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On Improved Loss Estimation for
Shrinkage Estimators
Dominique Fourdrinier and Martin T. Wells

Abstract. Let X be a random vector with distribution Pθ where θ is an un-
known parameter. When estimating θ by some estimator ϕ(X) under a loss
function L(θ,ϕ), classical decision theory advocates that such a decision rule
should be used if it has suitable properties with respect to the frequentist risk
R(θ,ϕ). However, after having observed X = x, instances arise in practice
in which ϕ is to be accompanied by an assessment of its loss, L(θ,ϕ(x)),
which is unobservable since θ is unknown. A common approach to this as-
sessment is to consider estimation of L(θ,ϕ(x)) by an estimator δ, called a
loss estimator. We present an expository development of loss estimation with
substantial emphasis on the setting where the distributional context is normal
and its extension to the case where the underlying distribution is spherically
symmetric. Our overview covers improved loss estimators for least squares
but primarily focuses on shrinkage estimators. Bayes estimation is also con-
sidered and comparisons are made with unbiased estimation.

Key words and phrases: Conditional inference, linear model, loss estima-
tion, quadratic loss, risk function, robustness, shrinkage estimation, spheri-
cal symmetry, SURE, unbiased estimator of loss, uniform distribution on a
sphere.

1. INTRODUCTION

Suppose X is an observable from a distribution Pθ

parameterized by an unknown parameter θ . In classical
decision theory, it is usual, after selecting an estimation
procedure ϕ(X) of θ , to evaluate it through a loss cri-
terion, L(θ,ϕ(X), which represents the cost incurred
by the estimate ϕ(X) when the unknown parameter
equals θ . In the long run, as it depends on the particular
value of X, this loss cannot be appropriate to assess the
performance of the estimator ϕ. Indeed, to be valid (in
the frequentist sense), a global evaluation of such a sta-
tistical procedure should be based on averages over all
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the possible observations. Consequently, it is common
to report the risk R(θ,ϕ) = Eθ [L(θ,ϕ(X)] as a mea-
sure of the efficiency of ϕ (Eθ denotes expectation with
respect to Pθ ). Thus we have at our disposal a long-run
performance of ϕ(X) for each value of θ . However,
although this notion of risk can effectively be used in
comparing ϕ(X) with other estimators, it is inaccessi-
ble since θ is unknown. The usual frequentist risk as-
sessment is the maximum risk Rϕ = supθ R(θ,ϕ).

By construction, this least favorable report of the es-
timation procedure is non-data-dependent [as we were
guided by a global notion of accuracy of ϕ(X)]. How-
ever, there exist situations where the fact that the ob-
servation X has such or such value may influence the
judgment on a statistical procedure. A particularly ed-
ifying example is given by the following simple con-
fidence interval estimation (which can be viewed as a
loss estimation problem). Assume that the observable
is a couple (X1,X2) of independent copies of a random
variable X satisfying, for θ ∈ R,

P [X = θ − 1] = P [X = θ + 1] = 1
2 .
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Then it is clear that the confidence interval for θ de-
fined by

I (X1,X2) =
{
θ ∈ R

∣∣∣
∣∣∣∣X1 + X2

2
− θ

∣∣∣∣ <
1

2

}

satisfies

1[θ∈I (X1,X2)] =
{

1, if X1 �= X2,
0, if X1 = X2,

so that it suffices to observe (X1,X2) in order to know
exactly whether I (X1,X2) contains θ or not.

The previous (ad hoc) example indicates that data-
dependent reports are relevant. When X = x the loss,
L(θ,ϕ(x)), itself could serve as a perfect measure of
the accuracy of ϕ if it were available (which it is not
since θ is unknown). It is natural to estimate L(θ,ϕ(x))

by a data-dependent estimator δ(X), a new estimator
called a loss estimator. Such an estimator can serve as
a data-dependent assessment (instead of Rϕ). This is
a conditional approach in the sense that the accuracy
assessment is made on a data-dependent quantity, the
loss, instead of the risk.

To evaluate the extent to which δ(X) successfully
estimates L(θ,ϕ(X)), another loss is required and it
has become standard, for simplicity, to use the squared
error

L∗(θ, ϕ(X), δ(X)) = (
δ(X) − L(θ,ϕ(X))

)2
.(1.1)

Insofar as we are thinking in terms of long-run frequen-
cies, we adopt a frequentist approach to evaluating the
performance of L∗ by averaging over the sampling dis-
tribution of X given θ , that is, by using a new notion of
risk

R(θ, ϕ, δ) = Eθ [L∗(θ, ϕ(X), δ(X))]
(1.2)

= Eθ

[(
δ(X) − L(θ,ϕ(X))

)2]
.

As Rϕ reports on the worst possible situation (the max-
imum risk), we may expect that a competitive data-
dependent report δ(X) should improve on Rϕ under
the risk (1.2), that is, for all θ , δ(X) satisfies

R(θ, ϕ, δ) ≤ R(θ, ϕ,Rϕ).(1.3)

More generally, a reference loss estimator δ0 will be
dominated by a competitive estimator δ if, for all θ ,

R(θ, ϕ, δ) ≤ R(θ, ϕ, δ0),(1.4)

with strict inequality for some θ .
Unlike the usual estimation setting where the quan-

tity of interest is a function of the parameter θ , loss
estimation involves a function of both θ and X (the

data). This feature may make the statistical analysis
more difficult but it is clear that the usual notions of
minimaxity, admissibility, etc., and their methods of
proof can be directly adapted to that situation. Also,
although frequentist interpretability was evoked above,
in case we would be interested in a Bayesian approach,
it is easily seen that this approach would consist of the
usual Bayes estimator ϕB of θ and the posterior loss
δB(X) = E[L(θ,ϕB)|X].

The problem of estimating a loss function has been
considered by Sandved [43] who developed a notion
of unbiased estimator of L(θ,ϕ(X)) in various set-
tings. However, the underlying conditional approach
traces back to Lehmann and Sheffé [37] who estimated
the power of a statistical test. Kiefer, in a series of
papers [33–35], developed conditional and estimated
confidence theories. A subjective Bayesian approach
was compared by Berger [4–6] with the frequentist
paradigm. Jonhstone [32] considered (in)admissibility
of unbiased estimators of loss for the maximum likeli-
hood estimator ϕ0(X) = X and for the James–Stein es-
timator ϕJS(X) = (1 − (p − 2)/‖X‖2)X of a p-variate
normal mean θ . For ϕ0(X) = X, the unbiased estima-
tor of the quadratic loss L(θ,ϕ0(X)) = ‖ϕ0(X) − θ‖2,
that is, the loss estimator δ0 which satisfies, for all θ ,

Eθ [δ0] = Eθ [L(θ,ϕ0(X))] = R(θ,ϕ0),(1.5)

is δ0 = Rϕ = p. Johnstone proved that (1.3) is satis-
fied with the competitive estimator δ(X) = p − 2(p −
4)/‖X‖2 when p ≥ 5, the risk difference between δ0
and δ being expressed as −4(p − 4)2Eθ [1/‖X‖4].
For the James–Stein estimator ϕJS, the unbiased es-
timator of loss is itself data-dependent and equal to
δJS

0 (X) = p − (p − 2)2/‖X‖2. Jonhstone showed that
improvement on δJS

0 can be obtained with δJS(X) =
p−(p−2)2/‖X‖2 +2p/‖X‖2 when p ≥ 5, with strict
inequality in (1.4) for all θ since the difference in risk
between δJS and δJS

0 equals −4p2Eθ [1/‖X‖2].
In Section 2, we develop the quadratic loss estima-

tion problem for a p-normal mean. After a review of
the basic ideas, a new class of loss estimators is con-
structed in Section 2.1. In Section 2.2, we turn our
focus on some interesting and surprising behavior of
Bayesian assessments; this paradoxical result is illus-
trated in a general inadmissibility theorem. Section 3
is devoted to the case where the variance is unknown.
Extensions to the spherical case are given in Section 4.
In Section 4.1, we consider the general case of a spher-
ically symmetric distribution around a fixed vector θ ∈
R

p and in Section 4.2 these ideas are then generalized
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to the case where a residual vector is available. We con-
clude by mentioning a number of applied and theoreti-
cal developments of loss estimation not covered in this
overview. The Appendix gives some necessary back-
ground material and technical results.

2. ESTIMATING THE QUADRATIC LOSS OF A
p-NORMAL MEAN WITH KNOWN VARIANCE

2.1 Dominating Unbiased Estimators of Loss

Let X be a p-variate normally distributed N (θ, Ip)

random vector with unknown mean θ and identity co-
variance matrix Ip . To estimate θ , the observable X is
itself a reference estimator (it is the maximum likeli-
hood estimator (m.l.e.) and it is an unbiased estima-
tor of θ ) so that it is convenient to write any estima-
tor of θ through X as ϕ(X) = X + g(X), for a certain
function g from R

p into R
p . Under squared error loss

‖ϕ(X) − θ‖2, the (quadratic) risk of ϕ is defined by

R(θ,ϕ) = Eθ [‖ϕ(X) − θ‖2],(2.1)

where Eθ denotes the expectation with respect to
N (θ, Ip).

Clearly, the risk of the m.l.e. X equals p and in gen-
eral ϕ(X) will be a reasonable estimator only if its risk
is finite. It is easy to see (Lemma A.1 in Appendix A.1)
through Schwarz’s inequality that this is the case as
soon as

Eθ [‖g(X)‖2] < ∞,(2.2)

which we will assume in the following (it can be also
seen that this condition is in fact necessary to guarantee
the risk finiteness).

To improve on the m.l.e. X when p ≥ 3 [i.e., to have
R(θ,ϕ) ≤ p], Stein [48] exhibited (under certain dif-
ferentiability conditions that we recall below) an unbi-
ased estimator of the risk of ϕ(X), that is, a function
δ0(X) (depending only on X and not on θ ) for which

R(θ,ϕ) = Eθ [δ0(X)].(2.3)

This suggests a natural estimator of the loss ‖ϕ(X) −
θ‖2 since (2.3) implies that

Eθ [‖ϕ(X) − θ‖2] = Eθ [δ0(X)](2.4)

and hence is an unbiased estimator of the loss. Stein
[48] proved more precisely that δ0(X) = p + 2 ·
divg(X)+‖g(X)‖2 [where divg(X) stands for the di-
vergence of g(X), i.e., divg(X) = ∑p

i=1 ∂igi(X)]. One
can see that δ0 may change sign so that, as an estimator
of loss (which is nonnegative), it cannot be completely
satisfactory, and hence, is likely to be improved upon.

Any competitive loss estimator δ(X) can be written
as δ(X) = δ0(X) − γ (X) for a certain function γ (X)

which can be interpreted as a correction to δ0(X). Note
that, for the m.l.e. [i.e., if g(X) = 0], we may expect
that an improvement on δ0(X) = p would be obtained
with a nonnegative function γ (X) satisfying the re-
quirement expressed by condition (1.3). Note also that,
similarly to the finiteness risk condition (2.2), we will
require that

Eθ [γ 2(X)] < ∞(2.5)

to assure that the risk of δ(X) is finite (see Ap-
pendix A.1).

Using straightforward algebra, the risk difference
D(θ, ϕ, δ) = R(θ, ϕ, δ) − R(θ, ϕ, δ0) simplifies to

D(θ, ϕ, δ) = Eθ [γ 2(X) − 2γ (X)δ0(X)]
(2.6)

+ 2Eθ [γ (X)‖ϕ(X) − θ‖2].
Conditions for which D(θ, ϕ, δ) ≤ 0 will be formu-
lated after finding an unbiased estimate of the term
γ (X)‖ϕ(X) − θ‖2 in the last expectation. We briefly
review the flow of ideas of those techniques.

For a function g from R
p into R

p , the Stein’s iden-
tity (see Stein [48]) states that

Eθ [(X − θ)tg(X)] = Eθ [divg(X)](2.7)

provided that these expectations exist. Here Stein spec-
ified that g was almost differentiable. Weak differentia-
bility is needed to integrate shrinkage functions g(X),
intervening in the James–Stein estimators, of the form
g(X) = −aX/‖X‖2 which are not differentiable in the
usual sense [such a g(X) explodes at zero]. This no-
tion is equivalent (and it is of more common use in
analysis) to the statement that g belongs to the Sobolev
space W

1,1
loc (Rp) of weakly differentiable functions.

That equivalence was noticed by Johnstone [32].
Recall that a locally integrable function γ from R

p

into R is said to be weakly differentiable if there exist
p functions h1, . . . , hp locally integrable on R

p such
that, for any i = 1, . . . , p,∫

Rp
γ (x)

∂ϕ

∂xi

(x) dx = −
∫

Rp
hi(x)ϕ(x) dx(2.8)

for any infinitely differentiable function ϕ on R
p with

compact support. The functions hi are the ith par-
tial weak derivatives of γ . Their common notation is
∂γ /∂xi and the vector ∇γ = (∂γ /∂x1, . . . , ∂γ /∂xp)t

is referred to as the weak gradient of γ .
Note that (2.8) usually holds when γ is continuously

differentiable, that is, when hi = ∂γ /∂xi , the standard
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partial derivative, is continuous. Thus, via (2.8), the ex-
tension to weak differentiability consists in a propriety
of integration by parts with vanishing bracketed term.
Naturally a function g = (g1, . . . , gp) from R

p into R
p

is said to be weakly differentiable if each of its compo-
nents gj is weakly differentiable. In that case, the func-
tion divg = ∑p

i=1 ∂gi/∂xi is referred to as the weak
divergence of g; this is the operator intervening in the
Stein’s identity (2.7).

When dealing with an unbiased estimator of a quan-
tity of the form ‖X − θ‖2γ (X), where γ is a function
from R

p into R, writing

‖X − θ‖2γ (X) = (X − θ)t (X − θ)γ (X)(2.9)

naturally leads to an iteration of Stein’s identity (2.7)
and involves twice weak differentiability of γ . This is
of course defined through the weak differentiability of
all the weak partial derivatives ∂γ /∂xi ; these second
weak partial derivatives are denoted by ∂2γ /∂xj ∂xi .
Thus γ belongs to the Sobolev space W

2,1
loc (Rp) and

�γ = ∑p
i=1 ∂2 γ /∂x2

i is referred to as the weak Lapla-
cian of γ .

By (2.9) and (2.7), we have

Eθ [‖X − θ‖2γ (X)]
= Eθ

[
div

(
(X − θ)tγ (X)

)]
(2.10)

= Eθ [pγ (X) + (X − θ)t∇γ (X)]
by the product rule for the divergence operator. Then,
applying again (2.7) to the last term in (2.10) gives

Eθ [(X − θ)t∇γ (X)] = Eθ [div(∇γ (X)]
(2.11)

= Eθ [�γ (X)]
by definition of the Laplacian operator. Finally, gather-
ing (2.10) and (2.11), we have that

Eθ [‖X − θ‖2γ (X)]
(2.12)

= Eθ [pγ (X) + �γ (X)].
We are now in a position to provide an unbiased es-

timator of the difference in risk D(θ, ϕ, δ) in (2.6).
Its nonpositivity will be a sufficient condition for
D(θ, ϕ, δ) ≤ 0 and hence for δ to improve on δ0. In-
deed we have

‖ϕ(X) − θ‖2

= ‖X + g(X) − θ‖2

= ‖g(X)‖2 + 2(X − θ)tg(X) + ‖X − θ‖2

so that, according to (2.7) and (2.12),

Eθ [‖ϕ(X) − θ‖2γ (X)]
= Eθ [γ (X)‖g(X)‖2 + 2 div(γ (X)g(X))

+pγ (X) + �γ (X)].
Therefore, as div(γ (X)g(X)) = γ (X)divg(X) +
∇γ (X)tg(X) and as δ0(X) = p + 2 divg(X) +
‖g(X)‖2, the risk difference D(θ, ϕ, δ) in (2.6) reduces
to

D(θ, ϕ, δ) = Eθ [γ 2(X) + 4∇γ (X)tg(X) + 2�γ (X)],
so that a sufficient condition for D(θ, ϕ, δ) to be non-
positive is

γ 2(x) + 4∇γ (x)tg(x) + 2�γ (x) ≤ 0(2.13)

for any x ∈ R
p .

The question now arises of determining a “best” cor-
rection γ satisfying (2.13). The following theorem pro-
vides a way to associate to the function g a suitable cor-
rection γ which satisfies (2.13) in the case where g(x)

is of the form g(x) = ∇m(x)/m(x) for a certain non-
negative function m. This is the case when ϕ is a Bayes
estimator of θ related to a prior π , the function m being
the corresponding marginal (see Brown [10]). Bock [8]
showed that, through the choice of m, such estimators
constitute a wide class of estimators of θ (which are
called pseudo-Bayes estimators when the function m

does not correspond to a true prior π ).

THEOREM 2.1. Let m be a nonnegative function
which is also superharmonic (respectively subhar-
monic) on R

p such that ∇m/m ∈ W
1,1
loc (Rp). Let ξ

be a real-valued function, strictly positive and strictly
subharmonic (respectively superharmonic) on R

p such
that

Eθ

[(
�ξ(X)

ξ(X)

)2]
< ∞.(2.14)

Assume also that there exists a constant K > 0 such
that, for any x ∈ R

p ,

m(x) > K
ξ2(x)

|�ξ(x)|(2.15)

and let K0 = infx∈Rp m(x)
|�ξ(x)|
ξ2(x)

.
Then the unbiased loss estimator δ0 of the estimator

ϕ of θ defined by ϕ(X) = X + ∇m(X)/m(X) is domi-
nated by the estimator δ = δ0 −γ , where the correction
term γ is given, for any x ∈ R

p such that m(x) �= 0, by

γ (x) = −α sgn(�ξ(x))
ξ(x)

m(x)
,(2.16)

as soon as 0 < α < 2K0.
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PROOF. The domination condition will be shown
by proving that the risk difference is less than zero. We
only consider the case where m is superharmonic and
ξ is strictly subharmonic, the case where m is subhar-
monic and ξ is strictly superharmonic being similar.

First note that the finiteness risk condition (2.5) is
guaranteed by the condition in (2.14) and the fact that
(2.15) implies that, for any x ∈ R

p ,

γ 2(x) = α2 ξ2(x)

m2(x)
≤ α2

K2
0

(
�ξ(x)

ξ(x)

)2

.

Further note that, for a shrinkage function g of the
form g(x) = ∇m(x)/m(x), the left-hand side of (2.13)
can be expressed as

Rγ (x) = γ 2(x)
(2.17)

+ 2
{

2
�(m(x)γ (x))

m(x)
− γ (x)

�m(x)

m(x)

}

and hence, for γ in (2.16), as

Rγ (x) = α2 ξ2(x)

m2(x)
(2.18)

+ 2α

{
−�ξ(x)

m(x)
+ ξ(x)�m(x)

m2(x)

}
.

Now, since m is superharmonic and ξ is positive, it fol-
lows from (2.18) that

Rγ (x) ≤ α

m(x)

{
αξ2(x)

m(x)
− 2�ξ(x)

}

and hence, by subharmonicity of ξ , the inequality in
(2.15) and the definition of K0, that

Rγ (x) <
α

m(x)
{α − 2K0}ξ

2(x)

m(x)
.(2.19)

Finally, since 0 < α < 2K0, the inequality in (2.19)
gives Rγ (x) < 0, which is the desired result. �

As an example, consider m(x) = 1/‖x‖p−2, that is,
the fundamental harmonic function which is superhar-
monic on the entire space R

p (see Du Plessis [17]).
Then we have ∇m(x)/m(x) = −(p − 2)/‖x‖2 and
ϕ(X) is the James–Stein estimator whose unbiased es-
timator of loss is δ0(X) = p − (p − 2)2/‖X‖2. First
note that ∇m/m ∈ W

1,1
loc (Rp) for p ≥ 3. Now choos-

ing, for any x �= 0, the function ξ(x) = 1/‖x‖p gives
rise to �ξ(x) = 2p/‖x‖p+2 > 0 and hence to

ξ2(x)

|�ξ(x)| = 1

2p

1

‖x‖p−2 ,

which means that condition (2.15) is satisfied with K <

2p. Also we have
(

�ξ(x)

ξ(x)

)2

= 4p2

‖x‖4

which implies that the condition in (2.14) is satisfied
for p ≥ 5. Now it is clear that the constant K0 is
equal to 2p and that the correction term γ in (2.16)
equals, for any x �= 0, γ (x) = −α/‖x‖2. Finally, The-
orem 2.1 guarantees that an improved loss estimator
over the unbiased estimator of loss δ0(X) is δ(X) =
δ0(X) + α/‖x‖2 for 0 < α < 4p, which is Johnstone’s
result [32] for the James–Stein estimator.

Similarly Johnstone’s result for ϕ(X) = X can be
constructed with m(x) = 1 (which is both subharmonic
and superharmonic) and with the choice of the super-
harmonic function ξ(x) = 1/‖x‖2, for which K0 =
2(p − 4), so that δ(x) = p − α/‖x‖2 dominates p for
0 < α < 4(p − 4).

We have shown that the unbiased estimator of
loss can be dominated. Often one may wish to add
a frequentist-validity constraint to a loss estimation
problem. Specifically in our problem, the frequentist-
validity constraint for some estimator δ would be
Eθ [δ(X)] ≥ Eθ [δ0(X)] for all θ . Kiefer [35] suggested
that conditional and estimated confidence assessments
should be conservatively biased, that is, the average
reported loss should be greater than or equal to the
average actual loss. Under such a frequentist-validity
condition Lu and Berger [40] gave improved loss esti-
mators for several of the most important Stein-type es-
timators. One of their estimators is a generalized Bayes
estimator, suggesting that Bayesians and frequentists
can potentially agree on a conditional assessment of
loss.

A possible problem with the improved estimator de-
fined in (2.16) is that it may be negative, which is unde-
sirable since we are estimating a nonnegative quantity.
A simple remedy to this problem is to use a positive-
part estimator. If we define the positive-part as δ+ =
max{δ,0}, the loss difference between δ+ and δ is (δ −
L(θ,ϕ))2 − (δ+ − L(θ,ϕ))2 = (δ2 − 2δL(θ,ϕ))1δ≤0,
hence it is always nonnegative. Therefore the risk dif-
ference is positive, which implies that δ+ domimates δ.
It would be of interest to find an estimator that domi-
nates δ+.

In the context of variance estimation, despite warn-
ings on its inappropriate behavior (Stein [46], Brown
[9]) the decision-theoretic approach to the normal vari-
ance estimation is typically based on the standardized
quadratic loss function, where overestimation of the
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variance is much more severely penalized than under-
estimation, thus leading to presumably too small es-
timates. Similarly in loss estimation under quadratic
loss, the overestimation of the loss is also much more
severely penalized than underestimation. A possible al-
ternative to quadratic loss would be a Stein-type loss.
Suppose ϕ(X) is an estimator of θ under ‖θ − ϕ(X)‖2

and let δ(X) be an estimator of ‖θ − ϕ(X)‖2 for
δ(X) > 0. Then we can define the Stein-type loss for
evaluating δ(X) as

L(θ,ϕ(X), δ(X)) = ‖θ − ϕ(X)‖2

δ(X)
(2.20)

− log
‖θ − ϕ(X)‖2

δ(X)
− 1.

The analysis of the loss estimates under the Stein-type
loss is more challenging but can be carried out using
the integration-by-parts tools developed in this section.

2.2 Dominating the Posterior Risk

In the previous sections, we have seen that the unbi-
ased estimator of loss should be often dismissed since
it can be dominated. When a (generalized) Bayes es-
timator of θ is available, incorporating the same prior
information for estimating the loss of this Bayesian es-
timator is coherent, and we may expect that the cor-
responding Bayes estimator is a good candidate to
improve on the unbiased estimator of loss. However,
somewhat surprisingly, Fourdrinier and Strawderman
[22] found that, in the normal setting considered in
Section 2.1, the unbiased estimator often dominates the
corresponding generalized Bayes estimator of loss for
priors which give minimax estimators in the original
point estimation problem. They also gave a general in-
admissibility result for a generalized Bayes estimator
of loss. While much of their focus is on pseudo-Bayes
estimators, in this section, we essentially present their
results on generalized Bayes estimators.

For a given generalized prior π , we denote the gen-
eralized marginal by m and the generalized Bayes esti-
mator of θ by

ϕm(X) = X + ∇m(X)

m(X)
.(2.21)

Then (see Stein [48]) the unbiased estimator of risk of
ϕm(X) is

δ0(X) = p + 2
�m(x)

m(X)
− ‖∇m(X)‖2

m2(X)
(2.22)

while the posterior risk of ϕm(X) is

δm(X) = p + �m(X)

m(X)
− ‖∇m(X)‖2

m2(X)
.(2.23)

Domination of δ0(X) over δm(X) is obtained thanks
to the fact that their risk admits (�m(X)/m(X))2 −
2�(2)m(X)/m(X) as an unbiased estimator of their
risk difference, that is,

R(θ, ϕm, δ0) − R(θ, ϕm, δm)
(2.24)

= Eθ

[(
�m(X)

m(X)

)2

− 2
�(2)m(X)

m(X)

]
,

where �(2)m = �(�m) is the bi-Laplacian of m (see
[22]). Thus the above domination will occur as soon as

(
�m(X)

m(X)

)2

− 2
�(2)m(X)

m(X)
≤ 0.(2.25)

Applicability of that last condition is underlined by the
remarkable fact that if the prior π satisfies (2.25), that
is, if

(
�π(θ)

π(θ)

)2

− 2
�(2)π(θ)

π(θ)
≤ 0,(2.26)

then (2.25) is satisfied for the marginal m.
As an example, Fourdrinier and Strawderman [22]

considered π(θ) = (‖θ‖2/2 + a)−b (where a ≥ 0 and
b ≥ 0) and showed that, if p ≥ 2(b + 3) then (2.26)
holds and hence δ0 dominates δm. Since π is integrable
if and only if b >

p
2 (for a > 0), the prior π is improper

whenever this condition for domination of δ0 over δm

holds. Of course, whenever π is proper, the Bayes esti-
mator δm is admissible provided its Bayes risk is finite.

Inadmissibility of the generalized Bayes loss estima-
tor is not exceptional. Thus, in [22], the following gen-
eral inadmissibility result is given; its proof is parallel
to the proof of Theorem 2.1.

THEOREM 2.2. Let m be a nonnegative function
such that ∇m/m ∈ W

1,1
loc (Rp). Let ξ be a real-valued

function satisfying the conditions of Theorem 2.1. Then
δm is inadmissible and a class of dominating estimators
is given by

δm(X) + α sgn(�ξ(X))
ξ(X)

m(X)
for 0 < α < 2K0.

Note that, unlike Theorem 2.1, neither the superhar-
monicity condition nor the subharmonicity condition
on m is needed. Note also that Theorem 2.2 gives con-
ditions of improvement on δm while Theorem 2.1 looks
for improvements on δ0. As we saw, often δ0 domi-
nates δm. So it is not surprising that the proofs of the
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two theorems are parallel; more precisely, it suffices to
suppress, in the proof of Theorem 2.1, the superhar-
monicity (or subharmonicity) condition on m to obtain
the proof of Theorem 2.2.

In [22], it is suggested that the inadmissibility of the
generalized Bayes (or pseudo-Bayes) estimator is due
to the fact that the loss function (δ(x)−‖ϕ(x)− θ‖2)2

may be inappropriate. The possible deficiency of this
loss is illustrated by the following simple result con-
cerning estimation of the square of a location parame-
ter in R

1.
Suppose X ∈ R ∼ f ((X − θ)2) such that Eθ [X4] <

∞. Consider estimation of θ2 under loss (δ−θ2)2. The
generalized Bayes estimator δπ of θ2 with respect to
the uniform prior π(θ) ≡ 1 is given by

δπ(X) =
∫

θ2f ((X − θ)2) dθ∫
f ((X − θ)2) dθ

= X2 + E0[X2].

Since this estimator has constant bias 2E0[X2], it is
dominated by the unbiased estimator X2 −E0[X2] (the
risk difference is 4(E0[X2])2). Hence δπ is inadmissi-
ble for any f (·) such that Eθ [X4] < ∞.

2.3 Examples of Improved Estimators

In this subsection, we give some examples of Theo-
rems 2.1 and 2.2. The only example up to this point of
an improved estimator over the unbiased estimator of
loss δ0(X) is δ(X) = δ0(X) + α/‖x‖2 for 0 < α < 4p,
which is Johnstone’s result [32]. Although the shrink-
age factor in Theorems 2.1 and 2.2 is the same, in the
examples below we will only focus on improvements
of posterior risk.

As an application of Theorem 2.2, let ξb(x) =
(‖x‖2 + a)−b (with a ≥ 0 and b ≥ 0). It can be shown
that we have �ξb(x) < 0 for a ≥ 0 and 0 < 2(b +
1) < p. Also �ξb(x) > 0 if a = 0 and 2(b + 1) > p.
Furthermore

ξ2
b (x)

|�ξb(x)| = 1

2b|p − 2(b + 1)‖x‖2/(‖x‖2 + a)|
· 1

(‖x‖2 + a)b−1 .

(a) Suppose that 0 < 2(b + 1) < p and a ≥ 0. Then

ξ2
b (x)

|�ξb(x)| ≤ 1

2b(p − 2(b + 1))

1

(‖x‖2 + a)b−1

and Eθ [(�ξb(X)/ξb(X))2] < ∞ since it is bounded
from above by a quantity proportional to Eθ [(‖X‖2 +
a)−2], which is finite for a > 0 or for a = 0 and p > 4.

Suppose that m(x) is greater than or equal to some
multiple of (‖x‖2 + a)1−b or equivalently

m(x) ≥ k

2b(p − 2(b + 1))

1

(‖x‖2 + a)b−1(2.27)

for some k > 0. Theorem 2.2 implies that δm(X) is in-
admissible and is dominated by

δm(X) − α

m(X)(‖X‖2 + a)b

for 0 < α < 4b(p − 2(b + 1)) infx∈Rp(m(x)(‖x‖2 +
a)b−1). Note that the improved estimators shrink to-
ward 0.

Suppose, for example, that m(x) ≡ 1. Then (2.27) is
satisfied for b ≥ 1. Here ϕm(X) = X and δm(X) = p.
Choosing b = 1, an improved class of estimators is
given by p − α

‖X‖2+a
for 0 < α < 4(p − 4). The

case a = 0 is equivalent to Johnstone’s result for this
marginal.

(b) Suppose that 2(b + 1) > p > 4 and a = 0. Then

ξ2
b (x)

|�ξb(x)| = 1

2b(2(b + 1) − p)

1

‖x‖2(b−1)
.

A development similar to the above implies that,
when m(x) is greater than or equal to some multiple
of ‖x‖2(1−b), an improved estimator is

δm(X) + α

m(X)‖X‖2b

for 0 < α < 4b(2(b+1)−p) infx∈Rp(m(x)‖x‖2(b−1)).

Note that, in this case, the correction term is positive
and hence the estimators expand away from 0. Note
also that this result only works for a = 0 and hence
applies to pseudo-marginals which are unbounded in a
neighborhood of 0. Since all marginals corresponding
to a generalized prior π are bounded, this result can
never apply to generalized Bayes procedures but only
to pseudo-Bayes procedures.

Suppose, for example, that m(x) = ‖x‖2−p . Here
ϕm(X) = (1− p−2

‖x‖2 )X is the James–Stein estimator and

δm(X) = p − (p−2)2

‖X‖2 . In particular, the above applies

for b−1 = p−2
2 , that is, for b = p

2 >
p−2

2 . An improved
estimator is given by δm(X) + γ

‖X‖2 for 0 < γ < 4p.
This again agrees with Johnstone’s result for James–
Stein estimators.

3. ESTIMATING THE QUADRATIC LOSS OF A
p-NORMAL MEAN WITH UNKNOWN VARIANCE

In Section 2 it was assumed that the covariance ma-
trix was known and equal to the identity matrix Ip .
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Typically, the covariance is unknown and should be es-
timated. In the case where it is of the form σ 2Ip with
σ 2 unknown, Wan and Zou [51] showed that, for the
invariant loss ‖ϕ(X)− θ‖2/σ 2, Johnstone’s result [32]
can be extended when estimating the loss of the James–
Stein estimator. In fact, the general framework consid-
ered in Section 2 can be extended to the case where σ 2

is unknown, and we show that a condition parallel to
Condition (2.13) can be found.

Before stating the main result for the unknown vari-
ance case, we need an extension of Stein’s identity in-
volving the sample variance.

LEMMA 3.1. Let X ∼ N (θ, σ 2Ip) and let S be a
nonnegative random variable independent of X such
that S ∼ σ 2χ2

k . Denoting by Eθ,σ 2 the expectation with
respect to the joint distribution of (X,S), we have, pro-
vided the corresponding expectations exist, the follow-
ing two results:

(i) if g(x, s) is a function from R
p × R+ into R

p

such that, for any s ∈ R+, g(·, s) is weakly differen-
tiable, then

Eθ,σ 2

[
1

σ 2 (X − θ)tg(X,S)

]
= Eθ,σ 2[divX g(X,S)],

where divx g(x, s) is the divergence of g(x, s) with re-
spect to x;

(ii) if h(x, s) is a function from R
p ×R+ into R such

that, for any s ∈ R+, h(·, s) is weakly differentiable,
then

Eθ,σ 2

[
1

σ 2 h(X,S)

]

= Eθ,σ 2

[
2

∂

∂S
h(X,S) + (k − 2)S−1h(X,S)

]
.

PROOF. Part (i) is just Stein’s lemma (cf. [48]).
Part (ii) can be seen as a particular case of Lemma 1(ii)
(established for elliptically symmetric distributions) of
Fourdrinier et al. [23], although we will present a direct
proof. The joint distribution of (X,S) can be viewed
as resulting, in the setting of the canonical form of the
general linear model, from the distribution of (X,U) ∼
N ((θ,0), σ 2Ip+k) with S = ‖U‖2. Then we can write

Eθ,σ 2

[
1

σ 2 h(X,S)

]

= Eθ,σ 2

[
1

σ 2 Ut U

‖U‖2 h(X,‖U‖2)

]

= Eθ,σ 2

[
divU

(
U

‖U‖2 h(X,‖U‖2)

)]

according to part (i). Hence, expanding the divergence
term, we have

Eθ,σ 2

[
1

σ 2 h(X,S)

]

= Eθ,σ 2

[
k − 2

‖U‖2 h(X,‖U‖2)

+ Ut

‖U‖2 ∇Uh(X,‖U‖2)

]

= Eθ,σ 2

[
k − 2

S
h(X,S) + 2

∂

∂S
h(X,S)

]

since

∇Uh(X,‖U‖2) = 2
∂

∂S
h(X,S)

∣∣∣∣
S=‖U‖2

U. �
The following theorem provides an extension of re-

sults in Section 2 to the setting of an unknown variance.
The necessary conditions to insure the finiteness of the
risks are given in Appendix A.1.

THEOREM 3.1. Let X ∼ N (θ, σ 2Ip) where θ and
σ 2 are unknown and p ≥ 5 and let S be a nonnega-
tive random variable independent of X and such that
S ∼ σ 2χ2

k . Consider an estimator of θ of the form
ϕ(X,S) = X + Sg(X,S) with Eθ,σ 2[S2‖g(X,S)‖2] <

∞, where Eθ,σ 2 denotes the expectation with respect
to the joint distribution of (X,S).

Then an unbiased estimator of the invariant loss
‖ϕ(X,S) − θ‖2/σ 2 is

δ0(X,S)

= p + S

{
(k + 2)‖g(X,S)‖2 + 2 divX g(X,S)(3.1)

+ 2S
∂

∂S
‖g(X,S)‖2

}
.

Its risk R(θ, σ 2, ϕ, δ0) = Eθ,σ 2[(δ0(X,S) − ‖ϕ(X,

S) − θ‖2/σ 2))2] is finite as soon as Eθ,σ 2[S2‖g(X,

S)‖4] < ∞, Eθ,σ 2[(S divX g(X,S))2] < ∞ and
Eθ,σ 2[(S2 ∂

∂S
‖g(X,S)‖)2] < ∞.

Furthermore, for any function γ (X) such that
Eθ,σ 2[γ 2(X)] < ∞, the risk difference D(θ, σ 2, ϕ,

δ) = R(θ, σ 2, ϕ, δ) − R(θ, σ 2, ϕ, δ0) between the es-
timators δ(X,S) = δ0(X,S) − Sγ (X) and δ0(X,S) is
given by

Eθ,σ 2

[
S2

{
γ 2(X) + 2

k + 2
�γ (X)

(3.2)

+ 4gt (X,S)∇γ (X) + 4γ (X)‖g(X,S)‖2
}]

.
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Therefore a sufficient condition for D(θ, σ 2, ϕ, δ) to
be nonpositive, and hence for δ(X,S) to improve on
δ0(X,S), is

γ 2(x) + 2

k + 2
�γ (x) + 4gt (x, s)∇γ (x)

(3.3)
+ 4γ (x)‖g(x, s)‖2 ≤ 0

for any x ∈ R
p and any s ∈ R+.

PROOF. According to the expression of ϕ(X,S),
its risk R(θ,ϕ) is the expectation of

1

σ 2 ‖X − θ‖2 + 2
S

σ 2 (X − θ)tg(X,S)

(3.4)

+ S2

σ 2 ‖g(X,S)‖2.

Clearly Eθ,σ 2[σ−2‖X − θ‖2] = p and Lemma 3.1 im-
plies that

Eθ,σ 2

[
1

σ 2 (X − θ)tg(X,S)

]
= Eθ,σ 2[divX g(X,S)]

and, with h(x, s) = s2‖g(x, s)‖2, that

Eθ,σ 2

[
S2

σ 2 ‖g(X,S)‖2
]

= Eθ,σ 2

[
S

{
(k + 2)‖g(X,S)‖2

+ 2S
∂

∂S
‖g(X,S)‖2

}]
.

Therefore R(θ,ϕ) = Eθ,σ 2[δ0(X,S)] with δ0(X,S)

given in (3.1), which means that δ0(X,S) is an unbi-
ased estimator of the invariant loss ‖ϕ(X,S)−θ‖2/σ 2.
The fact that the risk R(θ, σ 2, ϕ, δ0) of δ0(X) is finite
is shown in Lemma A.1.

Now consider the finiteness of the risk of the alter-
native loss estimator δ(X,S) = δ0(X,S) − Sγ (X). It
is easily seen that its difference in loss d(θ, σ 2,X,S)

with δ0(X,S) can be written as

d(θ, σ 2,X,S)

=
(
δ0(X,S) − 1

σ 2 ‖ϕ(X) − θ‖2 − Sγ (X)

)2

−
(
δ0(X,S) − 1

σ 2 ‖ϕ(X) − θ‖2
)2

(3.5)

= S2γ 2(X)

− 2Sγ (X)

(
δ0(X,S) − 1

σ 2 ‖ϕ(X) − θ‖2
)
.

Hence, since Eθ,σ 2[‖ϕ(X,S) − θ‖2/σ 2] < ∞ as the
risk of the estimator ϕ(X,S), the condition
Eθ,σ 2[γ 2(X)] < ∞ ensures that the expectation of the
loss in (3.5), that is, the risk difference D(θ, σ 2, ϕ, δ)

is finite. Then R(θ, σ 2, ϕ, δ) < ∞ since R(θ, σ 2, ϕ,

δ0) < ∞.
We now express the risk difference D(θ, σ 2, ϕ, δ) =

Eθ,σ 2[d(θ, σ 2,X,S)]. Using (3.1) and expanding
‖ϕ(X,S) − θ‖2/σ 2 give that d(θ, σ 2,X,S) in (3.5)
can be written as d(θ, σ 2,X,S) = A(X,S) + B(θ,σ 2,

X,S) where

A(X,S) = S2γ 2(X) − 2pSγ (X)

− 2(k + 2)S2γ (X)‖g(X,S)‖2

(3.6)
− 4S2γ (X)divX g(X,S)

− 4S3γ (X)
∂

∂S
‖g(X,S)‖2

and

B(θ,σ 2,X,S) = 2
S3

σ 2 γ (X)‖g(X,S)‖2

+ 2
S

σ 2 γ (X)‖X − θ‖2(3.7)

+ 4
S2

σ 2 γ (X)(X − θ)tg(X,S).

Through Lemma 3.1(ii) with h(x, s) = 2 s3

σ 2 γ (x) ·
‖g(x, s)‖2, the expectation of the first term in the right-
hand side of (3.7) equals

Eθ,σ 2

[
2
S3

σ 2 γ (X)‖g(X,S)‖2
]

= Eθ,σ 2

[
2(k + 4)S2γ (X)‖g(X,S)‖2(3.8)

+ 4S3γ (X)
∂

∂S
‖g(X,S)‖2

]
.

An iterated application of Lemma 3.1(i) to the ex-
pectation of the second term in the right-hand side of
(3.7) allows to write

Eθ,σ 2

[
2

S

σ 2 γ (X)‖X − θ‖2
]

= Eθ,σ 2

[
2

1

σ 2 (X − θ)tSγ (X)(X − θ)

]

= Eθ,σ 2[2 divX{Sγ (X)(X − θ)}]
= Eθ,σ 2[2pSγ (X) + 2S(X − θ)t∇γ (X)]
= Eθ,σ 2[2pSγ (X) + 2σ 2S�γ (X)]
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which, as S ∼ σ 2χ2
k entails that E[S2/(k + 2)] =

E[σ 2S] and as S is independent of X, gives

Eθ,σ 2

[
2

S

σ 2 γ (X)‖X − θ‖2
]

(3.9)

= Eθ,σ 2

[
2pSγ (X) + 2

S2

k + 2
�γ (X)

]
.

As for the third term in the right-hand side of (3.7), its
expectation can also be expressed using Lemma 3.1(i)
as

Eθ,σ 2

[
4
S2

σ 2 γ (X)(X − θ)tg(X,S)

]

= Eθ,σ 2[4S2 divX{γ (X)g(X,S)}]
(3.10)

= Eθ,σ 2[4S2γ (X)divX{g(X,S)}
+ 4S2g(X,S)t∇γ (X)]

by the product rule for the divergence. Finally, gather-
ing (3.8), (3.9) and (3.10) yields an expression of (3.7)
which, with (3.6), gives the integrand term of (3.2),
which is the desired result. �

As an example, consider the James–Stein estimator
with unknown variance

ϕJS(X,S) = X − p − 2

k + 2

S

‖X‖2 X.

Here the shrinkage factor is the product of a function
of S with a function of X so that, through routine cal-
culation, the unbiased estimator of loss is

δ0(X,S) = p − (p − 2)2

k + 2

S

‖X‖2 .

For a correction of the form γ (x) = −d/‖x‖2 with d ≥
0, it is easy to check that the expression in (3.3) equals

d2 + 4
p − 4

k + 2
d − 8

p − 2

k + 2
d − 4

(
p − 2

k + 2

)2

d

= d

(
d − 4

k + 2

[
p + (p − 2)2

k + 2

])

which is negative for 0 < d < 4
k+2 [p + (p−2)2

k+2 ] and

gives domination of p − (p−2)2

k+2
S

‖X‖2 + d
‖x‖2 over p −

(p−2)2

k+2
S

‖X‖2 . This condition recovers the result of Wan

and Zou [51] who considered the case d = 2
k+2 [p +

(p−2)2

k+2 ].

4. EXTENSIONS TO THE SPHERICAL CASE

4.1 Estimating the Quadratic Loss of the Mean of a
Spherical Distribution

In the previous sections the loss estimation problem
was considered for the normal distribution setting. The
normal distribution has been generalized in two im-
portant directions, first as a special case of the expo-
nential family and second as a spherically symmetric
distribution. In this section we will consider the lat-
ter. There are a variety of equivalent definitions and
characterizations of the class of spherically symmet-
ric distributions; a comprehensive review is given in
[20]. We will use the representation of a random vari-
able from a spherically symmetric distribution, X =
(X1, . . . ,Xp)t , as X

d= RU(p) +θ , where R = ‖X−θ‖
is a random radius, U(p) is a uniform random variable
on the p-dimensional unit sphere, where R and U(p)

are independent. In such a situation, the distribution
of X is said to be spherically symmetric around θ and
we write X ∼ SSp(θ). We also extend, in Section 4.2,
these results to the case where the distribution of X is
spherically symmetric and when a residual vector U is
available (which allows an estimation of the variance
factor σ 2).

Assume X ∼ SSp(θ) and suppose we wish to esti-
mate θ ∈ R

p by a decision rule δ(X) using quadratic
loss. Suppose that we also use quadratic loss to assess
the accuracy of loss estimate δ(X); then the risk of this
loss estimate is given by (1.2). In [26], the problem of
estimating the loss when ϕ(X) = X is the estimate of
the location parameter θ is considered. The estimate ϕ

is the least squares estimator and is minimax among
the class of spherically symmetric distributions with
bounded second moment. Furthermore, if one assumes
the density of X exists and is unimodal, then ϕ is also
the maximum likelihood estimator.

The unbiased constant estimate of the loss ‖X − θ‖2

is δ0 = Eθ [R2]. Note that δ0 is independent of θ , since
Eθ [‖X−θ‖2] = E0[‖X‖2]. Fourdrinier and Wells [26]
showed that the unbiased estimator δ0 can be domi-
nated by δ0 −γ , where γ is a particular superharmonic
function for the case where the sampling distribution is
a scale mixture of normals and in more general spheri-
cal cases.

The development of the results depends on some in-
teresting extensions of the classical Stein identities in
(2.7) and (2.12) to the general spherical setting. Since
the distribution of X, say Pθ , is spherically symmet-
ric around θ , for every bounded function f, we have
Eθ [f ] = EER,θ [f ] = ∫

R+ ER,θ [f ]ρ(dR), where ρ
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is the distribution of the radius, namely the distribu-
tion of the norm ‖X − θ‖ under Pθ and where E

and ER,θ denote respectively the expectation with re-
spect to the radial distribution and uniform distribu-
tion UR,θ on the sphere SR,θ = {x ∈ R

p | ‖x − θ‖ =
R} of radius R and center θ . To deduce the vari-
ous risk domination results it suffices to work con-
ditionally on the radius, that is to say to replace Pθ

by UR,θ in the risk expressions. Let σR,θ denote the
area measure on SR,θ . Therefore, for every Borel
measurable set A, UR,θ (A) = σR,θ (A)/σ(SR,θ ) =
�(p/2)σR,θ (A)/2πp/2Rp−1. Define the volume mea-
sure τR,θ on the ball BR,θ = {x ∈ R

p | ‖x − θ‖ ≤ R}
of radius R and center θ and denote the uniform dis-
tribution on BR,θ as VR,θ . Hence, for every Borel
measurable set A, VR,θ (A) = τR,θ (A)/τR,θ (BR,θ ) =
p�(p/2)τR,θ (A)/2πp/2Rp. Suppose γ is a weakly
differentiable vector-valued function; then by apply-
ing the Divergence Theorem for weakly differentiable
functions to the definition of the expectation we have

Eθ [(X − θ)tγ (X) | ‖X − θ‖ = R]
=

∫
SR,θ

(x − θ)tγ (x)UR,θ (dx)(4.1)

= R

σR,θ (SR,θ )

∫
BR,θ

divγ (x) dx.

If γ is a real-valued function, then it follows from (4.1)
and the product rule applied to the vector-valued func-
tion (x − θ)γ (x) that

Eθ [‖X − θ‖2γ (X) | ‖X − θ‖ = R]
=

∫
SR,θ

(x − θ)t (x − θ)γ (x)UR,θ (dx)

(4.2)

= R

σR,θ (SR,θ )

·
∫
BR,θ

[pγ (x) + (x − θ)t∇γ (x)]dx.

Our first extension of Theorem 2.1 is to the class of
spherically symmetric distributions that are scale mix-
tures of normal distributions. Well-known examples
in the class of densities include the double exponen-
tial, multivariate t-distribution (hence, the multivariate
Cauchy distribution). Let φ(x; θ, I ) be the probability
density function of a random vector X with a normal
distribution with mean vector θ and identity covariance
matrix. Suppose that there is a probability measure on
R+ such that the probability density function pθ may
be expressed as

pθ(x|θ) =
∫ ∞

0
φ(x; θ, I/ς)G(dς).(4.3)

One can think of ϒ being a random variable with
distribution G; the conditional distribution of X given
ϒ = ς,X|ϒ = ς , is Np(θ, I/ς). This class contains
some heavy-tailed distributions, possibly with no mo-
ments. It is well known (see [20]) that, if a spher-
ical distribution has a density pθ , it is of the form
pθ(x) = g(‖x − θ‖2) for a measurable positive func-
tion g (called the generating function).

In the scale mixture of normals setting the unbiased
estimate, δ0, of risk equals

E[R2] = Eθ [‖X − θ‖2] = p

∫ ∞
0

ς−1G(dς).

It is easy to see that the risk of the unbiased estimator
δ0 is finite if and only if Eθ [‖X − θ‖4] < ∞, which
holds if ∫ ∞

0
ς−2G(dς) < ∞.(4.4)

The main theorem in [26] is the following domina-
tion result of an improved estimator of loss over the
unbiased loss estimator.

THEOREM 4.1. Assume the distribution of X is a
scale mixture of normal random variables as in (4.3)
such that (4.4) is satisfied and such that∫

R+
ςp/2G(dς) < ∞.(4.5)

Also, assume that the shrinkage function γ is twice
weakly differentiable on R

p and satisfies Eθ [γ 2] < ∞,
for every θ ∈ R

p . Then a sufficient condition for δ0 −γ

to dominate δ0 is that γ satisfies the differential in-
equality

k�γ + γ 2 < 0 with k = 2

∫
R+ ςp/2G(dς)∫

R+ ςp/2−2G(dς)
.(4.6)

As an example let γ (x) = c/‖x‖2 where c is a pos-
itive constant. Note that γ is twice weakly differen-
tiable only when p > 4 (thus its Laplacian exists as a
locally integrable function). Then it may be shown that
�γ (x) = −2c(p − 4)/‖x‖4. Hence k�(x) + γ 2(x) =
−2kc(p − 4)/‖x‖4 + c2/‖x‖4 < 0 if −2kc(p − 4) +
c2 < 0, that is, 0 < c < 2k(p − 4). It is easy to see
that the optimal value of c for which this inequality is
the most negative equals k(p − 4), so an interesting
estimate in this class of γ ’s is δ = δ0 − k(p − 4)/‖x‖2

(p > 4). This is precisely the estimate proposed by [32]
in the normal distribution case Np(θ, I ) where k = 2;
recall, in that case δ0 = p.

In this example, we have assumed that the dimension
p is greater than 4. In general we can have domination
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as long as the assumptions of the theorem are valid. Ac-
tually, Blanchard and Fourdrinier [7] showed explicitly
that, when p ≤ 4, the only solution γ in L2

loc(R
p) of

the inequality k�γ + γ 2 ≤ 0 is γ ≡ 0, almost every-
where with respect to the Lebesgue measure λ. Now, in
the normal setting Np(θ, I/ς), an unbiased estimator
of the risk difference between an estimator δ = δ0 − γ

and δ0 is 2ς−2�γ + γ 2. Hence, for dimensions 4 or
less, it is impossible to find an estimator δ = δ0 − γ

whose unbiased estimate of risk is always less than that
of δ0. Indeed we cannot have Eθ [2ς−2�γ + γ 2] < 0,
for some θ , without having λ[ς−2�γ (x) + γ 2(x) <

0] > 0, which entails that λ[γ (x) �= 0] > 0.
In the case of scale mixture of normal distributions,

the conjecture of admissibility of δ0 for lower dimen-
sions, although it is probably true, remains open. In-
deed, under conditions of Theorem 4.1, k�γ + γ 2 is
no longer an unbiased estimator of the risk difference
and Eθ [k�γ + γ 2] is only its upper bound. The use
of Blyth’s method would need to specify the distribu-
tion of X (i.e., the mixture distribution G). It is worth
noting that dimension-cutoff also arises through the
finiteness of Eθ [γ 2] when using the classical shrink-
age function c/‖x‖2.

In order to prove Theorem 4.1 we need some ad-
ditional technical results. The first lemma gives some
important properties of superharmonic functions and is
found in Du Plessis [17] and the second lemma links
the integral of the gradient on a ball with the integral
of the Laplacian.

LEMMA 4.1. If γ is a real-valued superharmonic
function, then:

(i)
∫
SR,θ

γ (x)UR,θ (dx) ≤ ∫
BR,θ

γ (x)VR,θ (dx),
(ii) both of the integrals in (i) are decreasing in R.

PROOF. See Sections 1.3 and 2.5 in [17]. �
LEMMA 4.2. Suppose γ is a twice weakly differ-

entiable function. Then∫
BR,θ

(x − θ)t∇γ (x)VR,θ (dx)

= p�(p/2)

2πp/2

1

Rp

∫ R

0
r

∫
Br,θ

�γ (x) dx dr.

PROOF. Since the density of the distribution of the
radius under VR,θ is (p/Rp)rp−11[0,R](r), we have∫

BR,θ

(x − θ)t∇γ (x)VR,θ (dx)

=
∫ R

0

∫
Sr,θ

(x − θ)t∇γ (x)Ur,θ (dx)
p

Rp
rp−1 dr.

The result follows from applying (4.1) to the innermost
integral of the right-hand side of this equality and by
recalling the fact that σr,θ (Sr,θ ) = (2πp/2/�(p/2)) ·
rp−1. �

PROOF OF THEOREM 4.1. Denoting by ρ the dis-
tribution of the radius ‖X − θ‖, the risk difference be-
tween δ0 and δ0 − γ equals α(θ) + β(θ) where

α(θ) =
∫

R+
αR(θ)ρ(dR) and

(4.7)
β(θ) =

∫
R+

βR(θ)ρ(dR)

with

αR(θ) = 2R2
∫
BR,θ

γ (x)VR,θ (dx)

(4.8)
− 2λ0

∫
SR,θ

γ (x)UR,θ (dx)

and

βR(θ) = 2
R2

p

∫
BR,θ

(x − θ)t∇γ (x)VR,θ (dx)

(4.9)
+

∫
SR,θ

γ 2(x)UR,θ (dx).

Indeed, the risk difference conditional on the radius R

equals
∫
SR,θ

[2‖x − θ‖2γ (x) − 2λ0γ (x) + γ 2(x)]UR,θ (dx)

and the result follows from (4.2) applied to the first
term between brackets.

Let us first deal with α(θ) considering the first term
in (4.8). We have from the definition of VR,θ and an
application of Fubini’s theorem

∫
R+

R2
∫
BR,θ

γ (x)VR,θ (dx)ρ(dR)

= p
�(p/2)

2πp/2

∫
R+

R2−p
∫
BR,θ

γ (x) dxρ(dR)(4.10)

= p
�(p/2)

2πp/2

∫
Rp

γ (x)

∫ +∞
‖x−θ‖

R2−pρ(dR)dx.

Now, for fixed ς ≥ 0, in the normal case Np(θ, I/ς)

the distribution ρς of the radius has the density fς

of the form fς(R) = ςp/2

2p/2−1�(p/2)
Rp−1 exp{−ςR2

2 } and
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δ0 = p
ς

. Thus the expression (4.10) becomes
∫

R+
R2

∫
BR,θ

γ (x)VR,θ (dx)ρ(dR)

= pςp/2

(2π)p/2

∫
Rp

γ (x)

∫ +∞
‖x−θ‖

R exp
{
−ςR2

2

}
dR dx

= pςp/2−1

(2π)p/2

∫
Rp

γ (x) exp
{
−ς

2
‖x − θ‖2

}
dx

= p

ς

∫
R+

∫
SR,θ

γ (x)UR,θ (dx)ρς(dR),

the last equality holding since X
D= RU(p). Turning

back to (4.7) and (4.8) and using the mixture repre-
sentation with mixing distribution G, the expression of
α(θ) is written as

α(θ) = 2p

∫
R+

(
1

ς
− δ0

p

)

·
∫

Rp
γ (x)

(
ς

2π

)p/2

(4.11)

· exp
(
−ς

2
‖x − θ‖2

)
dxG(dς).

It can be easily seen that the innermost integral in
(4.11) is proportional to∫ ∞

0

∫
S

(u/ς)1/2,θ

γ (x) dUS
(u/ς)1/2,θ

up/2−1 exp
(
−u

2

)
du

and hence is nondecreasing in ς by superharmonic-
ity of γ induced by the inequality in (4.6) and by
Lemma 4.1(ii). Thus, since δ0 = p/ς for fixed ς , the
expression for α(θ) in (4.11) is a nonpositive covari-
ance with respect to G.

We can now treat the integral of the expression β(θ)

in the same manner. The function x → (x − θ)t∇γ (x)

and the function x → ∇γ (x) taking successively the
role of the function γ , we obtain

∫
R+

R2

p

∫
BR,θ

(x − θ)t∇γ (x)VR,θ (dx)ρς (dR)

= 1

ς

∫
R+

∫
SR,θ

(x − θ)t∇γ (x)UR,θ (dx)ρς (dR)

= 1

ς

∫
R+

R2

p

∫
BR,θ

∇γ (x) dxρς(dR)

= ςp/2−2

(2π)p/2

∫
Rp

∇γ (x) exp
{
−ς

2
‖x − θ‖2

}
dx

by applying (4.1) for the second equality and remem-
bering that �γ = div(∇γ ). Therefore by the Fubini

Theorem β(θ) can be reexpressed as

β(θ) =
∫

Rp

(
2 � γ (x)

·
∫
R+ ςp/2−2 exp(−ς‖x − θ‖2/2)G(dς)∫

R+ ςp/2 exp(−ς‖x − θ‖2/2)G(dς)

+ γ 2(x)

)
(4.12)

·
∫

R+

(
ς

2π

)p/2

· exp
(
−ς

2
‖x − θ‖2

)
G(dς)dx.

Now, through a monotone likelihood ratio argument,
the ratio of integrals in (4.12) can be seen to be
bounded from below by the constant k in (4.6). Hence
the inequality in (4.6) gives

β(θ) ≤
∫

Rp

(
k � γ (x) + γ 2(x)

)

·
∫

R+

(
ς

2π

)p/2

· exp
(
−ς

2
‖x − θ‖2

)
G(dς)dx

< 0.

Finally, remembering that α(θ) is nonpositive, it fol-
lows that the risk difference α(θ) + β(θ) between δ0
and δ0 − γ is negative, which proves the theorem. �

The improved loss estimator result in Theorem 4.1
for scale mixture of normal distributions family was
extended to a more general family of spherically sym-
metric distributions in [26]. In this setting the condi-
tions for improvement rest on the generating function
g of the spherical density pθ . A sufficient condition for
domination of δ0 has the usual form k�γ + γ 2 ≤ 0.

THEOREM 4.2. Assume the spherical distribution
of X with generating function g has finite fourth mo-
ment. Assume the function γ is nonnegative and twice
weakly differentiable on R

p and satisfies Eθ [γ 2] < ∞.
If, for every s ≥ 0,

∫ ∞
s g(z) dz

2g(s)
≤ δ0

p
(4.13)

and if there exists a constant k such that, for any s ≥ 0,

0 < k <

∫ ∞
s zg(z) dz − s

∫ ∞
s g(z) dz

2g(s)
,(4.14)
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then a sufficient condition for δ0 − γ to dominate δ0 is
that γ satisfies the differential inequality

k�γ + γ 2 < 0.

We have shown that one can dominate the unbiased
constant estimator of loss by a shrinkage-type esti-
mator. As in the normal case one may wish to add
a frequentist-validity constraint to the loss estimation
problem. It is easy to show that the only frequentist
valid estimator of the form δ0 would be the only fre-
quentist valid loss estimator. The proof of this result
follows from a randomization of the origin technique
as in Hsieh and Hwang [30].

4.2 Estimating the Quadratic Loss of the Mean of a
Spherical Distribution with a Residual Vector

In this section, we extend the ideas of the previous
sections to a spherically symmetric distribution with a
residual vector. We first develop an unbiased estimator
of the loss and then construct a dominating shrinkage-
type estimator. An important feature of our results is
that the proposed loss estimates dominate the unbiased
estimates for the entire class of spherically symmetric
distributions. That is, the domination results are robust
with respect to spherical symmetry.

Let (X,U) ∼ SS(θ,0) where dimX = dim θ = p

and dimU = dim 0 = k (p + k = n). For convenience
of notation, here (X,U) and (θ,0) represent n×1 vec-
tors (see Appendix A.2 for more details on this model).
Unlike Section 4.1, the dimension of the observable
(X,U) is greater than the dimension of the estimand θ .
This model arises as the canonical form of the follow-
ing seemingly more general model, the general linear
model. Let V be an n×p matrix (of full rank p) which
is often referred to as the design matrix. Suppose an
n×1 vector Y is observed such that Y = Vβ +ε where
β is a p×1 vector of (unknown) regression coefficients
and ε is an n × 1 vector with a spherically symmetric
distribution about 0. A common alternative representa-
tion of this model is Y = η + ε where ε is as above and
η is in the column space of V.

To understand this representation in terms of the gen-
eral linear model, let G = (Gt

1,G
t
2)

t be an n × n or-
thogonal matrix partitioned such that the first p rows
of G (i.e., the rows of G1 considered as column vec-
tors) span the column space of V . Now let(

X

U

)
=

(
G1
G2

)
Y =

(
G1
G2

)
Vβ + Gε =

(
θ

0

)
+ Gε

with θ = G1Vβ and G2Vβ = 0 since the rows of G2
are orthogonal to the columns of V . It follows from

the definition that (X,U) has a spherically symmetric
distribution about (θ,0). In this sense, the model given
above is the canonical form of the general linear model.

The usual estimator of θ is the orthogonal projec-
tor X. A class of competing point estimators which are
also considered is of the form ϕ = X − ‖U‖2g(X); g

is a measurable function from R
p into R

p . This class
of estimators is closely related to Stein-like estimators
(when estimating the mean of a normal distribution, the
square of the residual term ‖u‖ is used as an estimate
of the unknown variance). Their domination properties
are robust with respect to spherical symmetry (cf. [11]
and [12]). We will first consider estimation of the loss
of the usual least squares estimator X, then estimation
of the loss of the more general shrinkage estimator ϕ.
In order to assure the finiteness of their risk of the usual
estimator X and the risk of the shrinkage estimator ϕ,
we need two hypotheses (H1) and (H2) given in [11].

In the spherical case in Section 3, the risk of X

was constant with respect to θ . Thus this risk provides
an unbiased estimator of the loss, that is, pE[R2]/n,
which is subject to the knowledge of E[R2]. Its prop-
erties, as the properties of any improved estimator, may
depend on the specific underlying distribution. An im-
portant feature of the results in this subsection is that
we propose an unbiased estimator δ0 of the loss of
X which is available for every spherically symmet-
ric distribution (with finite fourth moment), that is,
δ0(X,U) = p‖U‖2/k. Thus we do not need to know
the specific distribution, and we get robustness with an
estimator which is no longer constant. Notice δ0 makes
sense because p < n (i.e., k ≥ 1).

In this subsection, we consider estimation of θ by X

so that, as in the work of Fourdrinier and Wells [25], we
deal with estimating the loss ‖X−θ‖2. An unbiased es-
timator of that loss is given by δ0(X,U) = p‖U‖2/k,
that we write δ0(U) since it depends only on U . The
unbiasedness of δ0 follows from Corollary A.1 by tak-
ing q = 0 and γ ≡ 1. The goal of this subsection is to
prove the domination of the unbiased estimator δ0 by a
competing estimator δ of the form

δ(X,U) = δ0(U) − ‖U‖4γ (X),(4.15)

where γ is a nonnegative function. It is important to
notice that the “residual term” ‖U‖ appears explicitly
in the shrinkage function. It has been noted in [11] that
the use of this term allows fewer assumptions about the
distributions than when it does not appear. Specifically,
this including gives a robustness property to the results,
since they are valid for the entire class of spherically
symmetric distributions.
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We require the real-valued function γ to be twice
weakly differentiable, in order to include basic exam-
ples, which are not twice differentiable. The following
domination result is given in [25]. We will see below
that it appears as a consequence of a more general re-
sult when shrinkage estimators of θ are involved.

THEOREM 4.3. Assume that p ≥ 5, the distribu-
tion of (X,U) has a finite fourth moment and the func-
tion γ is twice weakly differentiable on R

p and there
exists a constant β such that γ (t) ≤ β/‖t‖2. A suffi-
cient condition under which the estimator δ in (4.15)
dominates the unbiased estimator δ0 is that γ satisfies
the differential inequality

γ 2 + 2

(k + 4)(k + 6)
� γ ≤ 0.(4.16)

The standard example where γ (t) = d/‖t‖2 for all
t �= 0 with d > 0 satisfies the conditions of the theo-
rem. More precisely, it is easy to deduce that �γ (t) =
−2d(p − 4)/‖t‖4 and thus the sufficient condition of
the theorem is written as 0 < d ≤ 4(p−4)/(k +4)(k+
6), which only occurs when p ≥ 5. Straightforward
calculus shows that the optimal value of d is given by
2(p−4)/(k+4)(k+6). The optimal constant in [11] is
equal to 2(p − 4). The extra terms in the denominator
compensate for the ‖U‖4 term in our estimator.

We now consider the estimation of the loss of a
class of shrinkage estimators considered in [11] (with a
slight modification of their form in order to have nota-
tions coherent with those of the previous sections), that
is, location estimators of the form

ϕg = X + ‖U‖2g(X),(4.17)

where g is a weakly differentiable function from
R

p into R
p . In [11] it is shown that, if ‖g‖2 ≤

−2 divg/(k+2), then ϕg dominates X, under quadratic
loss for all spherically symmetric distributions with
a finite second moment. A general example of a
member of this class of estimators is with g(X) =
−r(‖X‖2)A(X)

b(X)
, where r is a positive differentiable

and nondecreasing function, A is a positive definite
symmetric matrix and b is a positive definite quadratic
form of R

p . When r is equal to some constant a, A is
the identity on R

p and the quadratic form b is the usual
norm, g reduces to a/‖X‖2. It can be shown that the
optimal choice of a equals (p − 2)/(k + 2). A member

of the class is ϕr = X − (p − 2)
‖U‖2

k+2
X

‖X‖2 , the James–
Stein estimator used when the variance is unknown as
in Section 3.

In Proposition 2.3.1 of Section 2.3 of [11], it is
shown that an unbiased estimator of the loss of the

shrinkage estimator ϕg is given by

δ
g
0 (X,U) = p

k
‖U‖2

(4.18)
+

(
‖g(X)‖2 + 2

k + 2
divg(X)

)
‖U‖4.

As in Theorem 4.3 above, the unbiased estimator of
the loss can be improved by a shrinkage estimator of
the loss. Thus the competing estimator we consider is

δg
γ (X,U) = δ

g
0 (X,U) − ‖U‖4γ (X),(4.19)

where γ is a nonnegative function. Note that (4.19) is
a true shrinkage estimator, while Johnstone’s [32] op-
timal loss estimate for the normal case is an expanding
estimator. This is not contradictory since we are using
a different estimator than Johnstone and he was only
dealing with the normal case. If g ≡ 0, the following
result reduces to Theorem 4.3.

THEOREM 4.4. Assume that p ≥ 5, the distribu-
tion of (X,U) has a finite fourth moment and the func-
tion γ is twice weakly differentiable on R

p and there
exists a constant β such that γ (t) ≤ β/‖t‖2. A suffi-
cient condition under which the estimator δ

g
γ given in

(4.19) dominates the unbiased estimator δ
g
0 is that γ

satisfies the differential inequality

γ 2 − 4

k + 2
γ divg + 4

k + 6
div(γg)

(4.20)
+ 2

(k + 4)(k + 6)
� γ ≤ 0.

PROOF. Since the distribution of (X,U) is spheri-
cally symmetric around θ , it suffices to obtain the result
working conditionally on the radius. For R > 0 fixed,
we can compute using the uniform distribution UR,θ

on the sphere SR,θ . Thus the conditional risk difference
between δ

g
γ and δ

g
0 , according to (4.19), equals

ER,θ [(δg
γ (X,U) − ‖ϕ(X,U) − θ‖2)2]

− ER,θ [(δg
0 (X,U) − ‖ϕ(X,U) − θ‖2)2]

= ER,θ [‖U‖8γ 2(X)]
− ER,θ [2‖U‖4γ (X)

· (δg
0 (X,U) − ‖ϕ(X,U) − θ‖2)],

that is, expanding and separating the integrand terms
depending on θ ,

ER,θ

[
‖U‖8γ 2(X) − 2

p

k
‖U‖6γ (X)

− 4

k + 2
‖U‖8 divg(X)

]
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+ ER,θ [4‖U‖6(X − θ)tγ (X)g(X)]
+ ER,θ [2‖U‖4‖X − θ‖2γ (X)],

according to (4.18) (note that the two terms involving
‖g(X)‖2 cancel). Now we have

ER,θ [4‖U‖6(X − θ)tγ (X)g(X)]
= 4

k + 6
ER,θ [‖U‖8 div(γ (X)g(X))]

according to Lemma A.2 and

ER,θ [2‖U‖4‖X − θ‖2γ (X)]
= ER,θ

[
2p

k + 4
‖U‖6γ (X)

+ 2

(k + 4)(k + 6)
‖U‖8�γ (X)

]

according to Corollary A.1. Therefore the above con-
ditional risk difference is equal to

ER,θ

[
‖U‖8

(
γ 2(X) − 4

k + 2
divg(X)

+ 4

k + 6
div(γ (X)g(X))

+ 2

(k + 4)(k + 6)
�γ (X)

)]

+ ER,θ

[
2p

(
1

k − 4
− 1

k

)
‖U‖6γ (X)

]

which is bounded above by the first expectation since
the function γ is nonnegative. Hence, the sufficient
condition for domination is (4.20) in order that the in-
equality R(δg, θ, ϕ) ≤ R(δ

g
0 , θ, ϕ) holds. �

5. DISCUSSION

There are several areas of the theory of loss esti-
mation that we have not discussed. Our primary fo-
cus has been on location parameters for the multivari-
ate normal and spherical distributions. Loss estimation
for exponential families is addressed in Lele [38, 39]
and Rukhin [42]. In [38] and [39] Lele developed im-
proved loss estimators for point estimators in the gen-
eral setup of Hudson’s [31] subclass of continuous ex-
ponential family. Hudson’s family essentially includes
distributions for which the Stein-like identities hold;
explicit calculations and loss estimators are given for
the gamma distribution, as well as for improved scaled
quadratic loss estimators in the Poisson setting for the
Clevenson–Zidek [13] estimator. Rukhin [42] studied
the posterior loss estimator for a Bayes estimate (under

quadratic loss) for the canonical parameter of a linear
exponential family.

As pointed out in the Introduction, in the known vari-
ance normal setting, Johnstone [32] used a version of
Blyth’s lemma to show that the constant loss estimate
p is admissible if p ≤ 4. Lele [39] gave some addi-
tional sufficient conditions for admissibility in the gen-
eral exponential family and worked out the precise de-
tails for the Poisson model. Rukhin [42] considered
loss functions for the simultaneous estimate of θ and
L(θ,ϕ(X)) and deduced some interesting admissibil-
ity results.

A number of researchers have investigated improved
estimators of a covariance matrix, �, under the Stein
loss, LS(�̂,�) = tr(�̂�−1) − log |�̂�−1| − p, using
an unbiased estimation of risk technique. In the nor-
mal case, [15, 27, 45, 47], and [49] proposed improved
estimators that dominate the sample covariance under
LS(�̂,�). In [36], it was shown that the domination of
these improved estimators over the sample covariance
estimator is robust with respect to the family of ellipti-
cal distributions. To date, there has not been any work
on improving the unbiased estimate of LS(�̂,�).

In addition to the theoretical ideas discussed in the
previous sections there are very practical applications
of loss estimation. The primary application of loss es-
timation ideas is to model selection. It was shown by
Fourdrinier and Wells [24] that improved loss estima-
tors give more accurate model selection procedures.
Bartlett, Boucheron and Lugosi [3] studied model se-
lection strategies based on penalized empirical loss
minimization and pointed out the equivalence between
loss estimation and data-based complexity penaliza-
tion. It was shown that any good loss estimate may be
converted into a data-based penalty function and the
performance of the estimate is governed by the qual-
ity of the loss estimate. Furthermore, a selected model
that minimizes the penalized empirical loss achieves
an almost optimal trade-off between the approxima-
tion error and the expected complexity, provided that
the loss estimate on which the complexity is based is
an approximate upper bound on the true loss. The key
point to stress is that there is a fundamental dependence
on the notions of good complexity regularization and
good loss estimation. The ideas in this review lay the
theoretical foundation for the construction of such loss
estimators and model selection rules as well as give
a decision-theoretic analysis of their statistical proper-
ties.

In linear models the notion of degrees of freedom
plays the important role as a model complexity mea-
sure in various model selection criteria, such as Akaike
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information criterion (AIC) [1] , Mallow’s Cp [41], and
Bayesian information criterion (BIC) [44], and gener-
alized cross-validation (GCV) [14]. In regression the
degrees of freedom are the trace of the so-called “hat”
matrix. Efron [18] pointed out that the theory of Stein’s
unbiased risk estimation is central to the ideas underly-
ing the calculation of the degrees of freedom of certain
regression estimators.

Specifically, let Y be a random vector having an n-
variate normal distribution N (θ, σ 2In) with unknown
p-dimensional mean θ and identity covariance matrix
σ 2In. Let θ̂ = ϕ(Y ) be an estimate of θ . In regression
one focuses on how accurate ϕ can be in predicting
using a new response vector ynew. Under the quadratic
loss, the prediction risk is E{‖Y new − θ‖2}/n. Efron
[18] noted that

E{‖ϕ − θ‖2} = E{‖Y − ϕ(Y )‖2 − nσ 2}
(5.1)

+ 2
n∑

i=1

Cov(ϕi, Yi).

This expression suggests a natural definition of the
degrees of freedom for an estimator ϕ as df(ϕ) =∑n

i=1 Cov(ϕi, Yi)/σ
2 = Eθ [(Y − θ)tϕ(Y )]/σ 2. Thus

one can define a Cp-type quantity

Cp(ϕ) = ‖Y − ϕ‖2

n
+ 2 df(ϕ)

n
σ 2(5.2)

which has the same expectations as the true predic-
tion error but may not be an estimate if df(ϕ) and
σ 2 are unknown. However, if ϕ is weakly differen-
tiable and σ̂ 2 is an unbiased estimate of σ 2, the in-
tegration by parts formula in Lemma 3.1 implies that
df(ϕ)σ 2 = Eθ [divϕ(Y )σ̂ 2], hence divϕσ̂ 2 is unbiased
estimate for the complexity parameter term, df(ϕ)σ 2,
in (5.2). Therefore an unbiased estimate for the predic-
tion error is

C∗
p(ϕ) = ‖Y − ϕ‖2

n
+ 2 divϕ

n
σ̂ 2.(5.3)

Note that, if ϕ is a linear estimator (ϕ = Sy for some
matrix S independent of Y ), then it is easy to show that
this definition coincides with the definition of general-
ized degrees of freedom given by Hastie and Tibshirani
[28] since divϕ = tr(S). Note that, if ϕ also depends
on σ̂ 2, then (5.1) needs to be augmented by additional
derivative terms with respect to σ̂ 2 as in Theorem 3.1.

Other approaches for estimating the complexity term
penalty involve the use of resampling methods [18,
52] to directly estimate the prediction error. A K-fold
cross-validation randomly divides the original sample

into K parts, and rotates through each part as a test
sample and uses the remainder as a training sample.
Cross-validation provides an approximately unbiased
estimate of the prediction error, although its variance
can be large. Other commonly used resampling tech-
niques are the nonparametric and parametric bootstrap
methods.

A number of new regularized regression methods
have recently been developed, starting with Ridge re-
gression [29], followed by the Lasso [50], the Elastic
Net [53], and LARS [19]. Each of these estimates is
weakly differentiable and has the form of a general
shrinkage estimate; thus the prediction error estimate
in (5.3) may be applied to construct a model selection
procedure. Zou, Hastie and Tibshirani [54] used this
idea to develop a model selection method for the Lasso.
In some situations verifying the weak differentiability
of ϕ may be complicated.

Loss estimates have been used to derive nonparamet-
ric penalized empirical loss estimates in the context
of function estimation, which adapt to the unknown
smoothness of the function of interest. See Barron et al.
[2] and Donoho and Johnstone [16] for more details.

In the previous sections, the usual quadratic loss
L(θ,ϕ(x)) = ‖ϕ(x) − θ‖2 was considered to evalu-
ate various estimators ϕ(X) of θ . The squared norm
‖x − θ‖2 was crucial in the derivation of the proper-
ties of the loss estimators in conjunction with its role
in the normal density or, more generally, in a spheri-
cal density. Other losses are thinkable but, to deal with
tractable calculations, it matters to keep the Euclidean
norm as a component of the loss in use. Hence a nat-
ural extension is to consider losses which are a func-
tion of ‖x − θ‖2, that is, of the form c(‖x − θ‖2) for a
nonnegative function c defined on R+. The problem
of estimating a function c of ‖x − θ‖2 was tackled
by Fourdrinier and Lepelletier [21] to which we refer
the reader for more details. In particular, they focused
on the fact that estimating c(‖x − θ‖2) can be viewed
as an evaluation of a quantity which is not necessar-
ily a loss. Indeed it includes the problem of estimating
the confidence statement of the usual confidence set
{θ ∈ R

p | ‖x − θ‖2 ≤ cα} with confidence coefficient
1 − α: c is the indicator function 1[0,cα].

APPENDIX

A.1 Risk Finiteness Conditions

LEMMA A.1. 1. Let X ∼ N (θ, Ip), where θ is un-
known, and denote by Eθ the expectation with respect
to the distribution of X. Consider an estimator of θ of
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the form ϕ(X) = X + g(X) where g is a function from
R

p into R
p .

a. If g is such that Eθ [‖g(X)‖2] < ∞, then the
quadratic risk of ϕ(X), that is, R(θ,ϕ) = Eθ [‖ϕ(X)−
θ‖2], is finite.

b. If, in addition, the function g is weakly differen-
tiable so that δ0(X) = p + 2 divg(X) + ‖g(X)‖2 is an
unbiased estimator of the loss ‖ϕ(X) − θ‖2, then the
risk of δ0(X) defined by R(θ, ϕ, δ0) = Eθ [(δ0(X) −
‖ϕ(X) − θ‖2)2] is finite as soon as Eθ [‖g(X)‖4] < ∞
and Eθ [(divg(X))2] < ∞.

2. Let X ∼ N (θ, σ 2Ip), where θ and σ 2 are un-
known, let S be a nonnegative random variable inde-
pendent of X and such that S ∼ σ 2χ2

n and denote by
Eθ,σ 2 the expectation with respect to the joint distribu-
tion of (X,S). Consider an estimator of θ of the form
ϕ(X,S) = X + Sg(X,S) where g is a function from
R

p × R+ into R
p .

a. If g is such that Eθ,σ 2[S2‖g(X,S)‖2] < ∞, then
the quadratic risk of ϕ(X), that is, R(θ,σ 2, ϕ) =
Eθ,σ 2[‖ϕ(X,S) − θ‖2/σ 2], is finite.

b. If, in addition, the function g is weakly differen-
tiable so that

δ0(X,S)

= p + S

{
(n + 2)‖g(X,S)‖2

+ 2 divX g(X,S) + 2S
∂

∂S
‖g(X,S)‖2

}

is an unbiased estimator of the loss ‖ϕ(X,S) −
θ‖2/σ 2, then the risk of δ0(X,S) defined by R(θ, σ 2,

ϕ, δ0) = Eθ,σ 2[(δ0(X,S) − ‖ϕ(X,S) − θ‖2/σ 2))2] is
finite as soon as Eθ,σ 2[S2‖g(X,S)‖4] < ∞,
Eθ,σ 2[(S divg(X,S))2] < ∞ and Eθ,σ 2[(S2 ∂

∂S
‖g(X,

S)‖)2].
PROOF. 1.a. The loss of ϕ(X) can be expanded as

‖ϕ(X) − θ‖2 = ‖X − θ‖2 + ‖g(X)‖2

(A.4)
+ 2(X − θ)tg(X).

Now we have Eθ [‖X − θ‖2] = p < ∞. Hence, by
Schwarz’s inequality, it follows from (A.4) that
|Eθ [(X − θ)tg(X)]| ≤ (Eθ [‖X − θ‖2])1/2 ·
(Eθ [‖g(X)‖2])1/2. Therefore, as soon as
Eθ [‖g(X)‖2] < ∞, we will have |Eθ [‖ϕ(X) − θ‖2] <

∞. This is the desired result.
b. Note that, under the usual domination condi-

tion, that is, 2 divg(x) + ‖g(x)‖2 ≤ 0 for any x ∈ Rp ,
of δ0(X) over X, the condition Eθ [(divg(X))2] <

∞ implies that Eθ [‖g(X)‖4] < ∞. We will have
R(θ, ϕ, δ0) = Eθ [(δ0(X) − ‖ϕ(X) − θ‖2))2] < ∞ as
soon as Eθ [δ2

0(X)] < ∞ and Eθ [‖ϕ(X) − θ‖4] < ∞.
Now Eθ [δ2

0(X)] = Eθ [(p + 2 divg(X) + ‖g(X)‖)2] <

∞ since Eθ [(divg(X))2] < ∞ and Eθ [‖g(X)‖4] < ∞.
Also according to (A.4)

Eθ [‖ϕ(X) − θ‖4] = Eθ [(‖X − θ‖2 + ‖g(X)‖2

+ 2(X − θ)tg(X))2]
< ∞

since Eθ [‖X − θ‖4] < ∞ and Eθ [‖g(X)‖4] < ∞ and,
consequently, since |(X − θ)tg(X)| ≤ ‖X − θ‖‖g(X)‖
implies that

Eθ [|(X − θ)tg(X)|2]
≤ Eθ [‖X − θ‖2‖g(X)‖2]
≤ (Eθ [‖X − θ‖4])1/2(Eθ [‖g(X)‖4])1/2

by Schwarz’s inequality.
2.a. Parallel to the case where the variance σ 2 is

known, it should be noticed that the corresponding
domination condition of δ(X,S) over δ0(X,S), that is,
for any x ∈ Rp and any s ∈ R+, (n + 2)‖g(x, s)‖2 +
2 divx g(x, s) + 2s ∂

∂s
‖g(x, s)‖2 ≤ 0, entails that the

two conditions Eθ,σ 2[(S divg(X,S))2] < ∞ and
Eθ,σ 2[(S2 ∂

∂S
‖g(X,S)‖)2] imply the condition

Eθ,σ 2[S2‖g(X,S)‖4] < ∞. Also the derivation of the
finiteness of R(θ,σ 2, ϕ) follows a similar way as
in 1.a.

b. We will have R(θ, σ 2, ϕ, δ0) = Eθ,σ 2[(δ0(X,

S)−‖ϕ(X)−θ‖2/σ 2))2] < ∞ as soon as Eθ,σ 2[(δ0(X,

S))2 < ∞ and Eθ,σ 2[‖ϕ(X) − θ‖4] < ∞. Now
Eθ,σ 2[(δ0(X,S))2 = Eθ,σ 2[p+S{(n+2)‖g(X,S)‖2 +
2 divX g(X,S) + 2S ∂

∂S
‖g(X,S)‖2}] < ∞ since we as-

sume that Eθ,σ 2[(S divX g(X,S))2] < ∞ and
Eθ,σ 2[S2‖g(X,S)‖4] < ∞. Also Eθ,σ 2[‖ϕ(X,S) −
θ‖4] = Eθ,σ 2[(‖X − θ‖2 + S2‖g(X,S)‖2 + 2S(X −
θ)tg(X,S))2])2] < ∞ since Eθ [‖X − θ‖4] < ∞ and
Eθ,σ 2[S2‖g(X,S)‖4] < ∞ (note that |(X − θ)tg(X,

S)| ≤ ‖X − θ‖‖g(X,S)‖ implies that

Eθ,σ 2[|(X − θ)tSg(X,S)|2]
≤ Eθ,σ 2[‖X − θ‖2S2‖g(X,S)‖2]
≤ (Eθ,σ 2[‖X − θ‖4])1/2(Eθ,σ 2[S2‖g(X,S)‖4])1/2

by Schwarz’s inequality). �
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A.2 Additional Technical Lemmas

This Appendix gives some technical results used in
Section 4.2. The first two results deal with expectations
conditioned on the radius of a spherically symmetric
distribution in R

p × R
k centered at (θ,0) where θ ∈

R
p . These expectations reduce to integrals with respect

to the uniform distribution UR,θ on the sphere

SR,θ = {y = (x, u) ∈ R
p × R

k|
(‖x − θ‖2 + ‖u‖2)1/2 = R}.

If ER,θ [ψ] is the expectation of some function ψ with
respect to UR,θ , the expectation with respect to the
entire distribution is given by Eθ [ψ] = E[ER,θ [ψ]]
where E is the expectation with respect to the distri-
bution of the radius.

When the spherical distribution has a density with
respect to the Lebesgue measure, it is necessarily of the
form f (‖x − θ‖2 + ‖u‖2) for some function f . Then
the radius has density R → σp+kf (R2)Rp+k−1 where
σp+k = 2πp+k/�(

p+k
2 ). Therefore the expectation of

any function ψ can be written as

Eθ [ψ] =
∫ ∞

0

[∫
SR,θ

ψ(y)UR,θ (dy)

]
f (R)dR.

Note that for a vector y = (x, u) ∈ SR,θ , we have
x = π(y) and ‖u‖2 = R2 − ‖π(y) − θ‖2 where π is
the orthogonal projector from R

p × R
k onto R

p . Un-
der UR,θ , the distribution π(UR,θ ) of this projector
has a density with respect to the Lebesgue measure on
R

p given by x → C
p,k
R (R2 − ‖x − θ‖2)k/2−11BR,θ

(x)

where C
p,k
R = �(

p+k
2 )R2−p−k/(�(k

2 )πp/2) and 1BR,θ

is the indicator function of the ball BR,θ = {x ∈
R

p|‖x − θ‖ ≤ R} of radius R centered at θ in R
p .

According to the above, as a spherically symmetric
distribution on R

p around θ , the radius of π(UR,θ ) has
density

r → σpC
p,k
R (R2 − r2)k/2−11]0,R[(r)rp−1

= 2R2−p−k

B(p/2, k/2)
rp−1(R2 − r2)k/2−11]0,R[(r).

We use repeatedly the fact that any such projection
onto a space of dimension greater than 0 and less than
p + k is spherically symmetric with a density. Then we
also often make use of its radial density.

LEMMA A.2. For every twice weakly differen-
tiable function g(Rp → R

p) and for every function

h(R+ → R),

ER,θ [h(‖U‖2)(X − θ)tg(X)]
(A.5)

= ER,θ

[
H(‖U‖2)

(‖U‖2)k/2−1 divg(X)

]
,

where H is the indefinite integral, vanishing at 0, of the
function t → 1

2h(t)tk/2−1.

PROOF. We have

ER,θ [h(‖U‖2)(X − θ)tg(X)]
= C

p,k
R

∫
BR,θ

h(R2 − ‖x − θ‖2)(x − θ)t

· g(x)(R2 − ‖x − θ‖2)k/2−1 dx

= C
p,k
R

∫
BR,θ

(∇H(R2 − ‖x − θ‖2)
)t

g(x) dx

since

∇H(R2 − ‖x − θ‖2)

= −2H ′(R2 − ‖x − θ‖2)(x − θ)

= h(R2 − ‖x − θ‖2)(R2 − ‖x − θ‖2)k/2−1(x − θ).

Then, by the divergence formula,

ER,θ [h(‖U‖2)(X − θ)tg(X)]
= C

p,k
R

∫
BR,θ

div
(
H(R2 − ‖x − θ‖2)g(x)

)
dx

− C
p,k
R

∫
BR,θ

H(R2 − ‖x − θ‖2)divg(x) dx.

Now, if σR,θ denotes the area measure on the sphere
SR,θ , the divergence theorem insures that the first inte-
gral equals

C
p,k
R

∫
SR,θ

(
H(R2 − ‖x − θ‖2)g(x)

)t x − θ

‖x − θ‖σR,θ (dx)

and is null since, for x ∈ SR,θ , R2 − ‖x − θ‖2 = 0 and
H(0) = 0. Hence, in terms of expectation, we have

ER,θ [h(‖U‖2)(X − θ)tg(X)]

= C
p,k
R

∫
BR,θ

H(R2 − ‖x − θ‖2)

(R2 − ‖x − θ‖2)k/2 − 1
divg(x)

· (R2 − ‖x − θ‖2)k/2−1 dx

= ER,θ

[
H(‖U‖2)

(‖U‖2)k/2−1 divg(X)

]

which is the desired result. �
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COROLLARY A.1. For every twice weakly differ-
entiable function γ (Rp → R+) and for every integer q ,

ER,θ [‖U‖q‖X − θ‖2γ (X)]
= p

k + q
ER,θ [‖U‖q+2γ (X)]

+ 1

(k + q)(k + q + 2)
ER,θ [‖U‖q+4 � γ (X)].

PROOF. Take h(t) = tq/2 and g(x) = γ (x)(x − θ)

and apply Lemma A.2 twice. �
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