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GEOSTATISTICAL MODELING IN THE PRESENCE OF
INTERACTION BETWEEN THE MEASURING INSTRUMENTS,
WITH AN APPLICATION TO THE ESTIMATION OF SPATIAL

MARKET POTENTIALS

BY FRANCESCO FINAZZI

University of Bergamo

This paper addresses the problem of recovering the spatial market po-
tential of a retail product from spatially distributed sales data. In order to
tackle the problem in a general way, the concept of spatial potential is intro-
duced. The potential is concurrently measured at different spatial locations
and the measurements are analyzed in order to recover the spatial potential.
The measuring instruments used to collect the data interact with each other,
that is, the measurement at a given spatial location is affected by the concur-
rent measurements at other locations. An approach based on a novel geosta-
tistical model is developed. In particular, the model is able to handle both the
measuring instrument interaction and the missing data. A model estimation
procedure based on the expectation–maximization algorithm is provided as
well as standard inferential tools. The model is applied to the estimation of
the spatial market potential of a newspaper for the city of Bergamo, Italy. The
estimated spatial market potential is eventually analyzed in order to identify
the areas with the highest potential, to identify the areas where it is profitable
to open additional newsstands and to evaluate the newspaper total market
volume of the city.

1. Introduction. The market potential of a given retail product is the expected
sales volume when the product is marketed. The spatial market potential is the
spatial distribution of the market potential over a trading area. Sales are expected
to be high if a store is opened at a spatial location characterized by a high spatial
market potential, while they are expected to be low if the spatial location has a low
spatial market potential.

With the goal to increase and to maximize the sales volume, a key issue is how
to evaluate the spatial market potential. In this paper, it is assumed that the product
is already marketed and that the sales data of spatially distributed stores are avail-
able. Thus, the aim is to estimate the spatial market potential by considering the
sales data, the spatial characteristics of the trading area and the spatial interaction
between the stores. The stores interact in the sense that the sales volume of each
store is affected by the presence of all the others. As a consequence, the spatial
market potential cannot be estimated ignoring the interaction.
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For all purposes and intents, the spatial market potential can be regarded as
a spatial surface, as it is well defined for all the spatial locations of the trading
area. Taking a statistical perspective, the spatial market potential is considered as a
spatially continuous random field and the estimation of the spatial market potential
is obtained through the estimation of the realization of the random field. Although
well understood, however, no attempt has ever been made to address the problem
following a geostatistical approach.

The estimation of a spatial market potential is an instance of the more general
problem of recovering the realization of a spatially continuous random field in the
case of interacting measuring instruments. The instruments interact in the sense
that the measurement at a given spatial location is affected by the concurrent mea-
surements at nearby locations.

A novel model able to handle both the interaction between the measuring in-
struments and the missing data is proposed. A case study is presented, in which
the sales data of spatially distributed newsstands are used to estimate the spatial
market potential of an economic daily newspaper for the city of Bergamo, Italy.
The aim of the study is threefold: to identify the areas with the highest market
potential, to identify the areas where it is profitable to open additional newsstands
and to estimate the total market volume of the city with respect to the newspaper
considered.

The rest of the paper is organized as follows: Section 2 provides the background
and motivation for this work. Section 3 introduces a novel geostatistical model for
the analysis of spatial point data in the case of interaction between the measuring
instruments. Model estimation and inference are discussed in Section 4. Section 5
presents the case study while Section 6 provides conclusions. The technical aspects
related to the model estimation are reported in the Appendices.

2. Background. In this section the spatial market potential estimation prob-
lem is discussed in terms of both the current state of the art and the available
statistical methods. It turns out that the estimation of a spatial market potential
from sales data received little attention in the past and that the classic geostatisti-
cal approach cannot be adopted to solve the problem.

2.1. Spatial market potential estimation. The problem of estimating the mar-
ket potential of a retail product is not new in the literature. The state of the art is
represented by the so-called spatial interaction models which describe the market
potential in terms of flows between a set of origins (the customers) and a set of
destinations (the stores). The interested reader is referred to the seminal papers
of Reilly and Huff [Reilly (1931), Huff (1964)] and to the more recent literature
[see, e.g., Davis (2006), Cliquet (2006), de Grange, Ibeas and Gonzalez (2011)
and Fischer and Wang (2011)]. The spatial interaction models focus on the utility
that consumers obtain from buying a retail product at a specific store. The utility is
often a function of the attributes of the product, the attributes of the store and some
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attributes of separation such as the geographic distance, the transport cost and the
transport time.

The main drawback of the spatial interaction models is that the spatial market
potential is not explicitly modeled as a regionalized variable and it is defined only
at the spatial location of the stores. This is in contrast with the concept of spatial
market potential adopted in this paper, which is supposed to exist beyond the ex-
istence of the stores. Indeed, the market potential of a product at a given location
in space can also be considered as the willingness of the consumers to reach that
specific location in order to buy the product. The attributes of the store (including
the price at which the store sells the product) may affect the way the spatial market
potential is observed, but the spatial market potential is not driven by the stores.

The spatial interaction models literature also lacks of methods for estimating
the model output uncertainty. This represents a critical issue, as, in practical appli-
cations, the available data are usually limited in number and the reliability of the
model output must be provided.

Modeling the market potential as a regionalized variable, and, in particular, as a
spatially continuous random field, allows to answer new and interesting questions.
Denoting q(s) the spatial market potential at the generic spatial location s, the
company that owns the stores may be interested in estimating q(s) for each point
of the trading area D. For instance, the company may want to locate the maxima of
q(s) to be sure that it has a store near that location. If, instead, the company wants
to open a new store, then it may want to evaluate the market potential conditioned
on the presence of the actual stores. Moreover, the company may want to pursue
both of the goals even if the sales data of some stores are missing. In this sense,
when a latent spatial market potential has to be assessed and the uncertainty infor-
mation must be provided, the geostatistical approach seems to be more appropriate
than any approach based on the spatial interaction models.

2.2. Geostatistical modeling. The problem of estimating a spatially continu-
ous random field from measurements collected at a finite number of locations in
space is usually solved by considering geostatistical models and kriging techniques
[see Cressie and Wikle (2011)].

The simplest geostatistical model described in Diggle and Ribeiro (2007), for
instance, assumes an underlying stationary Gaussian random field w(s) and obser-
vation y(si ) which are realizations of conditionally mutually independent random
variables Y(si ) conditionally normally distributed with mean E(Y (si ) | w(·)) =
w(si ) and variance σ 2

ε . In the spatial market potential case, however, due to the
interaction between the stores, the conditional mutual independence of the random
variables Y(si ) is not met and, in general, E(Y (si ) | q(·)) �= q(si ). A geostatisti-
cal approach for spatial interaction data can be found in Banerjee, Gelfand and
Polasek (2000), though the interaction is defined in terms of flows between des-
tinations and origins (cf. the previous paragraph) and the approach is not suitable
for the problem addressed in this paper, where a “diffuse” origin is considered.



84 F. FINAZZI

3. The geostatistical potential model.

3.1. Introduction. Before developing a suitable geostatistical model, the prob-
lem at hand is restated and generalized in the following way.

Let q(s) be a spatial random field defined over the region of space D ⊂ R
2. The

random field q(s) is called here potential, though the term does not refer to any
particular property of the field. The random field is concurrently measured at the
set of spatial locations S = {s1, . . . , sN } and the observations y(S) are collected
(possibly with missing data). The concurrency of the measurements is a key as-
pect in the sense that, in general, the observations ỹ(S) collected in the case of
nonconcurrent measurements differ from y(S).

The observations y(S) are supposed to be realizations of random variables Y(si )

conditionally normally distributed with conditional mean

E
(
Y(si ) | q(·), S

) = h
(
q(si ); S

); si ∈ S, i = 1, . . . ,N,

and conditional variance σ 2
ε , where h is a function modeling the interaction be-

tween the measuring instruments.
The interaction between the measuring instruments is said to be an absorption

interaction if, for each s ∈ D, h(q(si ); S) < q(s). The interaction is such that,
for each s1 ∈ D, h(q(s1); S) ≡ q(s1) iff S ={s1}, that is, the conditional mean of
Y(s1) is equal to q(s1) if s1 is the only spatial location of D where q is measured.
Ultimately, it can be stated that the act of measuring the potential q at a given s
alters the (concurrent) measurements at other spatial locations.

At this point, the following distinction can be made: the potential q(s) is the
expected observed value when q is measured only at the spatial location s ∈ D.
On the other hand, the conditional potential q(s; S) is the expected observed value
when q is measured at the spatial location s ∈ D given that it is concurrently mea-
sured at the set of locations S = {s1, . . . , sN }, si ∈ D, N ≥ 1.

In the next paragraph, the way the potential and the conditional potential are
modeled and estimated is discussed.

3.2. Model definition. The geostatistical potential model (GPM) is introduced
here as the main statistical tool for the analysis of spatial data arising from con-
current measurements in the presence of interaction between the measuring instru-
ments. In its general form, the GPM is described by the following hierarchy of
equations:

y(s; S) = hϑ
(
u(s), s, S

)
,

u(s) = q(s) + ε(s),(3.1)

q(s) = μ + x(s)β + γw(s).

At the first stage of (3.1), y(s; S) is the measured conditional potential at the spa-
tial location s while hϑ : R × D × S −→ R is the interaction function which is
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parametrized by the parameter vector ϑ . The set S is the set of all finite spatial
point patterns over D including the nonsimple patterns (i.e., patterns with over-
lapping points). At the second stage, ε(s) represents an error component which is
assumed to be i.i.d. N(0, σ 2

ε ) and is supposed to capture both the measuring er-
ror and the model error. Finally, at the third stage, the potential q(s) is modeled by
three summands, where μ is the mean, x(s) is a vector of covariates, β is the vector
of coefficient, w(s) is a zero-mean latent Gaussian process and γ is a scale param-
eter. The covariance function of w(s) is cov(w(s),w(s′)) = ρθ (s, s′), with ρθ (s, s′)
a valid correlation function parametrized by the vector θ . The model parameter
vector is � = (μ,β ′, σ 2

ε , γ, θ ′,ϑ ′) and it completely characterizes the GPM.
Note that, for the reasons discussed later on in the paper, it is assumed that,

conditionally to the observed covariates x(s), the observed y(s; S) is not prefer-
entially sampled [see Diggle, Menezes and Su (2010)] with respect to the latent
variable w. As a consequence, the set of spatial locations S is treated as a constant
rather than as the realization of a spatial point process, the local density of which
is driven by w.

In order to have a better insight into the role of the interaction function hϑ , the
following family of interaction functions is adopted:

hϑ
(
u(s), s, S

) = u(s) ·
(

1 + ∑
s′∈S

fϑ
(
s, s′))−1

= u(s) · gϑ (s; S),(3.2)

where fϑ (s, s′) : R2 × R
2 −→ R

+ is a generic nonnegative binary function.
The function fϑ (s, s′) can be any continuous function but, for practical applica-

tions, it should be monotonically decreasing with respect to distance. For instance,

fϑ
(
s, s′) = fϑ

(∥∥s − s′∥∥) = exp
(
−‖s − s′‖

φ

)α

,(3.3)

where ‖ · ‖ is the Euclidean distance and ϑ = (φ,α)′ is the function parameter
vector. In equation (3.3), φ defines the strength of the interaction while α > 0 is a
shape parameter.

Note that

y(s; S) = u(s) · gϑ (s; S)

= q(s) · gϑ (s; S) + ε(s) · gϑ (s; S)(3.4)

= q(s; S) + ε(s; S),

namely, the observed potential is equal to the conditional potential q(s; S) plus
a transformation of the error ε(s). In particular, the second line of equation (3.4)
follows directly from the second stage of model (3.1), while the third line is the
second line rewritten in a more compact notation.

The term gϑ (s; S) is the key element of the interaction function and it deserves
more explanation. If, as an example, the function (3.3) is considered and S ≡ ∅,
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namely, if there are no measuring instruments, then gϑ (s; S) = 1 since the sum-
mand in equation (3.2) cannot be evaluated and it is equal to zero by definition.
When a measuring instrument is added, S = {s1}, the potential at s is a function of
the distance between s and s1. In particular, if s = s1, then gϑ (s; S) = 0.5. On the
contrary, when ‖s − s1‖ → ∞, then gϑ (s; S) → 1. This reflects the fact that the
action of absorbing the potential at site s1 influences the measure at the site s. It is
worth noting that s and s1 are exchangeable in the sense that absorbing and measur-
ing the potential are equivalent actions and that the potential cannot be measured
without being absorbed.

In this work, the measuring instruments are supposed to be equally-effective,
that is, g(si; {sj }) = g(sj ; {si}) for all ‖si − sj‖. The property of equally-
effectiveness is satisfied if the binary function fϑ (s, s′) is commutative,1 which
is the case of the function (3.3). In practical applications, the property may not
be satisfied in the sense that a measuring instrument might be more effective in
absorbing the potential than a second instrument close to it. Suppose equally-
effective measuring instruments, however, simplify the model and any discrepancy
from it is accounted for by the error term ε. Note that the measure of effective-
ness is strictly related to the measure of attractiveness of the spatial behavior of
consumers models typical of the geomarketing literature [see Cliquet (2006)].

To better understand the notions of potential and conditional potential, the
following example is considered. Suppose that four measuring instruments are
located at s1 = (0.2,0.2), s2 = (0.2,0.8), s3 = (0.8,0.2) and s4 = (0.8,0.8),
si ∈ D ≡ [0,1] × [0,1], i = 1, . . . ,4. The GPM considered is

y(s; S) = u(s) · gϑ (s; S) = q(s; S),

u(s) = q(s),(3.5)

q(s) = w(s),

namely, it is supposed that the conditional potential q(s; S) is observed without
error. Furthermore, suppose that

ρθ

(
s, s′) = ρθ

(∥∥s − s′∥∥) = exp
(
−‖s − s′‖

0.8

)
,(3.6)

fϑ
(
s, s′) = fϑ

(∥∥s − s′∥∥) = exp
(
−‖s − s′‖

0.3

)
(3.7)

and that y(si; S \ si ) = 10.2 The estimated potential and conditional potential are
reported in the left and in the right parts of Figure 1, respectively. Regarding the po-
tential, its value at the measuring instrument locations is equal to 13.2 > 10. Each
measuring instrument measures a potential equal to 10 since a fraction of it is ab-

1The binary function f is commutative if f (x, y) = f (y, x).
2Note that, in general, y(s; S) should be simulated following equation (4.12). In this case, in order

to better appreciate the role of the interaction function, y(si; S \ si ) is supposed to be equal for all
the locations.
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FIG. 1. (Left) potential q(s); (right) conditional potential q(s; S).

sorbed by the remaining measuring instruments. Indeed, the potential q(si ) = 13.2
would be measured by the single measuring instrument if the other instruments
were not present. The conditional potential, as expected, has its lowest value at
the measuring instrument locations and represents the potential that would be ob-
served by a fifth measuring instrument if placed at the generic s.

4. Parameter estimation and inference. Let y ≡ y(S) be the N × 1 vector
of data collected at the sampling sites S . The measurement equation for the vector
y is

y = G(1μ + Xβ + γ w + ε),(4.1)

where 1 is the N × 1 vector of ones, X ≡ X(S) is the N × b matrix of covari-
ates, w ≡ w(S) is the latent Gaussian process at S with variance–covariance ma-
trix �w ≡ �w(S, θ) and ε ≡ ε(S) is the measurement error at S with diagonal
variance–covariance matrix �ε = σ 2

ε IN . Finally, G ≡ Gϑ (S) is the N × N diago-
nal matrix whose diagonal vector is

g = (
gϑ (s1; S \ s1), . . . , gϑ(sN ; S \ sN)

)
.

Furthermore, suppose that S is partitioned as {S (1), S (2)}, where S (1) is the set
of sites where the data are available and S (2) is the set of sites where the data
are missing. According to this, the vector y is partitioned as y∗ = (y(1),y(2))′,
where y(1) = Ly is the subvector of the nonmissing data and L is the appropriate
elimination matrix. The vector y∗ is a permutation of y and y = Dy∗, with D the
proper commutation matrix. The partitioned measurement equation becomes

y(i) = G(i)(1(i)μ + X(i)β + γ w(i) + ε(i)); i = 1,2,
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and the variance–covariance matrix of the permuted errors is conformably parti-
tioned as

Var
[(

ε(1),ε(2))′] =
(

R11 R12
R21 R22

)
.

In the sequel, given b a generic vector and B a generic matrix, b(1) and B(1) will
stand for Lb and LBL′, respectively, bearing in mind that, in general, LB−1L′ �=
(LBL′)−1.

Given the data vector y and considering the GPM, the following inferential
problems are of interest:

(1) to provide an estimate of the model parameter vector �;
(2) to provide confidence intervals for the elements of �̂;
(3) to estimate the potential q(s) over the region D and its uncertainty;
(4) to estimate the conditional potential q(s; S) over the region D and its un-

certainty;
(5) to evaluate the expected total potential measured by a maximum of measur-

ing instruments.

4.1. Parameter estimation. Problem 1 is tackled here following the maximum
likelihood (ML) approach. With w(s) being a latent process and due to possible
missing data, the expectation–maximization (EM) algorithm is adopted to find the
ML estimate �̂ of � .

The EM algorithm is based on the complete-data likelihood function L�(y,w)

and it provides an iterative procedure to update the model parameter estimate from
�̂(k) to �̂(k+1) until convergence [see McLachlan and Krishnan (2008)]. In par-
ticular, for each iteration of the algorithm, the E-step computes the conditional
expectation

Q
(
�, �̂(k)) = E

�̂(k)

[
L�(y,w) | y(1)],

while, at the M-step, the following maximization is carried out:

�̂(k+1) = arg max
�

Q
(
�, �̂(k)),

which is equivalent to solve the equation

∂Q(�, �̂(k))

∂�
= 0.(4.2)

Considering the approach described in Fassò and Finazzi (2011), the following
closed form updating formulas have been derived:

μ̂(k+1) = tr[(ê(1) + μ(k)1(1))(1(1))′]
N − Nm

,(4.3)

β̂
(k+1) = [(

X(1))′X(1)]−1(
X(1))′ · (

ê(1) + X(1)β(k)),(4.4)
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(
σ̂ 2

ε

)(k+1) = 1

N
tr

(
ê(1) · (

ê(1)
)′ + (

γ (k)
)2Â(1) 0

0 R22

)
,(4.5)

γ̂ (k+1) = tr[(ê(1) + γ (k)ŵ(1))(ŵ(1))′]
tr[ŵ(1)(ŵ(1))′ + Â(1)] ,(4.6)

where ê(1) = (G(1))−1y(1)−μ(k)1(1) − X(1)β(k) − γ (k)ŵ(1), Nm is the number of
missing data in y and

ŵ = E�(k)

(
w | y(1)),(4.7)

Â = Var�(k)

(
w | y(1))(4.8)

are the estimated latent variable and the estimation variance, respectively. The eval-
uation of (4.7) and (4.8) is reported in Appendix A.

The remaining model parameters can be updated by numerical optimization

solving (θ̂
(k+1)

, ϑ̂
(k+1)

) = arg maxθ,ϑ Q(�, �̂(k)). If both the correlation function
ρθ and the interaction function hϑ have analytical form of the first and second
derivative with respect to θ and ϑ , respectively, both the parameters can be updated
by adapting the algorithm given in Xu and Wikle (2007).

Before concluding the paragraph, a point that is worth mentioning is how the
preferential sampling problem can affect the model parameter estimation in the
case of the GPM. The spatial data y(S) are preferentially sampled with respect to
the potential q(s) if the spatial pattern of S is not independent of q(s). In practice,
the spatial density of S can be higher at the spatial locations where q(s) is known
or expected to be high.

As discussed in Diggle, Menezes and Su (2010), if the data are preferentially
sampled and the issue is not addressed, then the estimation of the parameter θ
related to the latent variable w(s) is generally biased. With respect to the GPM,
however, the model considered in Diggle, Menezes and Su (2010) does not in-
clude covariates. If the data are preferentially sampled with respect to the poten-
tial q(s) but the covariates explain a good part of the variability of the potential,
then w(s) models only the “residual” random field ẽ(s) = q(s) − x(s)β̂ and the
data y(S) − X(S)β̂ can be assumed to be not preferentially sampled with respect
to ẽ(s). In other words, even when the data are preferentially sampled with respect
to q(s), the adoption of good (spatial) covariates largely mitigates the problem. If
no covariates are available and the data are suspected to be preferentially sampled,
then the approach in Diggle, Menezes and Su (2010) should be considered.

4.2. Parameter confidence intervals. As known, the classic EM algorithm
does not provide information about the uncertainty of the estimated parameter
vector �̂ . In order to avoid the more cumbersome supplemented EM algorithm
[see Meng and Rubin (1991)], two methods are proposed to solve problem 2 of the
above list, namely, to provide confidence intervals for the elements of �̂ .
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The first method is based on the fact that the maximum likelihood estimator has
asymptotically normal distribution N(�0, I−1), with �0 the “true” value of � and
I the Fisher information matrix. An approximation of the information matrix for
multivariate normal variables can be evaluated as

Ĩij = ∂iε
′�−1

ε ∂jε + 1
2 tr

(
�−1

ε ∂i�ε�
−1
ε ∂j�ε

)
(4.9)

+ 1
4 tr

(
�−1

ε ∂i�ε
)

tr
(
�−1

ε ∂j�ε
)

[see Shumway and Stoffer (2006)], where ∂iε and ∂i�ε are short notation for
∂ε(�)/∂�i and ∂�ε(�)/∂�i , respectively, and 1 ≤ i, j ≤ |�|.

In the case of the GPM, the vector

ε = y − G(1μ + Xβ)(4.10)

is normally distributed with variance–covariance matrix

�ε = Var
(
y − G(1μ + Xβ)

)
= Var(γ Gw + Gε)

(4.11)
= G

(
γ 2�w + �ε

)
G′

= gg′ 
 (
γ 2�w + �ε

)
,

where 
 is the Hadamard product operator. The solution for the derivatives ∂iε and
∂i�ε is reported in Appendix B. In the presence of missing data, equation (4.9) is
still valid, but ε and �ε have to be replaced with ε(1) and �

(1)
ε , respectively.

With Ĩ available, approximated confidence intervals for the elements of �̂ are
immediately provided by considering N(�̂, Ĩ−1). Note, however, that N(�̂, Ĩ−1)

is a good approximation of the distribution [� | y(S)] only when N is large, which
may not be the case in practical applications.

To solve this problem, following Fassò and Cameletti (2010), a second method
based on the bootstrap technique is considered. Let �̂ be the estimated parameter
vector. For each bootstrap run m, the vector y(m) = D

[
y(1)
(m) y(2)

]′ is considered,
where

y(1)
(m) = L · G · (1μ̂ + Xβ̂ + γ̂ w̃(m) + ε̃(m))(4.12)

and where w̃(m) and ε̃(m) are realizations from the multivariate normal distribu-
tions N(0,�ε(σ̂

2
ε )) and N(0,�w(θ̂)), respectively. Note that y(m) preserves the

missing data pattern of the observed y. The simulated y(m) is used to estimate a
new parameter vector �̂(m) through the EM algorithm and the set

�̂s = {�̂(1), . . . , �̂(M)}(4.13)

is considered as a sample from the distribution [� | y(S)]. If M is large enough,
then �̂s can be used to derive approximated confidence intervals for the elements
of �̂ without normality assumptions.
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4.3. Potential and conditional potential estimation. Following the plug-in ap-
proach, the estimated potential is obtained as

q
�̂

(s) = μ̂ + x(s)β̂ + γ̂ ŵ(s); s ∈ D,(4.14)

where ŵ(s) = E
�̂

(w(s) | y) is the kriging estimate of w(s), which is evaluated
analogously to ŵ in equation (4.7).

The uncertainty of q
�̂

(s) is directly related to the uncertainty of �̂ which is ex-
pressed by [� | y(S)]. Again, approximated confidence intervals on q

�̂
(s) can be

provided by repeatedly estimating q�(s) with � extracted either from N(�̂, Ĩ−1)

or from the set �̂s defined in equation (4.13). The estimated conditional potential
is simply given by

q
�̂

(s; S) = q
�̂

(s) · g
ϑ̂
(s; S); s ∈ D.

Approximated confidence intervals on q
�̂

(s; S) are provided following the same
approach for q

�̂
(s).

4.4. Total potential estimation. The conditional potential q(s; S) provides in-
formation about the expected observation when a measuring instrument is placed
at the generic location s given the existence of the other instruments. In practice,
the following quantity is also of interest:

v = max
S∈S

∑
s′∈S

q
(
s′; S \ s′); S �= ∅.(4.15)

If, for example, q(s) is the spatial market potential, then v represents the max-
imum market volume for the trading area D. Note that v cannot be obtained by
simply integrating q(s) or q(s; S) over D.

A simple way to estimate v is to consider the estimated conditional potential
q
�̂

(s; S) with S = ∅ and to sequentially populate S by choosing the spatial loca-
tion of D where q

�̂
(s; S) is maximum for the current S . Following this approach,

an estimation of v is obtained for |S| → ∞. In practice, the value of v stops to
increase significantly after a finite number of iterations. Note that a by-product of
(4.15) is the optimum S with respect to the maximization of v. When the main
aim is the optimization of a retail network, however, the above approach should
be adapted in order to impose a threshold on the minimum (geographic) distance
between two elements of S .

5. Case study. The GPM is considered here in order to estimate the market
potential of an economic daily newspaper over the area of the city of Bergamo,
northern Italy. The aim is to identify the areas with the highest market potential, to
identify the areas where it would be profitable to open additional newsstands and
to evaluate the maximum total market volume for the city.
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The Italian daily newspaper market is characterized by 64 main newspaper
heads with an average market volume of around 5.5 million daily copies. As far as
the city of Bergamo concerns, only 16 out of 64 newspaper heads are commonly
commercialized, as most of them are local heads referring to other Italian cities.
The economic newspaper considered in this study represents 8% of the total sales
volume for the Bergamo area in terms of daily copies. Moreover, it should be noted
that the economic newspaper is of a clientele which differs from that of the most
popular newspapers. This implies that the market potential of the economic news-
paper is not necessarily reflected in the spatial distribution of the newsstands. In
other words, conditionally to the observed covariates, the sales data are not pref-
erentially sampled with respect to the market potential of the newspaper. This is
also justified by the fact that the sale of daily newspapers represent only 20% of
the total revenue of a newsstand.

The data available for the study consist of the yearly average daily number of
copies sold on working days by N = 75 newsstands located over the Bergamo area.
The sales data of 5 newsstands are unavailable though their location is known. The
total daily average sales volume for the available newsstands is around 491 copies
and it is believed that the maximum total volume attainable for the city of Bergamo
is higher. The newsstand spatial locations are shown in Figure 2, along with the
circle-plot of the average daily number of copies sold.

By considering the interpretation introduced in Section 3.1, it can be stated that
the measuring system is represented by the newsstands and that the interaction
between the measuring instruments is of the absorption type. In fact, once the cus-
tomer has bought a copy of the newspaper, it is absorbed in the sense that the same

FIG. 2. Newsstand locations and circle plot of the working day average daily number of copies
sold.
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customer will not buy (during the same day) the same copy of the newspaper, nei-
ther at the same nor at a different newsstand. Since the newspaper price is fixed, the
newsstands are considered equally effective and it is supposed that the customer
chooses the nearest newsstand. Customer loyalty is admitted, but it is supposed
that a newsstand is not more attractive than another.

The GPM model considered is the same defined in (3.1) but with μ ≡ 0. This
implies that the market potential goes to zero when moving far from the newsstand
network, as w(s) converges to its marginal mean which is zero. It follows that
the market potential is zero (or very close to zero) over the areas where it would
be unfeasible to have a newsstand. The spatial correlation function of the latent
component w is chosen to be

ρθ

(
s, s′) = exp

(
−‖s − s′‖

θ

)
,(5.1)

while the function (3.2) is considered as the interaction function, with

fφ

(
s, s′) = exp

(−‖s − s′‖
φ

)
.(5.2)

Two covariates are considered. The first covariate represents the spatial density
of the joint-stock companies with registered offices in Bergamo. The companies
are expected to induce a higher sales volume at the near newsstands. The second
covariate is a function of the minimum Euclidean distance to the busiest street
sections in terms of people and car traffic. In particular, the covariate value at the
generic location s is given by 1/(dmin(s) + 0.1), where dmin(s) is the Euclidean
distance (expressed in kilometers) from the location s to the nearest street section.
Both the covariates are depicted in Figure 3. In order to make the β coefficients
directly comparable, the covariates at the newsstand locations have been rescaled
to the range [0,1].

FIG. 3. Model covariates: (left) spatial density of joint-stock companies; (right) function of the
geographic distance to the nearest busy street section.
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TABLE 1
Estimated model parameter and 95% bootstrap confidence interval

β̂1 β̂2 σ̂ 2
ε γ̂ θ̂ φ̂

Estimated 18.29 27.65 11.77 14.63 81.77 231.69
LCL −0.08 19.19 3.22 11.17 14.92 195.73
UCL 66.91 66.51 103.33 31.60 253.06 474.64

The model parameter vector � is estimated by means of the EM algorithm as
discussed in Section 4.1 and by using the software provided in Finazzi (2013).
The estimation result is reported in Table 1 with confidence intervals evaluated
by following the bootstrap approach discussed in Section 4.2 and M = 922.
Namely, 95% confidence intervals are obtained by evaluating empirical distribu-
tions on �̂s = {�̂(1), . . . , �̂(M)}. Note that the original number of bootstrap runs
was M = 1000, but 78 runs have been ignored after testing the estimated param-
eters against anomalous values. In fact, the EM algorithm is not guaranteed to
converge to the global maximum of the likelihood function. In this particular ap-
plication, the condition φ > 1500m has been considered to identify bad estimation
results, as values of φ higher than 1500m implies a very strong and unrealistic
competition between the newsstands.

The empirical variance–covariance matrix of �̂ is reported in Table 2 and it
can be compared with the approximated Hessian matrix evaluated by considering
equation (4.9) and reported in Table 3. In particular, it can be noted that the approx-
imated Hessian matrix tends to underestimate the variances related to the elements
of �̂ .

As expected, the β coefficients related to the covariates are both positive in sign.
The coefficient β1 related to the spatial density of the joint-stock companies is
characterized by a larger confidence interval with lower control limit −0.08. Since
the confidence interval is an approximation based on bootstrap runs, the covariate
is retained.

TABLE 2
Empirical variance–covariance matrix of �̂ based on 922 bootstrap runs

β1 β2 σ 2
ε γ θ φ

β1 303.00 31.87 207.95 50.04 108.58 700.60
β2 217.28 450.01 90.42 899.77 1091.76

σ 2
ε 6180.13 206.79 4343.86 2725.23

γ 51.04 30.94 578.37
θ 8941.41 693.87
φ 7268.92
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TABLE 3
Approximated Hessian matrix for �̂

β1 β2 σ 2
ε γ θ φ

β1 158.83 −2.97 −46.78 14.78 −23.55 231.79
β2 66.68 −46.53 14.70 −23.42 230.56

σ 2
ε 5274.86 −207.60 2915.79 −371.20

γ 14.10 −99.79 117.26
θ 4412.62 −186.89
φ 1839.45

The estimated θ̂ � 82m suggests that the potential q , net of the covariate, is not
highly spatially correlated. Moreover, as supported by φ̂ � 231m, the competition
between nearby newsstands is quite strong and two newsstands 200m apart mea-
sure/absorb (on average) only 70% of the actual market potential at their locations.

Given �̂ , considering equation (4.14), the market potential q
�̂

(s) is estimated
over the area of the city of Bergamo as depicted in Figure 4. For each s ∈ D,
q
�̂

(s) provides the daily average newspaper number of copies that would be sold
by a newsstand if placed at s without any other newsstand in D. The maxima of
q
�̂

(s) correspond to commercially strategic areas that should be served by at least
one newsstand. The global maximum is equal to 79.86 yearly average newspaper
copies and it is located at 45.6930◦ latitude and 9.6640◦ longitude. The estimated

FIG. 4. Estimated potential q
�̂

(s) (average daily number of copies) over the area of the city of
Bergamo.



96 F. FINAZZI

FIG. 5. Estimated latent variable ŵ(s) over the area of the city of Bergamo.

latent variable ŵ(s) is displayed in Figure 5. It can be noted that its role is more
pronounced in the city center where, apparently, the covariates are less capable of
explaining the observed market potential. The estimated conditional market poten-
tial q

�̂
(s; S), depicted in Figure 6, provides the daily average newspaper number

of copies that would be sold by a newsstand if placed at s given the current news-

FIG. 6. Estimated conditional potential q
�̂

(s; S) (average daily number of copies) over the area
of the city of Bergamo.
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FIG. 7. Bootstrap standard deviation map of the estimated conditional potential q
�̂

(s; S).

stands located at S . Thus, the maxima of q
�̂

(s; S) represent the spatial locations
where it would be profitable to open additional newsstands. Finally, the bootstrap
standard deviation of the estimated conditional market potential, representing its
uncertainty, is shown in Figure 7.

The total market volume related to the economic newspaper and the Bergamo
area has been evaluated following the procedure discussed in Section 4.4. Figure 8
shows the total market volume and its 95% confidence interval with respect to the
number of newsstands. Note that the market volume stabilizes at around 688 aver-
age daily copies after 200 newsstands. This is a consequence of the fact that 200
newsstands absorb most of the market potential and adding more newsstands does
not increase the total market volume significantly. Also, note that the optimized re-
tail network of 75 newsstands absorbs a market volume equal to 646 copies, which
corresponds to 94% of the maximum market volume and is 30.8% higher than the
market volume absorbed by the actual retail network.

In light of this result, the publisher of the economic daily newspaper can con-
sider improving the retail network in order to increase the daily market volume.
Additional newsstands can be opened only with the consent of the municipal au-
thority and, since the economic newspaper represents a small part of the daily rev-
enue of a newsstand, it cannot be guaranteed that the additional newsstands would
be opened where the market potential of the newspaper is high. Nevertheless, the
Italian market of daily newspapers is undergoing a liberalization phase and the
publisher should start thinking of new forms of retailing.
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FIG. 8. Total market volume with respect to the number of newsstands and 95% confidence interval
based on 922 bootstrap runs.

6. Conclusions. The geostatistical potential model has been proven to be an
essential statistical tool for the estimation of the spatial market potential of a re-
tail product from its sales data. The model output is immediately and easily inter-
pretable (uncertainty included), as it is provided in the form of spatially continuous
surfaces and with the same unit of measure of the original data.

The geostatistical potential model has been successfully applied to the estima-
tion of the spatial market potential and to the total market volume of an economic
daily newspaper for the city of Bergamo, Italy. The analysis of the results allows us
to conclude that the daily sales volume can be significantly increased by focusing
on the areas of the city which are characterized by a high market potential but they
are not properly covered by the retail network.

Future extensions of the model include the introduction of the time variable, in
order to describe and study the temporal fluctuations of the spatial market poten-
tial, and the relaxation of the equally-effectiveness property, in order to address the
case of stores characterized by a different degree of attractiveness.

As a final remark, it is worth noting that the geostatistical potential model can be
applied outside the geomarketing field. For instance, the sales data of the chemists
of a city with respect to a drug can be analyzed in order to assess the diffusion of
a disease in terms of a spatially continuous surface. More generally, the model can
be applied in the case where the data related to a set of statistical units are available
in aggregated form (e.g., due to privacy reasons) but they are georeferenced with
respect to precise points in space.
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APPENDIX A: LATENT VARIABLE ESTIMATION

The Gaussian latent variable w is estimated by applying the usual formulas of
the multivariate normal distribution. In particular,

ŵ = E�(k)(w | y)

= �wy�
−1
y

[
y − E(y)

]
(A.1)

= �wy�
−1
y

[
y − G(1μ + Xβ)

]
,

where

�y = Var
[
G(1μ + Xβ + γ w + ε)

]
= G Var[γ w + ε]G′

= G
(
γ 2�w + �ε

)
G′

and

�wy = E
[
(w − 0) · [

y − E(y)
]′]

= E
[
w · (γ Gw)′

]
= γ�wG′.

The variance of the estimated ŵ is given by

Â = Var�(k)(w | y)
(A.2)

= �w − �wy�
−1
y (�wy)

′.
When y is characterized by missing data, equations (A.1) and (A.2) become

ŵ = (
�wyL′)(L�yL′)−1[

L
(
y − G(1μ + Xβ)

)]
,

Â = �w − (
�wyL′)(L�yL′)−1

(L�wy).

APPENDIX B: VECTOR AND MATRIX DERIVATIVES

The evaluation of the approximate Fisher information matrix defined in equation
(4.9) requires the computation of the vector derivatives ∂ε(�)/∂�i and the matrix
derivatives ∂�ε(�)/∂�i , 1 ≤ i ≤ |�|, with ε and �ε defined in equations (4.10)
and (4.11), respectively.

In the case of the spatial correlation function defined in equation (5.1) and the
interaction function defined in equation (5.2), the following derivatives hold:

∂ε(�)

∂�i

=

⎧⎪⎪⎨
⎪⎪⎩

−g, if �i = μ,
−g 
 xl , if �i = βl;1 ≤ l ≤ b,
−∂gφ 
 (1μ + Xβ), if �i = φ,
0, otherwise,

(B.1)
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∂�ε(�)

∂�i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gg′ 
 IN, if �i = σ 2
ε ,

2γ gg′ 
 �w, if �i = γ ,

γ 2gg′ 
 H
θ2 
 �w, if �i = θ ,

G̃ 
 (
γ 2�w + �ε

)
, if �i = φ,

0, otherwise,

(B.2)

where xl is the lth column of the matrix X and H is the distance matrix based on S .
Finally, the (pq)th element of the matrix G̃ is given by ∂gp ·gq +gp∂gq , where

gp is the pth element of the vector g and while the pth element of the vector ∂gφ

is given by

∂gp ≡ ∂gp

∂φ
= −

∑N
q �=p(hpq/φ2) exp(−‖sp − sq‖/φ)

[∑N
q �=p exp(−‖sp − sq‖/φ)]2

(B.3)

with hpq the (pq)th element of the matrix H.
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SUPPLEMENTARY MATERIAL

Data set and Matlab® code (DOI: 10.1214/12-AOAS588SUPP; .zip). Georef-
erentiated newsstand sales data and Matlab® code for the data analysis.

REFERENCES

BANERJEE, S., GELFAND, A. E. and POLASEK, W. (2000). Geostatistical modelling for spatial
interaction data with application to postal service performance. J. Statist. Plann. Inference 90
87–105. MR1791583

CLIQUET, G. (2006). Geomarketing: Methods and Strategies in Spatial Martketing. ISTE, London.
CRESSIE, N. and WIKLE, C. K. (2011). Statistics for Spatio-Temporal Data. Wiley, Hoboken, NJ.

MR2848400
DAVIS, P. (2006). Spatial competition in retail markets: Movie theaters. The RAND Journal of Eco-

nomics 37 964–982.
DE GRANGE, L., IBEAS, A. and GONZALEZ, F. (2011). A hierarchical gravity model with spatial

correlation: Mathematical formulation and parameter estimation. Netw. Spat. Econ. 11 439–463.
DIGGLE, P. J., MENEZES, R. and SU, T.-L. (2010). Geostatistical inference under preferential sam-

pling. J. R. Stat. Soc. Ser. C. Appl. Stat. 59 191–232. MR2744471
DIGGLE, P. J. and RIBEIRO, P. J. JR. (2007). Model-Based Geostatistics. Springer, New York.

MR2293378
FASSÒ, A. and CAMELETTI, M. (2010). A unified statistical approach for simulation, modeling,

analysis and mapping of environmental data. Simulation 86 139–154.
FASSÒ, A. and FINAZZI, F. (2011). Maximum likelihood estimation of the dynamic coregionaliza-

tion model with heterotopic data. Environmetrics 22 735–748. MR2843140

http://dx.doi.org/10.1214/12-AOAS588SUPP
http://www.ams.org/mathscinet-getitem?mr=1791583
http://www.ams.org/mathscinet-getitem?mr=2848400
http://www.ams.org/mathscinet-getitem?mr=2744471
http://www.ams.org/mathscinet-getitem?mr=2293378
http://www.ams.org/mathscinet-getitem?mr=2843140


GEOSTATISTICAL MODELING UNDER SPATIAL INTERACTION 101

FINAZZI, F. (2013). Supplement to “Geostatistical modeling in the presence of interaction between
the measuring instruments, with an application to the estimation of spatial market potentials.”
DOI:10.1214/12-AOAS588SUPP.

FISCHER, M. M. and WANG, J. (2011). Spatial interaction models and spatial dependence. In Spatial
Data Analysis 61–70. Springer, Berlin.

HUFF, D. L. (1964). Defining and estimating a trading area. The Journal of Marketing 28 34–38.
MCLACHLAN, G. J. and KRISHNAN, T. (2008). The EM Algorithm and Extensions, 2nd ed. Wiley,

Hoboken, NJ. MR2392878
MENG, X. L. and RUBIN, D. B. (1991). Using EM to obtain asymptotic variance–covariance ma-

trices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899–909.
REILLY, W. J. (1931). The Law of Retail Gravitation. Reilly, New York.
SHUMWAY, R. H. and STOFFER, D. S. (2006). Time Series Analysis and Its Applications: With R

Examples, 2nd ed. Springer, New York. MR2228626
XU, K. and WIKLE, C. K. (2007). Estimation of parameterized spatio-temporal dynamic models.

J. Statist. Plann. Inference 137 567–588. MR2298958

DEPARTMENT OF INFORMATION TECHNOLOGY

AND MATHEMATICAL METHODS

UNIVERSITY OF BERGAMO

VIALE MARCONI

5-24044 DALMINE (BG)
ITALY

E-MAIL: francesco.finazzi@unibg.it

http://dx.doi.org/10.1214/12-AOAS588SUPP
http://www.ams.org/mathscinet-getitem?mr=2392878
http://www.ams.org/mathscinet-getitem?mr=2228626
http://www.ams.org/mathscinet-getitem?mr=2298958
mailto:francesco.finazzi@unibg.it

	Introduction
	Background
	Spatial market potential estimation
	Geostatistical modeling

	The geostatistical potential model
	Introduction
	Model definition

	Parameter estimation and inference
	Parameter estimation
	Parameter confidence intervals
	Potential and conditional potential estimation
	Total potential estimation

	Case study
	Conclusions
	Appendix A: Latent variable estimation
	Appendix B: Vector and matrix derivatives
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

