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A new family of tree models is proposed, which we call “differential
trees.” A differential tree model is constructed from multiple data sets and
aims to detect distributional differences between them. The new methodol-
ogy differs from the existing difference and change detection techniques in
its nonparametric nature, model construction from multiple data sets, and ap-
plicability to high-dimensional data. Through a detailed study of an arson
case in New Zealand, where an individual is known to have been laying veg-
etation fires within a certain time period, we illustrate how these models can
help detect changes in the frequencies of event occurrences and uncover un-
usual clusters of events in a complex environment.

1. Introduction. We propose a new family of tree models that can be used
to uncover distributional differences between multiple data sets. These models,
which we call “differential trees,” are suitable for solving sophisticated, multivari-
ate problems. They can be applied, for instance, to change detection and work
effectively in an online surveillance fashion.

The research was motivated by a real-world problem. Fire service departments
are often interested in detecting changes in the frequencies of different types of fire
incidents, automatically from large amounts of data and informatively to shed light
on potential causes. This change detection problem is certainly not unique to fire
incidents. Similar problems can easily be found in many fields such as climatology,
epidemiology and economics.

To investigate the problem in depth, one particular scenario has been chosen
as a case study, and is used exclusively in this paper to illustrate and investigate
the new methodology. It was known that an individual had been laying vegetation
fires between October 2006 and January 2007 in the urban area of Blenheim, New
Zealand. The New Zealand Fire Service wishes to be able to automatically detect
such a sequence of events as early as possible and isolate them from the rest. At
first glance, there seems to be a lack of information to relate the scenario to fre-
quency change detection, since no fire maliciously set by an individual could be
definitely known as such in reality. However, a surrogate variable can be used. All
fire incidents are categorized by on-the-spot fire fighters as either suspicious or not.
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Since the maliciously-set fires should be highly correlated to those labeled suspi-
cious, we turn the vaguely-defined practical problem into one of detecting changes
in the frequencies of: (a) suspicious and other fires, (b) suspicious fires only, as a
more direct approach, or (c) fire incidents of a different categorization, as a less
direct approach. We consider the frequency changes as distributional differences.

The problem above poses a number of challenges for traditional change de-
tection methods that rely on parametric assumptions [Basseville and Nikiforov
(1993), Gustafsson (2000), Poor and Hadjiliadis (2009)]. For this and similar prob-
lems, there may exist a number of potentially relevant variables, which can be ei-
ther numerical or categorical and may contain missing values. The distribution of
fire incidents may depend on many factors, such as geographical, seasonal, time-
of-day and day-of-week effects, and is simply impossible to model parametrically.
Moreover, an arsonist may operate in certain time periods and in certain neighbor-
hoods, and light fires of certain types.

By contrast, the proposed methodology is particularly suitable for solving such
problems. Though belonging to the family of tree models [Breiman et al. (1984),
Morgan and Sonquist (1963), Quinlan (1993)], a differential tree is constructed
from multiple data sets, as opposed to from a single data set by a conventional
method, and purpose-built for difference detection. Intuitively, the method stacks
the data sets on top of one another (imagine a two-dimensional case) and then,
via recursive space partitioning of tree-structured models, looks for the local areas
with heterogeneity. By ignoring variations in individual data sets that are common
to all and thus irrelevant to changes, such as geographical and seasonal effects in
the arson case, it makes more efficient use of data information than an approach
that builds one model from each data set. Hence, it achieves a gain in power which
is similar in spirit to that of the paired t-test or blocking in experimental design.

The arson data used throughout the paper contains information for all fire inci-
dents that occurred within and around Blenheim, a moderately sized town (popula-
tion 30,200), between 1/Jan/2004 and 31/Dec/2007, as stored in 11 variables, with
names, meanings and possible values given in Table 1. During the quadrennial pe-
riod, there were a total of 704 fire incidents, 171 of which were labeled suspicious.
Two variables, heatsource and objignited, contain, respectively, 342 and
275 missing values. Pairs of disjoint subsets of the data will be produced in var-
ious ways below, and will be used to construct differential trees. Our main focus
will be on contrasting the subsets in two biennial periods, 2004–2005 and 2006–
2007, to uncover the unusual cluster(s) of fire incidents in the latter period that
are likely related to the arson case. We shall also apply the methodology in a se-
quential detection fashion and compare two consecutive annual periods by shifting
time periods progressively. Random subsets will also be produced by permutation
or bootstrapping for assessing and enhancing performance.

The rest of the paper is organized as follows. Section 2 briefly reviews the prob-
lem of change detection and tree models and gives an overview of the proposed
methodology. Section 3 describes in detail the differential tree models and their
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TABLE 1
Variables

Name Meaning Values

x Map grid east Real
y Map grid north Real
Urban Whether an urban

or rural area
{1 = urban, 0 = rural}

Alarm Alarm method code {1 = 111 emergency call, 2 = exchange phone call,
3 = running call, 4 = police/ambulance,
5 = private fire alarm, 6 = other}

Firetype Type of fire incident {1 = structure, 2 = mobile property, 3 = vegetation,
4 = chemical, 5 = rubbish, 6 = other}

Heatsource Heat source {1 = outside fire lit for lawful purpose, 2 = gas/liquid
fuelled equipment, 3 = solid fuelled equipment, 4 =
electrical equipment, 5 = hot object, 6 = fireworks,
7 = cigarette/smoking materials, 8 = act of nature,
9 = exposure fire}

Objignited Object ignited {1 = structure component, 2 = furniture/appliances,
3 = soft goods/bedding, 4 = decoration/recreational
materials, 5 = storage containers and materials,
6 = electrical equipments/tyres/insulators,
7 = outdoor items, 8 = hazardous substances
and fuels, 9 = other}

Time Time of day [0,24)

day Day of the
quadrennial period

{1,2, . . . ,1461}

Dayweek Day of the week {1 = Monday, . . . ,7 = Sunday}
label Category labeled

by fire fighters
{suspicious = suspicious fire, other = other
type}

construction. A primary study of the arson case is presented in Section 4. The
performance of the method will be assessed and enhanced in Section 5, with an
application in a sequential detection fashion given in Section 6. Section 7 inves-
tigates building differential trees using other responses, and Section 8 gives some
concluding remarks.

The data and computer code for carrying out the analysis presented in the paper
are given in the supplementary material [Wang et al. (2012)].

2. An overview.

2.1. Change detection. Change detection has a long history of research in
statistics, with a focus on detecting change points [Lai (1995), MacEachern, Rao
and Wu (2007), Page (1954), Shewhart (1931)]. These methods, however, rely on
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parametric assumptions and are applied to situations, such as industrial process
control, where such assumptions can be safely made.

Another very useful technique for detecting changes is scan statistics [Glaz,
Naus and Wallenstein (2001), Naus (1965)]. This technique looks for unusual clus-
ters of temporal or spatial events in a single data set by using a scanning window
to locate clusters of observations that differ in distribution from the rest. Because
of the high computational cost, it is only applicable to low-dimensional problems.

2.2. Tree models. Tree models are often used to solve difficult, high-dimen-
sional problems. There are two major families, classification and regression trees,
for a categorical and a continuous response variable, respectively [Breiman et al.
(1984)]. Other families also exist but are less used, for example, Poisson regression
trees for a count response [Chaudhuri et al. (1995), Therneau and Atkinson (1997)]
and survival trees for a failure time response with censoring [Davis and Anderson
(1989), Ishwaran et al. (2008)].

As in the references above, the basic idea of tree modeling is to partition the
space of explanatory variables recursively into increasingly smaller regions so that
a simple model fits well to the data in a minimal region. We call such a simple
model an atomic model, which can be, for example, the constant function or the
normal distribution for a continuous response, or a multinomial distribution for a
categorical response, as for regression and classification trees, respectively. A tree
model is the composite of the atomic models in the minimal regions and is best
represented by a rooted tree, in which a node corresponds to a region, a terminal
node a minimal region, and the branching under an internal node a space partition-
ing. Each internal node thus also has a subtree model.

Building a tree model typically consists of splitting and pruning stages. Splitting
proceeds in a top-down fashion, by selecting at each node a split in the form of
a logical condition from a large number of candidates, which aims to maximize
the homogeneity in subregions. Univariate binary splits are commonly used, for
example, x ≤ 3.5 for a continuous variable, or season = {spring, autumn}
for a categorical variable. Splitting continues until homogeneity is reached in a
region. An exhaustive splitting is generally beneficial, and allows for uncovering
relations hidden deep under the surface. However, a tree grown only by splitting
is likely to overfit the data. Hence, it is often followed by pruning, which replaces
spurious subtrees with their root nodes in a bottom-up fashion.

Terminal nodes are important for a tree model and the features of interest at
those nodes are described by the atomic models. We shall often use the word “pat-
tern” to specifically indicate a terminal node, including its associated region and
observations, atomic model, and assessment results.

2.3. Differential trees. In this paper we relate the methodology of tree mod-
eling to difference and change detection. By following the general methodology
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described in Section 2.2, a differential tree is built from multiple data sets to dis-
cover distinguishing patterns between them. Its atomic model is for observations
from all data sets, but only the parameters that account for differences in distribu-
tion are of direct interest and examined by a homogeneity test. In particular, we
will use the Poisson distribution for the count of observations at each level of the
response in each data set to form the atomic model, and contrast the event rates in
all data sets with a likelihood ratio test of homogeneity.

This new change detection method differs from those described in Section 2.1,
in its nonparametric nature and applicability to high-dimensional data. As for other
families of tree models, it has the advantages of fast training (relative to most
other data mining models), easy handling of different types of variables and deal-
ing nicely with missing values. The resulting models are easily comprehensible,
which can be important for change detection, since it helps suggest possible causes
behind complicated phenomena.

3. Building differential trees.

3.1. A likelihood-based framework. We adopt the likelihood-based approach
for building a differential tree and for subsequent analysis. Using the likelihood
for tree construction is not rare in the literature, but it sometimes takes an im-
plicit or approximate form. For example, for classification trees the information
gain splitting criterion of Quinlan (1993) is equivalent to using the likelihood ra-
tio test, whereas the χ2 criterion [Kass (1980)] and the Gini splitting criterion
[Breiman et al. (1984)] are approximations. Su, Wang and Fan (2004) use the like-
lihood method, in place of the least squares criterion, for building regression trees
and obtain simpler yet more accurate tree models in general. Using the likelihood
method for tree construction gives results a statistical interpretation, deals with
splitting and pruning in one framework, and permits the handling of many families
of atomic models in a coherent way. For building differential trees we take one
further step, by making use of the p-values of the likelihood ratio tests. In general,
this helps resolve several difficult issues: (a) splitting in multiple ways; (b) ad-
justing in the presence of missing values; (c) assessing patterns by their statistical
significance; and (d) adjusting for multiple hypothesis testing.

Within this framework, the likelihood ratio test or its statistic can also be conve-
niently used to assess and compare models, even if there exist nuisance parameters,
as in the case of differential trees. We will make extensive use of the fact that the
log-likelihood ratio statistic W is asymptotically χ2

ν , with degrees of freedom ν

equal to the number of free parameters for a simple hypothesis or the difference in
the number of free parameters for a composite one.

3.2. Likelihood ratio test. The Poisson distribution with probability mass
function

f (n;λ) = e−λ λn

n! , λ > 0, n = 0,1,2, . . . ,
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is widely used to model the number of occurrences of an event over time or in
space. Let Yi (i = 1,2) have the Poisson distribution with rate λi . For testing ho-
mogeneity

H0 :λ1 = λ2,

the log-likelihood ratio statistic is given by

W = 2{logf (Y1;Y1) + logf (Y2;Y2) − logf (Y1; Ȳ ) − logf (Y2; Ȳ )},
where Ȳ = (Y1 + Y2)/2. Under H0, W is asymptotically χ2

1 .
There are two parameters here, (λ1, λ2), or, with reparametrization, (λ1, λ2 −

λ1). The focus is on whether λ2 − λ1 = 0, while λ1 is a nuisance parameter.

3.3. Atomic models. Suppose there are d data sets and the response variable
has c levels. For node τ , let Dτ denote the data in its associated subregion, and
assume Y τ

ij (i = 1, . . . , c, j = 1, . . . , d), the number of observations of level i in
data set j , is Poisson distributed with mean λτ

ij in that subregion. The atomic model
thus has c × d unknown parameters, λτ

ij , or, equivalently,⎛⎜⎜⎜⎝
λτ

11 λτ
12 − λτ

11 · · · λτ
1d − λτ

11
λτ

21 λτ
22 − λτ

21 · · · λτ
2d − λτ

21
...

...
...

...

λτ
c1 λτ

c2 − λτ
c1 · · · λτ

cd − λτ
c1

⎞⎟⎟⎟⎠ .

Any nonzero difference in the matrix implies a distributional difference between
the data sets. Of direct interest to us is whether all the differences are exactly zero,
while those in the first column are nuisance parameters.

We can hence perform a homogeneity test under the null hypothesis

H0 :λτ
i1 = · · · = λτ

id for i = 1, . . . , c.(3.1)

Letting Ȳ τ
i = d−1 ∑d

j=1 Y τ
ij (i = 1, . . . , c), the log-likelihood ratio statistic be-

comes

W(τ ;Dτ) = 2

{
c∑

i=1

d∑
j=1

logf (Y τ
ij ;Y τ

ij ) −
c∑

i=1

d∑
j=1

logf (Y τ
ij ; Ȳ τ

i )

}
,(3.2)

which is asymptotically χ2
(d−1)c under (3.1). The test provides evidence for prefer-

ence between two settings of the atomic model.
As an example, consider the most significant pattern produced by the differential

tree shown later in Figure 2. This pattern covers 22 other and 0 suspicious fires
in the first data set, and 43 other and 41 suspicious fires in the second. The test
statistic value is

W = 2{logf (22;22) + logf (43;43) − logf (22;32.5) − logf (43;32.5)}
+ 2{logf (0;0) + logf (41;41) − logf (0;20.5) − logf (41;20.5)}

≈ 63.75,
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which yields a p-value of 1.4 × 10−14 under χ2
2 .

The appropriate atomic model depends on the problem under study. By assum-
ing equal rates, null hypothesis (3.1) implies that all data sets were obtained under
the same exposure, for example, over time periods of equal length. While this ap-
plies to our analysis presented below due to our special partitioning of the data set
on an annual basis, one could also consider the case where exposures are different.
If the exposures are known, say, ej for data set j , one needs to modify H0 to

H ′
0 : e1λ

τ
i1 = · · · = edλτ

id for i = 1, . . . , c,(3.3)

where λτ
ij is a rate per unit exposure. Reassigning Ȳ τ

i = ∑d
i=1 ejY

τ
ij /

∑d
i=1 ej , we

have

W ′(τ ;Dτ) = 2

{
c∑

i=1

d∑
j=1

logf (Y τ
ij ;Y τ

ij ) −
c∑

i=1

d∑
j=1

logf (Y τ
ij ; ej Ȳ

τ
i )

}
,

which is also asymptotically χ2
(d−1)c.

If, however, the exposures are unknown, it is impossible to test a null hypothesis
of type (3.1) or (3.3). Instead, one can investigate if every data set has the same
distribution for the proportions of all response levels, namely,

H ′′
0 :pτ

i1 = · · · = pτ
id for i = 1, . . . , c,(3.4)

where pτ
ij is the probability an observation in data set j is of level i. Therefore, one

can assume that (Y τ
1j , . . . , Y

τ
cj )

� has a multinomial distribution with probabilities

(pτ
1j , . . . , p

τ
cj )

�. The log-likelihood ratio statistic is

W ′′(τ ;Dτ) = 2

{
c∑

i=1

d∑
j=1

nτ
j log p̂τ

ij −
c∑

i=1

d∑
j=1

nτ
j log p̂τ

i

}
,

where nτ
j = ∑c

i=1 Y τ
ij , p̂τ

ij = Y τ
ij /nτ

j and p̂τ
i = ∑d

j=1 Y τ
ij /

∑d
j=1 nτ

j . Under H ′′
0 ,

W ′′ is asymptotically χ2
(c−1)(d−1).

Throughout our study, we assume that the underlying distribution of counts is
Poisson distributed, and only the null hypothesis (3.1) and the resulting statistic
(3.2) are used. In general, altering the atomic model alters the family of differential
trees being considered, but the framework for analysis remains the same.

3.4. Subtree models. Denote by T τ the subtree rooted at node τ and by T̃ τ

the set of its terminal nodes. The log-likelihood ratio statistic for T τ is given by

W(T τ ;Dτ) = ∑
t∈T̃ τ

W(t;Dt).(3.5)

The statistic W(T τ ;Dτ) is approximately χ2, with degrees of freedom given by
the sum of the degrees of freedom of the individual terms.
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3.5. Splitting. We only consider univariate binary splits, which use data infor-
mation most efficiently, allow surrogate splitting in the presence of missing values,
and treat numerical variables no differently from ordinal ones. We further turn cat-
egorical variables into ordinal ones by using their pre-given order of levels, instead
of considering all possible combinations. This avoids the overfitting introduced by
level grouping, which can be severe when a categorical variable has many levels.
It is also helpful when the pre-given levels are partially ordinal.

Without missing values, the primary split at node τ is determined by

sτ∗ = arg max
s∈Sτ

W(T τ
s ;Dτ),(3.6)

where T τ
s is the two-child-node tree defined by a univariate binary split s and Sτ

is the set of all candidate splits at node τ . For Sτ , we consider every explanatory
variable and every midpoint between two consecutive distinct values of the vari-
able from all data sets, but we exclude the cases where small subsets (having less
than a total of 5c observations, by default) are produced. With sτ∗ , all data sets are
split accordingly and the tree is grown with two new child nodes. The splitting
process starts with a single node for all data and proceeds in a top-down, recursive
style, until a stop-splitting criterion is met, for example, too few observations left.

To find the primary split in the presence of missing values, a slight adjustment
is made using p-values, which takes account of different sample sizes caused by
missing values. For the kth variable at node τ , denote by nτ

k the number of obser-
vations without missing values and by pτ

k∗ the smallest p-value of all likelihood
ratio tests for the nτ

k observations. The adjusted p-value is given by

p̃τ
k∗ = pτ

k∗ + γ
√

pτ
k∗(1 − pτ

k∗)/nτ
k ,(3.7)

where γ > 0 is a constant, which is defaulted to 2 in our implementation. Similar
in spirit to the 1-SE rule of Breiman et al. (1984), the adjustment tends to favor
variables with fewer missing values.

To determine the correct branch for an observation when the primary splitting
variable at a node has a missing value, a surrogate split can be used, as described
in Breiman et al. (1984), Section 5.3. A surrogate split is made using a different
variable, chosen so that the surrogate split is as similar to the primary split as
possible for the observations without missing values. We measure the similarity of
two splits by the number of common observations in their resulting subsets. An
ordered list of surrogate splits can be constructed according to their similarities to
the primary split.

3.6. Pruning. The pruning of an initially grown tree is necessary for removing
spurious subtrees. It works in a bottom-up style, by choosing either the atomic
model at an internal node or its subtree model. To do this, one could use the cost-
complexity measure, which here is just the log-likelihood penalized by the degrees
of freedom. For a subtree, it is defined as

Wα(T τ ;Dτ) = W(T τ ;Dτ) + α DF(T̃ τ ),
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where DF(T̃ τ ) is the number of degrees of freedom for all the atomic models in
T̃ τ and α the complexity parameter. Note that the atomic model at a node is just a
tree with a single node, so its cost-complexity measure is

Wα(τ ;Dτ) = W(τ ;Dτ) + α DF(τ ).

The pruning criterion is as follows:

Choose the model with the larger value of Wα.(3.8)

The value of α can be determined by a model selection criterion, such as AIC or
BIC, or cross-validation. In principle, replacing a subtree with its root node implies
that the event frequencies cannot be further differentiated between the data sets in
all subregions.

If the main goal for building a differential tree is to find the most significant
differences between data sets, we can simply preserve the most significant patterns
in a constructed tree. Let pmin(τ ) be the p-value of the hypothesis test performed
at the node τ , for example, the likelihood ratio test based on the statistic (3.2); and
pmin(T

τ ) be the smallest p-value of all hypothesis tests performed at the atomic
nodes of the subtree T τ . The new pruning criterion is as follows:

Choose the model with the smaller value of pmin.(3.9)

By doing so, each subtree preserves the node with the most significant pattern
and keeps it as a terminal node. This also facilitates the p-value adjustments, as
described in Section 5.1.

In addition, one may set up a threshold p-value, say, pcut, such that a sub-
tree is cut off directly if its pmin(T

τ ) ≥ pcut. It helps remove the less significant
patterns, while keeping the most significant ones. The tree model may thus be
greatly simplified and can be interpreted more easily. In our implementation, we
set pcut = 10−6 as default. For the arson case study, this roughly corresponds to
p′′ = 0.25; see Section 5.1 for the definition of p′′.

3.7. Pseudo code. To serve as a summary, Algorithm 1 gives the pseudo code
of the recursive function that we implemented for building a differential tree from
two data sets.

4. A primary study of the arson case.

4.1. Setup. In this section we compare two approaches to solving the arson
problem. Both use label as the response; one utilizes traditional classification
trees, and the other builds a differential tree directly. For our case study the latter
is more efficient at discovering differential patterns.

We divide the arson data set into two subsets, covering two time periods, 2004–
2005 and 2006–2007, respectively (and reset 1/Jan/2006 to day= 1 and similarly
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Algorithm 1 Differential Tree Construction (from Two Data Sets)
function difftree(D1, D2)
Require: Data sets D1 and D2

1: Create a terminal node τ

2: Compute W(τ ; (D1,D2)) and p-value, using (3.2)
3: if too few observations in D1 and D2 then
4: return τ

5: end if
6: Label τ as an internal node
7: for each predictor variable do
8: Find all potential splits from its distinct values in D1 and D2
9: Compute W(T τ

s ; (D1,D2)) for each potential split s, using (3.5)
10: end for
11: Find the primary split sτ∗ , using (3.6) [or (3.7) in the presence of missing val-

ues]
12: Find all surrogate splits of sτ∗
13: Use sτ∗ (and possibly surrogate splits) to partition D1 into (D1left,D1right) and

D2 into (D2left,D2right)

14: τ$left = difftree(D1left, D2left)
15: τ$right = difftree(D1right, D2right)
16: if τ is preferred over T τ by (3.9) then
17: Discard τ$left and τ$right and label τ as a terminal node
18: end if
19: return τ

the days after). The two subsets contain, respectively, 318 and 386 fire incidents,
of which 80 and 91 are suspicious. Both suspicious and other fires are included
in the study, because a maliciously-set fire is not necessarily labeled suspicious or
vice versa, and because it illustrates the application of the method to a multiple
category problem. In Section 7 we apply the proposed method to detect changes
in the frequencies of suspicious fires only, and of fire incidents with a different
categorization.

4.2. Two classification trees. To discover differential patterns, let us first con-
sider building two classification trees, one from each subset, and then testing all
the patterns induced from a classification tree against the other subset. The ratio-
nale is that classification trees, if constructed properly, are consistent estimators of
the underlying distributions [Breiman et al. (1984), Chapter 12] and thus their dif-
ferences are also consistent for estimating the true distributional differences. Note
that each individual classification tree is only built to model the underlying rela-
tion between the response and explanatory variables for a single data set and thus
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FIG. 1. Classification trees built from fire incidents in Blenheim during: (a) 1/Jan/2004–
31/Dec/2005 and (b) 1/Jan/2006–31/Dec/2007. Inside the parentheses at a node are the numbers
of observations for each response level, here “other” and “suspicious.”

inevitably may include patterns that are common with the other, for example, for
seasonal effects.

We use the R package “rpart” [Therneau and Atkinson (1997)] for classifi-
cation tree construction. The classification tree built from the first subset is shown
in Figure 1(a). The tree identifies three situations or patterns, as also listed in the
upper part of Table 2, in ascending order of their estimated proportions of suspi-
cious fires. To eliminate the patterns that are irrelevant to differences, we test them
against the second subset, using (3.2). Hence, the remaining significant patterns
can only be attributed to the distributional differences between the two subsets. Af-
ter this screening, only pattern 2 remains significant, with a p-value of 1.2×10−3.
Nonetheless, its significance is mainly due to an increase of “other” in 2006–2007,
rather than a change in the frequency of suspicious fires.

Analogously, we can find patterns from the second subset and test them against
the first subset. The classification tree built from the second subset is shown in
Figure 1(b). It contains five patterns, as listed in the lower part of Table 2. Pat-
tern 7 is the most significant, with a p-value of 4.5 × 10−7, which corresponds to
a remarkable increase of 20 suspicious fires and appears to be related to the arson
case. Specifically, it indicates a significant increase in the proportion of suspicious
fires between day 329 (25/Nov/2006) and day 371 (6/Jan/2007), for time after
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TABLE 2
Patterns obtained from each of the two classification trees and tested by their covered observations

in both subsets

2004–2005 2006–2007

Pattern Other Suspicious Proportion Other Suspicious Proportion p-value

(a) Training set Test set

1 103 5 0.046 90 2 0.022 3.3 × 10−1

2 122 44 0.265 183 55 0.231 1.2 × 10−3

3 13 31 0.705 22 34 0.607 2.9 × 10−1

(b) Test set Training set

4 105 7 0.062 94 3 0.031 3.2 × 10−1

5 77 38 0.330 129 18 0.122 3.4 × 10−5

6 36 17 0.321 60 21 0.259 3.9 × 10−2

7 15 0 0.000 9 20 0.690 4.5 × 10−7

8 5 18 0.783 3 29 0.906 2.1 × 10−1

7:12 am, with heat source that includes cigarettes/matches/candles. It possesses a
very different characteristic from pattern 8, which classifies fires as highly suspi-
cious that occur between 0:00 am and 7:12 am, due to heat source ≥ 7. However,
with a p-value of 0.21, pattern 8 does not suggest a change, although it merits
further investigation by itself. Pattern 5 is also highly significant but corresponds
to a decrease of 38 − 18 = 20 suspicious fires, as well as a substantial increase of
129 − 77 = 52 other fires; this change occurred after day 371 (6/Jan/2007).

4.3. One differential tree. A differential tree between the two subsets is con-
structed, as shown in Figure 2, which contains six terminal nodes. The most sig-
nificant, with a p-value of 1.4 × 10−14, appears to relate directly to the arson case.
Specifically, it suggests that a change has occurred between day 284 (11/Oct/2006)
and day 383 (18/Jan/2007), with all types but property fires. The change is due to
a substantial increase of 41 − 0 = 41 suspicious fires, as well as an increase of
43− 22 = 21 other fires. To gain more information about these 41 suspicious fires,
the histograms/barplots for all predictor variables are shown in Figure 3. These
fires are exclusively due to heatsource = 7 (=cigarettes/matches/candles),
mainly of firetype = 3 (=Vegetation), largely distributed along a horizontal
strip (variable y), and having an increasing trend over time (variable day).

The second most significant pattern has a p-value of 4.5 × 10−10 and specifies
a situation where there is a decrease in the number of suspicious fires and yet an
increase in the number of other fires. This change took place between day 420
(24/Feb/2007) and day 586 (9/Aug/2007).

Note that the general conclusions drawn here are similar to those in Section 4.2.
This is not really surprising, since both methods provide consistent estimators
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FIG. 2. Differential tree built directly by contrasting the fire incidents from 1/Jan/2004–
31/Dec/2005 with those from 1/Jan/2006–31/Dec/2007. Each pair of parentheses at a node con-
tains the numbers of observations for all response levels in a data set, and for the arson data here
(#other, #suspicious). Any p-value less than 10−5 is marked “***.”

for detecting differences between the two underlying distributions. However, we
should also notice that the patterns found by the differential tree, that searches for
changes directly by ignoring irrelevant patterns, are statistically much more signif-

FIG. 3. Histograms/barplots for the 41 suspicious fires covered by the most significant pattern.
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icant [even using the properly adjusted p-value (5.4) or (5.5)]. This suggests that
differential trees are the more efficient approach to change detection. There must
therefore be situations where real changes can be detected by the differential tree
approach, but not by the other, and especially so when a data set contains many
significant patterns not attributable to changes.

5. Performance assessment and enhancement.

5.1. Significance adjustment. Since “significant patterns” can always be found
with an exhaustive search, one should consider their possible spuriousness. In the
following, we consider adjusting p-values using the Bonferroni and the permuta-
tion method.

The Bonferroni method is the simplest and most conservative. For m tests per-
formed, it adjusts their smallest p-value, say, p, by

p′ = min{mp,1}.(5.1)

For building the differential tree shown in Figure 2, there are 13,414 tests per-
formed in total. This includes all candidate splits examined at the splitting stage,
including those at the nodes that are cut off later, but not any comparisons at the
pruning stage due to their irrelevance in determining the minimum p-value. Its
adjusted p-value for the most significant pattern is thus

p′ = 13,414 × 1.4 × 10−14 ≈ 1.9 × 10−10,(5.2)

which remains highly significant, despite the conservativeness of the method.
The permutation method adjusts a p-value by using it as a statistic and is based

on the fact that, under the null hypothesis, the adjusted p-value has the uniform
distribution on [0,1]. The p-value to be adjusted can be either p or p′ in (5.1),
and, for the arson data, it does not appear to make much difference. In general, we
are inclined to use p′ since it guards against the situation where an extremely small
p-value is produced through an exhaustive search. The empirical null distribution
can be obtained by permuting either the entire data under investigation, which may
nonetheless contain irregular changes and hence reduce the power of detection, or,
better, some comparable, “clean” historical data. For the arson case, we choose to
permute the entire data here, and later in Section 6 some historical data.

Specifically, our adjustment proceeds as follows. Each observation in the two
subsets created in Section 4.1 is randomly reallocated to either the first or sec-
ond biennial period by tossing a fair coin (without changing its date within a
biennial period), thus ensuring the null hypothesis (3.1) is satisfied. This shuf-
fling destroys all distributional differences between the two periods, but pre-
serves all the relations among the variables such as geographical clusters and
seasonal effects. For each pair of random subsets, a differential tree is con-
structed, and a minimum p-value obtained and adjusted by (5.1). With R (=1000
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throughout the paper) random replications, R copies of the p′-value are obtained
and ordered into p′

(1) ≤ · · · ≤ p′
(R), whose self-adjusted values are, respectively,

1/(R + 1), . . . ,R/(R + 1), namely, their expectations under the null hypothesis.
Letting p′

(0) = 0 and p′
(R+1) = 1, a new p′ can be adjusted by interpolation:

p′′ = j + r

R + 1
if p′

(j) ≤ p′ ≤ p′
(j+1), j = 0, . . . ,R,(5.3)

where r = (p′ − p′
(j))/(p

′
(j+1) − p′

(j)).

From the 1000 differential trees constructed, we obtained p′
(1) = 8.4 × 10−6,

and, therefore, the permutation adjusted p-value for the most significant pattern in
the differential tree shown in Figure 2 is

p′′ = 1.9 × 10−10/8.4 × 10−6

1001
≈ 2.3 × 10−8.(5.4)

This is still an extremely small p-value, indicating that it is highly unlikely that
this discovered pattern occurred purely by chance.

Figure 4 shows the minimum p-values from the first 100 permutations, along
with their adjustments. Despite the pure randomness of the permutations, the min-
imum p-values produced by differential trees are remarkably small, indicating the
necessity of adjustment. What surprises us most, as can also be seen in results given
later, is that p′′ is almost always larger than p′, because the Bonferroni adjustment
is theoretically the most conservative. How could this happen? We think that the
reason may lie in the fact that, conditional on the data, patterns with the smallest
p-values are sought in a deterministic manner, and this has some similarity to a
deterministic optimization process, which violates the underlying assumption of

FIG. 4. Minimum p-values and adjustments in the differential trees constructed from the first 100,
out of 1000, random permutations of the 4-year data.
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randomness for multiple hypothesis testing. If this is true, it has profound impli-
cations for many modern statistical methods of modeling and hypothesis testing
that involve extensive data manipulation to find the “best” solutions. The bias in-
troduced by such data manipulation may be very high, so high that even the most
conservative method can fail to bound it.

5.2. Bootstrap aggregating. One problem with tree models is instability
[Breiman (1996b)], which means that a small perturbation in the data may result
in a tree with a substantially different structure. In general, an unstable estima-
tor tends to exhibit high variation and low predictive power. For differential trees,
this is relevant for discovered differential patterns and their significance levels.
Instability, however, can be reduced, often considerably, by using meta-learning
techniques, such as boosting [Freund and Schapire (1997)], bagging (bootstrap
aggregating) [Breiman (1996a)] or random forests [Breiman (2001)], which resort
to building a number of models by perturbing the data. In the following we con-
sider the bagging technique to stabilize the estimation of the minimum p-value in
a differential tree.

To use bagging on the two subsets described in Section 4.1, we draw a bootstrap
sample from each subset and build a differential tree from the pair of bootstrap
samples, which gives a minimum p-value and its Bonferroni adjustment p′. This
is repeated B (=50 throughout the paper) times. The median of the B resulting p′-
values is then taken as the bagging estimate of the Bonferroni-adjusted minimum
p-value. From a random run, we obtained an estimate p′ = 1.8 × 10−11.

To find the empirical null distribution of the bagging estimator for permutation
adjustment, 1000 random replications of the 4-year data were produced with ran-
dom allocations to the two biennial periods, in a similar fashion to Section 5.1.
The above bagging estimator is then applied to each replication. The five-number
summary of the resulting p′-values is (6.4 × 10−7,2.7 × 10−5,5.5 × 10−5,1.2 ×
10−4,5.9 × 10−4). Thus, the permutation adjusted p-value is

p′′ = 1.8 × 10−11/6.4 × 10−7

1001
≈ 2.8 × 10−8.(5.5)

As we shall see in Section 5.3, the bagging-based adjusted p-values are less vari-
able and, when there exist true differences, tend to be smaller than those that are
produced without using bagging.

One problem with bagging is that it does not produce one but many trees, which
loses the interpretability of a single differential tree. A possible remedy is to asso-
ciate a p-value with each observation, for example, using the median p′′-value of
all patterns that cover the observation. Then we know which observations are as-
sociated with changes, and how significantly. Areas containing observations with
small p-values can perhaps be derived subsequently.
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5.3. A simulation study. In order to gauge the efficiency and stability of the
differential tree method, we conducted a simulation study and made use of the ar-
son data in a way that mimicked the arson case. To produce random data for two
biennial periods, all 318 (238 other and 80 suspicious) fire incidents in 2004–2005
are duplicated once and then randomly reallocated to either the first or second bien-
nial period by coin tossing (as in Section 5.1). We did not include the data in 2006–
2007 to avoid contamination. Then we added n� ∈ {0,10, . . . ,50} distinctive fire
incidents to the second biennial period, randomly drawn from those 2006–2007
incidents covered by the most significant pattern discovered in Section 4.3, in the
proportions of 30% other and 70% suspicious fires. For each n� ∈ {0,10, . . . ,50},
100 such data sets were generated, and thus 100 (without bagging) and 100 × 50
(with bagging) differential trees were built. To adjust p-values, 1000 permutations
were carried out both with and without bagging, thus producing 1000 + 1000 × 50
differential trees. A total of 81,600 differential trees were built in the simulation
study.

Figure 5 shows summaries of the p-values (p or p′′) produced by three meth-
ods: a direct evaluation using (3.2) without building any differential tree (which
gives the same p-value as the root node of a differential tree), building one differ-
ential tree, and building differential trees with bagging. The central 50% interval
of the empirical distribution of the p-value is plotted for each case. It can be seen
that, when n� = 0, all three p-values appear to conform well with the uniform dis-
tribution on [0,1]. We can use the medians of these p-values to gauge efficiency
and the widths of the central 50% intervals to gauge stability. As n� increases,

FIG. 5. Each vertical line segment represents the central 50% interval of an empirical distribution
obtained from 100 p- or p′′-values, and a solid point the median. Some line segments are slightly
shifted horizontally for distinguishing purposes. The horizontal line is where p-value = 0.05.
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each p-value decreases, and at an increasing rate. The directly evaluated p, how-
ever, decreases slowly and this approach, on average, is unable to detect the change
at the 5% significance level until n� ≈ 44. An intuitive explanation is that a dra-
matic change deep under the surface may only manifest as ripples on the surface,
that is, at the root node. Also, multiple changes may even cancel out the effects
of one another and leave no trace on the surface, as is the case of the differential
tree shown in Figure 2. By contrast, with differential trees it “dives” down and
seeks differences between the data sets in increasingly smaller areas. The method
can thus uncover local differences more efficiently and, for the arson problem, is
able to start detecting the change for n� ≈ 31 (without bagging) and ≈27 (with
bagging). As n� increases, there are also clearly widening gaps between the p-
values produced by the direct evaluation method and the differential tree methods.
For n� = 50, the median p is only 2.6 × 10−2, being barely significant, while
the median p′′ is 3.0 × 10−4 (without bagging) or 6.6 × 10−5 (with bagging). It
is also clear that the bagging technique helped reduce instability and increase ef-
ficiency. The arson case has n� close to 60, which we could not include in the
simulation study since it requires 42 suspicious fires but the most significant pat-
tern has only 41. However, with a visual extrapolation of the curves in Figure 5 to
where n� = 60, it should be clear that the proposed method is quite effective for
discovering the changes in the arson case.

6. Sequential detection. The method developed above can also be used in a
sequential detection manner. Let us consider comparing the data of the two con-
secutive annual periods immediately before a “detection” day (the first day after
the two year period). With the quadrennial data available, we start the detection
from 1/Jan/2006, by building a differential tree that compares the two time peri-
ods, 1/Jan/2004–31/Dec/2004 and 1/Jan/2005–31/Dec/2005, and build new differ-
ential trees by shifting the detection day at intervals of seven days, until all data
have been examined. From every tree constructed the smallest p-value is extracted
and adjusted by the Bonferroni and permutation methods, using (5.1) and (5.3).
The empirical null distribution of the minimum p-value in a differential tree that
is needed by the permutation adjustment is obtained by permuting 1000 times the
historical fire incidents that occurred during 1/Jan/2004–31/Dec/2005. We have
also produced an empirical null distribution by permuting random halves of all the
quadrennial data and found that the resulting adjusted p-values are only slightly
larger, due to the contamination of the irregular changes in the latter two years. The
conclusions, however, remain largely the same. To use bagging, one only needs to
replace each single differential tree described above with 50 trees obtained under
bootstrap sampling (Section 5.2).

The results are shown in Figure 6. The sequential detection results with bag-
ging shown in Figure 6(b) are clearly more stable than those without bagging in
Figure 6(a). From Figure 6(a), after the initial 45 weeks with basically no sig-
nificant change discovered and a smallest p′′-value of 0.025, a sudden decrease
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FIG. 6. Minimum p-values and their adjustments in sequential detection: (a) without bagging;
(b) with bagging. In particular, p is the minimum p-value in a differential tree, p′ the Bonferroni
adjustment of p, and p′′ the permutation adjustment of p′.

of the p′′-value occurred on detection day 316 (12/Nov/2006) with p′′ = 0.0040.
This is clearly a sign that some significant change(s) have occurred in the underly-
ing data-generating mechanism. Similar conclusions can be drawn from the more
stable estimates in Figure 6(b).

By monitoring the change of (adjusted) p-values, it is straightforward for an
online system to set up different levels of warning in an easily comprehensible
sense.

7. Using different responses.

7.1. Using only suspicious fires. Instead of using both suspicious and other
fires as done in the study so far, we can use suspicious fires only. Figure 7 displays
the differential tree, built analogously to that in Figure 2, from the two biennial
subsets. Interestingly, the two most significant patterns are comparable in both
trees: one concerning a substantial increase of suspicious fires during almost the
same time period and the other a decrease of suspicious fires after it. Note that one
cannot use the classification tree approach here, since the response variable has
only one level.

The minimum p-values and their adjustments for sequential detection are plot-
ted in Figure 8. The sudden change has also been successfully detected, but at a
delayed date, as compared with that in Figure 6. This is because most suspicious
fires occurred in the latter part of the biennial period (see the histogram of day in
Figure 3), and because in the earlier part of the time period there is an increase of
fire incidents that are not labeled “suspicious,” which are thus excluded from the
study here. In this case, including all fire incidents is preferable—it gives an earlier
warning!
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FIG. 7. Differential tree built from using suspicious fires only.

7.2. Using an alternative response variable. One can also use a different re-
sponse variable, as if for a general surveillance, in total ignorance of what has
happened. Let us this time treat the variable firetype as the response. The dif-
ferential tree built from the two biennial subsets is shown in Figure 9. This tree ap-
pears to be less informative and its most significant pattern is also less significant,
as compared with the trees shown in Figures 2 and 7. However, this discovered
pattern is still remarkably significant, showing that the difference is mainly due to
an increase of vegetation fires, jumping from 45 cases to 121 for day > 86 and
x> 5.9.

FIG. 8. p-values in sequential detection using suspicious fires only: (a) without bagging; (b) with
bagging.
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FIG. 9. Differential tree built with a different response variable.

The minimum p-values and their adjustments obtained via sequential detection
are shown in Figure 10. It is clear that the change has also been detected, at a later
date and less dramatically than that in Section 6.

These results are perhaps the most one could hope for when conducting a gen-
eral surveillance.

8. Concluding remarks. There are two main new ideas in our proposed
method for change or difference detection. One is to contrast data sets and model
their distributional differences and the other to use tree models to uncover local, ir-
regular changes and provide interpretable results. We followed the general method-
ology for tree construction. Variants with improved performance likely exist, as in
the literature for other families of the tree model. Extensions to other types of
difference detection seem fairly straightforward.

FIG. 10. p-values in a sequential detection using firetype as response: (a) without bagging;
(b) with bagging.
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Building a differential tree is reasonably fast. With our implementation in R
[R Development Core Team (2011)], it took, respectively, 5.0, 1.4 and 6.8 seconds
to build the trees shown in Figures 2, 7 and 9, on a workstation with a 2.93 GHz
CPU. This made possible the demanding numerical studies reported earlier. If im-
plemented in FORTRAN or C, it is likely much faster.

Finally, we give a rationale for using differential trees in a complex environ-
ment. A general alternative is to compare the data with a reference model that can
be either exactly known, which is virtually impossible in a complex environment,
or estimated from a reference data set, just as we did in Section 4.2. Since building
a model from one data set and testing it against the other can waste data informa-
tion on discovering patterns irrelevant to differences and we are essentially com-
paring two data sets, why do not we just build one model that directly describes
their differences? This is exactly what a differential tree does.
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SUPPLEMENTARY MATERIAL

Supplement A: Data (DOI: 10.1214/12-AOAS548SUPPA; .csv). The file ar-
son.csv contains the Arson data that is described in Section 1 and used in the
analysis throughout the paper. The meanings of the variables and the values they
take on are available in Table 1.

Supplement B: Software (DOI: 10.1214/12-AOAS548SUPPB; .R). The file
difftree.R contains the R code for carrying out the analysis in the paper.
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