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Abstract. In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory γ

between two points on the boundary of a finite subdomain of Z
d is proportional to μ−length(γ ). When μ is supercritical (i.e.

μ < μc where μc is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking
the scaling limit.

Résumé. Dans cet article, nous considérons le modèle suivant de marches auto-évitantes : la probabilité d’une trajectoire auto-
évitante γ entre deux points fixés d’un sous-domaine fini de Z

d est proportionnelle à μ−length(γ ). Lorsque le paramètre μ est
supercritique (i.e. μ < μc ou μc est la constante de connectivité du réseau), nous prouvons que la trajectoire aléatoire remplit
l’espace lorsque l’on considère la limite d’échelle du modèle.
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1. Introduction

In 1953, Paul Flory [8] proposed considering self-avoiding walks (i.e. visiting every vertex at most once) on a lattice
as a model for polymer chains. Self-avoiding walks have turned out to be a very interesting object, leading to rich
mathematical theories and challenging questions; see [1,16].

Denote by cn the number of n-step self-avoiding walks on the hypercubic lattice (Zd with edges between nearest
neighbors) started from some fixed vertex, e.g. the origin. Elementary bounds on cn (for instance dn ≤ cn ≤ 2d(2d −
1)n−1) guarantee that cn grows exponentially fast. Since an (n + m)-step self-avoiding walk can be uniquely cut into
an n-step self-avoiding walk and a parallel translation of an m-step self-avoiding walk, we infer that cn+m ≤ cncm,
from which it follows that there exists μ = μ(d) ∈ (0,+∞) such that μ := limn→∞ c

1/n
n . The positive real number μ

is called the connective constant of the lattice. The connective constant can be approximated in a number of ways, yet

no closed formula exists in general. In the case of the hexagonal lattice, it was recently proved to be equal to
√

2 + √
2

in [7].
As it stands, the model has a strong combinatorial flavor. A more geometric variation was suggested by Lawler,

Schramm and Werner [15]. Let us describe their construction now – they were interested in the two-dimensional case,
but here we will not make this restriction. Let Ω be a simply connected domain in R

d with two points a, b on the
boundary. For δ > 0, let Ωδ be the largest connected component of Ω ∩ δZd and let aδ , bδ be the two sites of Ωδ

closest to a and b respectively. We think of (Ωδ, aδ, bδ) as being an approximation of (Ω,a, b). See Fig. 1.
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Fig. 1. A domain Ω with two points a and b on the boundary (circles) and the graph Ωδ . The points aδ and bδ are depicted by squares. An example
of a possible walk from aδ to bδ is presented. Note that there is a finite number of them.

Let x > 0. On (Ωδ, aδ, bδ), define a probability measure on the finite set of self-avoiding walks in Ωδ from aδ to
bδ by the formula

P(Ωδ,aδ,bδ,x)(γ ) = x|γ |

Z(Ωδ,aδ,bδ)(x)
, (1)

where |γ | is the length of γ (i.e. the number of edges), and Z(Ωδ,aδ,bδ)(x) is a normalizing factor. A random curve
γδ with law P(Ωδ,aδ,bδ,x) is called the self-avoiding walk with parameter x in (Ωδ, aδ, bδ). The sum Z(Ωδ,aδ,bδ)(x) =∑

γ x|γ | (with the sum taken over all self-avoiding walks in Ωδ from aδ to bδ) is sometimes called the partition
function (or generating function) of self-avoiding walks from aδ to bδ in the domain Ωδ .

When the domain (Ω,a, b) is fixed, we are interested in the scaling limit of the family (γδ), i.e. its geometric
behavior when δ goes to 0. The qualitative behavior is expected to differ drastically depending on the value of x.
A phase transition occurs at the value xc = 1/μ, where μ is the connective constant:

When x < 1/μ: γδ converges to a deterministic curve corresponding to the geodesic between a and b in Ω (assum-
ing it is unique – otherwise some adaptations need to be done). When rescaled, γδ should have Gaussian fluctuation
of order

√
δ around the geodesic. The strong results of Ioffe [14] on the unrestricted self-avoiding walk would be a

central tool for proving such a statement, though we are not aware of a reference for the details.
When x = 1/μ: γδ should converge to a random simple curve. In dimensions four and higher, the limit is believed

to be a Brownian excursion from a to b in the domain Ω . This is heuristically related to a number of rigorously
proved results: in dimensions five and above to the work of Brydges and Spencer [5] and Hara and Slade [11,12] who
showed that unrestricted self-avoiding walk converges to Brownian motion (see also the book [16]). Dimension four,
the so-called upper critical dimension, is much harder, but recently some impressive results have been achieved using
a supersymmetric renormalization group approach. These results are limited to continuous time weakly self-avoiding
walk, see [2–4] and references within.

In dimension two, the scaling limit is conjectured to be the Schramm–Löwner Evolution of parameter 8/3, and in
fact it was pointed out that this is true if the scaling limit exists as a continuous curve and is conformally invariant
[15].

Finally, dimension three remains a mystery, and there is no clear candidate for the scaling limit of self-avoiding
walk.

When x > 1/μ: γδ is expected to become space-filling in the following sense: for any open set U ⊂ Ω ,

P(Ωδ,aδ,bδ,x)[γδ ∩ U = ∅] → 0
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Fig. 2. A domain with mushrooms in infinitely many scales.

when δ goes to 0. On the one hand, let us mention that it is not clear in which sense (if any) (γδ) has a scaling limit
when d ≥ 3. On the other hand, the scaling limit is predicted [17], Conjecture 3, to exist in dimension two (in the case
of the hexagonal lattice at least). It should be the Schramm–Löwner Evolution of parameter 8, which is conformally
invariant.

One cannot hope that γδ would be space-filling in the strictest possible sense, namely that every vertex is visited.
Nevertheless, one can quantify the size of the biggest hole not visited by the walk. The subject of this paper is the
proof of a result which quantifies how γδ becomes space filling. Here is a precise formulation.

Theorem 1. Let D be the unit disk and let a and b be two points on its boundary. For every x > 1/μ, there exist
ξ = ξ(x) > 0 and c = c(x) > 0 such that

P(Dδ,aδ,bδ,x)

[
there exists a component of Dδ \ Γ

ξ
δ with cardinality > c log(1/δ)

] → 0

when δ → 0, where Γ
ξ
δ is the set of sites in Dδ at graph distance less than ξ from γδ .

The theorem is stated for the unit disk to avoid various connectivity problems. Indeed, assume that at some given
scale δ our domain Ω has a part which is connected by a “bridge” of width δ. Then the graph Ωδ will have a
large part connected by a single edge, which does not leave the self-avoiding walk enough space to enter and exit.
Thus an analog of Theorem 1 will not hold for this Ω . It is not difficult to construct a single domain Ω with such
“mushrooms” in many scales. See Fig. 2. In order to solve this issue, one can start from an arbitrary domain and
expand it microscopically. This gives rise to the following formulation:

Theorem 2. Let (Ω,a, b) be a bounded domain with two points on the boundary. For every x > 1/μ, there exist
ξ = ξ(x) > 0 and c = c(x) > 0 such that

P((Ω+B(ξδ))δ,aδ,bδ,x)

[∃ a component of
(
Ω + B(ξδ)

)
δ
\ Γ

ξ
δ larger than c log(1/δ)

] → 0

when δ → 0, where Γ
ξ
δ is the set of sites in (Ω + B(ξδ))δ at graph distance less than ξ from γδ .

Here Ω + B(ξδ) is Ω expanded by ξδ i.e.

Ω + B(ξδ) = {
z: dist(z,Ω) < ξδ

}
.

Since ξ depends only on x, and δ → 0, this is a microscopic expansion.
The strategy of the proof is fairly natural. We first prove that in the supercritical phase, one can construct a lot

(compared to their energy) of self-avoiding polygons in a prescribed box. Then, we show that the self-avoiding walk
cannot leave holes that are too large, since adding polygons in the big holes to the self-avoiding walk would increase
the entropy drastically while decreasing the energy in a reasonable way. In particular, an energy/entropy comparison
shows that self-avoiding walks leaving big holes are unlikely. We present the proof only in the case d = 2, even though
the reasoning carries over to all dimensions without difficulty (see Remark 8). One can also extend the result to other
lattices with sufficient symmetry in a straightforward way (for instance to the hexagonal lattice).
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2. Self-avoiding polygons in a square

In this section, we think of a walk as being indexed by (discrete) time t from 0 to n. For m > 0, let Pm be the set of
self-avoiding polygons in [0,2m + 1]2 that touch the middle of every face of the square: more formally, such that the
edges [(m,0), (m + 1,0)], [(2m + 1,m), (2m + 1,m + 1)], [(m,2m + 1), (m + 1,2m + 1)] and [(0,m), (0,m + 1)]
belong to the polygon, see Fig. 3. For x > 0, let Zm(x) be the partition function (with parameter x) of Pm, i.e.

Zm(x) =
∑

γ∈Pm

x|γ |.

Proposition 3. For x > 1/μ, we have lim supm→∞ Zm(x) = ∞.

It is classical that the number of self-avoiding walks with certain constraints grows at the same exponential rate
as the number of self-avoiding walks without constraints (we will show it in our context in the proof of Lemma 5
below). For instance, let x(v) and y(v) be the first and the second coordinates of the vertex v. The number bn of
self-avoiding bridges of length n, meaning self-avoiding walks γ of length n such that y(γ0) = mint∈[0,n] y(γt ) and
y(γn) = maxt∈[0,n] y(γt ), satisfies

e−c
√

nμn ≤ bn ≤ μn (2)

for every n [10] (see also [16] for a modern exposition). This result harnesses the following theorem on integer
partitions which dates back to 1917.

Theorem 4 (Hardy and Ramanujan [13]). For an integer A ≥ 1, let PD(A) denote the number of ways of writing
A = A1 + · · · + Ak with A1 > · · · > Ak ≥ 1, for any k ≥ 1. Then

logPD(A) ∼ π
√

A

3

as A → ∞.

In the following, we need a class of walks with even more restrictive constraints. A squared walk (of span k) is a
self-avoiding walk such that γ0 = (0,0), γn = (k, k) and γ ⊂ [0, k]2.

Fig. 3. By concatenating four walks in squares of size m (plus four edges), one obtains an element of Pm , i.e. a loop in the square of size 2m + 1
going through the middle of the sides.
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Fig. 4. The decomposition of a bridge into walks. One can construct a squared walk in a rectangle by reflecting non-bold walks and then concate-
nating all the walks together.

Lemma 5. For c sufficiently large and n even, the number an of squared walks of length n satisfies

an ≥ μne−c
√

n.

Proof. Step 1: Rectangles. Let Λn be the set of self-avoiding bridges of length n starting at the origin. Let Σn be the
set of n-step self-avoiding walks for which there exists (k, l) such that γ0 = (0,0), γn = (k, l) and γ ⊂ [0, k] × [0, l].
We construct a map from Λn to Σn.

Fix γ ∈ Λn and denote by m1 the first time at which x(γm1) = mint∈[0,n] x(γt ), see Fig. 4. Then, define n1 to be
the first time at which x(γn1) = maxt∈[0,m1] x(γt ). One can then define recursively mk , nk , by the formulæ

mk = min
{
r ≤ nk−1: x(γr) = min

t∈[0,nk−1]
x(γt )

}
,

nk = min
{
r ≤ mk: x(γr) = max

t∈[0,mk]
x(γt )

}
.

We stop the recursion the first time mk or nk equals 0. For convenience, if the first time is nk , we add a further step
mk+1 = 0. We are then in possession of a sequence of integers m1 > n1 > m2 > · · · > mr ≥ nr ≥ 0 and a sequence
of walks γ2r−1 = γ [n1,m1], γ2r−2 = γ [m2, n1], . . . , γ1 = γ [0,mr ]. Note that the width of the walks γi is strictly
increasing (see Fig. 4 again).

Similarly, let p1 be the last time at which x(γp1) = maxt∈[m1,n] x(γt ) and q1 the last time at which x(γq1) =
mint∈[p1,n] x(γt ). Then define recursively pk and qk by the following formula

pk = max
{
r ≥ qk−1: x(γr) = max

t∈[qk−1,n]x(γt )
}
,

qk = max
{
r ≤ pk: x(γr) = min

t∈[pk,n]x(γt )
}
.
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Fig. 5. This figure depicts the passage of two walks in the rectangle [0, k] × [0, l] to a walk in the square [0, k + l]2.

This procedure stops eventually and we obtain another sequence of walks γ̃0 = γ [m1,p1], γ̃1 = γ [p1, q1], etc. This
time, the width of the walks is strictly decreasing, see Fig. 4 one more time.

For a walk ω, we set σ(ω) to be its reflexion with respect to the vertical line passing through its starting point. Let
f (γ ) be the concatenation of γ1, σ(γ2), γ3, . . . , σ (γr), γ̃0, σ(γ̃1), γ̃2 and so on. This walk is contained in the rectangle
with corners being its endpoints so that f maps Λn on Σn.

In order to estimate the cardinality of Σn, we remark that each element of Σn has a limited number of possible
preimages under f . More precisely, the map which gives f (γ ) and the widths of the walks (γi) and (γ̃i) is one-to-
one (the reverse procedure is easy to identify). The number of possible widths for γi and γ̃i is the number of pairs
of decreasing sequences partitioning an integer l ≤ n. This number is bounded by ec

√
n (Theorem 4). Therefore,

the number of possible preimages under f is bounded by ec
√

n. Using (2), the cardinality of Σn is thus larger than
e−c

√
nbn ≥ e−2c

√
nμn.

So far n was not restricted to be even.
Step 2: Squares. We have bounded from below the number of n-step self-avoiding walks ‘contained in a rectangle’.

We now extend this bound to the case of squares. There exist k, l ≤ n such that the number of elements of Σn with
(k, l) as an ending point is larger than e−2c

√
nμn/n2. By taking two arbitrary walks of Σn ending at (k, l), one can

construct a 2n-step self-avoiding walk with γ0 = (0,0) and γ2n = (k + l, k + l) contained in [0, k + l]2 by reflecting
orthogonally to eiπ/4

R the first walk, and then concatenating the two, see Fig. 5. We deduce that a2n ≥ μ2ne−4c
√

n/n4.
This shows the lemma for n sufficiently large, and one can increase c if necessary to handle all even n. �

Proof of Proposition 3. Squared walks with length n were defined as walks between corners of some m × m square,
but m was not fixed. Fix now m to be such that the number of such walks is maximized (and then it is at least an/n

where an is the total number of squared walks). It is interesting to remark that finding the maximal m as an explicit
function of n, even asymptotically, seems difficult, probably no easier than the SLE8/3 conjecture. But we do not
need to know its value. From any quadruplet (γ1, γ2, γ3, γ4) of such squared self-avoiding walks, one can construct a
self-avoiding polygon of Pm as follows (see Fig. 3):

• translate γ1 and γ3 by (m + 1,0) and (0,m + 1) respectively,
• rotate γ2 and γ4 by an angle π/2, and then translate them by (m,0) and (2m + 1,m + 1) respectively,
• add the four edges [(m,0), (m + 1,0)], [(2m + 1,m), (2m + 1,m + 1)], [(m,2m + 1), (m + 1,2m + 1)] and

[(0,m), (0,m + 1)].
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Since each walk is contained in a square, one can easily check that we obtain a (4n+ 4)-step polygon in Pm. Using
Lemma 5, we obtain

Zm(x) ≥ x4n+4
(

an

n

)4

≥
(

xn+1μne−c
√

n

n

)4

.

When n goes to infinity, the right-hand side goes to infinity and the claim follows readily. �

3. Proof of the main results

The strategy is the following. We first show that for some hole (namely it will be a connected union of boxes of some
size m), the probability that the self-avoiding walk gets close to it without intersecting it can be estimated in terms
of Zm(x). This claim is the core of the argument, and is presented in Proposition 7. Next, we show that choosing m

large enough (or equivalently Zm(x) large enough), the probability to avoid some connected union of k boxes decays
exponentially fast in k, thus implying Theorem 1.

Let m > 0. A cardinal edge of a (square) box B of side length 2m + 1 is an edge of the lattice in the middle of one
of the sides of B . For m ∈ N, two boxes B and B ′ of side length 2m+ 1 are said to be adjacent if they are disjoint and
each has a cardinal edge, [xy] and [zt] respectively, such that x ∼ z, y ∼ t (see Fig. 6). A family F of boxes is called
connected if every two boxes can be connected by a path of adjacent boxes in F .

To simplify the picture, we will assume that all our boxes have their lower left corner in (2m + 2)δZ
2. When Ωδ is

fixed, such boxes included in Ωδ are called m-boxes and the set of m-boxes is denoted by F (Ωδ,m).
Let us return to the issue of domain regularity discussed after Theorem 1. With the definitions above we can now

explain that, in fact, our only requirement from the domain is that the family of all boxes in F (Ωδ,m) is connected.
Let us state this formally. The set Γ

ξ
δ is as in Theorem 1.

Theorem 6. For every x > 1/μ, there exists m = m(x) and c(x) > 0 such that for every domain Ω and every δ > 0
such that F (Ωδ,m) is connected, one has, for every a and b in the boundary of Ω , and every λ > 0,

P(Ωδ,aδ,bδ,x)

(∃ a component of Ωδ \ Γ 6m
δ of size > λ

) ≤ C(x,Ω)

δ2
e−c(x)λ.

Fig. 6. A discrete domain with a connected component of adjacent boxes of size 5 (m = 2). Edges of EF lie in the gray area.



322 H. Duminil-Copin, G. Kozma and A. Yadin

Proof of Theorem 1 given Theorem 6. Here our domain is D. Clearly, the family of all boxes in Dδ is connected (it
is an interval in every row and every column), hence Theorem 6 applies. Taking λ = C1 log(1/δ) for C1 sufficiently
large gives the result. �

Proof of Theorem 2 given Theorem 6. Again, all we have to show is that the family of boxes in (Ω + B(ξδ))δ is
connected for ξ sufficiently large. Taking ξ = 6m we see that every box in Ω + B(6mδ) can be connected to a box in
Ω , and any two boxes in Ω can be connected by taking a path γ in Ω between them (here is where we use that Ω is
connected) and checking that γ + B(6mδ) contains a path of connected boxes. �

Hence we need to prove Theorem 6. Let δ > 0. For F ∈ F (Ωδ,m), let VF be the set of vertices in boxes of F , and
let EF be the set of edges with both end-points in VF . For two subsets A and B of the vertices of Ωδ define the box
distance boxdist(A,B) between them as the size of the smallest set of connected boxes containing one box in A and
one box in B , minus 1. The boxes do not have to be different, but then the distance is 0 – if no such connected set
exists, then the distance is ∞.

Proposition 7. Let (Ω,a, b) be a domain with two points on the boundary. Fix δ > 0 and m ∈ N and assume
F (Ωδ,m) is connected. Then there exists C(x,m) < ∞ such that for every F ∈ F (Ωδ,m),

P(Ωδ,aδ,bδ,x)

(
boxdist(γδ, VF ) = 1

) ≤ C(x,m)Zm(x)−|F |.

Proof. For F ∈ F (Ωδ,m), let E CF be the set of external cardinal edges of F i.e. all cardinal edges in boxes of F

which have neighbors outside of F . Let SF be the set of self-avoiding polygons included in EF visiting all the edges
in E CF . Let ZF (x) be the partition function of polygons in SF . We have:

Claim. For F ∈ F (Ωδ,m), ZF (x) ≥ Zm(x)|F |.

Proof. We prove the result by induction on the cardinality of F ∈ F (Ωδ, ξ). If the cardinality of F is 1, ZF (x) =
Zm(x) by definition. Consider F0 ∈ F (Ωδ, ξ) and assume the statement true for every F ∈ F (Ωδ, ξ) with |F | < |F0|.
There exists a box B in F0 such that F0 \ {B} is still connected. Therefore, for every pair (γ, γ ′) ∈ S{B} ×SF0\{B}, one
can associate a polygon in SF in a one-to-one fashion. Indeed, B is adjacent to a box B ′ ∈ F0 \ {B} so that one of the
four cardinal edges (called [ab]) of B is adjacent to a cardinal edge [cd] of B ′. Note that [cd] belongs to E CF0\{B}.
Then, by changing the edges [cd] and [ab] of γ and γ ′ into the edges [ac] and [bd], one obtains a polygon in SF .
Furthermore, the construction is one-to-one and we deduce

ZF0(x) ≥ ZF0\{B}(x)ZB(x) ≥ Z
|F0\{B}|
m Zm(x) = Zm(x)|F0|. �

Consider the set ΘF of walks not intersecting F yet reaching to a neighboring box. Let e be a cardinal edge of
a box in F which neighbours a box visited by γ . For each γ ∈ ΘF , consider a self-avoiding polygon 
 = 
(γ ) (

standing for “link”) satisfying the following three properties:

• it contains e and is included in (Ωδ \ EF ) ∪ {e},
• it intersects γ either at just one edge, or at two adjacent edges only (to intersect means to intersect along edges),
• it has length smaller than 10m + 10 (for simplicity, we will bound the length by 100m).

One can easily check that such a polygon always exists, see Fig. 7.
Now, consider the map f that associates to (γ1, γ2) ∈ ΘF × SF the symmetric difference γ = f (γ1, γ2) of γ1,


(γ1) and γ2 (symmetric difference here meaning as sets of edges). Note that the object that we obtain is a walk from
aδ to bδ in Ωδ , which can be verified to be self-avoiding by noting that each vertex has degree 0 or 2 and that the set
is connected. Further, its length is equal to |γ1| + |
(γ1)| + |γ2| − 4 or |γ1| + |
(γ1)| + |γ2| − 6 (this being due to the
fact that γ1 and 
(γ1) intersect at one or two adjacent edges – each intersection reduces the length by 2 edges). Now,
given a path γ there is a limited number of ways it may be written as f (γ1, γ2). Indeed, e can be located by the only
two paths that exit F , and that gives γ2. Given e, 
 has only a limited number of possibilities, say 4100m, and once one
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Fig. 7. Two examples of the polygon 
 (the small N- and L-shaped loops). It overlaps the curve in one edge exactly, except in the second case,
where we have no choice but overlapping the walk on two edges.

knows 
 this gives γ1. We can now write

ZΘF
(x) · ZF (x) =

( ∑
γ1∈ΘF

x|γ1|
)( ∑

γ2∈SF

x|γ2|
)

≤ max
(
1, x−100m

) ∑
γ1∈ΘF ,γ2∈SF

x|γ1|+|
(γ1)|+|γ2|

≤ max
(
1, x−100m

)
max

(
x4, x6) ∑

γ1∈ΘF ,γ2∈SF

x|f (γ1,γ2)|

≤ 4100m max
(
x6, x−100m+4) ∑

γ∈f (ΘF ×SF )

x|γ |

≤ 4100m max
(
x6, x−100m+4)Z(Ωδ,aδ,bδ)(x),

where in the first inequality we used the fact that 
(γ1) has length smaller than 100m, in the second the fact that
|f (γ1, γ2)| equals |γ1| + |
(γ1)| + |γ2| − 4 or |γ1| + |
(γ1)| + |γ2| − 6, and in the third the fact that f is at most
4100m-to-one. Using the claim, the previous inequality implies

P(Ωδ,aδ,bδ,x)

(
boxdist(γδ, VF ) = 1

) = ZΘF
(x)

Z(Ωδ,aδ,bδ)(x)
≤ C(x,m)

ZF (x)
≤ C(x,m)

Zm(x)|F | . �

Proof of Theorem 6 in dimension 2. Let x > 1/μ and let (Ω,a, b) be a domain with two points on the boundary.
Let An be the number of connected subsets of Z

2 containing 0. It is well known that lim n
√

An is finite (see e.g.
Theorem 4.20 in [9]). Let therefore λ = λ(2) satisfy An ≤ λn for all n. We now apply Proposition 3 and get some
m = m(x,2) such that Zm(x) > 2λ.

Let δ > 0 and consider the event A(s) that there exists a connected set S of cardinality s at distance larger than
6m of γδ . Every box intersecting S must be disjoint from γδ , so there must exist a connected family of at least
s/(2m + 1)2 boxes of size 2m + 1 covering S and not intersecting γδ . We may assume this family is maximal among
families covering S and not intersecting γδ . Since the family of boxes is maximal, and because of the condition



324 H. Duminil-Copin, G. Kozma and A. Yadin

Fig. 8. Cardinal edges in three dimensions.

of the theorem that the family of all boxes is connected, the box-distance between the union of boxes and γδ is 1.
Proposition 7 implies

P(Ωδ,aδ,bδ,x)

[
A(s)

] ≤
∑

F∈F (Ωδ,ξ):|F |≥s/(2m+1)2

C(x,m)
[
Zm(x)

]−|F |
.

By the definition of λ, the number of families of connected boxes of size K in F (Ωδ, ξ) is bounded by (C(Ω)/δ2)λK

(since up to translation they are connected subsets of a normalized square lattice), where C(Ω) = C(Ω,x,m) depends
on the area of Ω , x and m. Therefore, for c > 0,

P(Ωδ,aδ,bδ,x)

[
A(s)

] ≤ C(x,m)
C(Ω)

δ2

∑
i≥s/(2m+1)2

(
λ

Zm(x)

)i

≤ C(x,m,Ω)

δ2
2−s/(2m+1)2

and the theorem follows. �

Remark 8. Let us briefly describe what needs to be changed in higher dimensions. The notion of cardinal edge must
be extended: in the box [0,2m+1]d , cardinal edges for the face [0,2m+1]d−1 ×{0} are all the edges joining vertices
in {m,m + 1}d−1 × {0} of the form

[
(m + 1, . . . ,m + 1︸ ︷︷ ︸

i−1 terms

,m, . . . ,m︸ ︷︷ ︸
d−i terms

,0), (m + 1, . . . ,m + 1︸ ︷︷ ︸
i terms

, m, . . . ,m︸ ︷︷ ︸
d−i−1 terms

,0)
]

for 1 ≤ i ≤ d − 1. See Fig. 8 for an example in 3 dimensions. We only consider part of the edges joining vertices in
{m,m + 1}d−1 × {0} because all these edges should belong to a self-avoiding polygon. Similarly, cardinal edges can
be defined for every face. It can be shown that the number of polygons included in some box [0,2m + 1]d and visiting
all the cardinal edges grows exponentially at the same rate as the number of self-avoiding walks. The proofs then
apply mutatis mutandis.

4. Questions

The supercritical phase exhibits an interesting behavior. We know that the curve becomes space-filling, yet we have
very little additional information. For instance, a natural question is to study the length of the curve. It is not difficult
to show that the length is of order 1/δ2, yet a sharper result would be interesting:
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Problem 9. For x > 1/μ, show that there exists θ(x) > 0 such that for every ε > 0 and every sufficiently regular
domain (Ω,a, b),

P(Ωδ,aδ,bδ,x)

(∣∣|γδ| − θ(x) · |Ωδ|
∣∣ > ε|Ωδ|

) −→ 0 when δ → 0.

The quantity θ(x) would thus be an averaged density of the walk. Note that the existence of θ(x) seems natural
since the space-filling curve should look fairly similar in different portions of the space.

Another challenge is to try to say something nontrivial about the critical phase. Recently, the uniformly chosen
self-avoiding walk on Z

d was proved to be sub-ballistic [6]. A natural question would be to prove that it is not space-
filling.

Problem 10. When x = 1/μ and (Ω,a, b) is sufficiently regular, show that the sequence (γδ) does not become space-
filling.

Finally, we recall the conjecture made in [17] concerning the two-dimensional limit in the supercritical phase.

Conjecture 11 (Smirnov). Let (Ω,a, b) be a simply connected domain of C and consider approximations by the
hexagonal lattice. The law of (γδ) converges to the chordal Schramm–Löwner Evolution in (Ω,a, b)

• with parameter 8/3 if x = 1/μ,
• with parameter 8 if x > 1/μ.
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