ASYMPTOTIC INDEPENDENCE OF MULTIPLE WIENER-ITÔ INTEGRALS AND THE RESULTING LIMIT LAWS

By Ivan Nourdin ${ }^{1}$ and Jan Rosiński
Université de Lorraine and University of Tennessee

Abstract

We characterize the asymptotic independence between blocks consisting of multiple Wiener-Itô integrals. As a consequence of this characterization, we derive the celebrated fourth moment theorem of Nualart and Peccati, its multidimensional extension and other related results on the multivariate convergence of multiple Wiener-Itô integrals, that involve Gaussian and non Gaussian limits. We give applications to the study of the asymptotic behavior of functions of short and long-range dependent stationary Gaussian time series and establish the asymptotic independence for discrete non-Gaussian chaoses.

1. Introduction. Let $B=\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion, $q \geq 1$ be an integer and let f be a symmetric element of $L^{2}\left(\mathbb{R}_{+}^{q}\right)$. Denote by $I_{q}(f)$ the q-tuple Wiener-Itô integral of f with respect to B. It is well known that multiple Wiener-Itô integrals of different orders are uncorrelated but not necessarily independent. In an important paper [17], Üstünel and Zakai gave the following characterization of the independence of multiple Wiener-Itô integrals.

THEOREM 1.1 (Üstünel-Zakai). Let $p, q \geq 1$ be integers and let $f \in L^{2}\left(\mathbb{R}_{+}^{p}\right)$ and $g \in L^{2}\left(\mathbb{R}_{+}^{q}\right)$ be symmetric. Then, random variables $I_{p}(f)$ and $I_{q}(g)$ are independent if and only if

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{p+q-2}} \mid \int_{\mathbb{R}_{+}} & f\left(x_{1}, \ldots, x_{p-1}, u\right) \\
& \times\left. g\left(x_{p+1}, \ldots, x_{p+q-2}, u\right) d u\right|^{2} d x_{1} \cdots d x_{p+q-2}=0 \tag{1.1}
\end{align*}
$$

Rosiński and Samorodnitsky [15] observed that multiple Wiener-Itô integrals are independent if and only if their squares are uncorrelated,

$$
\begin{equation*}
I_{p}(f) \Perp I_{q}(g) \quad \Longleftrightarrow \quad \operatorname{Cov}\left(I_{p}(f)^{2}, I_{q}(g)^{2}\right)=0 \tag{1.2}
\end{equation*}
$$

[^0]This condition can be viewed as a generalization of the usual covariance criterion for the independence of jointly Gaussian random variables (the case of $p=q=1$).

In the seminal paper [11], Nualart and Peccati discovered the following surprising central limit theorem.

THEOREM 1.2 (Nualart-Peccati). Let $F_{n}=I_{q}\left(f_{n}\right)$, where $q \geq 2$ is fixed and $f_{n} \in L^{2}\left(\mathbb{R}_{+}^{q}\right)$ are symmetric. Assume also that $E\left[F_{n}^{2}\right]=1$ for all n. Then convergence in distribution of $\left(F_{n}\right)$ to the standard normal law is equivalent to convergence of the fourth moment. That is, as $n \rightarrow \infty$,

$$
\begin{equation*}
F_{n} \xrightarrow{\text { law }} N(0,1) \quad \Longleftrightarrow E\left[F_{n}^{4}\right] \rightarrow 3 . \tag{1.3}
\end{equation*}
$$

Shortly afterwards, Peccati and Tudor [12] established a multidimensional extension of Theorem 1.2. Since the publication of these two important papers, many improvements and developments on this theme have been considered. In particular, Nourdin and Peccati [7] extended Theorem 1.2 to the case when the limit of F_{n} 's is a centered gamma distributed random variable. We refer the reader to [8] for further information and details of the above results.

A heuristic argument linking Theorems 1.1 and 1.2 was given by Rosiński ([14], pages 3-4), while addressing a question of Albert Shiryaev. Namely, let F and G be two i.i.d. centered random variables with fourth moment and unit variance. The link comes via a simple formula,

$$
\frac{1}{2} \operatorname{Cov}\left((F+G)^{2},(F-G)^{2}\right)=E\left[F^{4}\right]-3
$$

criterion (1.2), as well as the celebrated Bernstein theorem that asserts that F and G are Gaussian if and only if $F+G$ and $F-G$ are independent. A rigorous argument to carry through this idea is based on a characterization of the asymptotic independence of multiple Wiener-Itô integrals, which is much more difficult to handle than the plain independence, and may also be of an independent interest. The covariance between the squares of multiple Wiener-Itô integrals plays the pivotal role in this characterization.

At this point we should also mention an extension of (1.2) to the multivariate setting. Let I be a finite set and $\left(q_{i}\right)_{i \in I}$ be a sequence of nonnegative integers. Let $F_{i}=I_{q_{i}}\left(f_{i}\right)$ be a multiple Wiener-Itô integral of order $q_{i}, i \in I$. Consider a partition of I into disjoint blocks I_{k}, so that $I=\bigcup_{k=1}^{d} I_{k}$, and the resulting random vectors $\left(F_{i}\right)_{i \in I_{k}}, k=1, \ldots, d$. Then

$$
\begin{align*}
\left\{\left(F_{i}\right)_{i \in I_{k}}: k \leq d\right\} \text { are independent } \Leftrightarrow \operatorname{Cov}(& \left.F_{i}^{2}, F_{j}^{2}\right)=0 \tag{1.4}\\
& \forall i, j \text { from different blocks. }
\end{align*}
$$

The proof of this criterion is similar to the proof of (1.2) in [15].
In this paper, in Theorem 3.4, we establish an asymptotic version of (1.4) characterizing the asymptotic moment-independence between blocks of multiple

Wiener-Itô integrals. As a consequence of this result, we deduce the fourth moment theorem of Nualart and Peccati [11] in Theorem 4.1, its multidimensional extension due to Peccati and Tudor [12] in Theorem 4.2 and some neat estimates on the speed of convergence in Theorem 4.3. Furthermore, we obtain new multidimensional extension of a theorem of Nourdin and Peccati [7] in Theorem 4.5, and give another new result on the bivariate convergence of vectors consisting of multiple Wiener-Itô integrals in Theorem 4.7. Proposition 5.3 applies Theorem 4.7 to establish the limit process for functions of short and long-range dependent stationary Gaussian time series in the spirit of the celebrated Breuer-Major [2] and Dobrushin-Major-Taqqu [4, 16] theorems. In Theorem 5.4 we establish the asymptotic moment-independence for discrete non-Gaussian chaoses using some techniques of Mossel, O'Donnel and Oleszkiewicz [6].

The paper is organized as follows. In Section 2 we list some basic facts from Gaussian analysis and prove some lemmas needed in the present work. In particular, we establish Lemma 2.3, which is a version of the Cauchy-Schwarz inequality well suited to deal with contractions of functions; see (2.4). It is used in the proof of the main result, Theorem 3.4. Section 3 is devoted to the main results on the asymptotic independence. Section 4 gives some immediate consequences and related applications of the main result. Section 5 provides further applications to the study of short and long-range dependent stochastic processes and multilinear random forms in non-Gaussian random variables.
2. Preliminaries. We will give here some basic elements of Gaussian analysis that are in the foundations of the present work. The reader is referred to the books $[8,10]$ for further details and ommited proofs.

Let \mathfrak{H} be a real separable Hilbert space. For any $q \geq 1$ let $\mathfrak{H}^{\otimes q}$ be the q th tensor product of \mathfrak{H} and denote by $\mathfrak{H}^{\odot q}$ the associated q th symmetric tensor product. We write $X=\{X(h), h \in \mathfrak{H}\}$ to indicate an isonormal Gaussian process over \mathfrak{H}, defined on some probability space (Ω, \mathcal{F}, P). This means that X is a centered Gaussian family, whose covariance is given in terms of the inner product of \mathfrak{H} by $E[X(h) X(g)]=\langle h, g\rangle_{\mathfrak{H}}$. We also assume that \mathcal{F} is generated by X.

For every $q \geq 1$, let \mathcal{H}_{q} be the q th Wiener chaos of X, that is, the closed linear subspace of $L^{2}(\Omega, \mathcal{F}, P)$ generated by the random variables of the type $\left\{H_{q}(X(h)), h \in \mathfrak{H},\|h\|_{\mathfrak{H}}=1\right\}$, where H_{q} is the q th Hermite polynomial defined as

$$
\begin{equation*}
H_{q}(x)=(-1)^{q} e^{x^{2} / 2} \frac{d^{q}}{d x^{q}}\left(e^{-x^{2} / 2}\right) \tag{2.1}
\end{equation*}
$$

We write by convention $\mathcal{H}_{0}=\mathbb{R}$. For any $q \geq 1$, the mapping

$$
\begin{equation*}
I_{q}\left(h^{\otimes q}\right)=H_{q}(X(h)) \tag{2.2}
\end{equation*}
$$

can be extended to a linear isometry between the symmetric tensor product $\mathfrak{H}^{\odot q}$ equipped with the modified norm $\sqrt{q!}\|\cdot\|_{\mathfrak{H}^{\otimes q}}$ and the q th Wiener chaos \mathcal{H}_{q}. For $q=0$ we write $I_{0}(c)=c, c \in \mathbb{R}$.

It is well known (Wiener chaos expansion) that $L^{2}(\Omega, \mathcal{F}, P)$ can be decomposed into the infinite orthogonal sum of the spaces \mathcal{H}_{q}. Therefore, any square integrable random variable $F \in L^{2}(\Omega, \mathcal{F}, P)$ admits the following chaotic expansion:

$$
\begin{equation*}
F=\sum_{q=0}^{\infty} I_{q}\left(f_{q}\right) \tag{2.3}
\end{equation*}
$$

where $f_{0}=E[F]$, and the $f_{q} \in \mathfrak{H}^{\odot q}, q \geq 1$, are uniquely determined by F. For every $q \geq 0$ we denote by J_{q} the orthogonal projection operator on the q th Wiener chaos. In particular, if $F \in L^{2}(\Omega, \mathcal{F}, P)$ is as in (2.3), then $J_{q} F=I_{q}\left(f_{q}\right)$ for every $q \geq 0$.

Let $\left\{e_{k}, k \geq 1\right\}$ be a complete orthonormal system in \mathfrak{H}. Given $f \in \mathfrak{H}^{\odot p}$ and $g \in \mathfrak{H}^{\odot q}$, for every $r=0, \ldots, p \wedge q$, the contraction of f and g of order r is the element of $\mathfrak{H}^{\otimes(p+q-2 r)}$ defined by

$$
\begin{equation*}
f \otimes_{r} g=\sum_{i_{1}, \ldots, i_{r}=1}^{\infty}\left\langle f, e_{i_{1}} \otimes \cdots \otimes e_{i_{r}}\right\rangle_{\mathfrak{H}^{\otimes r}} \otimes\left\langle g, e_{i_{1}} \otimes \cdots \otimes e_{i_{r}}\right\rangle_{\mathfrak{H}^{\otimes r}} \tag{2.4}
\end{equation*}
$$

Notice that $f \otimes_{r} g$ is not necessarily symmetric: we denote its symmetrization by $f \widetilde{\otimes}_{r} g \in \mathfrak{H}^{\odot(p+q-2 r)}$. Moreover, $f \otimes_{0} g=f \otimes g$ equals the tensor product of f and g while, for $p=q, f \otimes_{q} g=\langle f, g\rangle_{\mathfrak{H}^{\otimes q}}$. In the particular case where $\mathfrak{H}=L^{2}(A, \mathcal{A}, \mu)$, where (A, \mathcal{A}) is a measurable space and μ is a σ-finite and nonatomic measure, one has that $\mathfrak{H}^{\odot q}=L_{s}^{2}\left(A^{q}, \mathcal{A}^{\otimes q}, \mu^{\otimes q}\right)$ is the space of symmetric and square integrable functions on A^{q}. Moreover, for every $f \in \mathfrak{H}^{\odot q}, I_{q}(f)$ coincides with the q-tuple Wiener-Itô integral of f. In this case, (2.4) can be written as

$$
\begin{aligned}
& \left(f \otimes_{r} g\right)\left(t_{1}, \ldots, t_{p+q-2 r}\right) \\
& \quad=\int_{A^{r}} f\left(t_{1}, \ldots, t_{p-r}, s_{1}, \ldots, s_{r}\right) \\
& \quad \times g\left(t_{p-r+1}, \ldots, t_{p+q-2 r}, s_{1}, \ldots, s_{r}\right) d \mu\left(s_{1}\right) \cdots d \mu\left(s_{r}\right) .
\end{aligned}
$$

We have

$$
\begin{equation*}
\left\|f \otimes_{r} g\right\|^{2}=\left\langle f \otimes_{p-r} f, g \otimes_{q-r} g\right\rangle \quad \text { for } r=0, \ldots, p \wedge q, \tag{2.5}
\end{equation*}
$$

where $\langle\cdot\rangle(\|\cdot\|$, resp.) stands for inner product (the norm, resp.) in an appropriate tensor product space $\mathfrak{H}^{\otimes s}$. Also, the following multiplication formula holds: if $f \in \mathfrak{H}^{\odot p}$ and $g \in \mathfrak{H}^{\odot q}$, then

$$
\begin{equation*}
I_{p}(f) I_{q}(g)=\sum_{r=0}^{p \wedge q} r!\binom{p}{r}\binom{q}{r} I_{p+q-2 r}\left(f \widetilde{\otimes}_{r} g\right) \tag{2.6}
\end{equation*}
$$

where $f \widetilde{\otimes}_{r} g$ denotes the symmetrization of $f \otimes_{r} g$.
We conclude these preliminaries with three useful lemmas that will be needed throughout the sequel.

Lemma 2.1.
(i) Multiple Wiener-Itô integral has all moments satisfying the following hypercontractivity-type inequality:

$$
\begin{equation*}
\left[E\left|I_{p}(f)\right|^{r}\right]^{1 / r} \leq(r-1)^{p / 2}\left[E\left|I_{p}(f)\right|^{2}\right]^{1 / 2}, \quad r \geq 2 \tag{2.7}
\end{equation*}
$$

(ii) If a sequence of distributions of $\left\{I_{p}\left(f_{n}\right)\right\}_{n \geq 1}$ is tight, then

$$
\begin{equation*}
\sup _{n} E\left|I_{p}\left(f_{n}\right)\right|^{r}<\infty \quad \text { for every } r>0 \tag{2.8}
\end{equation*}
$$

Proof. (i) Inequality (2.7) is well known and corresponds, for example, to [8], Corollary 2.8.14.
(ii) Combining (2.7) for $r=4$ with Paley's inequality, we get for every $\theta \in$ $(0,1)$,

$$
\begin{equation*}
P\left(\left|I_{p}(f)\right|^{2}>\theta E\left|I_{p}(f)\right|^{2}\right) \geq(1-\theta)^{2} \frac{\left(E\left|I_{p}(f)\right|^{2}\right)^{2}}{E\left|I_{p}(f)\right|^{4}} \geq(1-\theta)^{2} 9^{-p} \tag{2.9}
\end{equation*}
$$

By the assumption, there is an $M>0$ such that $P\left(\left|I_{p}\left(f_{n}\right)\right|^{2}>M\right)<9^{-p-1}, n \geq 1$. By (2.9) with $\theta=2 / 3$ and all n, we have

$$
P\left(\left|I_{p}\left(f_{n}\right)\right|^{2}>M\right)<9^{-p-1} \leq P\left(\left|I_{p}\left(f_{n}\right)\right|^{2}>(2 / 3) E\left|I_{p}\left(f_{n}\right)\right|^{2}\right)
$$

As a consequence, $E\left|I_{p}\left(f_{n}\right)\right|^{2} \leq(3 / 2) M$. Applying (2.7) we conclude (2.8).
Lemma 2.2.
(1) Let $p, q \geq 1, f \in \mathfrak{H}^{\odot p}$ and $g \in \mathfrak{H}^{\odot q}$. Then

$$
\begin{equation*}
\|f \widetilde{\otimes} g\|^{2}=\frac{p!q!}{(p+q)!} \sum_{r=0}^{p \wedge q}\binom{p}{r}\binom{q}{r}\left\|f \otimes_{r} g\right\|^{2} \tag{2.10}
\end{equation*}
$$

(2) Let $q \geq 1$ and $f_{1}, f_{2}, f_{3}, f_{4} \in \mathfrak{H}^{\odot q}$. Then

$$
\begin{align*}
(2 q)!\left\langle f_{1} \tilde{\otimes} f_{2}, f_{3} \tilde{\otimes} f_{4}\right\rangle=\sum_{r=1}^{q-1} & q!^{2}\binom{q}{r}^{2}\left\langle f_{1} \otimes_{r} f_{3}, f_{4} \otimes_{r} f_{2}\right\rangle \\
& +q!^{2}\left(\left\langle f_{1}, f_{3}\right\rangle\left\langle f_{2}, f_{4}\right\rangle+\left\langle f_{1}, f_{4}\right\rangle\left\langle f_{2}, f_{3}\right\rangle\right) \tag{2.11}
\end{align*}
$$

(3) Let $q \geq 1, f \in \mathfrak{H}^{\odot(2 q)}$ and $g \in \mathfrak{H}^{\odot q}$. We have

$$
\begin{align*}
& \left\langle f \widetilde{\otimes}_{q} f, g \widetilde{\otimes} g\right\rangle \tag{2.12}\\
& \quad=\frac{2 q!^{2}}{(2 q)!}\left\langle f \otimes_{q} f, g \otimes g\right\rangle+\frac{q!^{2}}{(2 q)!} \sum_{r=1}^{q-1}\binom{q}{r}^{2}\left\langle f \otimes_{r} g, g \otimes_{r} f\right\rangle .
\end{align*}
$$

Proof. Without loss of generality, we suppose throughout the proof that \mathfrak{H} is equal to $L^{2}(A, \mathcal{A}, \mu)$, where (A, \mathcal{A}) is a measurable space, and μ is a σ-finite measure without atoms.
(1) Let σ be a permutation of $\{1, \ldots, p+q\}$ (this fact is written in symbols as $\left.\sigma \in \mathfrak{S}_{p+q}\right)$. If $r \in\{0, \ldots, p \wedge q\}$ denotes the cardinality of $\{1, \ldots, p\} \cap\{\sigma(p+$ $1), \ldots, \sigma(p+q)\}$, then it is readily checked that r is also the cardinality of $\{p+$ $1, \ldots, p+q\} \cap\{\sigma(1), \ldots, \sigma(p)\}$ and that

$$
\begin{array}{rl}
\int_{A^{p+q}} & f\left(t_{1}, \ldots, t_{p}\right) g\left(t_{p+1}, \ldots, t_{p+q}\right) \\
& \times f\left(t_{\sigma(1)}, \ldots, t_{\sigma(p)}\right) g\left(t_{\sigma(p+1)}, \ldots, t_{\sigma(p+q)}\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{p+q}\right) \tag{2.13}\\
& =\int_{A^{p+q-2 r}}\left(f \otimes_{r} g\right)\left(x_{1}, \ldots, x_{p+q-2 r}\right)^{2} d \mu\left(x_{1}\right) \cdots d \mu\left(x_{p+q-2 r}\right) \\
= & \left\|f \otimes_{r} g\right\|^{2}
\end{array}
$$

Moreover, for any fixed $r \in\{0, \ldots, p \wedge q\}$, there are $p!\binom{p}{r} q!\binom{q}{r}$ permutations $\sigma \in \mathfrak{S}_{p+q}$ such that $\{1, \ldots, p\} \cap\{\sigma(p+1), \ldots, \sigma(p+q)\}=r$. [Indeed, such a permutation is completely determined by the choice of: (a) r distinct elements y_{1}, \ldots, y_{r} of $\{p+1, \ldots, p+q\}$; (b) $p-r$ distinct elements y_{r+1}, \ldots, y_{p} of $\{1, \ldots, p\}$; (c) a bijection between $\{1, \ldots, p\}$ and $\left\{y_{1}, \ldots, y_{p}\right\}$; (d) a bijection between $\{p+1, \ldots, p+q\}$ and $\{1, \ldots, p+q\} \backslash\left\{y_{1}, \ldots, y_{p}\right\}$.] Now, observe that the symmetrization of $f \otimes g$ is given by

$$
f \widetilde{\otimes} g\left(t_{1}, \ldots, t_{p+q}\right)=\frac{1}{(p+q)!} \sum_{\sigma \in \mathfrak{S}_{p+q}} f\left(t_{\sigma(1)}, \ldots, t_{\sigma(p)}\right) g\left(t_{\sigma(p+1)}, \ldots, t_{\sigma(p+q)}\right) .
$$

Therefore, using (2.13), we can write

$$
\begin{aligned}
& \|f \widetilde{\otimes} g\|^{2}=\langle f \otimes g, f \widetilde{\otimes} g\rangle \\
& =\frac{1}{(p+q)!} \sum_{\sigma \in \mathfrak{S}_{p+q}} \int_{A^{p+q}} f\left(t_{1}, \ldots, t_{p}\right) g\left(t_{p+1}, \ldots, t_{p+q}\right) \\
& \times f\left(t_{\sigma(1)}, \ldots, t_{\sigma(p)}\right) \\
& \times g\left(t_{\sigma(p+1)}, \ldots, t_{\sigma(p+q)}\right) d \mu\left(t_{1}\right) \cdots d \mu\left(t_{p+q}\right) \\
& =\frac{1}{(p+q)!} \sum_{r=0}^{p \wedge q}\left\|f \otimes_{r} g\right\|^{2} \operatorname{Card}\left\{\sigma \in \mathfrak{S}_{p+q}:\{1, \ldots, p\}\right. \\
& \cap\{\sigma(p+1), \ldots, \sigma(p+q)\}=r\},
\end{aligned}
$$

and (2.10) follows.
(2) We proceed analogously. Indeed, we have

$$
\begin{aligned}
& \left\langle f_{1} \widetilde{\otimes} f_{2}, f_{3} \widetilde{\otimes} f_{4}\right\rangle \\
& \begin{aligned}
= & \left\langle f_{1} \otimes f_{2}, f_{3} \widetilde{\otimes} f_{4}\right\rangle \\
= & \frac{1}{(2 q)!} \sum_{\sigma \in \mathfrak{S}_{2 q}} \int_{A^{2 q}} \\
& f_{1}\left(t_{1}, \ldots, t_{q}\right) f_{2}\left(t_{q+1}, \ldots, t_{2 q}\right) \\
& \times f_{3}\left(t_{\sigma(1)}, \ldots, t_{\sigma(q)}\right) \\
& \times f_{4}\left(t_{\sigma(q+1)}, \ldots, t_{\sigma(2 q)}\right) d \mu\left(t_{1}\right) \cdots d \mu\left(t_{2 q}\right)
\end{aligned} \\
& =\frac{1}{(2 q)!} \sum_{r=0}^{q}\left\langle f_{1} \otimes_{r} f_{3}, f_{4} \otimes_{r} f_{2}\right\rangle \\
& \quad \times \operatorname{Card}\left\{\sigma \in \mathfrak{S}_{2 q}:\{\sigma(1), \ldots, \sigma(q)\} \cap\{1, \ldots, q\}=r\right\},
\end{aligned}
$$

from which we deduce (2.11).
(3) We have

$$
\begin{aligned}
& (g \widetilde{\otimes} g)\left(t_{1}, \ldots, t_{2 q}\right) \\
& \quad=\frac{1}{(2 q)!} \sum_{\sigma \in \mathfrak{S}_{2 q}} g\left(t_{\sigma(1)}, \ldots, t_{\sigma(q)}\right) g\left(t_{\sigma(q+1)}, \ldots, t_{\sigma(2 q)}\right) \\
& \quad=\frac{1}{(2 q)!} \sum_{r=0}^{q} \sum_{\substack{\sigma \in \mathfrak{S}_{2 q} \\
\{\sigma(1), \ldots, \sigma(q)\} \cap\{1, \ldots, q\}=r}} g\left(t_{\sigma(1)}, \ldots, t_{\sigma(q)}\right) g\left(t_{\sigma(q+1)}, \ldots, t_{\sigma(2 q)}\right)
\end{aligned}
$$

and

$$
\begin{array}{rl}
\left(f \otimes_{q} f\right)\left(t_{1}, \ldots, t_{2 q}\right)=\int_{A^{q}} & f\left(t_{1}, \ldots, t_{q}, x_{1}, \ldots, x_{q}\right) \\
& \times f\left(x_{1}, \ldots, x_{q}, t_{q+1}, \ldots, t_{2 q}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{q}\right)
\end{array}
$$

so that

$$
\begin{aligned}
& \left\langle f \widetilde{\otimes}_{q} f, g \widetilde{\otimes} g\right\rangle \\
& =\quad\left\langle f \otimes_{q} f, g \widetilde{\otimes} g\right\rangle \\
& =\frac{1}{(2 q)!} \sum_{r=0}^{q}\left\langle f \otimes_{r} g, g \otimes_{r} f\right\rangle \\
& \quad \times \operatorname{Card}\left\{\sigma \in \mathfrak{S}_{2 q}:\{\sigma(1), \ldots, \sigma(q)\} \cap\{1, \ldots, q\}=r\right\} \\
& = \\
& =\frac{1}{(2 q)!} \sum_{r=0}^{q}\binom{q}{r}^{2} q!^{2}\left\langle f \otimes_{r} g, g \otimes_{r} f\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{q!^{2}}{(2 q)!}\left\langle f \otimes_{q} g, g \otimes_{q} f\right\rangle+\frac{q!^{2}}{(2 q)!}\langle f \otimes g, g \otimes f\rangle \\
& +\frac{1}{(2 q)!} \sum_{r=1}^{q-1}\binom{q}{r}^{2} q!^{2}\left\langle f \otimes_{r} g, g \otimes_{r} f\right\rangle .
\end{aligned}
$$

Since $\left\langle f \otimes_{q} g, g \otimes_{q} f\right\rangle=\langle f \otimes g, g \otimes f\rangle=\left\langle f \otimes_{q} f, g \otimes g\right\rangle$, the desired conclusion (2.12) follows.

Lemma 2.3 (Generalized Cauchy-Schwarz inequality). Assume that $\mathfrak{H}=$ $L^{2}(A, \mathcal{A}, \mu)$, where (A, \mathcal{A}) is a measurable space equipped with a σ-finite measure μ. For any integer $M \geq 1$, put $[M]=\{1, \ldots, M\}$. Also, for every element $\mathbf{z}=\left(z_{1}, \ldots, z_{M}\right) \in A^{M}$ and every nonempty set $c \subset[M]$, let \mathbf{z}_{c} denote the element of $A^{|c|}$ (where $|c|$ is the cardinality of c) obtained by deleting from \mathbf{z} the entries with index not contained in c. (E.g., if $M=5$ and $c=\{1,3,5\}$, then $\mathbf{z}_{c}=\left(z_{1}, z_{3}, z_{5}\right)$.) Let:
(α) $C, q \geq 2$ be integers, and let c_{1}, \ldots, c_{q} be nonempty subsets of $[C]$ such that each element of $[C]$ appears in exactly two of the c_{i} 's (this implies that $\bigcup_{i} c_{i}=$ $[C]$ and $\left.\sum_{i}\left|c_{i}\right|=2 C\right)$;
(β) let h_{1}, \ldots, h_{q} be functions such that $h_{i} \in L^{2}\left(\mu^{\left|c_{i}\right|}\right):=L^{2}\left(A^{\left|c_{i}\right|}, \mathcal{A}^{\left|c_{i}\right|}, \mu^{\left|c_{i}\right|}\right)$ for every $i=1, \ldots, q$ (in particular, each h_{i} is a function of $\left|c_{i}\right|$ variables).

Then

$$
\begin{equation*}
\left|\int_{A^{C}} \prod_{i=1}^{q} h_{i}\left(\mathbf{z}_{c_{i}}\right) \mu^{C}\left(d \mathbf{z}_{[C]}\right)\right| \leq \prod_{i=1}^{q}\left\|h_{i}\right\|_{L^{2}\left(\mu^{\left|c_{i}\right|}\right)} . \tag{2.14}
\end{equation*}
$$

Moreover, if $c_{0}:=c_{j} \cap c_{k} \neq \varnothing$ for some $j \neq k$, then

$$
\begin{equation*}
\left|\int_{A^{C}} \prod_{i=1}^{q} h_{i}\left(\mathbf{z}_{c_{i}}\right) \mu^{C}\left(d \mathbf{z}_{[C]}\right)\right| \leq\left\|h_{j} \otimes_{c_{0}} h_{k}\right\|_{L^{2}\left(\mu^{\left|c_{j} \Delta c_{k}\right|}\right)} \prod_{i \neq j, k}^{q}\left\|h_{i}\right\|_{L^{2}\left(\mu^{\left|c_{i}\right|}\right)}, \tag{2.15}
\end{equation*}
$$

where

$$
h_{j} \otimes_{c_{0}} h_{k}\left(\mathbf{z}_{c_{j} \Delta c_{k}}\right)=\int_{A^{\left|c_{0}\right|}} h_{j}\left(\mathbf{z}_{c_{j}}\right) h_{k}\left(\mathbf{z}_{c_{k}}\right) \mu^{\left|c_{0}\right|}\left(d \mathbf{z}_{c_{0}}\right)
$$

(Notice that $h_{j} \otimes_{c_{0}} h_{k}=h_{j} \otimes_{\left|c_{0}\right|} h_{k}$ when h_{j} and h_{k} are symmetric.)

Proof. In the case $q=2$, (2.14) is just the Cauchy-Schwarz inequality, and (2.15) is an equality. Assume that (2.14)-(2.15) hold for at most $q-1$ functions and proceed by induction. Among the sets c_{1}, \ldots, c_{q} at least two, say c_{j} and c_{k}, have nonempty intersections. Set $c_{0}:=c_{j} \cap c_{k}$, as above. Since c_{0} does not
have common elements with c_{i} for all $i \neq j, k$, by Fubini's theorem,

$$
\begin{align*}
\int_{A^{C}} & \prod_{i=1}^{q} h_{i}\left(\mathbf{z}_{c_{i}}\right) \mu^{C}\left(d \mathbf{z}_{[C]}\right) \tag{2.16}\\
& =\int_{A^{C-\left|c_{0}\right|}} h_{j} \otimes_{c_{0}} h_{k}\left(\mathbf{z}_{c_{j} \Delta c_{k}}\right) \prod_{i \neq j, k}^{q} h_{i}\left(\mathbf{z}_{c_{i}}\right) \mu^{C-\left|c_{0}\right|}\left(d \mathbf{z}_{[C] \backslash c_{0}}\right) .
\end{align*}
$$

Observe that every element of $[C] \backslash c_{0}$ belongs to exactly two of the $q-1$ sets: $c_{j} \Delta c_{k}, c_{i}, i \neq j, k$. Therefore, by the induction assumption, (2.14) implies (2.15), provided $c_{j} \Delta c_{k} \neq \varnothing$. When $c_{j}=c_{k}$, we have $h_{j} \otimes_{c_{0}} h_{k}=\left\langle h_{j}, h_{k}\right\rangle$, and (2.15) follows from (2.14) applied to the product of $q-2$ functions in (2.16). This proves (2.15), which in turn yields (2.14) by the Cauchy-Schwarz inequality. The proof is complete.
3. The main results. The following theorem characterizes momentindependence of limits of multiple Wiener-Itô integrals.

THEOREM 3.1. Let $d \geq 2$, and let q_{1}, \ldots, q_{d} be positive integers. Consider vectors

$$
\left(F_{1, n}, \ldots, F_{d, n}\right)=\left(I_{q_{1}}\left(f_{1, n}\right), \ldots, I_{q_{d}}\left(f_{d, n}\right)\right), \quad n \geq 1
$$

with $f_{i, n} \in \mathfrak{H}^{\odot} q_{i}$. Assume that for some random vector $\left(U_{1}, \ldots, U_{d}\right)$,

$$
\begin{equation*}
\left(F_{1, n}, \ldots, F_{d, n}\right) \xrightarrow{\text { law }}\left(U_{1}, \ldots, U_{d}\right) \quad \text { as } n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Then U_{i} 's admit moments of all orders and the following three conditions are equivalent:
(α) U_{1}, \ldots, U_{d} are moment-independent, that is, $E\left[U_{1}^{k_{1}} \cdots U_{d}^{k_{d}}\right]=E\left[U_{1}^{k_{1}}\right] \cdots$ $E\left[U_{d}^{k_{d}}\right]$ for all $k_{1}, \ldots, k_{d} \in \mathbb{N}$;
(β) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)=0$ for all $i \neq j$;
$(\gamma) \lim _{n \rightarrow \infty}\left\|f_{i, n} \otimes_{r} f_{j, n}\right\|=0$ for all $i \neq j$ and all $r=1, \ldots, q_{i} \wedge q_{j}$.
Moreover, if the distribution of each U_{i} is determined by its moments, then (a) is equivalent to that:
($\delta) U_{1}, \ldots, U_{d}$ are independent.

Remarks 3.2.

(1) Theorem 3.1 raises the question of whether the moment-independence implies the usual independence under weaker conditions than the determinacy of the marginals. (Recall that a random variable having all moments is said to be determinate if any other random variable with the same moments has the same distribution.) The answer is negative in general; see [1], Theorem 5.
(2) Assume that $d=2$ (for simplicity). In this case, (γ) becomes $\| f_{1, n} \otimes_{r}$ $f_{2, n} \| \rightarrow 0$ for all $r=1, \ldots, q_{1} \wedge q_{2}$. In view of Theorem 1.1 of Üstünel and Zakai, one may expect that (γ) could be replaced by a weaker condition $\left(\gamma^{\prime}\right): \| f_{1, n} \otimes_{1}$ $f_{2, n} \| \rightarrow 0$.

However, the latter is false. To see it, consider a sequence $f_{n} \in \mathfrak{H}^{\odot 2}$ such that $\left\|f_{n}\right\|^{2}=\frac{1}{2}$ and $\left\|f_{n} \otimes_{1} f_{n}\right\| \rightarrow 0$. By Theorem 4.1 below, $F_{n}:=I_{2}\left(f_{n}\right) \xrightarrow{\text { law }} U \sim$ $N(0,1)$. Putting $f_{1, n}=f_{2, n}=f_{n}$, we observe that (γ^{\prime}) holds, but (α) does not, as $\left(I_{2}\left(f_{1, n}\right), I_{2}\left(f_{2, n}\right)\right) \xrightarrow{\text { law }}(U, U)$.
(3) Taking into account that assumptions (γ) and (δ) of Theorem 4.1 are equivalent, it is natural to wonder whether assumption (γ) of Theorem 3.1 is equivalent to its symmetrized version,

$$
\lim _{n \rightarrow \infty}\left\|f_{i, n} \widetilde{\otimes}_{r} f_{j, n}\right\|=0 \quad \text { for all } i \neq j \text { and all } r=1, \ldots, q_{i} \wedge q_{j}
$$

The answer is negative in general, as is shown by the following counterexample. Let $f_{1}, f_{2}:[0,1]^{2} \rightarrow \mathbb{R}$ be symmetric functions given by
$f_{1}(s, t)=\left\{\begin{array}{ll}-1, & s, t \in[0,1 / 2], \\ 1, & \text { elsewhere }\end{array} \quad\right.$ and $\quad f_{2}(s, t)= \begin{cases}-1, & s, t \in(1 / 2,1], \\ 1, & \text { elsewhere. }\end{cases}$
Then $\left\langle f_{1}, f_{2}\right\rangle=0$ and

$$
\left(f_{1} \otimes_{1} f_{2}\right)(s, t)= \begin{cases}-1, & \text { if } s \in[0,1 / 2] \text { and } t \in(1 / 2,1] \\ 1, & \text { if } t \in[0,1 / 2] \text { and } s \in(1 / 2,1] \\ 0, & \text { elsewhere },\end{cases}
$$

so that $f_{1} \widetilde{\otimes}_{1} f_{2} \equiv 0$ and $\left\|f_{1} \otimes_{1} f_{2}\right\|=\sqrt{2}$.
(4) The condition of moment-independence, (α) of Theorem 3.1, can also be stated in terms of cumulants. Recall that the joint cumulant of random variables X_{1}, \ldots, X_{m} is defined by

$$
\kappa\left(X_{1}, \ldots, X_{m}\right)=(-i)^{m} \frac{\partial^{m}}{\partial t_{1} \cdots \partial t_{m}} \log E\left[e^{i\left(t_{1} X_{1}+\cdots+t_{m} X_{m}\right)}\right]_{\mid t_{1}=0, \ldots, t_{m}=0}
$$

provided $E\left|X_{1} \cdots X_{m}\right|<\infty$. When all X_{i} 's are equal to X, then $\kappa(X, \ldots, X)=$ $\kappa_{m}(X)$, the usual m th cumulant of X; see [5]. Then Theorem 3.1 (α) is equivalent to
(α^{\prime}) for all integers $1 \leq j_{1}<\cdots<j_{k} \leq d, k \geq 2$, and $m_{1}, \ldots, m_{k} \geq 1$

$$
\begin{equation*}
\kappa(\underbrace{U_{j_{1}}, \ldots, U_{j_{1}}}_{m_{1}}, \ldots, \underbrace{U_{j_{k}}, \ldots, U_{j_{k}}}_{m_{k}})=0 . \tag{3.2}
\end{equation*}
$$

Theorem 3.1 was proved in the first version of this paper [9]. Our proof of the crucial implication $(\gamma) \Rightarrow(\alpha)$ involved tedious combinatorial considerations. We are thankful to an anonymous referee who suggested a shorter and more transparent line of proof using Malliavin calculus. It significantly reduced the amount of
combinatorial arguments of the original version but requires some basic facts from Malliavin calculus. We incorporated the referee's suggestions and approach into the proof of a more general Theorem 3.4. Even though Theorem 3.1 becomes a special case of Theorem 3.4 (see Corollary 3.6), we keep its original statement for a convenient reference.

DEFINITION 3.3. For each $n \geq 1$, let $F_{n}=\left(F_{i, n}\right)_{i \in I}$ be a family of real-valued random variables indexed by a finite set I. Consider a partition of I into disjoint blocks I_{k}, so that $I=\bigcup_{k=1}^{d} I_{k}$. We say that vectors $\left(F_{i, n}\right)_{i \in I_{k}}, k=1, \ldots, d$ are asymptotically moment-independent if each $F_{i, n}$ admits moments of all orders and for any sequence $\left(\ell_{i}\right)_{i \in I}$ of nonnegative integers,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{E\left[\prod_{i \in I} F_{i, n}^{\ell_{i}}\right]-\prod_{k=1}^{d} E\left[\prod_{i \in I_{k}} F_{i, n}^{\ell_{i}}\right]\right\}=0 \tag{3.3}
\end{equation*}
$$

The next theorem characterizes the asymptotic moment-independence between blocks of multiple Wiener-Itô integrals.

THEOREM 3.4. Let I be a finite set and $\left(q_{i}\right)_{i \in I}$ be a sequence of nonnegative integers. For each $n \geq 1$, let $F_{n}=\left(F_{i, n}\right)_{i \in I}$ be a family of multiple Wiener-Itô integrals, where $F_{i, n}=I_{q_{i}}\left(f_{i, n}\right)$ with $f_{i, n} \in \mathfrak{H}^{\odot q_{i}}$. Assume that for every $i \in I$,

$$
\begin{equation*}
\sup _{n} E\left[F_{i, n}^{2}\right]<\infty \tag{3.4}
\end{equation*}
$$

Given a partition of I into disjoint blocks I_{k}, the following conditions are equivalent:
(a) random vectors $\left(F_{i, n}\right)_{i \in I_{k}}, k=1, \ldots, d$ are asymptotically momentindependent;
(b) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)=0$ for every i, j from different blocks;
(c) $\lim _{n \rightarrow \infty}\left\|f_{i, n} \otimes_{r} f_{j, n}\right\|=0$ for every i, j from different blocks and $r=$ $1, \ldots, q_{i} \wedge q_{j}$.

Proof. The implication $(\mathbf{a}) \Rightarrow(\mathbf{b})$ is obvious.
To show (b) $\Rightarrow(\mathbf{c})$, fix i, j belonging to different blocks. By (2.6) we have

$$
F_{i, n} F_{j, n}=\sum_{r=0}^{q_{i} \wedge q_{j}} r!\binom{q_{i}}{r}\binom{q_{j}}{r} I_{q_{i}+q_{j}-2 r}\left(f_{i, n} \widetilde{\otimes}_{r} f_{j, n}\right),
$$

which yields

$$
E\left[F_{i, n}^{2} F_{j, n}^{2}\right]=\sum_{r=0}^{q_{i} \wedge q_{j}} r!^{2}\binom{q_{i}}{r}^{2}\binom{q_{j}}{r}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i, n} \tilde{\otimes}_{r} f_{j, n}\right\|^{2}
$$

Moreover,

$$
E\left[F_{i, n}^{2}\right] E\left[F_{j, n}^{2}\right]=q_{i}!q_{j}!\left\|f_{i, n}\right\|^{2}\left\|f_{j, n}\right\|^{2}
$$

Applying (2.10) to the second equality below, we evaluate $\operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)$ as follows:

$$
\operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)=\left(q_{i}+q_{j}\right)!\left\|f_{i, n} \widetilde{\otimes} f_{j, n}\right\|^{2}-q_{i}!q_{j}!\left\|f_{i, n}\right\|^{2}\left\|f_{j, n}\right\|^{2}
$$

$$
\begin{align*}
& +\sum_{r=1}^{q_{i} \wedge q_{j}} r!^{2}\binom{q_{i}}{r}^{2}\binom{q_{j}}{r}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i, n} \widetilde{\otimes}_{r} f_{j, n}\right\|^{2} \tag{3.5}\\
= & q_{i}!q_{j}!\sum_{r=1}^{q_{i} \wedge q_{j}}\binom{q_{i}}{r}\binom{q_{j}}{r}\left\|f_{i, n} \otimes_{r} f_{j, n}\right\|^{2} \\
& +\sum_{r=1}^{q_{i} \wedge q_{j}} r!^{2}\binom{q_{i}}{r}^{2}\binom{q_{j}}{r}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i, n} \widetilde{\otimes}_{r} f_{j, n}\right\|^{2} \\
\geq & \max _{r=1, \ldots, q_{i} \wedge q_{j}}\left\|f_{i, n} \otimes_{r} f_{j, n}\right\|^{2} . \tag{3.6}
\end{align*}
$$

This bound yields the desired conclusion.
Now we will prove (c) \Rightarrow (a). We need to show (3.3) for fixed l_{i}. Writing $F_{i, n}^{l_{i}}$ as $\underbrace{F_{i, n} \times \cdots \times F_{i, n}}_{l_{i}}$ and enlarging I and I_{k} 's accordingly, we may and do assume that all $l_{i}=1$. We will prove (3.3) by induction on $Q=\sum_{i \in I} q_{i}$. The formula holds when $Q=0$ or 1 . Therefore, take $Q \geq 2$ and suppose that (3.3) holds whenever $\sum_{i \in I} q_{i} \leq Q-1$.

Fix $i_{1} \in I_{1}$ and set

$$
X_{n}=\prod_{i \in I_{1} \backslash\left\{i_{1}\right\}} I_{q_{i}}\left(f_{i, n}\right), \quad Y_{n}=\prod_{j \in I \backslash I_{1}} I_{q_{j}}\left(f_{j, n}\right) .
$$

Assume that $q_{1} \geq 1$, otherwise the inductive step follows immediately. Let δ denote the divergence operator in the sense of Malliavin calculus, and let D be the Malliavin derivative; see [10], Chapters $1.2-1.3$. Using the duality relation [10], Definition 1.3.1(ii), and the product rule for the Malliavin derivative [3], Theorem 3.4, we get

$$
\begin{aligned}
E\left[\prod_{i \in I} F_{i, n}\right] & =E\left[I_{q_{i_{1}}}\left(f_{i_{1}, n}\right) X_{n} Y_{n}\right]=E\left[\delta\left(I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right)\right) X_{n} Y_{n}\right] \\
& =E\left[I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} D\left(X_{n} Y_{n}\right)\right] \\
& =E\left[Y_{n} I_{q_{i_{1}-1}}\left(f_{i_{1}, n}\right) \otimes_{1} D X_{n}\right]+E\left[X_{n} I_{q_{i_{1}-1}}\left(f_{i_{1}, n}\right) \otimes_{1} D Y_{n}\right] \\
& =A_{n}+B_{n}
\end{aligned}
$$

First we consider B_{n}. Using the product rule for $D Y_{n}$, we obtain

$$
\begin{aligned}
B_{n} & =\sum_{j \in I \backslash I_{1}} E\left[I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} D F_{j, n} \prod_{i \in I \backslash\left\{i_{1}, j\right\}} F_{i, n}\right] \\
& =\sum_{j \in I \backslash I_{1}} q_{j} E\left[I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} I_{q_{j}-1}\left(f_{j, n}\right) \prod_{i \in I \backslash\left\{i_{1}, j\right\}} F_{i, n}\right] .
\end{aligned}
$$

By the multiplication formula (2.6) we have

$$
\begin{aligned}
& I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} I_{q_{j}-1}\left(f_{j, n}\right) \\
& \quad=\sum_{s=1}^{q_{i_{1}} \wedge q_{j}}(s-1)!\binom{q_{i_{1}}-1}{s-1}\binom{q_{j}-1}{s-1} I_{q_{i_{1}}+q_{j}-2 s}\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{j, n}\right)
\end{aligned}
$$

Since i_{1} and j belong to different blocks, condition (c) of the theorem applied to the above expansion yields that $I_{q_{1}-1}\left(f_{i_{1}, n}\right) \otimes_{1} I_{q_{j}-1}\left(f_{j, n}\right)$ converges to zero in L^{2}. Combining this with (3.4) and Lemma 2.1, we infer that $\lim _{n \rightarrow \infty} B_{n}=0$.

Now we consider A_{n}. If $\operatorname{Card}\left(I_{1}\right)=1$, then $X_{n}=1$ by convention and so $A_{n}=$ 0. Hence

$$
\lim _{n \rightarrow \infty}\left\{E\left[\prod_{i \in I} F_{i, n}\right]-E\left[F_{i_{1}, n}\right] \prod_{k=2}^{d} E\left[\prod_{i \in I_{k}} F_{i, n}\right]\right\}=\lim _{n \rightarrow \infty} B_{n}=0
$$

Therefore, we now assume that $\operatorname{Card}\left(I_{1}\right) \geq 2$. Write $A_{n}=E\left[Z_{n} Y_{n}\right]$, where

$$
\begin{aligned}
Z_{n}= & I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} D X_{n} \\
= & \sum_{i \in I_{1} \backslash\left\{i_{1}\right\}} q_{i} I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} I_{q_{i}-1}\left(f_{i, n}\right) \prod_{j \in I_{1} \backslash\left\{i_{1}, i\right\}} F_{j, n} \\
= & \sum_{i \in I_{1} \backslash\left\{i_{1}\right\}} q_{i} \sum_{s=1}^{q_{i_{1} \wedge q_{i}}}(s-1)!\binom{q_{i_{1}}-1}{s-1}\binom{q_{i}-1}{s-1} \\
& \quad \times I_{q_{i_{1}}+q_{i}-2 s}\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{i, n}\right) \prod_{j \in I \backslash\left\{i_{1}, i\right\}} F_{j, n} .
\end{aligned}
$$

Thus A_{n} is a linear combination of the terms

$$
E\left[\left(I_{q_{i_{1}}+q_{i}-2 s}\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{i, n}\right) \prod_{j \in I_{1} \backslash\left\{i_{1}, i\right\}} F_{j, n}\right) Y_{n}\right]
$$

where $i_{1}, i \in I_{1}, i_{1} \neq i, 1 \leq s \leq q_{i_{1}} \wedge q_{i}$. The term under expectation is a product of multiple integrals of orders summing to $\sum_{j \in I} q_{j}-2 s$. Therefore, the induction hypothesis applies provided

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{i, n}\right) \otimes_{r} f_{j, n}=0 \tag{3.7}
\end{equation*}
$$

for all $j \in I_{k}$ with $k \geq 2$ and all $r=1, \ldots,\left(q_{i_{1}}+q_{i}-2 s\right) \wedge q_{j}$.
Suppose that (3.7) holds. Then by the induction hypothesis,

$$
\lim _{n \rightarrow \infty}\left\{A_{n}-E\left[Z_{n}\right] E\left[Y_{n}\right]\right\}=0
$$

Moreover,

$$
E\left[Z_{n}\right]=E\left[I_{q_{i_{1}}-1}\left(f_{i_{1}, n}\right) \otimes_{1} D X_{n}\right]=E\left[I_{q_{i_{1}}}\left(f_{i_{1}, n}\right) X_{n}\right]=E\left[\prod_{i \in I_{1}} F_{i, n}\right]
$$

Hence, by the induction hypothesis applied to Y_{n} and the uniform boundedness of all moments of $F_{i, n}$, we get

$$
\lim _{n \rightarrow \infty}\left\{E\left[\prod_{i \in I} F_{i, n}\right]-\prod_{k=1}^{d} E\left[\prod_{i \in I_{k}} F_{i, n}\right]\right\}=\lim _{n \rightarrow \infty}\left\{A_{n}-E\left[Z_{n}\right] E\left[Y_{n}\right]\right\}=0
$$

It remains to show (3.7). To this aim we will describe the structure of the terms under limit (3.7). Without loss of generality we may assume that $\mathfrak{H}=L^{2}(\mu):=$ $L^{2}(A, \mathcal{A}, \mu)$, where (A, \mathcal{A}) is a measurable space and μ is a σ-finite measure without atoms. Recall notation of Lemma 2.3. For every integer $M \geq 1$, put $[M]=$ $\{1, \ldots, M\}$. Also, for every element $\mathbf{z}=\left(z_{1}, \ldots, z_{M}\right) \in A^{M}$ and every nonempty set $c \subset[M]$, we denote by \mathbf{z}_{c} the element of $A^{|c|}$ (where $|c|$ is the cardinality of c) obtained by deleting from \mathbf{z} the entries with index not contained in c. (E.g., if $M=5$ and $c=\{1,3,5\}$, then $\mathbf{z}_{c}=\left(z_{1}, z_{3}, z_{5}\right)$.)

Observe that $\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{i, n}\right) \otimes_{r} f_{j, n}$ is a linear combination of functions $\psi\left(\mathbf{z}_{J_{1}}\right)$, $\mathbf{z} \in A^{M}$ obtained as follows. Set $M=q_{i_{1}}+q_{i}+q_{j}-s-r$ and $M_{0}=q_{i_{1}}+q_{i}-s$, so that $M>M_{0} \geq 2$. Choose $b_{1}, b_{2} \subset\left[M_{0}\right]$ such that $\left|b_{1}\right|=q_{i_{1}},\left|b_{2}\right|=q_{i}$ and $\left|b_{1} \cap b_{2}\right|=s$, and then choose $b_{3} \subset[M]$ such that $\left|b_{3}\right|=q_{j}$ and $\left|b_{3} \cap\left(b_{1} \cup b_{2}\right)\right|=$ r. It follows that $b_{1} \cup b_{2} \cup b_{3}=[M]$ and $b_{1} \cap b_{2} \cap b_{3}=\varnothing$. Therefore, each element of [M] belongs exactly to one or two b_{i} 's. Let

$$
J=\left\{j \in[M]: j \text { belongs to two sets } b_{i}\right\}
$$

and put $J_{1}=[M] \backslash J$. Then $\left(f_{i_{1}, n} \widetilde{\otimes}_{s} f_{i, n}\right) \otimes_{r} f_{j, n}$ is a linear combination of functions of the form

$$
\psi\left(\mathbf{z}_{J_{1}}\right)=\int_{A^{J}} f_{i_{1}, n}\left(\mathbf{z}_{b_{1}}\right) f_{i, n}\left(\mathbf{z}_{b_{2}}\right) f_{j, n}\left(\mathbf{z}_{b_{3}}\right) \mu^{|J|}\left(d \mathbf{z}_{J}\right)
$$

where the summation goes over all choices b_{1}, b_{2} under the constraint that the sets $b_{1} \cap b_{2}$ and b_{3} are fixed. This constraint makes J_{1} unique, $\left|J_{1}\right|=q_{i_{1}}+q_{i}+q_{j}-$ $2 s-2 r$.

Let $c_{i}=b_{i} \cap J, i=1,2,3$ and notice that either $c_{1} \cap c_{3} \neq \varnothing$ or $c_{2} \cap c_{3} \neq \varnothing$ since $r \geq 1$. Suppose $c_{0}=c_{1} \cap c_{3} \neq \varnothing$, the other case is identical. Applying Lemma 2.3 with $\mathbf{z}_{J_{1}}$ fixed, we get

$$
\left|\psi\left(\mathbf{z}_{J_{1}}\right)\right|^{2} \leq\left|f_{i_{1}, n} \otimes_{\left|c_{0}\right|} f_{j, n}\left(\mathbf{z}_{b_{1} \Delta b_{3}}\right)\right|^{2} \int_{A^{\left|c_{2}\right|}}\left|f_{i, n}\left(\mathbf{z}_{b_{2}}\right)\right|^{2} \mu^{\left|c_{2}\right|}\left(d \mathbf{z}_{c_{2}}\right)
$$

Since $b_{1} \Delta b_{3}$ and $b_{3} \backslash c_{3}$ make a disjoint partition of J_{1}, and additional integration with respect to $\mathbf{z}_{J_{1}}$ yields

$$
\|\psi\|_{L^{2}\left(\mu^{\left|J_{1}\right|}\right)} \leq\left\|f_{i_{1}, n} \otimes_{\left|c_{0}\right|} f_{j, n}\right\|_{L^{2}\left(\mu^{\left.\left|b_{1} \Delta b_{3}\right|\right)}\right.}\left\|f_{i, n}\right\|_{L^{2}\left(\mu^{\left|b_{2}\right|}\right)} \rightarrow 0
$$

as $n \rightarrow \infty$. This yields (3.7) and completes the proof of Theorem 3.4.

REMARK 3.5. Condition (b) of Theorem 3.4 is equivalent to
(\mathbf{b}^{\prime}) for every $1 \leq k \neq l \leq d$

$$
\lim _{n \rightarrow \infty} \operatorname{Cov}\left(\left\|\left(F_{i, n}\right)_{i \in I_{k}}\right\|^{2},\left\|\left(F_{i, n}\right)_{i \in I_{l}}\right\|^{2}\right)=0
$$

where $\|\cdot\|$ denotes the Euclidean norms in $\mathbb{R}^{\left|I_{k}\right|}$ and $\mathbb{R}^{\left|I_{l}\right|}$, respectively.
Proof. Indeed, condition (b) of Theorem 3.4 implies (\mathbf{b}^{\prime}), and the converse follows from

$$
\operatorname{Cov}\left(\left\|\left(F_{i, n}\right)_{i \in I_{k}}\right\|^{2},\left\|\left(F_{i, n}\right)_{i \in I_{l}}\right\|^{2}\right)=\sum_{i \in I_{k}, j \in I_{l}} \operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right) \geq \operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)
$$

as the squares of multiple Wiener-Itô integrals are nonnegatively correlated; cf. (3.6).

The following corollary is useful in deducing the joint convergence in law from the convergence of marginals. It is stated for random vectors, as is Theorem 3.4, but it obviously applies in the setting of Theorem 3.1 when all vectors are onedimensional.

Corollary 3.6. Under notation of Theorem 3.4, let $\left(U_{i}\right)_{i \in I}$ be a random vector such that:
(i) $\left(F_{i, n}\right)_{i \in I_{k}} \xrightarrow{\text { law }}\left(U_{i}\right)_{i \in I_{k}}$ as $n \rightarrow \infty$, for each k;
(ii) vectors $\left(U_{i}\right)_{i \in I_{k}}, k=1, \ldots, d$ are independent;
(iii) condition (b) or (\mathbf{c}) of Theorem 3.4 holds [equivalently, (β) or (γ) of Theorem 3.1 when all I_{k} are singletons];
(iv) $\mathcal{L}\left(U_{i}\right)$ is determined by its moments for each $i \in I$.

Then the joint convergence holds

$$
\left(F_{i, n}\right)_{i \in I} \xrightarrow{\text { law }}\left(U_{i}\right)_{i \in I}, \quad n \rightarrow \infty
$$

Proof. By (i) the sequence $\left\{\left(F_{i, n}\right)_{i \in I}\right\}_{n \geq 1}$ is tight. Let $\left(V_{i}\right)_{i \in I}$ be a random vector such that

$$
\left(F_{i, n_{j}}\right)_{i \in I} \xrightarrow{\text { law }}\left(V_{i}\right)_{i \in I}
$$

as $n_{j} \rightarrow \infty$ along a subsequence. From Lemma 2.1(ii) we infer that condition (3.4) of Theorem 3.4 is satisfied. It follows that each V_{i} has all moments and $\left(V_{i}\right)_{i \in I_{k}} \stackrel{\text { law }}{=}\left(U_{i}\right)_{i \in I_{k}}$ for each k. By (iv), the laws of vectors $\left(U_{i}\right)_{i \in I}$ and $\left(V_{i}\right)_{i \in I}$ are determined by their joint moments, respectively; see [13], Theorem 3. Under assumption (iii), the vectors $\left(F_{i, n}\right)_{i \in I_{k}}, k=1, \ldots, d$ are asymptotically moment independent. Hence, for any sequence $\left(\ell_{i}\right)_{i \in I}$ of nonnegative integers,

$$
\begin{aligned}
E\left[\prod_{i \in I} V_{i}^{\ell_{i}}\right]-E\left[\prod_{i \in I} U_{i}^{\ell_{i}}\right] & =E\left[\prod_{i \in I} V_{i}^{\ell_{i}}\right]-\prod_{k=1}^{d} E\left[\prod_{i \in I_{k}} U_{i}^{\ell_{i}}\right] \\
& =\lim _{n_{j} \rightarrow \infty}\left\{E\left[\prod_{i \in I} F_{i, n_{j}}^{\ell_{i}}\right]-\prod_{k=1}^{d} E\left[\prod_{i \in I_{k}} F_{i, n_{j}}^{\ell_{i}}\right]\right\}=0
\end{aligned}
$$

Thus $\left(V_{i}\right)_{i \in I} \stackrel{\text { law }}{=}\left(U_{i}\right)_{i \in I}$.

4. Applications.

4.1. The fourth moment theorem of Nualart-Peccati. We can give a short proof of the difficult and surprising part implication $(\beta) \Rightarrow(\alpha)$ of the fourth moment theorem of Nualart and Peccati [11], that we restate here for a convenience.

THEOREM 4.1 (Nualart-Peccati). Let $\left(F_{n}\right)$ be a sequence of the form $F_{n}=$ $I_{q}\left(f_{n}\right)$, where $q \geq 2$ is fixed and $f_{n} \in \mathfrak{H}^{\odot q}$. Assume moreover that $E\left[F_{n}^{2}\right]=$ $q!\left\|f_{n}\right\|^{2}=1$ for all n. Then, as $n \rightarrow \infty$, the following four conditions are equivalent:
(α) $F_{n} \xrightarrow{\text { law }} N(0,1)$;
(β) $E\left[F_{n}^{4}\right] \rightarrow 3$;
(γ) $\left\|f_{n} \otimes_{r} f_{n}\right\| \rightarrow 0$ for all $r=1, \ldots, q-1$;
(δ) $\left\|f_{n} \widetilde{\otimes}_{r} f_{n}\right\| \rightarrow 0$ for all $r=1, \ldots, q-1$.
Proof of $(\beta) \Rightarrow(\alpha)$. Assume (β). Since the sequence $\left(F_{n}\right)$ is bounded in $L^{2}(\Omega)$ by the assumption, it is relatively compact in law. Without loss of generality we may assume that $F_{n} \xrightarrow{\text { law }} Y$ and need to show that $Y \sim N(0,1)$. Let G_{n} be an independent copy of F_{n} of the form $G_{n}=I_{q}\left(g_{n}\right)$ with $f_{n} \otimes_{1} g_{n}=0$. This can easily be done by extending the underlying isonormal process to the direct sum $\mathfrak{H} \oplus \mathfrak{H}$. We then have

$$
\left(I_{q}\left(f_{n}+g_{n}\right), I_{q}\left(f_{n}-g_{n}\right)\right)=\left(F_{n}+G_{n}, F_{n}-G_{n}\right) \xrightarrow{\text { law }}(Y+Z, Y-Z)
$$

as $n \rightarrow \infty$, where Z stands for an independent copy of Y. Since

$$
\frac{1}{2} \operatorname{Cov}\left[\left(F_{n}+G_{n}\right)^{2},\left(F_{n}-G_{n}\right)^{2}\right]=E\left[F_{n}^{4}\right]-3 \rightarrow 0
$$

$Y+Z$ and $Y-Z$ are moment-independent. (If they were independent, the classical Bernstein theorem would complete the proof.) However, in our case condition (α^{\prime}) in (3.2) says that

$$
\kappa(\underbrace{Y+Z, \ldots, Y+Z}_{m_{1}}, \underbrace{Y-Z, \ldots, Y-Z}_{m_{2}})=0 \quad \text { for all } m_{1}, m_{2} \geq 1
$$

Taking $n \geq 3$ we get

$$
\begin{aligned}
0 & =\kappa(\underbrace{Y+Z, \ldots, Y+Z}_{n-2}, Y-Z, Y-Z) \\
& =\kappa(\underbrace{Y, \ldots, Y}_{n})+\kappa(\underbrace{Z, \ldots, Z}_{n})=2 \kappa_{n}(Y),
\end{aligned}
$$

where we used the multilinearity of κ and the fact that Y and Z are i.i.d. Since $\kappa_{1}(Y)=0, \kappa_{2}(Y)=1$ and $\kappa_{n}(Y)=0$ for $n \geq 3$, we infer that $Y \sim N(0,1)$.
4.2. Generalizing a result of Peccati and Tudor. Applying our approach, one can add a further equivalent condition to a result of Peccati and Tudor [12]. As such, Theorem 4.2 turns out to be the exact multivariate equivalent of Theorem 4.1.

THEOREM 4.2 (Peccati-Tudor). Let $d \geq 2$, and let q_{1}, \ldots, q_{d} be positive integers. Consider vectors

$$
F_{n}=\left(F_{1, n}, \ldots, F_{d, n}\right)=\left(I_{q_{1}}\left(f_{1, n}\right), \ldots, I_{q_{d}}\left(f_{d, n}\right)\right), \quad n \geq 1
$$

with $f_{i, n} \in \mathfrak{H}^{\odot q_{i}}$. Assume that, for $i, j=1, \ldots, d$, as $n \rightarrow \infty$,

$$
\begin{equation*}
\operatorname{Cov}\left(F_{i, n}, F_{j, n}\right) \rightarrow \sigma_{i j} \tag{4.1}
\end{equation*}
$$

Let N be a centered Gaussian random vector with the covariance matrix $\Sigma=$ $\left(\sigma_{i j}\right)_{1 \leq i, j \leq d}$. Then the following two conditions are equivalent $(n \rightarrow \infty)$:
(i) $F_{n} \xrightarrow{\text { law }} N$;
(ii) $E\left[\left\|F_{n}\right\|^{4}\right] \rightarrow E\left[\|N\|^{4}\right]$;
where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{d}.
Proof. Only (ii) \Rightarrow (i) has to be shown. Assume (ii). As in the proof of Theorem 4.1, we may assume that $F_{n} \xrightarrow{\text { law }} Y$ and must show that $Y \sim$ $N_{d}(0, \Sigma)$. Let $G_{n}=\left(G_{1, n}, \ldots, G_{d, n}\right)$ be an independent copy of F_{n} of the form $\left(I_{q_{1}}\left(g_{1, n}\right), \ldots, I_{q_{d}}\left(g_{d, n}\right)\right)$. Observe that

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Cov}\left(\left\|F_{n}+G_{n}\right\|^{2},\left\|F_{n}-G_{n}\right\|^{2}\right) \\
& \quad=E\left[\left\|F_{n}\right\|^{4}\right]-\left(E\left[\left\|F_{n}\right\|^{2}\right]\right)^{2}-2 \sum_{i, j=1}^{d} \operatorname{Cov}\left(F_{i, n}, F_{j, n}\right)^{2}
\end{aligned}
$$

Using this identity for N and N^{\prime} in place of F_{n} and G_{n}, where N^{\prime} is an independent copy of N, we get

$$
\begin{equation*}
E\left[\|N\|^{4}\right]=\sum_{i, j=1}^{d}\left(\sigma_{i i} \sigma_{j j}+2 \sigma_{i j}^{2}\right) \tag{4.2}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Cov}\left(\left\|F_{n}+G_{n}\right\|^{2},\left\|F_{n}-G_{n}\right\|^{2}\right) \\
& \quad=E\left[\left\|F_{n}\right\|^{4}\right]-E\left[\|N\|^{4}\right] \\
& \quad+\sum_{i, j=1}^{d}\left[\sigma_{i i} \sigma_{j j}+2 \sigma_{i j}^{2}-\operatorname{Var}\left(F_{i, n}\right) \operatorname{Var}\left(F_{j, n}\right)-2 \operatorname{Cov}\left(F_{i, n}, F_{j, n}\right)^{2}\right] \rightarrow 0
\end{aligned}
$$

By Remark 3.5, $F_{n}+G_{n}$ and $F_{n}-G_{n}$ are asymptotically moment-independent. Since one-dimensional projections of $F_{n}+G_{n}$ and $F_{n}-G_{n}$ are also asymptotically moment-independent, we can proceed by cumulants as above to determine the normality of Y.

The following result associates neat estimates to Theorem 4.2.

Theorem 4.3. Consider a vector

$$
F=\left(F_{1}, \ldots, F_{d}\right)=\left(I_{q_{1}}\left(f_{1}\right), \ldots, I_{q_{d}}\left(f_{d}\right)\right)
$$

with $f_{i} \in \mathfrak{H}^{\odot q_{i}}$, and let $\Sigma=\left(\sigma_{i j}\right)_{1 \leq i, j \leq d}$ be the covariance matrix of $F, \sigma_{i j}=$ $E\left[F_{i} F_{j}\right]$. Let N be the associated Gaussian random vector, $N \sim N_{d}(0, \Sigma)$.
(1) Assume that Σ is invertible. Then, for any Lipschitz function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we have

$$
|E[h(F)]-E[h(N)]| \leq \sqrt{d}\|\Sigma\|_{\mathrm{op}}^{1 / 2}\left\|\Sigma^{-1}\right\|_{\mathrm{op}}\|h\|_{\mathrm{Lip}} \sqrt{E\|F\|^{4}-E\|N\|^{4}}
$$

where $\|\cdot\|_{\mathrm{op}}$ denotes the operator norm of a matrix and $\|h\|_{\text {Lip }}=$ $\sup _{x, y \in \mathbb{R}^{d}} \frac{|h(x)-h(y)|}{\|x-y\|}$.
(2) For any C^{2}-function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we have

$$
|E[h(F)]-E[h(N)]| \leq \frac{1}{2}\left\|h^{\prime \prime}\right\|_{\infty} \sqrt{E\|F\|^{4}-E\|N\|^{4}}
$$

where $\left\|h^{\prime \prime}\right\|_{\infty}=\max _{1 \leq i, j \leq d} \sup _{x \in \mathbb{R}^{d}}\left|\frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}(x)\right|$.

Proof. The proof is divided into three steps.
Step 1. Recall that for a Lipschitz function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$, [8], Theorem 6.1.1, yields

$$
\begin{aligned}
& |E[h(F)]-E[h(N)]| \\
& \quad \leq \sqrt{d}\|\Sigma\|_{\mathrm{op}}^{1 / 2}\left\|\Sigma^{-1}\right\|_{\mathrm{op}}\|h\|_{\mathrm{Lip}} \sqrt{\sum_{i, j=1}^{d} E\left\{\left(\sigma_{i j}-\frac{1}{q_{j}}\left\langle D F_{i}, D F_{j}\right\rangle\right)^{2}\right\}},
\end{aligned}
$$

while for a C^{2}-function with bounded Hessian, [8], Theorem 6.1.2, gives

$$
\begin{aligned}
& |E[h(F)]-E[h(N)]| \\
& \quad \leq \frac{1}{2}\left\|h^{\prime \prime}\right\|_{\infty} \sqrt{\sum_{i, j=1}^{d} E\left\{\left(\sigma_{i j}-\frac{1}{q_{j}}\left\langle D F_{i}, D F_{j}\right\rangle\right)^{2}\right\} .}
\end{aligned}
$$

Step 2. We claim that for any $i, j=1, \ldots, d$,

$$
\begin{gathered}
E\left\{\left(\sigma_{i j}-\frac{1}{q_{j}}\left\langle D F_{i}, D F_{j}\right\rangle\right)^{2}\right\} \\
\quad \leq \operatorname{Cov}\left(F_{i}^{2}, F_{j}^{2}\right)-2 \sigma_{i j}^{2}
\end{gathered}
$$

Indeed, by [8], identity (6.2.4), and the fact that $\sigma_{i j}=0$ if $q_{i} \neq q_{j}$, we have

$$
\left.\begin{array}{l}
E\left\{\left(\sigma_{i j}-\frac{1}{q_{j}}\left\langle D F_{i}, D F_{j}\right\rangle\right)^{2}\right\} \\
\\
\quad=\left\{\begin{array}{l}
q_{i}^{2} \sum_{r=1}^{q_{i} \wedge q_{j}}(r-1)!^{2}\binom{q_{i}-1}{r-1}^{2}\binom{q_{j}-1}{r-1}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, \\
q_{i} \neq q_{j}, \\
q_{i}^{2} \sum_{r=1}^{q_{i}-1}(r-1)!^{2}\binom{q_{i}-1}{r-1}^{4}\left(2 q_{i}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, \\
\text { if } q_{i}=q_{j},
\end{array}\right. \\
\quad \leq\left\{\begin{array}{ll}
\sum_{r=1}^{q_{i} \wedge q_{j}} r!^{2}\left(q_{i}\right. \\
r
\end{array}\right)^{2}\binom{q_{j}}{r}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, \\
\text { if } q_{i} \neq q_{j} \\
\sum_{i=1} r!^{2}\binom{q_{i}}{r}^{4}\left(2 q_{i}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, \\
\text { if } q_{i}=q_{j}
\end{array}\right] .
$$

On the other hand, from (3.5) we have

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{i}^{2}, F_{j}^{2}\right)-2 \sigma_{i j}^{2} \\
& = \begin{cases}q_{i}!q_{j}!\sum_{r=1}^{q_{i} \wedge q_{j}}\binom{q_{i}}{r}\binom{q_{j}}{r}\left\|f_{i} \otimes_{r} f_{j}\right\|^{2} \\
\quad+\sum_{r=1}^{q_{i} \wedge q_{j}} r!^{2}\binom{q_{i}}{r}^{2}\binom{q_{j}}{r}^{2}\left(q_{i}+q_{j}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, & \text { if } q_{i} \neq q_{j} \\
q_{i}!^{2} \sum_{r=1}^{q_{i}-1}\binom{q_{i}}{r}^{2}\left\|f_{i} \otimes_{r} f_{j}\right\|^{2} & \text { if } q_{i}=q_{j} \\
+\sum_{r=1}^{q_{i}-1} r!^{2}\binom{q_{i}}{r}^{4}\left(2 q_{i}-2 r\right)!\left\|f_{i} \widetilde{\otimes}_{r} f_{j}\right\|^{2}, & \end{cases}
\end{aligned}
$$

The claim follows immediately.
Step 3. Applying (4.2) we get

$$
\begin{aligned}
E\|F\|^{4}-E\|N\|^{4} & =\sum_{i, j=1}^{d}\left(E\left[F_{i}^{2} F_{j}^{2}\right]-\sigma_{i i} \sigma_{j j}-2 \sigma_{i j}^{2}\right) \\
& =\sum_{i, j=1}^{d}\left\{\operatorname{Cov}\left(F_{i}^{2}, F_{j}^{2}\right)-2 \sigma_{i j}^{2}\right\} .
\end{aligned}
$$

Combining Steps 1-3 gives the desired conclusion.
4.3. A multivariate version of the convergence toward χ^{2}. Here we will prove a multivariate extension of a result of Nourdin and Peccati [7]. Such an extension was an open problem as far as we know.

In what follows, $G(\nu)$ will denote a random variable with the centered χ^{2} distribution having $v>0$ degrees of freedom. When v is an integer, then $G(v) \stackrel{\text { law }}{=}$ $\sum_{i=1}^{v}\left(N_{i}^{2}-1\right)$, where N_{1}, \ldots, N_{v} are i.i.d. standard normal random variables. In general, $G(v)$ is a centered gamma random variable with a shape parameter $v / 2$ and scale parameter 2. Nourdin and Peccati [7] established the following theorem.

THEOREM 4.4 (Nourdin-Peccati). Fix $v>0$, and let $G(v)$ be as above. Let $q \geq 2$ be an even integer, and let $F_{n}=I_{q}\left(f_{n}\right)$ be such that $\lim _{n \rightarrow \infty} E\left[F_{n}^{2}\right]=$ $E\left[G(v)^{2}\right]=2 v$. Set $c_{q}=4[(q / 2)!]^{3}[q!]^{-2}$. Then the following four assertions are equivalent, as $n \rightarrow \infty$:
(α) $F_{n} \xrightarrow{\text { law }} G(\nu)$;
(β) $E\left[F_{n}^{4}\right]-12 E\left[F_{n}^{3}\right] \rightarrow E\left[G(v)^{4}\right]-12 E\left[G(v)^{3}\right]=12 v^{2}-48 v$;
$(\gamma)\left\|f_{n} \widetilde{\otimes}_{q / 2} f_{n}-c_{q} \times f_{n}\right\| \rightarrow 0$, and $\left\|f_{n} \otimes_{r} f_{n}\right\| \rightarrow 0$ for every $r=1, \ldots, q-$ 1 such that $r \neq q / 2$;
(δ) $\left\|f_{n} \widetilde{\otimes}_{q / 2} f_{n}-c_{q} \times f_{n}\right\| \rightarrow 0$, and $\left\|f_{n} \widetilde{\otimes}_{r} f_{n}\right\| \rightarrow 0$ for every $r=1, \ldots, q-$ 1 such that $r \neq q / 2$.

The following is our multivariate extension of this theorem.
THEOREM 4.5. Let $d \geq 2$, let v_{1}, \ldots, v_{d} be positive reals and let $q_{1}, \ldots, q_{d} \geq$ 2 be even integers. Consider vectors

$$
F_{n}=\left(F_{1, n}, \ldots, F_{d, n}\right)=\left(I_{q_{1}}\left(f_{1, n}\right), \ldots, I_{q_{d}}\left(f_{d, n}\right)\right), \quad n \geq 1
$$

with $f_{i, n} \in \mathfrak{H}^{\odot q_{i}}$, such that $\lim _{n \rightarrow \infty} E\left[F_{i, n}^{2}\right]=2 v_{i}$ for every $i=1, \ldots$, . Assume that:
(i) $E\left[F_{i, n}^{4}\right]-12 E\left[F_{i, n}^{3}\right] \rightarrow 12 v_{i}^{2}-48 v_{i}$ for every i;
(ii) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left(F_{i, n}^{2}, F_{j, n}^{2}\right)=0$ whenever $q_{i}=q_{j}$ for some $i \neq j$;
(iii) $\lim _{n \rightarrow \infty} E\left[F_{i, n}^{2} F_{j, n}\right]=0$ whenever $q_{j}=2 q_{i}$.

Then

$$
\left(F_{1, n}, \ldots, F_{d, n}\right) \xrightarrow{\text { law }}\left(G\left(v_{1}\right), \ldots, G\left(v_{d}\right)\right),
$$

where $G\left(v_{1}\right), \ldots, G\left(v_{d}\right)$ are independent random variables having centered χ^{2} distributions with v_{1}, \ldots, v_{d} degrees of freedom, respectively.

Proof. Using the well-known Carleman condition, it is easy to check that the law of $G(v)$ is determined by its moments. By Corollary 3.6 it is enough to show that condition (γ) of Theorem 3.1 holds.

Fix $1 \leq i \neq j \leq d$ as well as $1 \leq r \leq q_{i} \wedge q_{j}$. Switching i and j if necessary, assume that $q_{i} \leq q_{j}$. From Theorem 4.4(γ) we get that $f_{k, n} \otimes_{r} f_{k, n} \rightarrow 0$ for each $1 \leq k \leq d$ and every $1 \leq r \leq q_{k}-1$, except when $r=q_{k} / 2$. Using the identity

$$
\begin{equation*}
\left\|f_{i, n} \otimes_{r} f_{j, n}\right\|^{2}=\left\langle f_{i, n} \otimes_{q_{i}-r} f_{i, n}, f_{j, n} \otimes_{q_{j}-r} f_{j, n}\right\rangle \tag{4.3}
\end{equation*}
$$

[see (2.5)] together with the Cauchy-Schwarz inequality, we infer that condition (γ) of Theorem 3.1 holds for all values of r, i and j, except for the cases: $r=$ $q_{i}=q_{j}, r=q_{i} / 2=q_{j} / 2$ and $r=q_{i}=q_{j} / 2$. Assumption (i) together with (3.6) show that $f_{i, n} \otimes_{r} f_{j, n} \rightarrow 0$ for all $1 \leq r \leq q_{i}=q_{j}$. Thus it remains to verify condition (γ) of Theorem 3.1 when $r=q_{i}=q_{j} / 2$. Lemma 2.2 [identity (2.12) therein] yields

$$
\begin{aligned}
& \left\langle f_{j, n} \widetilde{\otimes}_{q_{i}} f_{j, n}, f_{i, n} \widetilde{\otimes} f_{i, n}\right\rangle \\
& \quad=\frac{2 q_{i}!^{2}}{q_{j}!}\left\langle f_{j, n} \otimes_{q_{i}} f_{j, n}, f_{i, n} \otimes f_{i, n}\right\rangle \\
& \quad \quad+\frac{q_{i}!^{2}}{q_{j}!} \sum_{s=1}^{q_{i}-1}\binom{q_{i}}{s}^{2}\left\langle f_{j, n} \otimes_{s} f_{i, n}, f_{i, n} \otimes_{s} f_{j, n}\right\rangle .
\end{aligned}
$$

Using (4.3) and Theorem 4.4 and reasoning as above, it is straightforward to show that the sum $\sum_{s=1}^{q_{i}-1}\binom{q_{i}}{s}^{2}\left\langle f_{j, n} \otimes_{s} f_{i, n}, f_{i, n} \otimes_{s} f_{j, n}\right\rangle$ tends to zero as $n \rightarrow \infty$. On the other hand, the condition on the q_{i} th contraction in Theorem 4.4(δ) yields that $f_{j, n} \widetilde{\otimes}_{q_{i}} f_{j, n}-c_{q_{j}} f_{j, n} \rightarrow 0$ as $n \rightarrow \infty$. Moreover, we have

$$
\left\langle f_{j, n}, f_{i, n} \tilde{\otimes} f_{i, n}\right\rangle=\frac{1}{q_{j}!} E\left[F_{j, n} F_{i, n}^{2}\right]
$$

which tends to zero by assumption (ii). All these facts together imply that $\left\langle f_{j, n} \otimes_{q_{i}} f_{j, n}, f_{i, n} \otimes f_{i, n}\right\rangle \rightarrow 0$ as $n \rightarrow \infty$. Using (4.3) for $r=q_{i}$ we get $f_{i, n} \otimes_{q_{i}}$ $f_{j, n} \rightarrow 0$, showing that condition (γ) of Theorem 3.1 holds true in the last remaining case. The proof of the theorem is complete.

EXAMPLE 4.6. Consider $F_{n}=\left(F_{1, n}, F_{2, n}\right)=\left(I_{q_{1}}\left(f_{1, n}\right), I_{q_{2}}\left(f_{2, n}\right)\right)$, where $2 \leq q_{1} \leq q_{2}$ are even integers. Suppose that

$$
\begin{aligned}
& E\left[F_{1, n}^{2}\right] \rightarrow 1, \quad E\left[F_{1, n}^{4}\right]-6 E\left[F_{1, n}^{3}\right] \rightarrow-3 \quad \text { and } \\
& E\left[F_{2, n}^{2}\right] \rightarrow 2, \quad E\left[F_{2, n}^{4}\right]-6 E\left[F_{2, n}^{3}\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

When $q_{1}=q_{2}$ or $q_{2}=2 q_{1}$ we require additionally,

$$
\operatorname{Cov}\left(F_{1, n}^{2}, F_{2, n}^{2}\right) \rightarrow 0 \quad\left(q_{1}=q_{2}\right), \quad E\left[F_{1, n}^{2} F_{2, n}\right] \rightarrow 0 \quad\left(q_{2}=2 q_{1}\right)
$$

Then Theorem 4.5 (the case $\nu_{1}=2, \nu_{2}=4$) gives

$$
F_{n} \xrightarrow{\text { law }}\left(V_{1}-1, V_{2}+V_{3}-2\right),
$$

where V_{1}, V_{2}, V_{3} are i.i.d. standard exponential random variables.

4.4. Bivariate convergence.

THEOREM 4.7. Let $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}$ be positive integers. Assume further that $\min p_{i} \geq \max q_{j}$. Consider

$$
\begin{aligned}
& \left(F_{1, n}, \ldots, F_{r, n}, G_{1, n}, \ldots, G_{s, n}\right) \\
& \quad=\left(I_{p_{1}}\left(f_{1, n}\right), \ldots, I_{p_{r}}\left(f_{r, n}\right), I_{q_{1}}\left(g_{1, n}\right), \ldots, I_{q_{s}}\left(g_{s, n}\right)\right), \quad n \geq 1
\end{aligned}
$$

with $f_{i, n} \in \mathfrak{H}^{\odot p_{i}}$ and $g_{j, n} \in \mathfrak{H}^{\odot q_{j}}$. Suppose that as $n \rightarrow \infty$

$$
\begin{equation*}
F_{n}=\left(F_{1, n}, \ldots, F_{r, n}\right) \xrightarrow{\text { law }} N \quad \text { and } \quad G_{n}=\left(G_{1, n}, \ldots, G_{s, n}\right) \xrightarrow{\text { law }} V, \tag{4.4}
\end{equation*}
$$

where $N \sim N_{r}(0, \Sigma)$, the marginals of V are determined by their moments and N, V are independent. If $E\left[F_{i, n} G_{j, n}\right] \rightarrow 0$ (which trivially holds when $p_{i} \neq q_{j}$) for all i, j, then

$$
\begin{equation*}
\left(F_{n}, G_{n}\right) \xrightarrow{\text { law }}(N, V) \tag{4.5}
\end{equation*}
$$

jointly, as $n \rightarrow \infty$.

Proof. We will show that condition (c) of Theorem 3.4 holds. By (2.8) we may and do assume that $E\left[F_{i, n}^{2}\right]=1$ for all i and n. By Theorem 4.1 $(\gamma), \| f_{i, n} \otimes_{r}$ $f_{i, n} \| \rightarrow 0$ for all $r=1, \ldots, p_{i}-1$. Observe that

$$
\left\|f_{i, n} \otimes_{r} g_{j, n}\right\|^{2}=\left\langle f_{i, n} \otimes_{p_{i}-r} f_{i, n}, g_{j, n} \otimes_{q_{j}-r} g_{j, n}\right\rangle
$$

so that $\left\|f_{i, n} \otimes_{r} g_{j, n}\right\| \rightarrow 0$ for $1 \leq r \leq p_{i} \wedge q_{j}=q_{j}$, except possibly when $r=$ $p_{i}=q_{j}$. But in this latter case,

$$
p_{i}!\left\|f_{i, n} \otimes_{r} g_{j, n}\right\|=p_{i}!\left|\left\langle f_{i, n}, g_{j, n}\right\rangle\right|=\left|E\left[F_{i, n} G_{j, n}\right]\right| \rightarrow 0
$$

by the assumption. Corollary 3.6 completes the proof.
Theorem 4.7 admits the following immediate corollary.
COROLLARY 4.8. Let $p \geq q$ be positive integers. Consider two stochastic processes $F_{n}=\left(I_{p}\left(f_{t, n}\right)\right)_{t \in T}$ and $G_{n}=\left(I_{q}\left(g_{t, n}\right)\right)_{t \in T}$, where $f_{t, n} \in \mathfrak{H}^{\odot p}$ and $g_{t, n} \in \mathfrak{H}^{\odot q}$. Suppose that as $n \rightarrow \infty$,

$$
F_{n} \xrightarrow{\text { f.d.d. }} X \quad \text { and } \quad G_{n} \xrightarrow{\text { f.d.d. }} Y,
$$

where X is centered and Gaussian, the marginals of Y are determined by their moments and X, Y are independent. If $E\left[I_{p}\left(f_{t, n}\right) I_{q}\left(g_{s, n}\right)\right] \rightarrow 0$ (which trivially holds when $p \neq q$) for all $s, t \in T$, then

$$
\left(F_{n}, G_{n}\right) \xrightarrow{\text { f.d.d. }}(X, Y)
$$

jointly, as $n \rightarrow \infty$.

5. Further applications.

5.1. Partial sums associated with Hermite polynomials. Consider a centered stationary Gaussian sequence $\left\{G_{k}\right\}_{k \geq 1}$ with unit variance. For any $k \geq 0$, denote by

$$
r(k)=E\left[G_{1} G_{1+k}\right]
$$

the covariance between G_{1} and G_{1+k}. We extend r to \mathbb{Z}_{-}by symmetry, that is, $r(k)=r(-k)$. For any integer $q \geq 1$, we write

$$
S_{q, n}(t)=\sum_{k=1}^{\lfloor n t\rfloor} H_{q}\left(G_{k}\right), \quad t \geq 0
$$

to indicate the partial sums associated with the subordinated sequence $\left\{H_{q}\left(G_{k}\right)\right\}_{k \geq 1}$. Here, H_{q} denotes the q th Hermite polynomial given by (2.1).

The following result is a summary of the main finding in Breuer and Major [2].

THEOREM 5.1. If $\sum_{k \in \mathbb{Z}}|r(k)|^{q}<\infty$, then as $n \rightarrow \infty$,

$$
\frac{S_{q, n}}{\sqrt{n}} \xrightarrow{\text { f.d.d. }} a_{q} B
$$

where B is a standard Brownian motion and $a_{q}=\left[q!\sum_{k \in \mathbb{Z}} r(k)^{q}\right]^{1 / 2}$.
Assume further that the covariance function r has the form

$$
r(k)=k^{-D} L(k), \quad k \geq 1
$$

with $D>0$ and $L:(0, \infty) \rightarrow(0, \infty)$ a function which is slowly varying at infinity and bounded away from 0 and infinity on every compact subset of $[0, \infty)$. The following result is due to Taqqu [16].

Theorem 5.2. If $0<D<\frac{1}{2}$, then as $n \rightarrow \infty$,

$$
\frac{S_{2, n}}{n^{1-D} L(n)} \xrightarrow{\text { f.d.d. }} b_{D} R_{1-D}
$$

where $b_{D}=[(1-D)(1-2 D)]^{-1 / 2}$, and R_{H} is a Rosenblatt process of parameter $H=1-D$, defined as

$$
R_{H}(t)=c_{H} I_{2}\left(f_{H}(t, \cdot)\right), \quad t \geq 0
$$

with

$$
f_{H}(t, x, y)=\int_{0}^{t}(s-x)_{+}^{H / 2-1}(s-y)_{+}^{H / 2-1} d s, \quad t \geq 0, x, y \in \mathbb{R}
$$

$c_{H}>0$ an explicit constant such that $E\left[R_{H}(1)^{2}\right]=1$, and the double Wiener-Itô integral I_{2} is with respect to a two-sided Brownian motion B.

Let $q \geq 3$ be an integer. The following result is a consequence of Corollary 4.8 and Theorems 5.1 and 5.2. It gives the asymptotic behavior (after proper renormalization of each coordinate) of the pair ($S_{q, n}, S_{2, n}$) when $D \in\left(\frac{1}{q}, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$. Since what follows is just meant to be an illustration, we will not consider the remaining case, that is, when $D \in\left(0, \frac{1}{q}\right)$; it is an interesting problem, but to answer it would be out of the scope of the present paper.

Proposition 5.3. Let $q \geq 3$ be an integer, and let the constants a_{p} and b_{D} be given by Theorems 5.1 and 5.2, respectively.
(1) If $D \in\left(\frac{1}{2}, \infty\right)$, then

$$
\left(\frac{S_{q, n}}{\sqrt{n}}, \frac{S_{2, n}}{\sqrt{n}}\right) \xrightarrow{f . d . d .}\left(a_{q} B_{1}, a_{2} B_{2}\right),
$$

where $\left(B_{1}, B_{2}\right)$ is a standard Brownian motion in \mathbb{R}^{2}.
(2) If $D \in\left(\frac{1}{q}, \frac{1}{2}\right)$, then

$$
\left(\frac{S_{q, n}}{\sqrt{n}}, \frac{S_{2, n}}{n^{1-D} L(n)}\right) \stackrel{\text { f.d.d. }}{\rightarrow}\left(a_{q} B, b_{D} R_{1-D}\right),
$$

where B is a Brownian motion independent of the Rosenblatt process R_{1-D} of parameter $1-D$.

Proof. Let us first introduce a specific realization of the sequence $\left\{G_{k}\right\}_{k \geq 1}$ that will allow one to use the results of this paper. The space

$$
\mathcal{H}:={\overline{\operatorname{span}\left\{G_{1}, G_{2}, \ldots\right\}}}^{L^{2}(\Omega)}
$$

being a real separable Hilbert space, is isometrically isomorphic to either \mathbb{R}^{N} (for some finite $N \geq 1$) or $L^{2}\left(\mathbb{R}_{+}\right)$. Let us assume that $\mathcal{H} \simeq L^{2}\left(\mathbb{R}_{+}\right)$, the case where $\mathcal{H} \simeq \mathbb{R}^{N}$ being easier to handle. Let $\Phi: \mathcal{H} \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$be an isometry. Set $e_{k}=$ $\Phi\left(G_{k}\right)$ for each $k \geq 1$. We have

$$
\begin{equation*}
r(k-l)=E\left[G_{k} G_{l}\right]=\int_{0}^{\infty} e_{k}(x) e_{l}(x) d x, \quad k, l \geq 1 \tag{5.1}
\end{equation*}
$$

If $B=\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denotes a standard Brownian motion, we deduce that

$$
\left\{G_{k}\right\}_{k \geq 1} \stackrel{\text { law }}{=}\left\{\int_{0}^{\infty} e_{k}(t) d B_{t}\right\}_{k \geq 1}
$$

these two sequences being indeed centered, Gaussian and having the same covariance structure. Using (2.2) we deduce that $S_{q, n}$ has the same distribution as $I_{q}\left(\sum_{k=1}^{n} e_{k}^{\otimes q}\right)$ (with I_{q} the q-tuple Wiener-Itô integral associated to B).

Hence, to reach the conclusion of point 1 it suffices to combine Corollary 4.8 with Theorem 5.1. For point 2, just use Corollary 4.8 and Theorem 5.2, together with the fact that the distribution of $R_{H}(t)$ is determined by its moments (as is the case for any double Wiener-Itô integral).
5.2. Moment-independence for discrete homogeneous chaos. To develop the next application we will need the following basic ingredients:
(i) A sequence $\mathbf{X}=\left(X_{1}, X_{2}, \ldots\right)$ of i.i.d. random variables, with mean 0 , variance 1 and all moments finite.
(ii) Two positive integers q_{1}, q_{2} as well as two sequences $a_{k, n}: \mathbb{N}^{q_{k}} \rightarrow \mathbb{R}, n \geq 1$ of real-valued functions satisfying for all $i_{1}, \ldots, i_{q_{k}} \geq 1$ and $k=1,2$:
(a) (symmetry) $a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right)=a_{k, n}\left(i_{\sigma(1)}, \ldots, i_{\sigma\left(q_{k}\right)}\right)$ for every permutation σ;
(b) (vanishing on diagonals) $a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right)=0$ whenever $i_{r}=i_{s}$ for some $r \neq s$;
(c) (unit-variance) $q_{k}!\sum_{i_{1}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right)^{2}=1$.

Consider

$$
\begin{equation*}
Q_{k, n}(\mathbf{X})=\sum_{i_{1}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right) X_{i_{1}} \cdots X_{i_{q_{k}}}, \quad n \geq 1, k=1,2 \tag{5.2}
\end{equation*}
$$

This series converges in $L^{2}(\Omega), E\left[Q_{k, n}(\mathbf{X})\right]=0$ and $E\left[Q_{k, n}(\mathbf{X})^{2}\right]=1$. We have the following result.

THEOREM 5.4. As $n \rightarrow \infty$, assume that the contribution of each X_{i} to $Q_{k, n}(\mathbf{X})$ is uniformly negligible, that is,

$$
\begin{equation*}
\sup _{i \geq 1} \sum_{i_{2}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(i, i_{2}, \ldots, i_{q_{k}}\right)^{2} \rightarrow 0, \quad k=1,2 \tag{5.3}
\end{equation*}
$$

and that, for any $r=1, \ldots, q_{1} \wedge q_{2}$,

$$
\begin{align*}
\sum_{i_{1}, \ldots, i_{q_{1}+q_{2}-2 r}=1}^{\infty}\left(\sum_{l_{1}, \ldots, l_{r}=1}^{\infty}\right. & a_{1, n}\left(l_{1}, \ldots, l_{r}, i_{1}, \ldots, i_{q_{1}-r}\right) \tag{5.4}\\
& \left.\times a_{2, n}\left(l_{1}, \ldots, l_{r}, i_{q_{1}-r+1}, \ldots, i_{q_{1}+q_{2}-2 r}\right)\right)^{2} \rightarrow 0
\end{align*}
$$

Then $Q_{1, n}(\mathbf{X})$ and $Q_{2, n}(\mathbf{X})$ are asymptotically moment-independent.
Proof. Fix $M, N \geq 1$. We want to prove that, as $n \rightarrow \infty$,

$$
\begin{equation*}
E\left[Q_{1, n}(\mathbf{X})^{M} Q_{2, n}(\mathbf{X})^{N}\right]-E\left[Q_{1, n}(\mathbf{X})^{M}\right] E\left[Q_{2, n}(\mathbf{X})^{N}\right] \rightarrow 0 \tag{5.5}
\end{equation*}
$$

The proof is divided into three steps.
Step 1. In this step we show that
(5.6) $E\left[Q_{1, n}(\mathbf{X})^{M} Q_{2, n}(\mathbf{X})^{N}\right]-E\left[Q_{1, n}(\mathbf{G})^{M} Q_{2, n}(\mathbf{G})^{N}\right] \rightarrow 0 \quad$ as $n \rightarrow \infty$.

Following the approach of Mossel, O'Donnel and Oleszkiewicz [6], we will use the Lindeberg replacement trick. Let $\mathbf{G}=\left(G_{1}, G_{2}, \ldots\right)$ be a sequence of i.i.d. $N(0,1)$ random variables independent of \mathbf{X}. For a positive integer s, set $\mathbf{W}^{(s)}=\left(G_{1}, \ldots, G_{s}, X_{s+1}, X_{s+2}, \ldots\right)$, and put $\mathbf{W}^{(0)}=\mathbf{X}$. Fix $s \geq 1$ and write for $k=1,2$ and $n \geq 1$,

$$
\begin{aligned}
U_{k, n, s} & =\sum_{\substack{i_{1}, \ldots, i_{q_{k}} \\
i_{1} \neq s, \ldots, i_{q_{k}} \neq s}} a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right) W_{i_{1}}^{(s)} \cdots W_{i_{q_{k}}}^{(s)}, \\
V_{k, n, s} & =\sum_{\substack{i_{1}, \ldots, i_{q_{k}} \\
\exists j: i_{j}=s}} a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right) W_{i_{1}}^{(s)} \cdots \widehat{W}_{s}^{(s)} \cdots W_{i_{q_{k}}}^{(s)} \\
& =q_{k} \sum_{i_{2}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(s, i_{2}, \ldots, i_{q_{k}}\right) W_{i_{2}}^{(s)} \cdots W_{i_{q_{k}}}^{(s)},
\end{aligned}
$$

where $\widehat{W}_{s}^{(s)}$ means that the term $W_{s}^{(s)}$ is dropped (observe that this notation bears no ambiguity: indeed, since $a_{k, n}$ vanishes on diagonals, each string $i_{1}, \ldots, i_{q_{k}}$ contributing to the definition of $V_{k, n, s}$ contains the symbol s exactly once). For each s and k, note that $U_{k, n, s}$ and $V_{k, n, s}$ are independent of the variables X_{s} and G_{s}, and that

$$
Q_{k, n}\left(\mathbf{W}^{(s-1)}\right)=U_{k, n, s}+X_{s} V_{k, n, s} \quad \text { and } \quad Q_{k, n}\left(\mathbf{W}^{(s)}\right)=U_{k, n, s}+G_{s} V_{k, n, s}
$$

By the binomial formula, using the independence of X_{s} from $U_{k, n, s}$ and $V_{k, n, s}$, we have

$$
\begin{aligned}
& E\left[Q_{1, n}\left(\mathbf{W}^{(s-1)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s-1)}\right)^{N}\right] \\
& \quad=\sum_{i=0}^{M} \sum_{j=0}^{N}\binom{M}{i}\binom{N}{j} E\left[U_{1, n, s}^{M-i} U_{2, n, s}^{N-j} V_{1, n, s}^{i} V_{2, n, s}^{j}\right] E\left[X_{s}^{i+j}\right] .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& E\left[Q_{1, n}\left(\mathbf{W}^{(s)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s)}\right)^{N}\right] \\
& \quad=\sum_{i=0}^{M} \sum_{j=0}^{N}\binom{M}{i}\binom{N}{j} E\left[U_{1, n, s}^{M-i} U_{2, n, s}^{N-j} V_{1, n, s}^{i} V_{2, n, s}^{j}\right] E\left[G_{s}^{i+j}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& E\left[Q_{1, n}\left(\mathbf{W}^{(s-1)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s-1)}\right)^{N}\right]-E\left[Q_{1, n}\left(\mathbf{W}^{(s)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s)}\right)^{N}\right] \\
& \quad=\sum_{i+j \geq 3}\binom{M}{i}\binom{N}{j} E\left[U_{1, n, s}^{M-i} U_{2, n, s}^{N-j} V_{1, n, s}^{i} V_{2, n, s}^{j}\right]\left(E\left[X_{s}^{i+j}\right]-E\left[G_{s}^{i+j}\right]\right)
\end{aligned}
$$

Now, observe that Propositions 3.11, 3.12 and 3.16 of [6] imply that both $\left(U_{1, n, s}\right)_{n, s \geq 1}$ and $\left(U_{2, n, s}\right)_{n, s \geq 1}$ are uniformly bounded in all $L^{p}(\Omega)$ spaces. It also implies that, for any $p \geq 3, k=1,2$ and $n, s \geq 1$,

$$
E\left[\left|V_{k, n, s}\right|^{p}\right]^{1 / p} \leq C_{p} E\left[V_{k, n, s}^{2}\right]^{1 / 2},
$$

where C_{p} depends only on p. Hence, for $0 \leq i \leq M, 0 \leq j \leq N, i+j \geq 3$, we have

$$
\begin{equation*}
\left|E\left[U_{1, n, s}^{M-i} U_{2, n, s}^{N-j} V_{1, n, s}^{i} V_{2, n, s}^{j}\right]\right| \leq C E\left[V_{1, n, s}^{2}\right]^{i / 2} E\left[V_{2, n, s}^{2}\right]^{j / 2} \tag{5.7}
\end{equation*}
$$

where C does not depend on $n, s \geq 1$. Since $E\left[X_{i}\right]=E\left[G_{i}\right]=0$ and $E\left[X_{i}^{2}\right]=$ $E\left[G_{i}^{2}\right]=1$, we get

$$
E\left[V_{k, n, s}^{2}\right]=q_{k} q_{k}!\sum_{i_{2}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(s, i_{2}, \ldots, i_{q_{k}}\right)^{2}
$$

When $i \geq 3$, then (5.7) is bounded from above by

$$
C\left(\sup _{i \geq 1} \sum_{i_{2}, \ldots, i_{q_{1}}=1}^{\infty} a_{1, n}\left(i, i_{2}, \ldots, i_{q_{1}}\right)^{2}\right)^{(i-2) / 2} \sum_{i_{2}, \ldots, i_{q_{1}}=1}^{\infty} a_{1, n}\left(s, i_{2}, \ldots, i_{q_{1}}\right)^{2},
$$

where C does not depend on $n, s \geq 1$, and we get a similar bound when $j \geq 3$. If $i=2$, then $j \geq 1(i+j \geq 3)$, so (5.7) is bounded from above by

$$
C\left(\sup _{i \geq 1} \sum_{i_{2}, \ldots, i_{q_{2}}=1}^{\infty} a_{2, n}\left(i, i_{2}, \ldots, i_{q_{2}}\right)^{2}\right)^{j / 2} \sum_{i_{2}, \ldots, i_{q_{1}}=1}^{\infty} a_{1, n}\left(s, i_{2}, \ldots, i_{q_{1}}\right)^{2}
$$

and we have a similar bound when $j=2$. Taking into account assumption (5.3) we infer that the upper-bound for (5.7) is of the form

$$
C \varepsilon_{n} \sum_{k=1}^{2} \sum_{i_{2}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(s, i_{2}, \ldots, i_{q_{k}}\right)^{2}
$$

where $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and C is independent of n, s. We conclude that

$$
\begin{aligned}
& \left|E\left[Q_{1, n}\left(\mathbf{W}^{(s-1)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s-1)}\right)^{N}\right]-E\left[Q_{1, n}\left(\mathbf{W}^{(s)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s)}\right)^{N}\right]\right| \\
& \quad \leq C \varepsilon_{n} \sum_{k=1}^{2} \sum_{i_{2}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(s, i_{2}, \ldots, i_{q_{k}}\right)^{2},
\end{aligned}
$$

where C does not depend on n, s. Since, for fixed $k, n, Q_{k, n}\left(\mathbf{W}^{(s)}\right) \rightarrow Q_{k, n}(\mathbf{G})$ in $L^{2}(\Omega)$ as $s \rightarrow \infty$, by Propositions 3.11, 3.12 and 3.16 of [6], the convergence holds in all $L^{p}(\Omega)$. Hence

$$
\begin{aligned}
& \left|E\left[Q_{1, n}(\mathbf{X})^{M} Q_{2, n}(\mathbf{X})^{N}\right]-E\left[Q_{1, n}(\mathbf{G})^{M} Q_{2, n}(\mathbf{G})^{N}\right]\right| \\
& \quad \leq \sum_{s=1}^{\infty}\left|E\left[Q_{1, n}\left(\mathbf{W}^{(s-1)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s-1)}\right)^{N}\right]-E\left[Q_{1, n}\left(\mathbf{W}^{(s)}\right)^{M} Q_{2, n}\left(\mathbf{W}^{(s)}\right)^{N}\right]\right| \\
& \quad \leq C \varepsilon_{n} \sum_{k=1}^{2} \sum_{i_{1}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(i_{1}, i_{2}, \ldots, i_{q_{k}}\right)^{2}=C\left(\left(q_{1}!\right)^{-1}+\left(q_{2}!\right)^{-1}\right) \varepsilon_{n}
\end{aligned}
$$

This proves (5.6).
Step 2. We show that $n \rightarrow \infty$,

$$
\begin{align*}
E\left[Q_{1, n}(\mathbf{X})^{M}\right]-E\left[Q_{1, n}(\mathbf{G})^{M}\right] & \rightarrow 0 \quad \text { and } \\
E\left[Q_{2, n}(\mathbf{X})^{N}\right]-E\left[Q_{2, n}(\mathbf{G})^{N}\right] & \rightarrow 0 . \tag{5.8}
\end{align*}
$$

The proof is similar to Step 1 (and easier). Thus, we omit it.

Step 3. Without loss of generality we may and do assume that $G_{k}=B_{k}-B_{k-1}$, where B is a standard Brownian motion. For $k=1,2$ and $n \geq 1$, due to the multiplication formula (2.6), $Q_{k, n}(\mathbf{G})$ is a multiple Wiener-Itô integral of order q_{k} with respect to B,

$$
Q_{k, n}(\mathbf{G})=I_{q_{k}}\left(\sum_{i_{1}, \ldots, i_{q_{k}}=1}^{\infty} a_{k, n}\left(i_{1}, \ldots, i_{q_{k}}\right) \mathbf{1}_{\left[i_{1}-1, i_{1}\right] \times \cdots \times\left[i_{q_{k}}-1, i_{q_{k}}\right]}\right) .
$$

In this setting, condition (5.4) coincides with condition (γ) of Theorem 3.1 [or (c) of Theorem 3.4]. Therefore,

$$
\begin{equation*}
E\left[Q_{1, n}(\mathbf{G})^{M} Q_{2, n}(\mathbf{G})^{N}\right]-E\left[Q_{1, n}(\mathbf{G})^{M}\right] E\left[Q_{2, n}(\mathbf{G})^{N}\right] \rightarrow 0 \tag{5.9}
\end{equation*}
$$

Combining (5.6), (5.8) and (5.9) we get the desired conclusion (5.5).
REMARK 5.5. The conclusion of Theorem 5.4 may fail if either (5.3) or (5.4) are not satisfied. It follows from Step 3 above that the theorem fails when (5.4) does not hold and \mathbf{X} is Gaussian. Theorem 5.4 also fails when (5.3) is not satisfied, (5.4) holds and \mathbf{X} is a Rademacher sequence, as we can see from the following counterexample. Consider $q_{1}=q_{2}=2$, and set

$$
\begin{aligned}
& a_{1, n}(i, j)=\frac{1}{4}\left(\mathbf{1}_{\{1\}}(i) \mathbf{1}_{\{2\}}(j)+\mathbf{1}_{\{2\}}(i) \mathbf{1}_{\{1\}}(j)+\mathbf{1}_{\{1\}}(i) \mathbf{1}_{\{3\}}(j)+\mathbf{1}_{\{3\}}(i) \mathbf{1}_{\{1\}}(j)\right), \\
& a_{2, n}(i, j)=\frac{1}{4}\left(\mathbf{1}_{\{2\}}(i) \mathbf{1}_{\{4\}}(j)+\mathbf{1}_{\{4\}}(i) \mathbf{1}_{\{2\}}(j)-\mathbf{1}_{\{3\}}(i) \mathbf{1}_{\{4\}}(j)-\mathbf{1}_{\{4\}}(i) \mathbf{1}_{\{3\}}(j)\right) .
\end{aligned}
$$

Then $Q_{1, n}(\mathbf{X})=\frac{1}{2} X_{1}\left(X_{2}+X_{3}\right)$ and $Q_{2, n}(\mathbf{X})=\frac{1}{2} X_{4}\left(X_{2}-X_{3}\right)$, where X_{i} are i.i.d. with $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2$. It is straightforward to check that (5.4) holds and obviously (5.3) is not satisfied. Since $Q_{1, n}(\mathbf{X}) Q_{2, n}(\mathbf{X})=0$, we get

$$
0=E\left[Q_{1, n}(\mathbf{X})^{2} Q_{2, n}(\mathbf{X})^{2}\right] \neq E\left[Q_{1, n}(\mathbf{X})^{2}\right] E\left[Q_{2, n}(\mathbf{X})^{2}\right]
$$

implying in particular that $Q_{1, n}(\mathbf{X})$ and $Q_{2, n}(\mathbf{X})$ are (asymptotically) momentdependent.

Acknowledgments. We are grateful to Jean Bertoin for useful discussions and to René Schilling for reference [1]. We warmly thank an anonymous referee for suggesting a shorter proof of Theorem 3.1 (which evolved into the proof of a more general statement, Theorem 3.4) and for useful comments and suggestions, which together with the Editor's constructive remarks, have led to a significant improvement of this paper.

REFERENCES

[1] Bisgatrd, T. M. and SASVÁRi, Z. (2006). When does $E\left(X^{k} \cdot Y^{l}\right)=E\left(X^{k}\right) \cdot E\left(Y^{l}\right)$ imply independence? Statist. Probab. Lett. 76 1111-1116. MR2269281
[2] Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425-441. MR0716933
[3] Di Nunno, G., Øksendal, B. and Proske, F. (2009). Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin. MR2460554
[4] Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. MR0550122
[5] Leonov, V. P. and Shiryaev, A. N. (1959). On a method of calculation of semi-invariants. Theory Probab. Appl. 4 319-329.
[6] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2010). Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. (2) 171 295-341. MR2630040
[7] Nourdin, I. and Peccati, G. (2009). Noncentral convergence of multiple integrals. Ann. Probab. 37 1412-1426. MR2546749
[8] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein's Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge. MR2962301
[9] Nourdin, I. and Rosiński, J. (2011). Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws. Preprint. Available at arxiv.org/pdf/1112.5070v1.pdf.
[10] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin. MR2200233
[11] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. MR2118863
[12] Peccati, G. and Tudor, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247-262. Springer, Berlin. MR2126978
[13] Petersen, L. C. (1982). On the relation between the multidimensional moment problem and the one-dimensional moment problem. Math. Scand. 51 361-366. MR0690537
[14] Rosiński, J. (2010). Conference talk. Available at www.ambitprocesses.au.dk/fileadmin/pdfs/ ambit/Rosinski.pdf.
[15] Rosiński, J. and Samorodnitsky, G. (1999). Product formula, tails and independence of multiple stable integrals. In Advances in Stochastic Inequalities (Atlanta, GA, 1997). Contemp. Math. 234 169-194. Amer. Math. Soc., Providence, RI. MR1694771
[16] TAQQU, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. MR0400329
[17] ÜstÜnel, A. S. and Zakai, M. (1989). On independence and conditioning on Wiener space. Ann. Probab. 17 1441-1453. MR1048936

Institut de Mathématiques Élie Cartan
Université de Lorraine
B.P. 70239

54506 Vandoeuvre-Lès-Nancy Cedex
France
E-MAIL: inourdin@gmail.com
URL: http://www.iecn.u-nancy.fr/~nourdin/

Department of Mathematics
University of Tennessee
Knoxville, Tennessee 37996
USA
E-MAIL: rosinski@math.utk.edu
URL: http://www.math.utk.edu/~rosinski/

[^0]: Received January 2012; revised October 2012.
 ${ }^{1}$ Supported in part by ANR Grants ANR-09-BLAN-0114 and ANR-10-BLAN-0121 at Université de Lorraine.

 MSC2010 subject classifications. 60F05, 60G15, $60 \mathrm{H} 05,60 \mathrm{H} 07$.
 Key words and phrases. Multiple Wiener-Itô integral, multiplication formula, limit theorems.

