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Multiple outcomes, both continuous and discrete, are routinely gathered
on subjects in longitudinal studies and during routine clinical follow-up in
general. To motivate our work, we consider a longitudinal study on patients
with primary biliary cirrhosis (PBC) with a continuous bilirubin level, a dis-
crete platelet count and a dichotomous indication of blood vessel malforma-
tions as examples of such longitudinal outcomes. An apparent requirement is
to use all the outcome values to classify the subjects into groups (e.g., groups
of subjects with a similar prognosis in a clinical setting). In recent years, nu-
merous approaches have been suggested for classification based on longitu-
dinal (or otherwise correlated) outcomes, targeting not only traditional areas
like biostatistics, but also rapidly evolving bioinformatics and many others.
However, most available approaches consider only continuous outcomes as a
basis for classification, or if noncontinuous outcomes are considered, then not
in combination with other outcomes of a different nature. Here, we propose
a statistical method for clustering (classification) of subjects into a prespeci-
fied number of groups with a priori unknown characteristics on the basis of
repeated measurements of several longitudinal outcomes of a different na-
ture. This method relies on a multivariate extension of the classical general-
ized linear mixed model where a mixture distribution is additionally assumed
for random effects. We base the inference on a Bayesian specification of the
model and simulation-based Markov chain Monte Carlo methodology. To ap-
ply the method in practice, we have prepared ready-to-use software for use
in R (http://www.R-project.org). We also discuss evaluation of uncertainty
in the classification and also discuss usage of a recently proposed method-
ology for model comparison—the selection of a number of clusters in our
case—based on the penalized posterior deviance proposed by Plummer [Bio-
statistics 9 (2008) 523–539].

1. Introduction.

1.1. Data and the research question. In clinical practice multiple markers of
disease progression, both continuous and discrete, are routinely gathered during
the follow-up to decide on future treatment actions. Our work is motivated by
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data from a Mayo Clinic trial on 312 patients with primary biliary cirrhosis (PBC)
conducted between 1974–1984 [Dickson et al. (1989)]. This longitudinal study had
a median follow-up time of 6.3 years with a large number of clinical, biochemical,
serological and histological parameters recorded for each patient. The data are
available in Fleming and Harrington (1991), Appendix D, and electronically at
http://lib.stat.cmu.edu/datasets/pbcseq.

With these data, we shall mimic a common problem from the clinical practice:
at a prespecified time point from the start of follow-up we want to use the values of
the markers of the disease progression to identify groups of patients with similar
characteristics. That is, we want to perform a cluster analysis using the longitu-
dinal measurements. With these motivating data, we perform a classification of
patients who survived without liver transplantation the first 910 days (2.5 years)
of the study (N = 260), the data being further referred to as PBC910. This corre-
sponds to the practical problem outlined above, that is, clustering of patients being
available at a given time point. For the purpose of this paper, the time point of
910 days was selected arbitrarily. Its choice in other application can, of course, be
driven by practical or other considerations. The following markers will be consid-
ered for the cluster analysis: continuous logarithmic serum bilirubin (lbili), discrete
platelet count (platelet) and dichotomous indication of blood vessel malformations
(spiders); see Figure 1.

In a clinical routine usually only the last available measurements reflecting the
current patient status are used to identify the prognostic groups—clusters. Clearly,
such a procedure ignores the available information on the markers’ evolution over
time, which might be more important for reasonable classification than simply the
last known state. To remedy this deficiency, we shall propose a clustering method
exploiting jointly the whole history of longitudinal measurements of all considered
markers which might have a different nature from being continuous to discrete, or
even dichotomous.

1.2. Basic notation and data characteristics. Let Yi,r = (Yi,r,1, . . . , Yi,r,ni,r
)�

denote a random vector of the longitudinal profile of the r th marker (r = 1, . . . ,R)
pertaining to the ith subject (i = 1, . . . ,N ). Further, let Yi = (Y�

i,1, . . . ,Y�
i,R)�

be a random vector of all longitudinal measurements on the ith subject and
Y = (Y�

1 , . . . ,Y�
N)� a random vector representing all available outcomes. As

usual, let yi,r,j ,yi,r ,yi ,y denote the observed counterparts of corresponding up-
per case random variables and vectors. Throughout the paper, we will assume
the independence of subjects, that is, independence of Y1, . . . ,YN . Furthermore,
let n = ∑N

i=1
∑R

r=1 ni,r be the total number of observations and let ti,r,j be the
times (on a study time scale) at which the individual values Yi,r,j (i = 1, . . . ,N ,
r = 1, . . . ,R, j = 1, . . . , ni,r ) were taken. Finally, let p(·) and p(·|·) be generic
symbols for (conditional) distributions.

In the PBC910 data and our application, the number of markers R equals 3.
As it is common with the longitudinal data, numbers ni,r of available measure-
ments of each marker varies (between 1 and 5) across patients (median 4), leading

http://lib.stat.cmu.edu/datasets/pbcseq
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TABLE 1
Data PBC910. Characteristics of the time points at which the longitudinal values of the markers for

clustering were taken. For each marker r and each visit j , n∗
r,j gives the number of available

measurements, med, Q1 and Q3 are the median, the lower and the upper quartile of the time points
in months when the measurements were taken

lbili (r = 1) platelet (r = 2) spiders (r = 3)

ti,r,j (months) ti,r,j (months) ti,r,j (months)

j n∗
r,j med (Q1–Q3) n∗

r,j med (Q1–Q3) n∗
r,j med (Q1–Q3)

1 260 0.0 (0.0–0.0) 256 0.0 (0.0–0.0) 260 0.0 (0.0–0.0)
2 248 6.1 (5.9–6.7) 241 6.1 (5.9–6.7) 247 6.1 (5.9–6.8)
3 226 12.2 (11.8–12.9) 224 12.2 (11.8–12.9) 224 12.2 (11.8–12.9)
4 181 24.3 (23.8–25.3) 180 24.3 (23.8–25.2) 180 24.3 (23.8–25.2)
5 3 23.4 (23.4–26.5) 2 23.4 (23.4–23.4) 2 23.4 (23.4–23.4)

to n = 2734. Further, the distribution of the time points ti,r,j also varies across
subjects and markers; see Table 1. However, note that the fifth visit which is avail-
able for only three patients is not outlying with respect to its timing from the rest
of the data set. Indeed, it only corresponds to patients with a slightly more fre-
quent visiting schedule. In summary, our longitudinal data are heavily unbalanced
and irregularly spaced in time, also containing 12 patients for whom only baseline
marker values at time t = 0 are available. It is our aim to also classify or at least
suggest a classification for those patients.

1.3. Existing clustering methods, the need for extensions. In the literature nu-
merous clustering methods applicable in many different situations are available.
Nevertheless, as we discuss below, none of them is applicable for our problem of
clustering where each subject is represented by a set of R, in general unbalanced
and irregularly sampled longitudinal profiles of markers which may have a differ-
ent nature starting from continuous and ending with a dichotomous one.

1.3.1. Classical approaches and a mixture model-based clustering. Apart
from classical approaches like hierarchical clustering or K-means method [see,
e.g., Hastie, Tibshirani and Friedman (2009), Chapter 13, Johnson and Wichern
(2007), Chapter 12] and their many extensions, model-based clustering built on
mixtures of parametric or even nonparametrically specified distributions assumed
for random vectors Y1, . . . ,YN has become quite popular in the past decade
[e.g., Fraley and Raftery (2002)]. This is probably partially due to the availabil-
ity of ready-to-use software like R [R Development Core Team (2012)] pack-
ages mclust of Fraley and Raftery (2006) for clustering based on mixtures
of multivariate normal distributions, earlier versions of the mixAK package de-
scribed by Komárek (2009) or mixtools of Benaglia et al. (2009), which also
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allows for nonparametric estimation of the mixture components. Another rapid
evolution of model-based clustering algorithms also originates from their need in
gene-expression data analysis [e.g., Newton and Chung (2010), Witten (2011)].
Nevertheless, classical approaches, model-based clustering based on mixtures of
distributions and many other related methods are not applicable in our context.

Some of the above mentioned methods rely on distances based on a suitable
metric between the observed values of underlying random vectors Y1, . . . ,YN be-
ing viewed as points in the Euclidean space of a certain dimension. However, in
our situation the dimension of each Yi is generally different for each subject and
typically random. Hence, it is even not possible to define a common sample space
needed to define a reasonable metric to calculate the distances.

For model-based methods, on the other hand, it is necessary to assume that the
random vectors Y1, . . . ,YN are independent and, given the classification, identi-
cally distributed according to a suitable (multivariate) distribution. Neither of these
can be assumed since for typical longitudinal data (including our PBC910 data)
the measurements are taken at different time points for each subject and, hence,
Y1, . . . ,YN are hardly identically distributed even if the number of measurements
was the same for all subjects (which is also not the case for our data).

1.3.2. Clustering based on a mixture of regression models. For data where
the ith subject out of N to be classified may be represented by one response ran-
dom variable Yi and a vector of possibly fixed covariates xi , several methods for
clustering based on mixtures of regression models have been developed. Among
the first, Quandt and Ramsey (1978) assume a two-component mixture of two
normal linear regressions. Extension into a general number of components and
also a practically applicable implementation is provided by Benaglia et al. (2009).
A variant of the clustering based on a mixture of regressions with application to
gene-expression data is given by Qin and Self (2006). A generalization, allow-
ing also for nonnormally distributed response random variables Y1, . . . , YN , is due
to Grün and Leisch (2007), who consider mixtures of generalized linear models.
To apply these methods for our application, the single response random variables
Yi,r,j could play the role of the response variables in the mixtures of regression
models and the time points ti,r,j the role of the fixed covariates. Nevertheless, the
clustering approaches based on mixtures of regression models are also ruled out in
our situation since (a) we cannot assume a single parametric distribution for all re-
sponse variables in the data since both continuous and discrete response variables
appear in our data set, (b) each subject is in general represented by more than one
pair (response, covariates).

1.3.3. Clustering approaches for functional data and stochastic processes.
For given r ∈ {1, . . . ,R}, a set {Y1,r , . . . ,YN,r} of longitudinal trajectories of the
r th marker could also be viewed as a set of functional observations or, in more
general, a set of realizations of a certain random process. A similar setting is also
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found in the applications in genomics where Yi,r is typically a vector representing
the expression curve of gene i over time. In the functional data or genomics lit-
erature, several clustering methods have been developed for situations when it is
possible to assume a decomposition of each observed value into

Yi,r,j = mi,r (ti,r,j ) + εi,r,j , i = 1, . . . ,N, j = 1, . . . , ni,(1)

where mi,r (t) is either the value of the underlying random functional or the mean
ith gene-expression at time t or, in general, the underlying stochastic process, and
εi,r,j (i = 1, . . . ,N, j = 1, . . . , ni,r ) are random variables with a zero mean and
either a common variance σ 2 or subject/gene specific variances σ 2

i (i = 1, . . . ,N).
Based on this model (1), James and Sugar (2003) and Liu and Yang (2009) devel-
oped methods for the clustering of functional data. Peng and Müller (2008) pro-
posed a distance-based clustering method and apply it to data from online auctions.
For the genomics applications, Ramoni, Sebastiani and Kohane (2002) present an
agglomerative clustering procedure based on the autoregressive model in equa-
tion (1). Another gene-expression clustering application based in fact on a mixture
of regression models in equation (1) is provided by Ma et al. (2006). In our situa-
tion, these methods could only be applied if there is only one continuous marker
available for each patient. Hence, with the PBC910 data, clustering would have to
be based only on either lbili values or platelet values if it was assumed that they
come from a continuous location-shift distribution. The dichotomous spiders val-
ues cannot be used at all.

1.3.4. Clustering based on mixture extensions of the mixed models. For the
analysis of the continuous longitudinal data, the linear mixed model [LMM, Laird
and Ware (1982)] plays a prominent role. For given r ∈ {1, . . . ,R}, it is based on
expression

Yi,r = x�
i,rαr + z�

i,rbi,r + εi,r , i = 1, . . . ,N,(2)

where xi,r and zi,r are vectors of fixed covariates containing the time points ti,r,j
(j = 1, . . . , ni,r ) and possibly other factors. Further, αr is a vector of unknown
regression parameters, bi,r are i.i.d. random variables—random effects with un-
known mean βr and a covariance matrix Dr , and εi,r are independent random
vectors with zero mean and a covariance matrix �i,r . To cluster subjects based on
the continuous longitudinal data, several approaches stemming from a mixture ex-
tension of the LMM (2) have been proposed in the literature. Verbeke and Lesaffre
(1996) assume a normal mixture in the distribution of random effects and apply
their method to clustering of growth curves, while Celeux, Martin and Lavergne
(2005) consider a mixture of linear mixed models and perform clustering of gene-
expression data. De la Cruz-Mesía, Quintana and Marshall (2008) proceed in a
similar way, however, they replace the x�

i,rαr + z�
i,rbi,r part of (2) by a nonlinear

expression in αr and bi,r .
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By a suitable choice of the covariate vectors and imposing a suitable structure
on the error covariance matrices �i , it is possible to use the LMM (2) also for the
analysis of R > 1 continuous longitudinal markers and for clustering based on it
as was done by Villarroel, Marshall and Barón (2009), or could be done using the
model of Komárek et al. (2010) who performed the discriminant analysis, though.
However, analogously to Section 1.3.3, all mentioned methods could be used for
our application only if we wanted to base the clustering only on lbili and/or platelet
values.

One possible strategy for clustering based on not only continuous longitudinal
profiles is to use a general form of the model proposed by Booth, Casella and
Hobert (2008) [equation (3) in their paper], where they assume that the (not nec-
essarily normal) distribution of longitudinal observations of a particular marker
depends on cluster-specific parameters and on a vector of random effects. Nev-
ertheless, except for this general definition, they focus in their paper on a linear
mixed model which is only applicable in situations when the observed longitudi-
nal markers are continuous.

A specific option which allows for clustering based on a single longitudinal
marker of a discrete nature is to replace the LMM (2) by a generalized linear mixed
model [GLMM, e.g., Molenberghs and Verbeke (2005)] and assume a suitable
mixture in the distribution of random effects [Spiessens, Verbeke and Komárek
(2002)]. An example of clustering based on such a model is shown in Molenberghs
and Verbeke (2005), Section 23.2. Nevertheless, it is still not possible to jointly use
all three (in general, all R) markers.

1.3.5. Objectives and outline of the paper. In previous paragraphs we gave
a brief overview of the most common classes of clustering approaches. We also
argued that none of them are capable of exploiting jointly irregular longitudinal
measurements of R ≥ 1 markers of different nature (continuous, discrete or even
dichotomous) as it is required by the PBC910 data. Even though our overview
is by no means exhaustive, we are not aware of any method that would meet such
needs. For these reasons we propose a clustering method that will be built upon the
multivariate extension (where the word “multivariate” points to the fact that R ≥ 1
markers will be modeled jointly) of the GLMM with a normal mixture in the dis-
tribution of random effects proposed by Spiessens, Verbeke and Komárek (2002),
[SVK], and Molenberghs and Verbeke (2005), [MV]. Not only did they model just
the R = 1 longitudinal outcome, but they also considered only a homoscedastic
normal mixture. Nevertheless, this is a rather restrictive assumption, especially in
our context where each mixture component should represent one cluster. Hence, to
have a better ground for clustering, the heteroscedastic mixture will be considered
in our proposal. Further, in their illustrations, [SVK] and [MV] usually included at
most bivariate random effects. This was probably due to the fact that as a method
of estimation they exploited the maximum-likelihood through the EM algorithm
which starts to be computationally troublesome for models with random effects
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of a higher dimension. For computational complexity implied by the multivariate
extension of the mixture GLMM, but not only because of this, we shall use the
Bayesian inference based on the Markov chain Monte Carlo (MCMC) simulation
here.

In Section 2 we next describe the multivariate mixture generalized linear mixed
model which will serve as the basis for our clustering procedure and show how
to apply it to the PBC910 data. The clustering procedure will be described, and
the clustering of patients from the PBC910 data will be performed in Section 3. In
Section 4 we discuss the possibility of estimating a number of clusters needed in
situations when this does not follow from the context. We evaluate the proposed
methodology in Section 5 on a simulation study and finalize the paper by a discus-
sion in Section 6.

2. Mixture multivariate generalized linear mixed model.

2.1. Model specification. Our proposed clustering procedure is based on a
multivariate mixture generalized linear mixed model (MMGLMM). We first ex-
press the conditional mean of each response profile using a standard GLMM, that
is,

h−1
r

{
E(Yi,r,j |αr ,bi,r )

} = x�
i,r,jαr + z�

i,r,j bi,r ,
(3)

i = 1, . . . ,N, r = 1, . . . ,R, j = 1, . . . , ni,r ,

where h−1
r is the link function used to model the mean of the r th marker, xi,r,j ,

zi,r,j are vectors of known covariates which may include a constant for intercept,
time values in which the longitudinal observations have been taken or any other
additional covariates. Further, αr is a vector of unknown regression coefficients
(fixed effects) and bi,r is a vector of random effects for the r th response specific
for the ith subject. We assume hierarchically centered GLMM [Gelfand, Sahu and
Carlin (1995)] where the random effects b1,r , . . . ,bN,r have in general a nonzero
and unknown mean, let’s say βr , r = 1, . . . ,R; see equation (5) below. Being
within the GLMM framework, we assume that for each i = 1, . . . ,N , r = 1, . . . ,R,
j = 1, . . . , ni,r , the conditional distribution p(yi,r,j |φr,αr ,bi,r ) belongs to an ex-
ponential family with the mean specified by (3), and possibly unknown disper-
sion parameter φr . In a sequel, let ψ = (φ�,α�)�, where α = (α�

1 , . . . ,α�
R)�,

φ = (φ�
1 , . . . , φ�

R )� is the vector of GLMM related parameters.
Further, let bi = (b�

i,1, . . . ,b�
i,R)� be a joint vector of random effects for the ith

subject (i = 1, . . . ,N). Dependence between the R longitudinal markers of a par-
ticular subject i represented by the response vectors Yi,1, . . . , Yi,R is taken into
account by assuming a joint distribution for the random effect vector bi which also
grounds our clustering procedure. We assume that the ith subject belongs to one of
a fixed number of K clusters (see Section 4 for possible approaches to choose K

if this does not follow from the context of the application at hand), each cluster
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with a probability wk = P(ui = k|w), (0 ≤ wk ≤ 1, k = 1, . . . ,K ,
∑K

k=1 wk = 1),
where ui ∈ {1, . . . ,K} is the ith subject allocation and w = (w1, . . . ,wK)�. We
further assume that the corresponding random effect vector bi follows a multivari-
ate normal distribution with an unknown mean μui

and a (generally nondiagonal)
unknown covariance matrix Dui

, that is,

p(bi |θ , ui = k) = ϕ(bi;μk,Dk), i = 1, . . . ,N, k = 1, . . . ,K,

where ϕ(·|μ,D) is a density of the (multivariate) normal distribution with a mean
μ and a covariance matrix D, and θ = (w�, μ�

1 , . . . ,μ�
K, vec(D1), . . . ,vec(DK))�

is a vector of unknown parameters related to the distribution of random effects.
That is, overall, we assume a multivariate normal mixture in the distribution of
random effects:

bi |θ i.i.d.∼
K∑

k=1

wk M V N (μk,Dk), i = 1, . . . ,N.(4)

With this approach, we represent the unbalanced longitudinal observations
Y1, . . . ,YN using a set of i.i.d. random vectors b1, . . . ,bN which allows us to
develop a clustering procedure based on ideas of the mixture model-based cluster-
ing introduced in Section 1.3.1.

Finally, we point out that given our model, the mean effect (in a total popu-
lation) of covariates included in the vectors zi,r,j , i = 1, . . . ,N, r = 1, . . . ,R,

j = 1, . . . , ni,r is given by

β =
K∑

k=1

wkμk.(5)

This is a vector composed of R subvectors, say, β1, . . . ,βR , which play the role
of the fixed effects for covariates included in the z-covariate vectors. Hence, for
identifiability reasons, it is assumed that the vectors xi,r,j and zi,r,j , i = 1, . . . ,N,

r = 1, . . . ,R, j = 1, . . . , ni,r do not contain the same covariates.

2.2. Likelihood, Bayesian estimation. For largely computational reasons, we
shall use the Bayesian inference based on the output from the MCMC simulation.
To this end, the model must be specified also from a Bayesian point of view. A pri-
ori, we assume the independence between the mixture related parameters θ and
the GLMM related parameters ψ . That is, the prior distribution p(ψ, θ) factorizes
as p(ψ, θ) = p(ψ) × p(θ). The factorization of the prior is typical in general-
ized linear mixed models and might be justified in our application because the
parameters involved in the ψ and θ vector, respectively, express different features
of the model. Specifically, for p(θ), we use a multivariate version of the classi-
cal proposal of Richardson and Green (1997) as prior distribution, and, for p(ψ),
we adopt classically used priors in this context [see, e.g., Fong, Rue and Wake-
field (2010)]. A detailed description of the assumed form of p(ψ, θ) is provided
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in Appendix A of the Supplementary Material [Komárek and Komárková (2013)]
where we also explain how to choose the prior hyperparameters in order to obtain
a weakly informative prior distribution.

The likelihood of the MMGLMM follows from (3) and (4):

L(ψ, θ) = p(y|ψ, θ) =
N∏

i=1

(
K∑

k=1

wkLi,k(ψ, θ)

)
,(6)

where

Li,k(ψ, θ) =
∫ {

R∏
r=1

ni,r∏
j=1

p(yi,r,j |φr,αr ,bi,r )

}
p(bi |θ , ui = k) dbi ,

(7)
i = 1, . . . ,N, k = 1, . . . ,K

is the contribution of the ith subject to the likelihood under the assumption that the
random effects are distributed according to the kth mixture component.

MCMC methods are used to generate a sample SM = {(ψ (m), θ (m)) : m =
1, . . . ,M} from the posterior distribution p(ψ, θ |y) ∝ L(ψ, θ)×p(ψ, θ). Namely,
a block Gibbs algorithm is used with the Metropolis–Hastings steps for those
blocks of model parameters where the normalizing constant of the full conditional
distribution does not have a closed form. A well-known identifiability problem
which arises from the invariance of the likelihood under permutation of the com-
ponent labels is solved by applying the relabeling algorithm of Stephens (2000),
which is suitable for mixture models targeted toward clustering in particular. For
details of the MCMC algorithm, refer to Appendix B of the Supplement [Komárek
and Komárková (2013)].

2.3. MMGLMM for the PBC910 data. The MMGLMM for the clustering of
patients included in the PBC910 data will be based on longitudinal measurements
of (1) logarithmic serum bilirubin (lbili, Yi,1,j ), (2) platelet counts (platelet, Yi,2,j )
and (3) dichotomous presence of blood vessel malformations (spiders, Yi,3,j ) with
assumed (1) Gaussian, (2) Poisson and (3) Bernoulli distribution, respectively. Ex-
ploration of the observed longitudinal profiles (see also Figure 1) suggests the
following form of the mean structure (3):

E(Yi,1,j |bi,1) = bi,1,1 + bi,1,2ti,1,j ,

log
{
E(Yi,2,j |bi,2)

} = bi,2,1 + bi,2,2ti,2,j ,(8)

logit
{
E(Yi,3,j |bi,3, α3)

} = bi,3 + α3ti,3,j ,

i = 1, . . . ,N , j = 1, . . . , ni,r , r = 1,2,3, where 1 ≤ ni,r ≤ 5. In model (8), ti,r,j
is the time in months from the start of the follow-up when the value of Yi,r,j was
obtained.
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In the main analysis, we will classify patients into two groups and, hence,
a two component mixture (K = 2) will be considered in the distribution of five-
dimensional random effect vector bi = (bi,1,1, bi,1,2, bi,2,1, bi,2,2, bi,3)

�, where
bi,1,1, bi,2,1, bi,3 are random intercepts from the GLMM for each marker and
bi,1,2, bi,2,2 are random slopes from the GLMM for the first two markers. The
model also involves the fixed effect α = α3, the slope from the logit model for
the third Bernoulli response and a dispersion parameter φ1 = var(Yi,1,j |bi,1), the
residual variance from the Gaussian model for the first marker, the logarithmic
bilirubin. Let σ1 = √

φ1 be the corresponding residual standard deviation. The
GLMM related parameters are thus ψ = (σ1, α3)

�. The results that we report are
based on 10,000 iterations of 1:100 thinned MCMC obtained after a burn-in period
of 1000 iterations. See Appendix C of the Supplement [Komárek and Komárková
(2013)] for a full Bayesian specification of the model, particular choices of the
hyperparameters, an illustration of the performance of the MCMC and detailed
results.

With respect to clustering, the most important parameters are the mixture
weights w1, w2 and the mixture means μ1, μ2 which characterize the clusters.
Their estimates taken to be the posterior means (denoted by ŵ1, ŵ2, μ̂1, μ̂2, resp.)
estimated from an appropriately relabeled MCMC sample are given in Table 2 to-
gether with the 95% highest posterior density credible intervals (HPD CI). The
first cluster is thus characterized by a remarkably lower baseline bilirubin level
and its slower increase over time compared to the second cluster. For the platelet
counts, there is almost no difference between the clusters at the baseline and only
a moderate difference with respect to the rate of its change, with the second clus-
ter showing a faster decline. Finally, blood vessel malformations exhibit a higher
probability in the second cluster compared to the first one. From the clinical point
of view, the first cluster exhibits more favorable values and also an evolution of all
three markers and, hence, it should correspond to patients with a better prognosis
compared to the second cluster. We confirm this conclusion in Section 3.1 upon
the classification of the individual patients.

To get a better idea of the meaning of the clusters, we used μ̂1 and μ̂2 together
with the posterior means of the GLMM related parameters ψ (see Table 2) and the
posterior means of the mixture covariance matrices D1 and D2 (see Table 3), and
calculated the estimates of the cluster specific (marginal) mean longitudinal evo-
lutions E(Y·,r,·|αr , u = k) = Eb{E(Y·,r,·|b,αr , u = k)}, k = 1,2, r = 1,2,3 over
time. These are plotted as green (k = 1) and red (k = 2) lines on Figure 1.

3. Clustering procedure. It follows from the decision theory for classifica-
tion [see Hastie, Tibshirani and Friedman (2009), Section 2.4] that the optimal
classification of the ith subject (i = 1, . . . ,N ) is to be based on the posterior com-
ponent probabilities πi,k = P(ui = k|y) (k = 1, . . . ,K). In our case, they are cal-
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TABLE 2
PBC910 data. Posterior means and 95% HPD credible intervals for mixture weights, mixture means

and GLMM related parameters

k = 1 k = 2

ŵ1 = E(w1|y) = 0.598 ŵ2 = E(w2|y) = 0.402
Parameter (0.471, 0.711) (0.289, 0.529)

Logarithmic bilirubin (lbili)
Intercept −0.209 1.102
μ̂k,1 = E(μk,1|y) (−0.332, −0.082) (0.828, 1.387)

Slope 0.00450 0.01281
μ̂k,2 = E(μk,2|y) (0.00056, 0.00818) (0.00476, 0.02108)

Residual std. dev. 0.314
σ̂1 = E(σ1|y) (0.294, 0.333)

Platelet count (platelet)
Intercept 5.58 5.46
μ̂k,3 = E(μk,3|y) (5.49, 5.65) (5.35, 5.58)

Slope −0.00567 −0.00828
μ̂k,4 = E(μk,4|y) (−0.00799, −0.00339) (−0.01354, −0.00306)

Presence of blood vessel malformations (spiders)
Intercept −4.33 −0.83
μ̂k,5 = E(μk,5|y) (−5.90, −2.88) (−1.66, −0.02)

Slope 0.0280
α̂3 = E(α3|y) (0.0026, 0.0532)

TABLE 3
PBC910 data. Standard deviations (on a diagonal) and correlations (off-diagonal elements) for

each mixture component derived from the posterior means D̂1 = E(D1|y) and D̂2 = E(D2|y) of the
mixture covariance matrices

Intercept Slope Intercept Slope Intercept
(lbili) (lbili) (platelet) (platelet) (spiders)

k = 1
Intercept (lbili) 0.428 0.031 −0.282 −0.086 0.326
Slope (lbili) 0.00837 0.040 −0.214 0.100
Intercept (platelet) 0.309 −0.039 −0.042
Slope (platelet) 0.0105 0.028
Intercept (spiders) 4.02

k = 2
Intercept (lbili) 0.776 −0.183 0.119 −0.139 0.171
Slope (lbili) 0.03090 −0.034 0.249 0.116
Intercept (platelet) 0.398 −0.046 −0.191
Slope (platelet) 0.0232 −0.043
Intercept (spiders) 2.42
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FIG. 1. PBC910 data. Observed values of the longitudinal markers. Thick lines show cluster-spe-
cific marginal mean evolution over time based on posterior means of the mixture means μ1 (green)
and μ2 (red). Observed values of dichotomous blood vessel malformations (spiders) are vertically
jittered.

culated by marginalization over the posterior distribution as

πi,k =
∫

pi,k(ψ, θ)p(ψ, θ |y) d(ψ, θ) = E
{
pi,k(ψ, θ)|y}

(9)

≈ 1

M

M∑
m=1

pi,k

(
ψ (m), θ (m)) = π̂i,k,

where by Bayes’ rule

pi,k(ψ, θ) = P(ui = k|ψ, θ,yi) = wkLi,k(ψ, θ)∑K
l=1 wlLi,l(ψ, θ)

,

(10)
i = 1, . . . ,N, k = 1, . . . ,K.
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The ith subject is classically assigned to the cluster gi for which π̂i,gi
is largest

among (9) [e.g., McLachlan and Basford (1988), Titterington, Smith and Makov
(1985)].

In non-Bayesian applications, the clustering procedure is usually based on the
values of p̂i,k = pi,k(ψ̂, θ̂), where ψ̂ and θ̂ are suitable estimates (e.g., maximum-
likelihood) of the model parameters. Only rarely the uncertainty in the estimation
of p̂i,k expressed by evaluating their standard errors or calculating the confidence
intervals is taken into account. This is probably because of the fact that pi,k(ψ, θ)

depend on the model parameters in a relatively complex way. In our case of the
MMGLMM, it is, for example, complicated by the necessity to integrate the GLM
likelihood over the assumed distribution of the random effects [see equation (7)],
which in general does not have an analytic solution.

With the Bayesian approach followed in this paper, the values of π̂i,k used for
clustering are the estimated posterior means of pi,k(ψ, θ) and with the MCMC-
based posterior inference, we can easily evaluate also the posterior standard devia-
tions (counterparts of the classical standard errors) or the credible intervals (coun-
terparts of the classical confidence intervals). These can be used to incorporate
an uncertainty in the classification which, for example, in the clinical setting of
the PBC910 data, can serve for the identification of subjects that should undergo
additional screening before their ultimate classification; see Section 3.1.

3.1. Clustering of patients from the PBC910 data. Classification of patients
according to the maximal value of the estimated posterior mean π̂i,k leads to 167
patients being classified in group 1 and 93 patients in group 2; see Figure 2. We
argued in Section 2.3 that from a clinical point of view, the first group should cor-
respond to patients with a better prognosis compared to the second group. With the
PBC910 data, it is possible to confirm this conclusion since the information con-
cerning the residual progression free survival time, defined as time till death due to
liver complications or till liver transplantation, is available in the form of the clas-
sical right-censored data. We calculated Kaplan–Meier estimates of the survival
probabilities based on data from patients classified in each group. These are plot-
ted as solid lines on Figure 3. Indeed, the survival prognosis of group 1 is much
better than that of group 2 with the estimated 5-year survival probability in group 1
of 0.934 compared to 0.554 in group 2, and the 10-year survival probabilities 0.679
and 0.141 in groups 1 and 2, respectively.

The fact that the posterior means πi,k of the patient specific component proba-
bilities characterize with different certainty the probabilities of the allocation for
different patients is illustrated by Figure 4. It shows the MCMC-based estimates of
the posterior distributions of the first component probabilities pi,1 = pi,1(ψ, θ) for
three selected patients who were all classified in a better prognosis group 1. For pa-
tient A, π̂i,1 = 0.990 with a very narrow 95% HPD CI of (0.970,1.000) and, thus,
her classification in group 1 is almost certain. This is further confirmed by her
progression-free survival time, which is almost 14 years. The posterior probability



190 A. KOMÁREK AND L. KOMÁRKOVÁ

FIG. 2. PBC910 data. Observed values of the longitudinal markers upon classification into K = 2
groups. The thick lines show cluster-specific marginal mean evolution over time based on posterior
means of the mixture means μ1 (green) and μ2 (red). Observed values of dichotomous blood vessel
malformations (spiders) are vertically jittered. Profiles of patients for whom the lower limit of the
95% HPD credible interval did not exceed 0.5 are drawn in light blue.
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FIG. 3. PBC910 data. Kaplan–Meier estimates of survival probability beyond 910 days in each
group (k = 1: green, k = 2: red) created using the clustering procedure. Solid lines: everybody clas-
sified using the maximal value of π̂i,k , dotted–dashed line: only patients for whom the lower limit of
the 95% HPD CI for the component probability exceeded 0.5 were classified.

of belonging to group 1 is lower for patient C (π̂i,1 = 0.667). Nevertheless, it is still
twice as high as the posterior probability of belonging to group 2 (π̂i,2 = 0.333)
and, hence, it seems that patient C also belongs most likely in group 1. On the other
hand, his progression-free survival time is only 3 years and 4 months (i.e., only 10
months beyond the time point at which we perform classification) and, hence, from
a clinical point of view, this patient should rather be classified in group 2. In this
case, the uncertainty in classification is expressed by a very wide 95% HPD CI
which is (0.168,1.000), covering the majority of the interval (0,1).

In clinical practice, the diagnostic procedure usually proceeds in several steps,
where in each step it is decided whether it is possible to classify a patient with
enough certainty or whether additional examinations are needed before the ulti-
mate classification is determined. Quite naturally, one of the diagnostic steps of
such a procedure could be based on calculated credible intervals for individual
component probabilities pi,k = pi,k(ψ, θ). The patient would be ultimately clas-
sified in one of the considered groups only if the lower limit of the corresponding
credible interval exceeds a certain threshold, say, 0.5 in the simplest case of clas-
sification into K = 2 groups. Applying this procedure to the PBC910 data lead to
126 patients being classified in group 1 and 70 in group 2. In total, 64 patients (41
and 23 originally classified in group 1 and group 2, respectively, see light blue pro-
files on Figure 2) remain without ultimate classification, and additional screening
or examinations would have been recommended for them before making a final
decision. The fact that the two groups consisting of only 126 + 70 ultimately clas-
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FIG. 4. PBC910 data. Histograms of sampled values of component probabilities pi,1(ψ, θ) for
three selected patients. Above the plot: estimated posterior mean π̂i,1 and the 95% HPD CI for
pi,1 = pi,1(ψ, θ).

sified patients better reflect the progression free survival status is illustrated by the
Kaplan–Meier survival curves (dotted–dashed lines on Figure 3), which are now
faster, diverting with the estimated 5-year survival probability in group 1 of 0.960
compared to 0.465 in group 2, and the 10-year survival probabilities 0.748 and
0.108 in groups 1 and 2, respectively.

4. Selection of a number of clusters. Until now, we assumed that the number
of clusters, K , was known in advance and fixed. In medical applications where
the found clusters are expected to correspond to certain prognostic groups, this is
quite a reasonable assumption. Nevertheless, in many other situations, the number
of clusters should rather be inferred from the data themselves.

With our approach, the selection of a number of clusters corresponds to the
selection of a number of mixture components in the underlying distribution of
the random effects of the MMGLMM. This can also be viewed as a problem of
model selection or model comparison. Nevertheless, as described, for example,
in McLachlan and Peel (2000), Chapter 6, the model comparison in the mixture
setting is complicated by the fact that the classical regularity conditions do not
hold. For this reason, use of various sorts of information criteria is predominantly
preferred to classical testing in most frequentist applications of the mixture models.
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In particular, the Bayesian information criterion [BIC, Schwarz (1978)] proved
to be a useful tool for selecting the number of mixture components [Dasgupta
and Raftery (1998), Fraley and Raftery (2002), Hennig (2004), De la Cruz-Mesía,
Quintana and Marshall (2008) and many others].

In Bayesian statistics, the Bayes factors [Kass and Raftery (1995)], for which
the BIC is an approximation, are widely recognized as a tool of model selection.
However, as pointed out by Plummer (2008), the Bayes factors have some practical
limitations. First, they cannot be routinely calculated from the MCMC output. Sec-
ond, they are numerically unstable when proper, but weakly informative diffused
priors (as it is in our case) are used. In Bayesian applications, the deviance infor-
mation criterion [DIC, Spiegelhalter et al. (2002)] seems to be the most widely
used concept of model selection in the past decade. Nevertheless, DIC in the mix-
ture context lacks the theoretical foundations and its use remains controversial
[see comments and rejoinder on Celeux et al. (2006)]. For these reasons, Plummer
(2008) suggested basing criteria for model choice on penalized loss functions and
cross-validating arguments. For mixture models, in particular, he suggested using
the penalized expected deviance (PED). Since then, it has been successfully ex-
ploited in several applications [Cabral, Lachos and Madruga (2012), De la Fé Ro-
dríguez et al. (2011), Komárek (2009)], and we shall use it as well to choose the
number of clusters.

The penalized expected deviance is defined as

PED = E
{
D(ψ, θ)|y} + popt,(11)

where D(ψ, θ) = −2 log{L(ψ, θ)} is the observed data deviance of the model, and
its posterior mean E{D(ψ, θ)|y} (expected deviance) is easily estimated from the
MCMC sample. Further, the popt part of equation (11) is the penalty term called
optimism, which can be estimated by using the two parallel MCMC chains and
importance sampling [Plummer (2008)].

4.1. Number of clusters in the PBC910 data. Table 4 shows calculated val-
ues of the penalized expected deviance for the PBC910 data and models with
K = 1,2,3,4 clusters. It shows that the two-component model fits the data clearly

TABLE 4
PBC910 data. Penalized expected deviance for models

with K = 1,2,3,4 clusters

K PED ̂E{D(ψ,θ)|y} p̂opt

1 14,277.9 14,241.8 36.1
2 14,164.1 14,088.3 75.8
3 14,183.1 14,057.1 126.0
4 22,405.1 17,244.4 5160.8
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better than a model with just a single cluster. On the other hand, the three clusters
are already too much for these data. Even though the expected deviance of the
three-component model is lower than that of the two-component model, the de-
crease of the expected deviance is overcome by the penalization for the additional
component.

The conclusion that the third cluster is redundant for our application is also
supported by the fact that when a three-component model is fitted to the PBC910
data, the two components almost coincide with the mixture components from the
K = 2 model and the estimated weight of the additional component is only ŵ3 =
0.021, and only three patients are allocated here using the rule based on a maximal
value of the posterior component probability.

5. A simulation study.

5.1. Simulation setup. The setup of the simulation study was motivated by the
PBC910 application and the data were generated according to the model (8). For
each subject i and each marker r , ni,r = 4 visit times were generated, with the first
visit time being equal to 0 and the remaining three visit times being generated from
uniform distributions on intervals (170,200), (350,390), (710,770) days, respec-
tively. The covariate ti,r,j in (8) was the visit time in months. The GLMM related
parameters were equal: σ1 = √

φ1 = 0.3, α3 = 0.05, and we tried two values for
the true number of clusters: K = 2 and K = 3. In the two-cluster data, both mix-
ture weights were rather high: w = (0.6,0.4)�, whereas in the three-cluster data,
a small third component with w3 = 0.06 was created by splitting the second com-
ponent of the two-cluster setting, leading to the weights w = (0.60,0.34,0.06)�.
To make the differences between the clusters less obvious, not all elements of the
mixture means varied across the clusters; see Table 5. Namely, in data with K = 2,
both clusters shared the same value of the mean slope of the Gaussian response and
also the same value of the mean intercept of the Poisson response. There were also
some differences introduced across the mixture covariance matrices; see Table D.1
in the Supplement [Komárek and Komárková (2013)]. Example data sets generated
according to considered simulation settings are also shown on Figures D.1 and D.2
of the Supplement.

To examine the performance of our method in situations when there is mis-
specification in the random effects distribution, we simulated data not only under
the normal distribution of random effects, but also under the shifted-scaled multi-
variate t-distribution with five degrees of freedom (MVT5). For each setting (K ,
distribution of random effects), we tried three values of sample sizes with total
numbers of subjects being 50,100,200. For each setting and each sample size,
100 data sets were generated. The posterior inference for each data set was based
on 10,000 iterations of 1:100 thinned MCMC obtained after a burn-in period of
1000 iterations.
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TABLE 5
Simulation study: (a) proportions of models selected with K = 1,2,3,4 using the PED criterion; (b) total classification error rate from a model with
correctly specified K ; (c) true values of mixture weights and mixture means; (d) square roots of the mean squared errors (MSE), where the calculated
MSE is based on posterior means as parameter estimates. For each parameter, the reported MSE is the average MSE over the K mixture components.

The N gives the true number of subjects in each cluster

Proportion (%) of
models selected with K

Setting w μ∗,1 μ∗,2 μ∗,3 μ∗,4 μ∗,5 α3

Classif. error
rate (%) 1 2 3 4

K = 2 True values
0.600 0.000 0.0100 5.00 −0.0050 −3.00 0.050
0.400 1.000 0.0100 5.00 −0.0200 −1.00

Square root of the MSE
Normal
N = (30,20) 0.169 0.237 0.0048 0.12 0.0039 1.84 0.029 15.8 67 33 0 0

(60,40) 0.064 0.150 0.0034 0.09 0.0018 0.86 0.018 7.8 15 85 0 0
(120,80) 0.037 0.066 0.0022 0.05 0.0010 0.46 0.014 5.8 1 99 0 0

MVT5

N = (30,20) 0.209 0.564 0.0134 0.36 0.0051 3.33 0.029 20.6 64 35 1 0
(60,40) 0.128 0.433 0.0103 0.47 0.0035 2.17 0.020 10.8 17 76 7 0
(120,80) 0.102 0.378 0.0049 0.16 0.0020 1.47 0.013 8.7 0 82 18 0

K = 3 True values
0.600 0.000 0.0100 5.00 −0.0050 −3.00 0.050
0.340 1.000 0.0100 5.00 −0.0200 −1.00
0.060 1.300 −0.0300 5.50 0.0000 −2.00

Square root of the MSE
Normal
N = (30,17,3) 0.154 0.444 0.0204 0.33 0.0073 5.04 0.027 26.5 80 18 2 0

(60,34,6) 0.088 0.360 0.0165 0.26 0.0054 3.07 0.018 17.4 36 50 14 0
(120,68,12) 0.048 0.260 0.0126 0.19 0.0034 1.58 0.015 10.1 2 59 38 1

MVT5

N = (30,17,3) 0.113 0.563 0.0237 0.52 0.0078 3.99 0.021 23.8 66 31 3 0
(60,34,6) 0.122 0.424 0.0211 0.31 0.0058 2.66 0.021 18.8 24 59 17 0
(120,68,12) 0.056 0.353 0.0196 0.22 0.0048 1.56 0.013 9.7 2 44 50 4
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5.2. Parameter estimates. The left block of Table 5 shows the square roots
of the mean squared errors (MSE) in the estimation of the most important model
parameters (mixture weights and means, GLMM fixed effects) provided that the
number of clusters, K , is correctly specified. As parameter estimates, we consid-
ered the posterior means, and for a particular parameter the reported MSE is the
average MSE over the parameter values from all K components. Detailed results
also providing the bias and the standard deviations of the posterior means are given
in Tables D.3—D.6 of the Supplement [Komárek and Komárková (2013)].

With normally distributed random effects, the posterior means of model param-
eters seem to provide consistent estimates of the model parameters. The same can
also be concluded when the true distribution of random effects is MVT5. Never-
theless, not surprisingly, the convergence of the parameter estimates to their true
values is in general slower in this case.

5.3. Classification error rates. With respect to classification, one of the most
important measures is the classification error rate reported in the ninth column of
Table 5. More detailed results, also showing conditional (given the cluster) clas-
sification error rates, are shown in Table D.2 of the Supplement [Komárek and
Komárková (2013)]. Among other things, we point out that even with incorrectly
specified distribution of random effects, the classification error rates do not differ
considerably from the error rates obtained with data for which the random effects
distribution was correctly specified, and even with a moderate sample size of 200
subjects, the achieved error rate is as low as 10%.

5.4. Selection of a number of clusters. Performance of the penalized expected
deviance as a tool for the selection of a number of clusters is illustrated by the
right block of Table 5. For each simulated data set, we estimated four models,
each of them under the assumption of a different number of clusters, namely, K =
1,2,3,4, and calculated the corresponding PED values. Table 5 shows proportions
of data sets for which a particular number of clusters was selected by minimizing
the PED. For each simulation setting, bold numbers indicate proportions of data
sets with a correctly selected number of clusters.

For data sets composed of two clusters both having rather high weights, the
probability of a selection of a correct model increases with the sample size, practi-
cally reaching 100% with N = 200, and normally distributed random effects. The
situation is slightly worse when the true distribution of random effects is MVT5.
Nevertheless, the results are also rather satisfactory in this case.

When there were three clusters present, with one of the clusters having a rather
small weight of 0.06, the probability of a correct selection of a number of clus-
ters also increases with the sample sizes (for both normally and MVT5 distributed
random effects). However, it is much slower than in the case of two clusters of
almost equal size. Nevertheless, we point out that already for the moderate sample
size of 200 subjects, in 97% and 94% of cases, respectively, the number of clusters
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indicated by the value of PED differs by at most one from the correct value of
three.

6. Discussion. In this paper we have proposed a method for classification of
subjects on the basis of longitudinal measurements of several outcomes of a differ-
ent nature which, according to the best of our knowledge, has not been considered
in the literature yet. The clustering procedure relies on a classical GLMM speci-
fied for each marker, whereas possible dependence across the values of different
markers is captured by specifying a joint distribution of all random effects. In con-
trast to a classical assumption, we assume a normal mixture in the random effects
distribution which is the core classification component of the proposed model. Al-
though other choices of the basis distributions could be considered as well, we
would like to stress the fact that with the Bayesian approach used here, the nor-
mality assumption only corresponds to a particular choice of just one component
of the overall prior distribution which is updated by the data. For example, the
posterior predictive distribution for random effects is given by

ppred(b) =
∫ {

K∑
k=1

wkϕ(b;μk,Dk)

}
p(θ |y) dθ ,

which in general is no longer a Gaussian mixture. In a similar way, the poste-
rior distribution enters the calculation of the posterior component probabilities (9)
while taking into account the uncertainty in the specification of the distribution
of random effects. Last but not the least, the simulation study also suggests that,
at least in situations when the true random effects distribution is symmetric with
heavier tails, assuming a priori a normal random effects distribution does not have
any crude impact on classification error rates.

Being within the Bayesian framework, it is also relatively easy to calculate
not only point estimates of the individual component probabilities, but also corre-
sponding credible intervals which can be subsequently used to evaluate uncertainty
in the pertinence of a particular subject in a specific cluster. Such uncertainty is
only rarely evaluated in similar situations. Finally, we adapted recently published
methodology for model comparison based on the concept of a penalized expected
deviance to explore the optimal number of clusters.

Further, we point out that even though we classified in this paper only those
subjects who were also used to draw the posterior inference on the model pa-
rameters, our procedure can also be used to classify a new subject with a value
of observed longitudinal markers equal to ynew and unknown allocation unew. In-
deed, given the posterior sample SM from p(ψ, θ |y), the component probabil-
ities pnew,k(ψ

(m), θ (m)) and estimated posterior component probabilities π̂new,k

(k = 1, . . . ,K) can be calculated using expressions (10) and (9), and then used for
classification. Finally, it is worth mentioning that discriminant analysis, where a
training data set with known cluster allocation is available, would also be possible
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with only slightly modified methodology where separate posterior samples would
be drawn using the data from the various clusters and then used to calculate the
component probabilities.

For practical analysis, we extended the R package mixAK [Komárek (2009)]
to cover the methodology proposed in this paper. The package is freely available
from the Comprehensive R Archive Network at http://cran.r-project.org/.
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SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/12-AOAS580SUPP; .pdf). The pdf file contains
(A) more detailed description of the assumed prior distribution for model pa-
rameters, giving also some guidelines for the selection of the hyperparameters to
achieve a weakly informative prior distribution; (B) more details on the posterior
distribution and the sampling MCMC algorithm; (C) additional information to the
analysis of the Mayo Clinic PBC data; (D) more detailed results of the simulation
study.
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