergence d(P,Q) in (1) is equivalent to minimizing the empirical score for
the scoring rule

S(x,Q) = � lnq(x) + 1
2 |∇ lnq(x)|2.(8)

This is valid in the case where X = R
k and P consists of distributions P whose

Lebesgue density p(·) is a twice continuously differentiable function of x satisfy-
ing ∇ lnp → 0 as |x| → ∞. For k = 1 we get

S(x,Q) = q ′′(x)

q(x)
− 1

2

{
q ′(x)

q(x)

}2

.(9)

Dawid and Lauritzen (2005) showed that, with some reinterpretation, the for-
mula (8) defines a proper scoring rule in the more general case of an outcome space
X that is a Riemannian manifold. Now q(·) denotes the natural density dQ/dμ of
Q with respect to the associated volume measure μ on X ; ∇ denotes natural gra-
dient; � is the Laplace–Beltrami operator; and |u|2 = 〈u,u〉 is the squared norm
defined by the metric tensor. We impose the restriction P,Q ∈ P , where P ∈ P if
∇ lnp(x) → 0 as x approaches the boundary of X .

On applying Stokes’s theorem (again essentially integration by parts) and noting
that boundary terms vanish, we can express the expected score as

S(P,Q) = 1

2

∫
dμ(x)p(x)〈∇ lnq(x) − 2∇ lnp(x),∇ lnq(x)〉.

The entropy is thus H(P ) = −1
2

∫
dμ(x)p(x)|∇ lnp(x)|2 and so the associated

divergence is essentially that used by Hyvärinen:

d(P,Q) = 1

2

∫
dμ(x)p(x)|∇ lnp(x) − ∇ lnq(x)|2,(10)

which is nonnegative and vanishes only when Q = P . It follows that the scoring
rule is strictly proper.
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Although this scoring rule is not local in the strict sense, it depends on (x,Q)

only through the first and second derivatives of the density function q(·) at the
point x; it is local of order 2, or 2-local, as defined below in Section 3.

Note that one does not need to know the volume measure μ to calculate the
divergence; formula (10) for d(P,Q) yields the same result if we take μ to be any
fixed underlying measure, and interpret p and q as densities with respect to this.

2.6. Homogeneity. An interesting and practically valuable property of the gen-
eralized Hyvärinen scoring rule is that S(x,Q) given by (8) is homogeneous in the
density function q(·): it is formally unchanged if q(·) is multiplied by a positive
constant, and so can be computed even if we only know the density function up
to a scale factor. In particular, use of the estimating equation (7) does not require
knowledge of the normalizing constant (which is often hard to obtain) for densities
in Q.

EXAMPLE 2.1. Consider the natural exponential family:

q(x|θ) = Z(θ)−1 exp{a(x) + θx}.
Using the scoring rule (9) we obtain S(x,Qθ) = a′′(x) + 1

2{a′(x) + θ}2, so that
σ(x, θ) = a′(x) + θ , and (7) delivers the unbiased estimator

θ̂ = −
n∑

i=1

a′(Xi)/n,

which can be computed without knowledge of Z(θ). See also Section 4 of
Hyvärinen (2007), where exponential families are discussed.

Alternatively, we can work directly with the sufficient statistic T := ∑n
i=1 Xi ,

which has density of the form

qT (t |θ) = Z(θ)−n exp{αn(t) + θt}.
Applying the above method to qT leads to the unbiased estimator θ̃ = −α′

n(T ).
This is the maximum plausibility estimator of θ [Barndorff-Nielsen (1976)]. Bas-
ing the estimate on the sufficient statistic is more satisfying and better behaved
from a principled point of view, but does require computation of the function αn(t),
which involves an n-fold convolution of ea(x).

As an application, suppose Qθ is obtained from the normal distribution N(θ,1)

by retaining its outcome x with probability k(x). We assume that k(x) is every-
where positive and twice differentiable. The density is thus

q(x|θ) = k(x) exp−{(x − θ)2/2}∫
k(y) exp−{(y − θ)2/2}dy

.
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Because of the complex dependence of the denominator on θ , the maximum likeli-
hood estimate typically cannot be expressed in closed form. However, using scor-
ing rule (9) yields the explicit unbiased estimator

θ̂ =
n∑

i=1

{xi − κ ′(xi)}/n

with κ(x) := lnk(x).

The homogeneity property will be a feature of all the new proper local scoring
rules we introduce here: see Section 6.

3. Local scoring rules. We observed in Section 2.3 that the log score
S(x,Q) = − lnq(x) is essentially the only proper scoring rule that is local, that is,
involves the density function q(·) of Q only through its value, q(x), at the actually
realized value x of X.

We can, however, weaken the locality requirement, for example, by allowing S

to depend on the values of q(·) in an infinitesimal neighborhood of x. In this paper
we describe a class of scoring rules that depend on the function q(·) only through
its value and the values of a finite number m of its derivatives at the point x—
a property we will refer to as locality of order m, or m-locality.

We confine ourselves to the case that X is an open interval in R, possibly infinite
or semi-infinite, and P is a class of distributions Q over X having strictly positive
Lebesgue density q(·) that is m-times continuously differentiable.

3.1. Local functions and scoring rules. To study the properties of local scor-
ing rules we need a formal definition of a local function.

DEFINITION 3.1. A function F : X × P → R is said to be local of order m,
or m-local, if it can be expressed in the form

F(x,Q) = f
{
x, q(x), q ′(x), q ′′(x), . . . , q(m)(x)

}
,

where f : X × Qm → R, with Qm := R
+ × R

m, is a real-valued infinitely dif-
ferentiable function, q(·) is the density function of Q, and a prime (′) denotes
differentiation with respect to x. It is local if it is local of some finite order.

We shall refer to such a function f as a q-function, and say it is of order m.
When we do not need to specify the order m of a q-function f we may write
f (x,q) (x ∈ X , q ∈ Q), understanding Q = Qm, q = (q0, . . . , qm).

A scoring rule S(x,Q) is m-local if

S(x,Q) = s
{
x, q(x), q ′(x), q ′′(x), . . . , q(m)(x)

}
,(11)

where s is a q-function as above, so that it depends on the quoted distribution Q

for X only through the value and derivatives up to order m of the density q(·) of Q,
evaluated at the observed value x of X. The function s is the score function of S.
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3.2. Differentiation of local functions. For a local scoring rule S given by (11)
we write

S[j ](x,Q) := s[j ]
{
x, q(x), q ′(x), q ′′(x), . . . , q(m)(x)

}
,

where s[j ] := ∂s/∂qj , and similarly

S[x](x,Q) := s[x]
{
x, q(x), . . . , q(m)(x)

}
,

where s[x] := ∂s/∂x. Then if dS/dx denotes the derivative of S(x,Q) with respect
to x for fixed Q, we have

dS

dx
= S[x](x,Q) + ∑

j≥0

q(j+1)(x)S[j ](x,Q).(12)

For S of order m, the series in (12) terminates at j = m.
Motivated by (12), we introduce a linear differential operator D acting on q-

functions by

D := ∂

∂x
+ ∑

j≥0

qj+1
∂

∂qj

.(13)

For f of order m, the series for Df obtained from (13) terminates at j = m, and
Df is then of order m + 1.

The operator D thus represents the total derivative of the local function for
fixed Q:

dS

dx
= (Ds)

{
x, q(x), . . . , q(m+1)(x)

}
,

where s is the score function of S.
In the light of the interpretation of D as d/dx, the following result is unsurpris-

ing:

LEMMA 3.1. For a q-function f , Df = 0 if and only if f is constant.

PROOF. “If” is trivial. For “only if,” suppose f is of order ≤ m. The only term
in Df involving qm+1 is qm+1f[m], so that Df = 0 ⇒ f[m] = 0, whence f is of
order at most m − 1. Repeating this argument, f must be of order 0, that is, of the
form f (x). Then 0 = Df = f ′(x), so finally f must be a constant. �

4. Variational analysis. We are interested in constructing proper local scor-
ing rules. Ideally we would develop sufficient conditions on the score function
s and the family P to ensure that, for any P ∈ P , S(P,Q) = ∫

dx p(x)s{x, q(x),
q ′(x), q ′′(x), . . . , q(m)(x)} is minimized, over Q ∈ P , at Q = P . Initially, however,
we shall merely develop, in a somewhat heuristic fashion, conditions sufficient to
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ensure that, for all P ∈ P , Q = P will be a stationary point of S(P,Q)—a prop-
erty we shall describe by saying that S is a weakly proper scoring rule. Given any
S satisfying these conditions, further attention will be required to check whether
or not it is in fact proper; this will be taken up in Section 9 below.

To address this problem we adopt the methods of variational calculus [Troutman
(1983), van Brunt (2004)]. Suppose that, at Q = P , S(P,Q) is stationary under
an arbitrary infinitesimal variation δq(·) of q(·), subject to the requirement that
q(·) + δq(·) be a probability density. That is,

δ

{∫
dx p(x)s

{
x, q(x), q ′(x), q ′′(x), . . . , q(m)(x)

} + λP

∫
dx q(x)

}∣∣∣∣
q=p

(14)
= 0,

where λP is a Lagrange multiplier for the normalization constraint
∫

dx q(x) = 1.
The left-hand side of (14), evaluated with P = Q, is∫

dx

{
m∑

k=0

δq(k)(x)q(x)S[k](x,Q) + λQδq(x)

}
,(15)

and this is to vanish for arbitrary infinitesimal δq(·) and suitable λQ.
We evaluate the integral of the kth term of the sum in (15) using the general

formula for repeated integration by parts:

(−1)k
∫ +
−

dx FG(k)

(16)

=
∫ +
−

dx GF (k) −
k−1∑
r=0

(−1)k−1−r{G(k−1−r)F (r)}∣∣+−,

where F (k) denotes the kth derivative of F with respect to x. The first term on
the right-hand side of (16) is the integral term; the remaining terms are boundary
terms, these being evaluated, if necessary, as limits as we approach, from within,
the end-points (denoted by − and +) of the interval X ⊆ R.

Setting G = q(x)S[k](x,Q), F = δq(x), we obtain∫ +
−

dx q(x)S[k](x,Q)δq(k)(x)

=
∫ +
−

dx (−1)kδq(x)
dk

dxk

{
q(x)S[k](x,Q)

}
(17)

+
k−1∑
r=0

(−1)k−1−r dk−1−r

dxk−1−r

{
q(x)S[k](x,Q)

}
δq(r)(x)|+−.

At this point we restrict consideration to functions δq whose derivatives vanish
sufficiently quickly at the end-points that we can suppose the boundary terms in
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the last line of (17) vanish. Then (15) will vanish for all such δq(·) if

m∑
k=0

(−1)k+1 dk

dxk

{
q(x)S[k](x,Q)

} ≡ λQ,(18)

that is, the left-hand side of (18) is a constant, independent of x.
Motivated by (18), we introduce the following linear differential operator L on

q-functions:

L := ∑
k≥0

(−1)k+1Dkq0
∂

∂qk

.(19)

Unless overridden by parentheses, operators here and elsewhere associate to the
right, so that T q0f means T (q0f ), that is, we have

Lf = ∑
k≥0

(−1)k+1Dk

(
q0

∂f

∂qk

)
.(20)

For f of order m, the series in (20) terminates at k = m, and the order of Lf is at
most 2m.

We can now write (18) as

Ls = λQ,(21)

where equality in (21) is required to hold for all (x, q0, q1, . . . , q2m) such that
qj = q(j)(x) (j = 0, . . . ,2m). In particular, a sufficient condition that S be weakly
proper is that for some λ ∈ R we have

Ls = λ(22)

for all x ∈ X , q ∈ Q2m.
So long as P is sufficiently large, the form (22) will also be necessary for (21)

to hold. In particular, suppose we impose the following condition on P :

CONDITION 4.1. Given distinct x1, x2 ∈ X , and any q1,q2 ∈ Q2m, there ex-
ists Q ∈ P satisfying q(j)(x1) = q1,j , q(j)(x2) = q2,j (j = 0, . . . ,2m).

Take arbitrary Q1,Q2 ∈ P , x1 �= x2 ∈ X , and set qi,j := q
(j)
i (xi) (i = 1,2; j =

0, . . . ,2m). Let Q be as given by Condition 4.1. Evaluating (21) at (x1,q1) yields
λQ1 = λQ, and similarly λQ2 = λQ. Thus λQ cannot depend on Q, and so (22)
must hold. Moreover, taking x1 = x, q1 = q, and x2, q2 arbitrary, this must hold
for any x ∈ X , q ∈ Q2m.

So we henceforth restrict attention to solutions of (22). We note that a particular
solution of (22) is given by the log-score:

s = −λ lnq0.
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Since L is a linear operator, the general solution is of the form

s = −λ lnq0 + s0,

where s0 satisfies the key equation:

Ls0 = 0.(23)

Because of this we shall confine attention to solutions of the key equation, and
shall term any solution of (23) a key local score function.

4.1. Connection to classical calculus of variations. Because the Lagrange
multiplier λ associated with a key local scoring rule s vanishes, setting q(x) ≡
p(x) will in fact deliver a globally stationary point [i.e., without imposing the nor-
malization constraint

∫
dx q(x) = 1] of the corresponding expected score∫

dx p(x)s
{
x, q(x), q ′(x), q ′′(x), . . . , q(m)(x)

}
.

The classical calculus of variations—see, for example, van Brunt [(2004), equa-
tions (2.9), (3.3)]—would (again, ignoring the boundary terms) identify the so-
lution to this unconstrained variational problem in q(·) as solving the Euler–
Lagrange equation:

�p0s(x, q0, . . . , qm) = 0,(24)

where � is the Lagrange operator:

� := ∑
k≥0

(−1)kDk ∂

∂qk

.(25)

We want the solution of (24) to be q = p.
Now when evaluated at q = p, �q0s = s + �p0s. So q = p should satisfy

(I − �q0)s = 0,(26)

where I is the identity operator.
But

∂

∂q0
(qjf ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qj

∂f

∂q0
, (j > 0),

f + q0
∂f

∂q0
, (j = 0),

so we have

L = I + ∑
k≥0

(−1)k+1Dk ∂

∂qk

q0◦
(27)

= I − �q0◦.

(Here and throughout, for g a q-function, g◦ denotes the multiplication operator
f �→ gf , the optional symbol ◦ being attached, where required, to avoid confusion
with the q-function g itself.)

Hence (26) becomes Ls = 0, so recovering the key equation (23).
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5. Properties of differential operators. For a further study of the key equa-
tion and its properties we shall have a detailed look at the differential operators
introduced earlier, together with some new ones. We recall

D = ∂

∂x
+ ∑

j≥0

qj+1
∂

∂qj

,

L = ∑
k≥0

(−1)k+1Dkq0
∂

∂qk

,

� = ∑
k≥0

(−1)kDk ∂

∂qk

= (I − L)q−1
0 ◦.

LEMMA 5.1. The Lagrange operator � annihilates the total derivative oper-
ator D:

�D = 0.(28)

PROOF. Using (∂/∂qk)D = D(∂/∂qk) + (∂/∂qk−1) we have

�D = ∑
k≥0

(−1)kDk+1 ∂

∂qk

+ ∑
k≥0

(−1)kDk ∂

∂qk−1

= 0. �

We now introduce the Euler operator:

E := ∑
j≥0

qj

∂

∂qj

.(29)

LEMMA 5.2. The Euler operator E commutes with D and with L, while

�E = E� + �.(30)

PROOF. From the easily verified relations

Eqj◦ = qj◦ + qjE,
(31)

(∂/∂qk)E = E(∂/∂qk) + (∂/∂qk),

it readily follows that E commutes with qj (∂/∂qk). Since clearly E commutes
with ∂/∂x, E thus commutes with D, and consequently with any power of D.
From (19), we now see that E commutes with L.
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Now (27) gives that E commutes with �q0◦, and thus, noting from (31) that
q0Eq−1

0 ◦ = E − I , we have

E� = E�q0q
−1
0 ◦ = �q0Eq−1

0 ◦ = �(E − I ) = �E − �,

which yields (30). �

THEOREM 5.3. We have that �E = �q0�.

PROOF. Using qkD = Dqk◦ − qk+1◦, we can readily show by induction that,
for k ≥ 0,

q0D
k = D

{
k−1∑
j=0

(−1)j qjD
k−1−j

}
+ (−1)kqk◦.

It now follows from (28) that �q0D
k = (−1)k�qk◦. Applying this term-by-term

to (25) we obtain �q0� = ∑
k �qk(∂/∂qk) = �E. �

For later purposes we introduce, for any integer r ,

Br := ∑
k≥r+1

(−1)k−1−rDk−1−r ∂

∂qk

(32)

with the understanding ∂/∂qk = 0 if k ≤ 0 (in particular, B−1 = �). We further
define

C := ∑
r≥0

qrBr .(33)

LEMMA 5.4. It holds that

DBr = (∂/∂qr) − Br−1,(34)

BrD = (∂/∂qr).(35)

PROOF. Equation (34) follows easily from the definition (32), while (35) can
be proved in the same way as Lemma 5.1. �

THEOREM 5.5. We have

CD = E,(36)

DC = E − q0�.(37)

PROOF. Equation (36) follows directly from (33) and (35). From (34),
DqrBr = qr+1Br − qrBr−1 + qr(∂/∂qr), and thus DC = ∑

r≥0 qr(∂/∂qr) −
q0B−1 = E − q0�. �
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6. Homogeneous scoring rules. We shall see that all key local score func-
tions, that is, solutions to the key equation Ls = 0, are homogeneous in the sense
that changing q by a multiplicative factor does not change the value of s; hence the
associated scoring rule S(x,Q) only involves the density q up to a constant factor.
We shall formalize and show this below.

DEFINITION 6.1. A q-function f is said to be homogeneous of degree h, or
h-homogeneous, if, for any λ > 0, f (x,λq) ≡ λhf (x,q).

With E defined by (29), Euler’s homogeneous function theorem implies that a
q-function f is h-homogeneous if and only

Ef = hf.(38)

The partial derivatives f[j ] = ∂f /∂qj of an h-homogeneous function are homo-
geneous of order h − 1, while f[x] = ∂f /∂x is homogeneous of order h. It follows
that, if f is h-homogeneous, then so is Df .

In this work we shall only need to deal with homogeneity of degree 0, where
f (x,λq) ≡ f (x,q), and of degree 1, where f (x,λq) ≡ λf (x,q). Clearly, f is
0-homogeneous if and only if q0f is 1-homogeneous.

A scoring rule S will be called homogeneous if its score function s is 0-
homogeneous. As already noted, the logarithmic score is 0-local, but is not ho-
mogeneous. The Hyvärinen scoring rule and its generalizations, as described in
Section 2.5, are 2-local, and are homogeneous.

We can now easily show that key local score functions are homogeneous:

THEOREM 6.1. If Lf = 0, then f is 0-homogeneous.

PROOF. In this case f = (I − L)f = �q0f and thus from (30) and Theo-
rem 5.3 we get

Ef = E�q0f = �Eq0f − �q0f = �q0(�q0f ) − �q0f = �q0f − �q0f = 0

as required. �

We can further show that, if we consider the restriction of the operator L to
0-homogeneous functions, it acts as a projection operator; I − L is then the com-
plementary projection. This is a consequence of the fact that L is idempotent when
restricted to 0-homogeneous functions:

THEOREM 6.2. If f is 0-homogeneous, then so is Lf , and L2f = Lf .

PROOF. Since E commutes with L, if f is 0-homogeneous we have ELf =
LEf = 0, so Lf is 0-homogeneous as well. If f is 0-homogeneous, q0f is 1-
homogeneous and thus by (38) and Theorem 5.3

�q0f = �Eq0f = �q0�q0f,
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so I − L = �q0◦ is idempotent when restricted to 0-homogeneous functions,
whence so is L. �

Elaborating the consequences of these results we get:

COROLLARY 6.3. We have that:

(i) Lf = 0 if and only if f = (I − L)g for some 0-homogeneous g; equiva-
lently, f = �φ for some 1-homogeneous φ;

(ii) if f is 0-homogeneous, then (I − L)f = 0 if and only if f = Lg for some
0-homogeneous g.

PROOF. If Lf = 0, then f is 0-homogeneous by Theorem 6.1. The other prop-
erties are easy consequences of the fact that L and I − L are complementary pro-
jections in the space of 0-homogeneous functions. �

Collecting everything, we have the following main result:

THEOREM 6.4. A q-function s is a key local score function if and only if any
one (and then all) of the following conditions holds:

(i) The function s satisfies the key equation Ls = 0, where the operator L is
given by (19).

(ii) We can express s = (I − L)g where g is a 0-homogeneous q-function.
(iii) We can express s = �φ where φ is a 1-homogeneous q-function and the

operator � is given by (25).

Moreover, s is then 0-homogeneous.

When (ii) above holds, we say that s is derived from g; when (iii) holds, we
say that s is generated by φ. The key local score function generated by a 1-
homogeneous q-function φ of order t is thus

s(x,q) =
t∑

k=0

(−1)kDkφ[k](x,q).

The only term in s that involves q2t is (−1)tφ[t t]q2t . In particular, if φ[t t] �= 0, s is
of exact order 2t . Hence we have demonstrated the existence of key local scoring
rules of all positive even orders.

The key local scoring rule S generated by φ is then

S(x,Q) =
t∑

k=0

(−1)k
dk

dxk
φ[k]

{
x, q(x), q ′(x), . . . , q(t)(x)

}
.(39)
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For the case t = 1 we obtain a second-order rule:

S(x,Q) = φ[0]{x, q(x), q ′(x)} − d

dx
φ[1]{x, q(x), q ′(x)},

where φ(x, q0, q1) is 1-homogeneous.
The Hyvärinen scoring rule (9) is generated in this way by φ = −1

2q2
1/q0. More

generally, choosing φ = −qk
1/qk−1

0 (k ≥ 1) yields

S(x,Q) = (k − 1)(yk
1 + kyk−2

1 y2),(40)

where yi := (di/dxi) lnq(x). We can express a general 1-homogeneous x-
independent q-function of order 1 as a power series:

φ(q0, q1) = q0
∑
k≥1

ak(q1/q0)
k.(41)

Now combining the rules (40) arising from the individual terms in (41), we obtain
the series form of a general x-independent second-order scoring rule described by
Ehm and Gneiting (2010).

7. Gauge transformation. The map φ �→ s = �φ in Theorem 6.4(iii) is
many-to-one: two 1-homogeneous functions φ1 and φ2 will generate the identi-
cal score function s = �φ1 = �φ2 if and only if �(φ2 − φ1) = 0. And this will
hold if and only if φ2 − φ1 has the total derivative form Dψ :

LEMMA 7.1. Suppose φ is 1-homogeneous. Then �φ = 0 if and only if φ has
the form Dψ .

PROOF. If φ = Dψ , then �φ = 0 by (28). Conversely, suppose φ is 1-
homogeneous and �φ = 0. Then q−1

0 φ is 0-homogeneous and (I − L)q−1
0 φ = 0,

so by Corollary 6.3(ii) there exists 0-homogeneous g such that q−1
0 φ = Lg. Now

take ψ = Cq0g, with C given by (33). Then, using (37), Dψ = (E − q0�)q0g =
(I − q0�)q0g, since Eq0g = q0g because q0g is 1-homogeneous; and this is
q0(I − �q0◦)g = q0Lg = φ. �

Borrowing terminology from physics, we term a transformation of the form
φ → φ + Dψ a gauge transformation; the invariance of s under such a transfor-
mation of φ is gauge invariance. The choice of a particular function φ, out of the
equivalence class of functions differing only by a total derivative Dψ and thus
generating the same scoring rule, is a gauge choice.

Clearly if φ2 −φ1 = Dψ and both φ1 and φ2 are 1-homogeneous, then Dψ must
be 1-homogeneous. This will be so if ψ is itself 1-homogeneous. The converse also
essentially holds:



PROPER LOCAL SCORING RULES 577

LEMMA 7.2. Suppose Dψ is 1-homogeneous. Then, for some constant a, ψ +
a is 1-homogeneous.

PROOF. We have EDψ = Dψ . Since by Lemma 5.2 D commutes with E,
D(Eψ − ψ) = 0. Thus by Lemma 3.1 Eψ − ψ is a constant, a say. Then E(ψ +
a) = Eψ = ψ + a, so ψ + a is 1-homogeneous. �

Since the addition of a constant has no consequences for the analysis, we hence-
forth call a transformation φ → φ + κ a gauge transformation if and only if κ has
the form Dψ with ψ 1-homogeneous.

7.1. Standard gauge choice. For any key local score function s we note that

φ = q0s(42)

satisfies

�φ = �q0s = (I − L)s = s

and hence φ = q0s is a valid gauge choice for s. We call (42) the standard gauge
choice.

7.2. Equivalence. Suppose s is generated by φ, and let φ∗ = φ + χ with
χ = a(x)q0. This is not a gauge transformation if a �≡ 0, but the score func-
tion it generates, s∗ = s + a(x), is equivalent to s—which we describe by say-
ing φ∗ and φ are equivalent. Conversely, if φ† generates s + a(x) it must be
a gauge transformation of φ∗, and hence of the form φ + a(x)q0 + Dψ—this
form thus being necessary and sufficient for equivalence. We note in particu-
lar that φ† of the form φ + ∑

k≥0 ak(x)qk is equivalent to φ, since it generates

s† = s + ∑
k≥0(−1)ka

(k)
k (x).

7.3. Nonexistence of odd-order key local scores. In Section 6 we established
the existence of key local score functions of all positive even orders. Here we show
that no key local score function can be of odd order.

Take s = �φ as in Theorem 6.4(iii), and suppose s has odd order. If φ is
of order t , the order of s is at most 2t ; since it is odd, it must be strictly less
than 2t . Again, the only term in s that could possibly involve q2t is (−1)tφ[t t]q2t ,
whence φ[t t] = 0. Hence φ[t], which must be 0-homogeneous, has the form A(x,
q0, . . . , qt−1).

Now define

ψ(x, q0, . . . , qt−1) := −
∫ qt−1

0
A(x, q0, . . . , qt−2, z)dz(43)

[for the case t = 1 the integrand on the right-hand side is A(x, z)]. It is easy to see
that ψ is 1-homogeneous, and

φ[t] + ψ[t−1] = 0.(44)
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Let φ∗ = φ + Dψ , which is of order at most t . Since this is a gauge transfor-
mation, φ∗ generates the same scoring rule s as φ does. But from (44), φ∗[t] =
φ[t] + ψ[t−1] = 0, so that φ∗ is in fact of order at most t − 1, whence s is of order
at most 2t − 2. We can now repeat the argument, stepping down t by 1 each time,
until we reach a contradiction.

7.4. Second-order rule. A similar argument to the above shows that, for any
key local scoring rule of exact even order 2t , there exists a gauge choice of exact
order t .

A second-order rule can thus always be generated by a 1-homogeneous φ of
order 1. However, a change of gauge may increase the order of the generating
function—for example, the standard gauge choice has order 2.

If φ1 and φ2 are both gauge choices of order 1, then their difference is of order 1
and has the form Dψ for some 1-homogeneous ψ . Then ψ must be of order 0,
and hence of the form ψ = c(x)q0. It follows that an order-1 gauge choice is
determined up to an additive term of the form c′(x)q0 + c(x)q1. More generally,
by Section 7.2 two 1-homogeneous functions φ1 and φ2 of order 1 are equivalent
if their difference has the linear form a0(x)q0 +a1(x)q1; and this is also necessary,
since, again by Section 7.2, φ2 must then have the form φ1 + a(x)q0 + c′(x)q0 +
c(x)q1.

8. Decomposition. The variational analysis has identified the form (39),
where φ is 1-homogeneous, for a key local scoring rule. We now consider the
properties of such a rule in more detail.

Starting from (39), we compute the expected score,

S(P,Q) =
∫ +
−

dx p(x)S(x,Q)

= ∑
k≥0

(−1)k
∫ +
−

dx p(x)
dk

dxk
φ[k]

{
x, q(x), q ′(x), . . . , q(t)(x)

}
by evaluating the kth term in the sum using the integration by parts formula (16).
Collecting terms, we obtain

S(P,Q) = S0(P,Q) + S+(P,Q) + S−(P,Q),(45)

where the integral expected score S0 is given by

S0(P,Q) =
∫ +
−

dx
∑
k

pkφ[k](q)(46)

and

S±(P,Q) = ∓Sb(p,q)|±,(47)
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where the boundary expected score Sb is given by

Sb(p,q) := ∑
r≥0

prBrφ(q)(48)

with Br defined by (32). In these formulas the dependence on x has been sup-
pressed from the notation for simplicity, and we interpret pk := p(k)(x), qk :=
q(k)(x).

Correspondingly, the entropy H(Q) = S(Q,Q) can be decomposed:

H(Q) = H0(Q) + H+(Q) + H−(Q)(49)

with integral entropy

H0(Q) :=
∫ +
−

dx
∑
k

qkφ[k](q) =
∫ +
−

dx φ(q),(50)

where the last equality follows from Euler’s theorem (38); and H±(Q) =
∓Hb(q)|±, where the boundary entropy Hb(q) satisfies

Hb(q) = Sb(q,q)

= Cφ(q)

with the operator C defined by (33).
The divergence now becomes

d(P,Q) = d0(P,Q) + d+(P,Q) + d−(P,Q),(51)

where d0(P,Q) = S0(P,Q) − H0(P ), etc. In particular, the boundary terms arise
from the boundary divergence

db(P,Q) = ∑
r

prBr{φ(q) − φ(p)}(52)

[where the final term involves substituting p for q after computing Brφ(q)]; while,
using (38), the integral divergence can be written as

d0(P,Q) =
∫ +
−

dx

[{
φ(q) + ∑

k

(pk − qk)φ[k](q)

}
− φ(p)

]
.(53)

It is easily seen that both d0 and db are unchanged by an equivalence transfor-
mation φ∗ = φ + ∑

k≥0 ak(x)qk .

8.1. Change of gauge. Although a key local scoring rule S is unchanged by
a gauge transformation, the decompositions (45), (49) and (51), and in particular
the expression (53) for d0, typically do change, terms being redistributed between
their constituents. Indeed, if we replace the generating φ by an alternative gauge
choice

φ∗ = φ + Dψ,(54)
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applying (46) yields

S∗
0 (P,Q) = S0(P,Q) + J

with

J :=
∫ +
−

dx
∑
k

pk

{
∂

∂qk

Dψ(q)

}
.

Using (∂/∂qk)D = D(∂/∂qk)+ ∂/∂qk−1, and the interpretation of D as d/dx, this
reduces to

J =
∫ +
−

dx
d

dx

∑
k

pkψ[k](q)

= Ŝ+ + Ŝ−,

where Ŝ+ := Ŝ(p,q)|+, Ŝ− := −Ŝ(p,q)|−, with Ŝ(p,q) := ∑
k pkψ[k](q).

Similarly, from (47) and (48) we find the boundary expected score transforming
as

S∗
b (p,q) = Sb(p,q) + ∑

k

pkBkDψ

(55)
= Sb(p,q) + Ŝ(p,q)

on using (35). The changes to the boundary terms thus compensate exactly (as they
must) for the changes to the integral term.

We now have

H ∗
0 (P ) = H0(P ) + Ĥ+ + Ĥ−

with Ĥ± := ±Ĥ |± and Ĥ (p) = ψ(p); this follows from (36) since ψ is 1-
homogeneous. Correspondingly the boundary entropy transforms as H ∗

b (p) =
Hb + ψ(p).

It is notable that there is always a gauge choice for which the boundary entropy
vanishes. Specifically:

THEOREM 8.1. Let s be a key local score function. Then for the standard
gauge choice φ = q0s, the boundary entropy function Hb is identically 0.

PROOF. From (37), DHb = DCφ = Eφ − q0�φ. Since φ is 1-homogeneous
and s = �φ, this becomes φ−q0s = 0. So 0 = CDHb = EHb by (36). But EHb =
Hb since Hb is 1-homogeneous. �

The effect on a gauge transformation on the decomposition of the divergence is

d∗
0 (P,Q) = d0(P,Q) + d̂+ + d̂−,(56)
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where d̂± := ±d̂|± with

d̂(p,q) = ∑
k

pkψ[k](q) − ψ(p)

(57)
= ψ(q) + ∑

k

(pk − qk)ψ[k](q) − ψ(p)

and with a compensating change to the boundary divergence db.

9. Propriety. In this section we investigate the propriety of a key local scoring
rule S. The scoring rule S will be proper if and only if d(P,Q) ≥ 0 for all P ,
Q ∈ P . Clearly it is sufficient to require nonnegativity of each term in the right-
hand side of the decomposition (51), and we proceed on this basis. We investigate
d+ and d− in Section 10 below; here we consider the integral term d0.

We note the similarity between formula (53) and that for the Bregman diver-
gence (4) (especially where that is extended, as in Section 2.2, to allow further
dependence of φ on x). Correspondingly, concavity of the defining function plays
a crucial role here, too.

DEFINITION 9.1. We call a 1-homogeneous q-function φ(x,q) concave if,
for every x ∈ X , q1,q2 ∈ Q,

φ(x,q1 + q2) ≤ φ(x,q1) + φ(x,q2)(58)

(this is readily seen to be equivalent to the usual definition of concavity in q, for
each x); and strictly concave if strict inequality in (58) holds whenever the vectors
q1 and q2 are linearly independent.

THEOREM 9.1. Suppose that the scoring rule S is generated by a concave
1-homogeneous q-function φ. Then d0(P,Q), as given by (53), is nonnegative.
Further, if φ is strictly concave, then d0(P,Q) = 0 if and only if Q = P .

PROOF. Concavity implies that the integrand of (53) is nonnegative for each x;
under strict concavity it will be strictly positive with positive probability when
Q �= P . �

COROLLARY 9.2. Suppose the conditions of Theorem 9.1 apply, and the
boundary terms d+(P,Q) and d−(P,Q) in (51) vanish identically for P,Q ∈ P .
Then the (local, homogeneous) scoring rule (39) is proper (strictly proper if φ is
strictly concave).
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9.1. Checking concavity. Given a 1-homogeneous q-function φ of order m,
define, for u = (u1, . . . , um) ∈ R

m,

�(x,u) := φ(x,1,u).(59)

Then φ(x,q) is determined by �:

φ(x,q) = q0�(x,u)(60)

with ui = qi/q0 (i ≥ 1). It is often easier to check concavity for � than for φ, and
this is enough:

LEMMA 9.3. � is concave in u if and only if φ is concave in q.

PROOF. “If” follows immediately from (59). Conversely, if � is concave,

φ(x,p + q) = (p0 + q0)�

(
x,

p0

p0 + q0

p
p0

+ q0

p0 + q0

q
q0

)

≥ p0�

(
x,

p
p0

)
+ q0�

(
x,

q
q0

)
= φ(x,p) + φ(x,q). �

It is further easy to see that � is strictly concave in u, in the usual sense, if and
only if φ is strictly concave in q in the sense of Definition 9.1.

9.2. Change of gauge. Even if the initial gauge choice φ is concave in q, so
that d0(p,q) ≥ 0, under a gauge transformation (54) the term d̂(p,q), as given
by (57), means that the gauge-transformed integral divergence term d∗

0 , given
by (56), need not be nonnegative; this would hold if the resulting gauge choice
φ∗ were itself concave, but typically this will not be so.

Note that if ψ in (54) is concave, then d̂(p,q) ≥ 0. However, this does not en-
sure positivity of both additional terms, since while the added term d̂+ = d̂(p,q)|+
will then be nonnegative, the other added term d̂− = −d̂(p,q)|− will be nonposi-
tive.

EXAMPLE 9.1. The Hyvärinen scoring rule (9) on X = R is generated by the
strictly concave q-function φ = −1

2q2
1/q0. Using this gauge choice in (53) yields

[cf. (1)]

d0(P,Q) = 1

2

∫
dx p(x)(v1 − u1)

2(61)

with ui := q(i)(x)/q(x), vi := p(i)(x)/p(x).
Alternatively we might use the standard gauge choice, q2 − 1

2q2
1/q0, which is

also strictly concave, and indeed yields the same expression (61).
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Now let ψ := −1
2q1 ln(q1/q0), so that Dψ = −1

2{q2 ln(q1/q0) + q2 − q2
1/q0}.

Then φ∗ = φ +Dψ = −1
2q2{1+ ln(q1/q0)} is another possible gauge choice, gen-

erating the identical scoring rule S. However, φ∗ is not concave, and the integral
divergence term (53) associated with φ∗ is

d∗
0 (P,Q) = 1

2

∫
dx p(x)

{
u2

(
1 − v1

u1

)
+ v2 ln

v1

u1

}
,

which is not nonnegative. In this case the extra terms in (56) arise from d̂(p,q) =
1
2p0{u1 − v1 + v1 ln(v1/u1)}.

In the light of the above example it might be conjectured that, if s can be gener-
ated from some concave gauge choice, then the standard gauge choice φ = q0s will
be concave—equivalently, from Lemma 9.3, s itself will be a concave function of
the ui = qi/q0 (i ≥ 1)—but this need not hold:

EXAMPLE 9.2. Take � = −u4
1 in (60). Then �, and hence φ, is concave, but

s = 12u2
1u2 − 9u4

1 is not concave.

10. Boundary issues. The boundary divergence terms in (51) are d±(P,Q) =
∓db(p,q)|±, where db is given by (52). Their behavior will depend on the fam-
ily P of distributions under consideration, and specifically on the behavior, at the
end-points + and −, of the densities of distributions in P .

For propriety of these terms, we want db(p,q) to be positive at the lower end-
point −, and negative at the upper end-point +, for all P,Q ∈ P . For simplicity
we might impose conditions on P sufficient to ensure that, for all densities p(·),
q(·) ∈ P , db(p,q) vanishes at the end-points. A family P having this property may
be termed valid (with respect to the generating function φ). However, there does
not appear to be a natural choice for such a valid class P . In particular, if P and
P ′ are both valid families, it does not follow that their union will be.

Note that the validity requirement depends on the gauge choice φ, and a change
of gauge could assist in ensuring that it holds.

For the special case of the standard gauge choice, φ∗ = q0s, we know from
Theorem 8.1 that the boundary entropy H ∗

b vanishes. If the boundary quantities S∗
b ,

H ∗
b , d∗

b behaved like regular quantities S, H , d we could deduce d∗
b = 0 [Dawid

(1998)]; but this is a big “if,” and the result will not hold without imposing further
conditions.

10.1. Second-order rules. For a second-order rule with 1-homogeneous gen-
erator φ(x, q0, q1), we find

db = p0
{
φ[1](q) − φ[1](p)

}
.
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Alternatively, the standard gauge choice is φ∗ = φ + Dψ with ψ = −Cφ =
−q0φ[1]. From Section 8.1, we find

d∗
b (p,q) = S∗

b (p,q) = −q0
(
p0φ[01] + p1φ[11]

)
.

That this vanishes (as we know from Theorem 8.1 it must) for p = q may be seen
on differentiating the relation φ = q0φ[0] + q1φ[1] with respect to q1; that it does
not depend on the choice of gauge φ of order 1 follows from Section 7.4.

With pi = p(i)(x), etc., we want db(p,q) [or, for the standard gauge choice,
d∗
b (p,q)] to vanish in the limit as we approach the end-points − and +, for all

densities p(·), q(·) of distributions in P . Conditions for validity will thus involve
the behavior of p(x) and p′(x) at these end-points.

For example, for the Hyvärinen rule, with gauge choice φ = −1
2q2

1/q0, we re-
quire

db(p,q) = p0

(
p1

p0
− q1

q0

)
→ 0(62)

as we approach the end-points of X . (The same expression for db arises if we use
the standard gauge choice φ∗ = q2 − 1

2q2
1/q0, which in this case is equivalent to φ.)

To ensure (62) we might require, for example, that, for all densities p(·) in P ,
limx→± p(x) = 0 and limx→± p′(x)/p(x) is finite. However, this excludes the
possibility that both p and q are normal densities on X = R, even though, with this
choice, db as given by (62) does vanish at ±∞. Ehm and Gneiting (2010, 2012)
described alternative conditions on P that do admit this case.

In the ideal situation we will have a (strictly) concave 1-homogeneous φ, and a
family P valid with respect to φ. Then the associated key local scoring rule S will
be (strictly) proper.

11. Transformation of the data. So far we have considered a variable X

taking values in a real interval X , and have made essential use of the Euclidean
structure of X to define probability densities, derivatives, etc. Taking a step back-
ward, suppose we start with an abstract measurable sample space (the basic sample
space) X ∗, a basic variable X∗ taking values in X ∗, and a collection P ∗ of basic
distributions for X∗ over X ∗. Without assuming any further structure, we can de-
fine a basic scoring rule S∗ : X ∗ × P ∗ → R, and introduce the property of (strict)
propriety, exactly as before. However, at this level of generality it is less straight-
forward to define what we should mean by saying that a basic scoring rule is local.
To do this we proceed as follows.

We suppose given a collection � = {ξ} of charts, where each ξ is an invertible
measurable function from X ∗ onto some open interval X ⊆ R, and such that, for
ξ, ξ ∈ �, the composition ξξ−1 : X → X is smooth and regular, that is, infinitely
often differentiable with strictly positive first derivative. In other words, the basic
space is a one-dimensional simply connected smooth manifold.
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Picking any specific chart ξ produces a concrete representation of the abstract
basic structure, in terms of the real variable X := ξ(X∗), and, for any Q∗ ∈ P ∗, the
induced distribution Q for X on X ⊆ R [so that Q(A) = Q∗{ξ−1(A)}]; we take
P := {P :P ∗ ∈ P ∗}. Correspondingly, a basic function f ∗ : X ∗ × P ∗ → R (e.g.,
a scoring rule) is represented by f : X × P → R, such that f (x,Q) = f ∗(x∗,Q∗).

Let ξ, ξ be two such charts, and X = ξ(X∗), X = ξ(X∗), etc. Then X = γ (X),
where γ = ξξ−1 is strictly increasing, and both γ and δ := γ −1 are smooth and
regular. A given basic distribution Q∗ for X∗ can be represented either by the
distribution Q, for X, or by Q, for X. We assume that Q has a density function,
q(·), with respect to Lebesgue measure on X ; then the density function q(·) of Q

with respect to Lebesgue measure on X will likewise exist, and, with x = γ (x),
we will have

q(x) = q(x)
dx

dx
= α(x)q(x)(63)

with α(x) := γ ′(x)−1. An easy induction shows that we can express

q(k)(x) = T k

(
x, q(x), . . . , q(k)(x)

)
,(64)

where T k has the form

T k(x, q0, . . . , qk) = ∑
r

akr (x)qr(65)

and the coefficients akr(x) satisfy akr(x) = 0 unless 0 ≤ r ≤ k, a00(x) = α(x), and

ak+1,r (x) = α(x){a′
kr (x) + ak,r−1(x)}.(66)

In similar fashion we can express

q(k)(x) = Tk

(
x, q(x), . . . , q(k)(x)

)
(67)

= ∑
r

akr(x)q(r)(x).

It readily follows from (64) and (67) that a basic function f ∗(x∗,Q∗) can
be written, in the ξ -representation, in the form f (x, q(x), q ′(x), . . . , q(m)(x)) if
and only if the analogous property holds in the ξ -representation: f ∗(x∗,Q∗) =
f (x, q(x), q ′(x), . . . , q(m)(x)). That is, the property of being m-local is indepen-
dent of the particular representation used. When this property holds for one, and
thus for all, representations, we can say that the basic function f ∗(x∗,Q∗) itself is
m-local; a q-function f such that f ∗(x∗,Q∗) = f (x, q(x), q ′(x), . . . , q(m)(x)) is
the ξ -representation of f ∗. We denote the vector space of all local basic functions
by V ∗.

At a more abstract level, motivated by (64) and (65), we define variables

x := γ (x),
(68)

qk := T k(x, q0, . . . , qk) = ∑
r

akr(x)qr .
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Inversely, we will then have

x = δ(x),
(69)

qk = Tk(x, q0, . . . , qk) = ∑
r

akr(x)qr .

Using (69), any q-function of order m, f (x, q0, . . . , qm) can be rewritten as
f (x, q0, . . . , qm). If f ∗ ∈ V ∗ has ξ - and ξ -representations f and f , respectively,
then f can be obtained by reexpressing f in this way. Since Tk is 1-homogeneous,
f is homogeneous of degree h in the q’s if and only if f is homogeneous of degree
h in the q’s. In this case we may term the underlying local basic function f ∗ ∈ V ∗
h-homogeneous. Likewise, since (for fixed x or x) the functions Tk and T k are
linear, f is (strictly) concave in the q’s if and only if f is (strictly) concave in the
q’s—in which case we may term f ∗ itself (strictly) concave.

11.1. Invariant operators. The linear differential operators D and L have only
been defined in terms of a specific representation of the problem on the real line,
as determined by some chart ξ . Applying these definitions starting from a differ-
ent real representation, determined by a chart ξ , we will obtain possibly different
operators, D, L. The following results relate these. We need the following lemma:

LEMMA 11.1. We have

∂

∂qr

= ∑
k

akr

∂

∂qk

,(70)

∂

∂x
= α−1 ∂

∂x
+ ∑

r

qr

∑
k

a′
kr

∂

∂qk

.(71)

PROOF. Equation (70) follows immediately from (68). For (71) we have

∂

∂x
= dx

dx

∂

∂x
+ ∑

k

∂qk

∂x

∂

∂qk

.

But dx/dx = α−1, while from (68)

∂qk

∂x
= ∑

r

a′
krqr ,

so (71) follows. �

We now show that if f and f are, respectively, the ξ and ξ representations of
the same basic function f ∗, then Df is the ξ -representation of the basic function
whose ξ -representation is α(x)Df . Note that the function α, and hence the basic
function so represented, will depend on the charts considered.
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THEOREM 11.2. It holds that

D = α(x)D.

PROOF. Informally, we observe that D corresponds to the total derivative
d/dx and D to d/dx. Thus we expect D = (dx/dx)D.

More formally, we have

D = ∂

∂x
+ ∑

k

qk+1
∂

∂qk

= ∂

∂x
+ ∑

r

qr

∑
k

ak+1,r

∂

∂qk

on using (68). From (66) this is

∂

∂x
+ α

∑
r

qr

∑
k

(a′
k,r + ak,r−1)

∂

∂qk

.

On applying Lemma 11.1 this reduces to αD. �

Since, by the transformation rule (63) for densities, q0 = α(x)q0, we thus have

COROLLARY 11.3. It holds that q−1
0 D = q−1

0 D.

It follows from Corollary 11.3 that, for f ∗ ∈ V ∗, there exists g∗ ∈ V ∗ such
that, in any representation, g = q−1

0 Df . This shows the existence of an “invariant”
linear operator D∗ on V ∗ such that, in any representation, D∗f ∗ is represented by
q−1

0 Df .
We next show that there exists an invariant linear operator L∗ on V ∗ such that,

in any representation, if f ∗ is represented by f , then L∗f ∗ is represented by Lf .

THEOREM 11.4. We have L = L.

PROOF. On substituting (63) and (70) into the definition (19) of L and rear-
ranging, we obtain

L = ∑
k

(−1)k+1Akα
−1q0

∂

∂qk

,(72)

where the operator Ak is given by

Ak = ∑
r

(−1)k−rDrakr◦.

The theorem will thus be proved if we can show Ak = D
k
α◦; that is, using Theo-

rem 11.2, we have to show:

Hk : (αD)kα◦ = ∑
r

(−1)k−rDrakr◦.(73)
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We prove (73) by induction on k. First, H0 holds since both sides reduce to α◦.
Now suppose Hk holds. Then

(αD)k+1α◦ = (αD)kαDα◦
(74)

= ∑
r

(−1)k−rDrakrDα◦.

But akrD = (Dakr◦) − a′
kr◦, so that (74) becomes∑

r

(−1)k−rDr+1akrα◦ − ∑
r

(−1)k−rDra′
krα◦,

which can be written as∑
r

(−1)k+1−rDrα(a′
kr + ak,r−1)◦

and on applying (66) we have verified Hk+1. �

11.2. Invariance of scoring rule. On applying Theorem 11.4, we see that the
general homogeneous key local scoring rule, as given by (ii) of Theorem 6.4, can
be expressed invariantly as

S∗(x∗,Q∗) = (I − L∗)g∗(x∗,Q∗),

where g∗ is a 0-homogeneous local basic function. Then, in any representation,
we will have S(x,Q) = (I − L)g(x,Q). We may thus say that the scoring rule
S∗ is derived from the local basic function g∗. In particular the expected score
S∗(P ∗,Q∗), and consequently the entropy function H ∗(P ∗) and the divergence
function d∗(P ∗,Q∗), are fully determined by the basic function g∗, independently
of how that may be represented.

In fact more is true: the individual components S0(P,Q), S+(P,Q), S−(P,Q)

of S(P,Q), in the decomposition (45) arising from the integration by parts, each
correspond to an invariant expression S∗

0 (P ∗,Q∗), S∗+(P ∗,Q∗), S∗−(P ∗,Q∗) (and
similarly for the decompositions of H and d).

We show this first for the integral term S0. We need the following lemma, show-
ing that the expression � := ∑

r pr ∂/∂qr represents an invariant operator �∗ (de-
pending on a distribution P ∗, and acting on a function of a distribution Q∗, both
defined over V ∗).

LEMMA 11.5. We have∑
r

pr

∂

∂qr

= ∑
k

pk

∂

∂qk

.
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PROOF. Using (70) and (68), we have

∑
r

pr

∂

∂qr

= ∑
k

∂

∂qk

k∑
r=0

akr(x)pr

= ∑
k

pk

∂

∂qk

.
�

Now consider expression (46) for S0(P,Q), where, in accordance with (ii)
and (iii) of Theorem 6.4, φ = q0g, with g the representation of a local ba-
sic function g∗. The integrand can then be written as (p0 + q0�)g, whence
S0(P,Q) = EP g + EQ(�g) = EP ∗g∗ + EQ∗(�∗g∗)—which thus has an invari-
ant form, S∗

0 (P ∗,Q∗), independently of the representation employed.
We next demonstrate the corresponding property for the boundary term Sb.

THEOREM 11.6. We have∑
r

prBr = ∑
k

pkBkα◦.(75)

PROOF. On substituting (70), using (65) and Theorem 11.2, and rearranging,
the statement of the theorem becomes∑

r

pr

∑
m≥r+1

m∑
k=r+1

(−1)k−1−rDk−1−ramk

∂

∂qm

= ∑
r

pr

∑
m≥r+1

m−1∑
k=r

akr(−1)m−1−k(αD)m−1−k ∂

∂qm

α◦.

The theorem will thus be proved if we can show

H(r)
m :

m∑
k=r+1

(−1)k−1−rDk−1−ramk◦ =
m−1∑
k=r

akr (−1)m−1−k(αD)m−1−kα◦(76)

for all m ≥ r + 1. We prove (76) by induction on m. First, H
(r)
r+1 holds since the

left-hand side reduces to ar+1,r+1◦ and the right-hand side reduces to arrα◦, and
these are equal by (66). Now suppose H

(r)
m holds. Then

m∑
k=r+1

(−1)k−1−rDk−1−ramkDα◦(77)

=
m−1∑
k=r

akr(−1)m−1−k(αD)m−1−kαDα◦.(78)
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But amkD = (Damk◦) − a′
mk◦, so that, on applying (66), the left-hand side of (78)

becomes

amrα◦ −
m+1∑

k=r+1

(−1)k−1−rDk−1−ram+1,k◦.

The right-hand side of (78) straightforwardly becomes

amrα◦ −
m∑

k=r

akr(−1)m−k(αD)m−kα◦,

and we have thus verified Hm+1. �

It follows from (75) that
∑

r prBrq0 = ∑
r prBrq0, which thus defines an

invariant operator. Let now S∗, with representations S, S, derive from the 0-
homogeneous basic function g∗, with representations g, g. On using (48), in which
φ = q0g, we get

Sb(p,q) = ∑
r

prBrq0g = ∑
r

prBrq0g = Sb(p,q).

Hence by (47) the boundary contributions S±(P,Q) will be the same in all repre-
sentations.

EXAMPLE 11.1 (Modified Hyvärinen rule). Take X = (0,∞), X = R,
γ (x) ≡ lnx (so X = lnX). Then α(x) ≡ x and we find q0 = xq0, q1 = xq0 +x2q1,
q2 = xq0 + 3x2q1 + x3q2.

Let the scoring rule in the ξ -representation, S, be defined by the Hyvärinen
formula:

S(x,Q) = q ′′(x)

q(x)
− 1

2

{
q ′(x)

q(x)

}2

.(79)

This derives from the function g = −1
2(q1/q0)

2.
Reexpressed in the ξ -representation, we have

S(x,Q) = x2
[
q ′′(x)

q(x)
− 1

2

{
q ′(x)

q(x)

}2]
+ 2x

q ′(x)

q(x)
+ 1

2
,(80)

which itself derives from the ξ -reexpression of g, viz., g = −1
2(1 + xq1/q0)

2.
That is, it is generated by φ = q0g = −1

2q0 −xq1 − 1
2x2q2

1/q0. The simpler choice
φ∗ = −1

2x2q2
1/q0 is equivalent to φ, and thus generates an equivalent scoring rule,

with the same divergence function; in fact, it simply eliminates the final term +1
2

in (80). This form of the scoring rule also appears in equation (28) of Hyvärinen
(2007).

For this scoring rule, a class P ∗ of distributions for the basic variable X∗ will
be valid if, for P,Q ∈ P ∗, p0{(p1/p0) − (q1/q0)} → 0 as x → ±∞, where these
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expressions are based on the ξ -representation [in which S is given by (79)]. Reex-
pressing this in the ξ -representation, we want

x2p0{(p1/p0) − (q1/q0)} → 0 as x → 0 or ∞.(81)

At the lower end-point 0 of X , this condition is less restrictive than the corre-
sponding condition (62) for the regular Hyvärinen scoring rule defined directly on
X —although it becomes more restrictive at ∞.

In particular, suppose we consider the family E of exponential densities:

q(x|θ) = θe−θx (x, θ > 0).

For p,q ∈ E , condition (81) is satisfied, whereas (62) is not. If we tried to apply
the unmodified Hyvärinen score (9) to estimate θ in this model, we would obtain
S(x,Qθ) = 1

2θ2, and (7) would then appear to yield the clearly nonsensical esti-
mate θ̂ ≡ 0. This is due to failure of the boundary conditions, so that the original
Hyvärinen rule is not in fact proper in this case. The modified rule (80) is proper
for this family, and yields the consistent estimator 2

∑
i Xi/

∑
i X

2
i .

12. Discussion and further work. In this paper we have investigated lo-
cal scoring rules only for the case that the sample space is an open interval on
the real line. The general ideas extend to the case that the sample space is a
simply-connected d-dimensional differentiable manifold. This raises challenging
new technical problems, but could deliver a fundamentally improved understand-
ing and illuminate issues associated with boundary problems.
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