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THE PARISI FORMULA FOR MIXED p-SPIN MODELS

BY DMITRY PANCHENKO1

Texas A&M University

The Parisi formula for the free energy in the Sherrington–Kirkpatrick
and mixed p-spin models for even p ≥ 2 was proved in the seminal work
of Michel Talagrand [Ann. of Math. (2) 163 (2006) 221–263]. In this paper
we prove the Parisi formula for general mixed p-spin models which also in-
clude p-spin interactions for odd p. Most of the ideas used in the paper are
well known and can now be combined following a recent proof of the Parisi
ultrametricity conjecture in [Ann. of Math. (2) 177 (2013) 383–393].

1. Introduction and main result. The formula for the free energy in the
Sherrington–Kirkpatrick model [22] was famously discovered by G. Parisi in [19,
20] using the approach that combined a replica trick with a very special choice of
the replica matrix. It was later understood in [9, 10] that the special form of the
replica matrix conjectured by Parisi corresponded to a number of physical prop-
erties of the Gibbs measure of the model, one of them being the ultrametricity of
its support. The Parisi formula for the free energy in the Sherrington–Kirkpatrick
and mixed p-spin models was proved by M. Talagrand in [24] following the dis-
covery of the replica symmetry breaking interpolation scheme by F. Guerra in [8].
However, for technical reasons only the case of p-spin interactions for even p ≥ 2
was considered. Using the main result in [18], which yields that under a small per-
turbation of the Hamiltonian the support of the Gibbs measure in these models is
indeed asymptotically ultrametric, we prove the Parisi formula for general mixed
p-spin models that include odd p-spin interactions as well.

Let N ≥ 1. Let us consider Gaussian processes HN,p(σ ) for p ≥ 1 indexed by
σ ∈ �N = {−1,+1}N , called pure p-spin Hamiltonians,

HN,p(σ ) = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip ,(1.1)

where random variables (gi1,...,ip ) are standard Gaussian independent for all p ≥ 1
and all (i1, . . . , ip). Let us define a mixed p-spin Hamiltonian as their linear com-
bination

HN(σ) = ∑
p≥1

βpHN,p(σ )(1.2)
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with coefficients (βp) that decrease fast enough, for example,
∑

p≥1 2pβ2
p < ∞.

This technical condition is sufficient to ensure that the process is well defined when
the sum includes infinitely many terms. The covariance of the Gaussian process
HN(σ) is easy to compute and is given by a function of the normalized scalar
product, called overlap, R1,2 = N−1 ∑

i≤N σ 1
i σ 2

i of spin configurations σ 1 and σ 2,

EHN

(
σ 1)

HN

(
σ 2) = Nξ(R1,2),(1.3)

where ξ(x) = ∑
p≥1 β2

pxp . Given k ≥ 1, let us consider two sequences of parame-
ters,

0 ≤ m0 ≤ m1 ≤ · · · ≤ mk−1 ≤ mk ≤ 1(1.4)

and

0 = q0 ≤ q1 ≤ · · · ≤ qk ≤ qk+1 = 1,(1.5)

which will be denoted by m and q , and consider independent Gaussian random
variables (zj )0≤j≤k with variances Ez2

j = ξ ′(qj+1) − ξ ′(qj ). We define

Xk+1 = log ch
∑

0≤j≤k

zj and Xl = 1

ml

log El expmlXl+1(1.6)

recursively for l ≤ k, where El denotes the expectation in the r.v. (zj )j≥l . When
ml = 0 this means that Xl = ElXl+1. Let us denote θ(q) = qξ ′(q) − ξ(q) and
define

Pk(m,q) = log 2 + X0(m,q) − 1

2

∑
1≤j≤k

mj

(
θ(qj+1) − θ(qj )

)
.(1.7)

Then the following theorem holds.

THEOREM 1 (The Parisi formula). We have

lim
N→∞

1

N
E log

∑
σ∈�N

expHN(σ) = inf Pk(m,q),(1.8)

where the infimum is taken over all k,m and q as above.

The quantity in the limit on the left-hand side is called the free energy of the
model and the infimum on the right-hand side is the famous Parisi formula. One
can include the external field term in the model, but for simplicity of notation we
will omit it. The proof we give here, obviously, assumes a certain level of expertise,
but all the details starting from the foundations can be found in [16].
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2. Proof. Most of the ideas of the proof are well known and available in dif-
ferent places in the literature. Under various formulations of the ultrametricity con-
jecture, one can find arguments that contain many of the same ideas in [3] and [17]
in the case of models with only even p-spin interactions, and a sketch of the proof
of the general case in Section 15.3 in [26]. The ingredient that was missing is the
main result in [18] which also allows us to handle the case of the general mixed
p-spin models.

The Ghirlanda–Guerra identities. A central role in the proof is played by the
Ghirlanda–Guerra identities [7] that are utilized in two distinct ways. First, they
yield positivity of the overlap via Talagrand’s positivity principle, which allows
us to obtain the upper bound using Guerra’s replica symmetry breaking interpola-
tion scheme and, second, they imply ultrametricity of the overlap array using the
main result in [18], which allows us to identify the asymptotic Gibbs measures
that appear in the proof of the lower bound based on the Aizenman–Sims–Starr
scheme [1]. Let us consider a perturbation Hamiltonian

H
pert
N (σ) = N−1/8

∑
p≥1

2−pxpH ′
N,p(σ ),(2.1)

where H ′
N,p(σ ) are independent copies of the p-spin Hamiltonians in (1.1) and

(xp)p≥1 are i.i.d. random variables uniform on an interval of length one, for ex-
ample, [1,2]. Replacing HN with HN + H

pert
N in (1.8), obviously, does not affect

the limit since the perturbation term is of a smaller order. However, adding this
perturbation term regularizes the Gibbs measure in the following way. Let GN be
the Gibbs measure on �N corresponding to the Hamiltonian HN + H

pert
N ,

GN(σ) = exp(HN(σ) + H
pert
N (σ))

ZN

,(2.2)

where ZN = ∑
σ∈�N

exp(HN(σ) + H
pert
N (σ)), and denote by 〈·〉 the average with

respect to the product Gibbs measure G⊗∞
N . Let (σ l)l≥1 be an i.i.d. sequence of

replicas sampled from GN and denote by

Rl,l′ = 1

N

∑
i≤N

σ l
i σ

l′
i(2.3)

the normalized scalar product, or overlap, of σ l and σ l′ . Given p ≥ 1, n ≥ 2 and a
bounded measurable function f of the overlaps (Rl,l′)l,l′≤n on n replicas, let

φ(f,n,p) =
∣∣∣∣∣Eg

〈
f R

p
1,n+1

〉 − 1

n
Eg〈f 〉Eg

〈
R

p
1,2

〉 − 1

n

n∑
l=2

Eg

〈
f R

p
1,l

〉∣∣∣∣∣,(2.4)

where Eg denotes the expectation with respect to all Gaussian random variables
for a fixed uniform sequence (xp)p≥1. Then, the Ghirlanda–Guerra identities can
be stated as follows.
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PROPOSITION 1. For any p ≥ 1, n ≥ 2 and a bounded function f of the over-
laps (Rl,l′)l,l′≤n,

lim
N→∞ Exφ(f,n,p) = 0,(2.5)

where Ex is the expectation with respect to (xp)p≥1.

The proof of this result is well known and we refer to Chapter 12 in [26] for
details. We will not be using these identities directly for the measure GN , but for
other Gibbs measures with a slightly modified Hamiltonian HN(σ), since it is well
known that the proof of the identities is robust to such modifications and depends
mostly on the form of the perturbation Hamiltonian (2.1). It is interesting to note
that once we finish the proof of Theorem 1, the argument in [14] will immediately
imply that (2.5) holds in a strong sense without the perturbation Hamiltonian for
all p ≥ 1 such that βp �= 0 in (1.2).

Guerra’s replica symmetry breaking bound. In the case when p-spin interac-
tions for odd p ≥ 3 are not present in (1.2), the inequality ≤ in (1.8) was proved by
F. Guerra in [8] by inventing the replica symmetry breaking interpolation scheme.
The fact that this inequality holds even in the presence of odd p-spin interactions
was observed by M. Talagrand in [23] and we will only briefly recall the main idea,
which is to write down Guerra’s interpolation scheme in terms of the Ruelle prob-
ability cascades [21] (Poisson–Dirichlet cascades in the terminology of [26]) and
force the overlap to be positive along the interpolation by adding the perturbation
term (2.1). Given k ≥ 1, the Ruelle probability cascades are defined as (i) a ran-
dom probability measure (wα)α∈Nk on N

k via some explicit construction involving
Poisson processes on (0,∞) with the mean measures ζx−1−ζ dx for ζ ∈ (0,1) and
(ii) a Gaussian process (zα)α∈Nk with the covariance Ezα1zα2 = ξ ′(qα1∧α2) where

α1 ∧ α2 = min
{
l ≥ 1 :α1

l �= α2
l

}
if α1 �= α2 and

α1 ∧ α2 = k + 1 if α1 = α2

(see Chapter 14 in [26] for details). For 0 ≤ t ≤ 1 we define an interpolating Hamil-
tonian

HN,t (σ,α) = √
tHN(σ) + √

1 − t
∑
i≤N

zα,iσi,(2.6)

where (zα,i)α∈Nk are independent copies of (zα)α∈Nk for i ≥ 1, and let

ϕ(t) = 1

N
E log

∑
α,σ

wα exp
(
HN,t (σ,α) + H

pert
N (σ)

)
.(2.7)

If we define the Gibbs measure �t on �N × N
k by

�t

{
(σ,α)

} ∼ wα exp
(
HN,t (σ,α) + H

pert
N (σ)

)
,
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then a straightforward calculation using Gaussian integration by parts gives

ϕ′(t) = −1
2θ(1) + 1

2E
〈
θ(qα1∧α2)

〉
�t

(2.8)
− 1

2E
〈
ξ(R1,2) − R1,2ξ

′(qα1∧α2) + θ(qα1∧α2)
〉
�t

,

where 〈·〉�t is the Gibbs average with respect to �⊗2
t . When ξ(x) = ∑

p≥1 β2
pxp

does not contain terms for odd p ≥ 3, ξ is convex on [−1,1], which implies that
the last term in (2.8) is negative, and dropping this term and integrating the cor-
responding inequality for 0 ≤ t ≤ 1, we obtain an upper bound on the free energy
in (1.8). The fact that the representation of this upper bound in terms of the Ruelle
probability cascades coincides with the formula in (1.7) is well known and is ex-
plained in great detail in Chapter 14 in [26]. If the terms for odd p ≥ 3 are present,
the function ξ is only convex on [0,1], but the argument still works if we know that
R1,2 is nonnegative with high probability under E�⊗2

t . This is where the perturba-
tion term in (2.7) comes into play to ensure that the Ghirlanda–Guerra identities
hold along the interpolation and, as a consequence, to ensure the positivity of the
overlap via Talagrand’s positivity principle (see Section 12.3 in [26]). In fact, an
observation in [11] shows that the perturbation term H

pert
N forces the positivity of

the overlap uniformly over all measures on �N in the following sense. If given
a measure νN on �N we define a random probability measure ν̂N on �N by the
change of density dν̂N(σ ) ∼ expH

pert
N (σ)dνN(σ ), then Theorem 1 in [11] implies

that for any ε > 0,

lim
N→∞ sup

νN

Eν̂⊗2
N (R1,2 ≤ −ε) = 0.(2.9)

Using this for the marginal νN on �N of the Gibbs measure γt {(σ,α)} ∼
wα expHN,t (σ,α) on �N × N

k implies that the remainder term in (2.8) is asymp-
totically nonnegative and we can proceed as in the case of even p-spin interactions.

The Aizenman–Sims–Starr scheme. The proof of the lower bound is done in sev-
eral steps, but it begins with the Aizenman–Sims–Starr scheme [1]. Let us consider
the Hamiltonian H−

N (σ) = ∑
p≥1 βpH−

N,p(σ ), where

H−
N,p(σ ) = 1

(N + 1)(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip .(2.10)

Let G−
N and 〈·〉 denote the Gibbs measure and its average corresponding to the

Hamiltonian H−
N +H

pert
N and let z(σ ) and y(σ ) be two Gaussian processes on �N

with covariances

Ez
(
σ 1)

z
(
σ 2) = ξ ′(R1,2), Ey

(
σ 1)

y
(
σ 2) = θ(R1,2)(2.11)

independent of each other and all other random variables. Then the Aizenman–
Sims–Starr scheme in [1] yields the following (see, e.g., Section 15.8 in [26]).
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PROPOSITION 2. The lower limit of the free energy in (1.8) is bounded from
below by

log 2 + lim inf
N→∞

(
E log

〈
ch z(σ )

〉 − E log
〈
expy(σ )

〉 )
.(2.12)

The only difference here is that we included the perturbation term H
pert
N (σ),

but, since it is of a smaller order, one can easily check that it does not af-
fect the computation leading to this representation. Below, we will express the
limit (2.12) in terms of some asymptotic Gibbs measure that satisfies the exact
form of the Ghirlanda–Guerra identities, but, in order to do so, we first need to
show that Propositions 1 and 2 also hold with nonrandom choices of the sequence
x = (xp)p≥1 (depending on N ) rather than on average over x. We mentioned above
that the proof of the Ghirlanda–Guerra identities is robust to modifications of the
Hamiltonian HN and, in particular, they hold for the Gibbs measure G−

N so that if
in (2.4) we replace 〈·〉 by 〈·〉 , then (2.5) still holds. Let us consider a collection

F = {
(f,n,p) :p ≥ 1, n ≥ 2, f is a monomial of (Rl,l′)l,l′≤n

}
.

Since this is a countable family, we can enumerate it, ((fj , nj ,pj ))j≥1, and define
a function

φF = φF (x) = ∑
j≥1

2−jφ(fj , nj ,pj ),(2.13)

which depends on the variables in x = (xp)p≥1. Since each monomial |f | ≤ 1,
we can see from the definition (2.4) that |φ(f,n,p)| ≤ 2 and, therefore, the
Ghirlanda–Guerra identities (2.5) imply that ExφF → 0. Let

λ = λ(x) = Eg log
〈
ch z(σ )

〉 − Eg log
〈
expy(σ )

〉
,(2.14)

where, again, Eg denotes the expectation with respect to all Gaussian random vari-
ables for a fixed x. We will need the following simple lemma.

LEMMA 1. We can find x = (xp)p≥1 such that

φF (x) ≤ 2c(ExφF )1/2 and λ(x) ≤ Exλ + 2c(ExφF )1/2,(2.15)

where c is a constant that depends only on the function ξ.

PROOF. If we denote by Ez and Ey the expectations with respect to (z(σ ))

and (y(σ )), then (2.11) and Jensen’s inequality imply

0 ≤ Eg log
〈
ch z(σ )

〉 ≤ Eg log
〈
Ez ch z(σ )

〉 = ξ ′(1)/2

and

0 ≤ Eg log
〈
expy(σ )

〉 ≤ Eg log
〈
Ey expy(σ )

〉 = θ(1)/2
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and, therefore, −c ≤ λ(x) ≤ c for c = ξ ′(1) + θ(1). Given ε > 0, consider the
event

� = {
x = (xp)p≥1 :λ(x) ≤ Exλ + ε

}
.

Then, if Px denotes the probability with respect to the i.i.d. sequence (xp)p≥1 with
the uniform distribution on [1,2],

Exλ ≥ (Exλ + ε)Px

(
�c) − cPx(�),

and, therefore,

Px(�) ≥ ε

Exλ + ε + c
>

ε

3c

for ε < c. On the other hand, Chebyshev’s inequality implies

Px(φF ≤ ε) ≥ 1 − ExφF
ε

,

and � ∩ {φF ≤ ε} �= ∅ if ε/3c > ExφF /ε. Taking ε = 2(cExφF )1/2 (which is < c

for large N ) implies that we can find x that satisfies both inequalities in (2.15). �

For each N , let us choose xN = (xN
p )p≥1 that satisfies (2.15) and, since

ExφF → 0, we get

lim
N→∞φF

(
xN ) = 0 and lim inf

N→∞ Exλ ≥ lim inf
N→∞ λ

(
xN )

.(2.16)

Let us redefine the Hamiltonian H
pert
N and the Gibbs measure G−

N by fixing param-
eters x = xN and, since the measure now depends only on the Gaussian random-
ness, we will write E instead of Eg. By (2.16), Proposition 2 still holds for this
redefined measure G−

N and, recalling (2.13),

E
〈
f R

p
1,n+1

〉 − 1

n
E〈f 〉 E

〈
R

p
1,2

〉 − 1

n

n∑
l=2

E
〈
f R

p
1,l

〉 → 0(2.17)

for all p ≥ 1, n ≥ 2 and all monomials f of (Rl,l′)l,l′≤n.
Asymptotic Gibbs’ measures. Next, we will define an asymptotic analogue of the

Gibbs measure and represent the limit (2.12) in terms of this measure. Let (σ l)l≥1
be an i.i.d. sample from G−

N and let RN = (RN
l,l′)l,l′≥1 be the normalized Gram

matrix, or matrix of overlaps, of this sample. Consider a subsequence (Nk) along
which the limit in (2.12) is achieved (now with nonrandom parameters xN ) and the
distribution of RN under EG−

N

⊗∞
converges in the sense of convergence of finite

dimensional distributions to the distribution of some array R∞. For simplicity of
notation, let us assume that the sequence (Nk) coincides with natural numbers.
Under EG−

N

⊗∞
, the array RN is weakly exchangeable, which means that

(
RN

π(l),π(l′)
) d= (

RN
l,l′

)
(2.18)
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for any permutation π of finitely many indices. Obviously, this property will be
preserved in the limit so that R∞ is a weakly exchangeable symmetric nonnega-
tive definite array and, following [6], we will call any such array a Gram-de Finetti
array. The Dovbysh–Sudakov representation [6] then guarantees that all such ar-
rays are generated by i.i.d. samples from random measures on a separable Hilbert
space (see [13] for a detailed proof).

PROPOSITION 3. If (Rl,l′)l,l′≥1 is a Gram-de Finetti array such that Rl,l = 1,
then there exists a random measure G on the unit ball of a separable Hilbert space
such that

(Rl,l′)l,l′≥1
d= (

ρl · ρl′ + δl,l′
(
1 − ∥∥ρl

∥∥2))
l,l′≥1,(2.19)

where (ρl) is an i.i.d. sample from G.

The importance of the Dovbysh–Sudakov representation in spin glass models
was first clearly demonstrated in [2], and other examples where this representation
played an important role can be found in [3, 12, 15] and [25]. Let G be a random
measure generating the array R∞, let (ρl) be an i.i.d. sample from G and let Rl,l′ =
ρl · ρl′ for l �= l′ and Rl,l = 1. For simplicity of notation, we will now omit ∞
in R∞. If we denote by 〈·〉 the average with respect to G, then, by (2.17), the
measure G satisfies the Ghirlanda–Guerra identities,

E
〈
f R

p
1,n+1

〉 = 1

n
E〈f 〉E〈

R
p
1,2

〉 + 1

n

n∑
l=2

E
〈
f R

p
1,l

〉
(2.20)

for all p ≥ 1, n ≥ 2 and all monomials f of (Rl,l′)l,l′≤n. Approximating bounded
functions of the overlaps (in the L1 sense) by polynomials, we also have

E
〈
f ψ(R1,n+1)

〉 = 1

n
E〈f 〉E〈

ψ(R1,2)
〉 + 1

n

n∑
l=2

E
〈
f ψ(R1,l)

〉
(2.21)

for bounded measurable functions f and ψ . Below, the identities (2.21) will allow
us to identify these asymptotic Gibbs measures, but, first, let us show how the limit
in (2.12) can be represented in terms of G. By Theorem 2 in [12], (2.21) implies
that if q∗ is the largest point in the support of the distribution of R1,2 under EG⊗2,
then G is concentrated on the sphere of radius

√
q∗ with probability one and,

therefore, R is generated by (ρl · ρl′ + δl,l′(1 − q∗))l,l′≥1. Let z(ρ) and y(ρ) be
two Gaussian processes on the unit ball of our Hilbert space with covariances

Ez
(
ρ1)

z
(
ρ2) = ξ ′(ρ1 · ρ2)

, Ey
(
ρ1)

y
(
ρ2) = θ

(
ρ1 · ρ2)

,(2.22)

let η be a standard Gaussian random variable independent of everything else and
let Eη denote the expectation in η only. Then the following holds.
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LEMMA 2. We have

lim
N→∞ E log

〈
ch z(σ )

〉 = E log Eη

〈
ch

(
z(ρ) + η

(
ξ ′(1) − ξ ′(q∗))1/2)〉

(2.23)

and

lim
N→∞ E log

〈
expy(σ )

〉 = E log Eη

〈
exp

(
y(ρ) + η

(
θ(1) − θ

(
q∗))1/2)〉

.(2.24)

The proof of Lemma 2 is based on the following observation. For a moment, let
R = (Rl,l′)l,l′≥1 be an arbitrary Gram-de Finetti array such that Rl,l′ = 1, let L be
its distribution and let G be any random measure generating R as in Proposition 3.
It is known that in some sense this measure is unique (see Lemma 4 in [13]), but
we will not need it here. Let us define

�(L) = E log Eη

〈
ch

(
z(ρ) + η

(
ξ ′(1) − ξ ′(‖ρ‖2))1/2)〉

.(2.25)

The Gaussian process z(ρ) here is the same as in (2.22), but we do not assume
now that G is concentrated on the sphere ‖ρ‖2 = q∗. We will prove that the right-
hand side in (2.25) does not depend on the choice of the measure G and, indeed,
depends only on the distribution L in a continuous fashion.

LEMMA 3. The function L → �(L) defined in (2.25) is continuous with re-
spect to weak convergence of the distribution L .

PROOF OF LEMMA 2. Since RN is the Gram matrix of the sequence
(N−1/2σ l), we can simply think of the measure G−

N as defined on N−1/2�N

which is a subset of the sphere ‖σ‖ = 1 in R
N . Then (2.11) agrees with (2.22)

and Lemma 3 implies (2.23) since RN converges in distribution to R∞ and, as we
mentioned above, the Ghirlanda–Guerra identities (2.20) imply that G is concen-
trated on the sphere ‖ρ‖2 = q∗. Equation (2.24) can be proved similarly. �

PROOF OF LEMMA 3. The proof is almost identical to the proof of Lemma 11
in [17]. For simplicity of notation, let us denote

zη(ρ) = z(ρ) + η
(
ξ ′(1) − ξ ′(‖ρ‖2))1/2

and let Ez be the expectation in the randomness of (z(ρ)) conditionally on all other
random variables. By standard concentration inequalities for Gaussian processes
(see, e.g., Lemma 3 in [11]), we have that for a ≥ 1,

Pz

(∣∣log Eη

〈
ch zη(ρ)

〉 − Ez log Eη

〈
ch zη(ρ)

〉∣∣ ≥ a
) ≤ exp

(−ca2)
(2.26)

for some small enough constant c that depends only on the function ξ

through (2.22). Since

0 ≤ Ez log Eη

〈
ch zη(ρ)

〉 ≤ log
〈
EzEη ch zη(ρ)

〉 = ξ ′(1)/2,
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the inequality (2.26) implies that P(| log Eη〈ch zη(ρ)〉| ≥ a) ≤ exp(−ca2) for
small c and large enough a and, therefore, if we denote loga x = max(−a,

min(logx, a)), then for large a,∣∣E log Eη

〈
ch zη(ρ)

〉 − E loga Eη

〈
ch zη(ρ)

〉∣∣ ≤ exp
(−ca2)

.(2.27)

Next, if we define cha x = min(chx, cha), then using that | loga x − loga y| ≤
ea|x − y| and | chx − cha x| ≤ chxI (|x| ≥ a), we can write∣∣E loga Eη

〈
ch zη(ρ)

〉 − E loga Eη

〈
cha zη(ρ)

〉∣∣ ≤ ea
E

〈∣∣ch zη(ρ) − cha zη(ρ)
∣∣〉

≤ ea
E

〈
ch zη(ρ)I

(∣∣zη(ρ)
∣∣ ≥ a

)〉
.

By Hölder’s inequality, this can be bounded by

ea(
E

〈
Ez,η ch2 zη(ρ)

〉)1/2(
E

〈
Pz,η

(∣∣zη(ρ)
∣∣ ≥ a

)〉)1/2 ≤ exp
(−ca2)

for small c and large enough a since Pz,η(|zη(ρ)| ≥ a) ≤ exp(−ca2). Combining
with (2.27), ∣∣E log Eη

〈
ch zη(ρ)

〉 − E loga Eη

〈
cha zη(ρ)

〉∣∣ ≤ exp
(−ca2)

.(2.28)

Approximating the logarithm by polynomials on the interval [e−a, ea],
E loga Eη〈cha zη(ρ)〉 can be approximated by a linear combination of moments

E
(
Eη

〈
cha zη(ρ)

〉)r = E

〈
EzEη

∏
l≤r

cha

(
zηl

(
ρl))〉,(2.29)

where we used replicas and where

zηl

(
ρl) = z

(
ρl) + ηl(ξ ′(1) − ξ ′(∥∥ρl

∥∥2))1/2

and (ηl) are i.i.d. standard Gaussian. Since the covariance of the Gaussian se-
quence (zηl (ρl)) is equal to

ξ ′(ρl · ρl′) + δl,l′
(
ξ ′(1) − ξ ′(∥∥ρl

∥∥2)) = ξ ′(Rl,l′),

the function inside the Gibbs average on the right-hand side of (2.29) is equal to

EzEη

∏
l≤r

cha

(
zηl

(
ρl)) = F

(
(Rl,l′)l,l′≤r

)
(2.30)

for some continuous bounded function F of the overlaps (Rl,l′)l,l′≤r . Together
with (2.28) this shows that we can approximate �(L) arbitrarily well by a lin-
ear combination of E〈F(R)〉 for some continuous bounded functions F of finitely
many overlaps, which proves that �(L) is continuous with respect to the distribu-
tion L of the overlap array R. �

Identifying asymptotic Gibbs’ measures using ultrametricity. To show that the
lower bound in (2.12) matches Guerra’s upper bound, it remains to identify the dif-
ference of (2.23) and (2.24) with the second and third terms of the functional (1.7).



956 D. PANCHENKO

Since the asymptotic Gibbs measure G satisfies the Ghirlanda–Guerra identi-
ties (2.21), the main result in [18] implies that the support of G is ultrametric
with probability one, that is,

E
〈
I
(
R1,2 ≥ min(R1,3,R2,3)

)〉 = 1.(2.31)

Given r ≥ 1, let us consider a function κ(q) on [0,1] such that

κ(q) = j/r for j/r ≤ q < (j + 1)/r, j = 0, . . . , r − 1(2.32)

and κ(1) = 1. Equation (2.31) implies that for any q the inequality q ≤ ρl · ρl′

defines an equivalence relation l ∼ l′ and, therefore, the array (I (q ≤ Rl,l′))l,l′≥1
is nonnegative definite, since it is block-diagonal with blocks consisting of all ele-
ments equal to one. This implies that Rκ = (κ(Rl,l′))l,l′≥1 is nonnegative definite
since it can be written as a convex combination

κ(Rl,l′) =
r∑

j=1

1

r
I

(
j

r
≤ Rl,l′

)
.

In addition, it is clear that Rκ is weakly exchangeable and satisfies the Ghirlanda–
Guerra identities (2.21). Then, by the Dovbysh–Sudakov representation (2.19), Rκ

can be generated by a sample from some random measure Gκ on the unit ball of a
Hilbert space. If for simplicity we assume that q∗ �= j/r for j ≤ r , then κ(q∗) is the
largest point in the support of the distribution of κ(R1,2) and, by Theorem 2 in [12],
the measure Gκ is concentrated on the sphere ‖ρ‖2 = κ(q∗). When r → ∞, the
distribution of Rκ converges weakly to the distribution of R and if we denote by
〈·〉κ the average with respect to the measure Gκ , then Lemma 3 implies that

E log Eη

〈
ch(z(ρ) + η

(
ξ ′(1) − ξ ′(κ(

q∗))1/2)〉
κ(2.33)

approximates the right-hand side of (2.23). It is well known that an ultramet-
ric measure, such as Gκ , that satisfies the Ghirlanda–Guerra identities and un-
der which the overlaps Rκ take finitely many values as in (2.32), can be iden-
tified with the discrete Ruelle probability cascades by the Baffioni-Rosati theo-
rem [4] (see the proof of Theorem 15.3.6 in [26] for details). The fact that in this
case (2.33) coincides with X0(m,q) in (1.7) with parameters k = r − 1, qj = j/r

and mj = E〈I (R1,2 < qj+1)〉 is also well known (see, e.g., Theorem 14.2.1
in [26]). One can similarly show that (2.24) corresponds to the second term in (1.7)
and this finishes the proof of Theorem 1. One could also work with the continuous
Ruelle probability cascades using a general theory developed in [5], but, at this
point, it was easier to simply discretize the overlap array and Gibbs measure.
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