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A Problem in Particle Physics and Its
Bayesian Analysis
Joshua Landon, Frank X. Lee and Nozer D. Singpurwalla

Abstract. There is a class of statistical problems that arises in several
contexts, the Lattice QCD problem of particle physics being one that has
attracted the most attention. In essence, the problem boils down to the es-
timation of an infinite number of parameters from a finite number of equa-
tions, each equation being an infinite sum of exponential functions. By in-
troducing a latent parameter into the QCD system, we are able to identify
a pattern which tantamounts to reducing the system to a telescopic series.
A statistical model is then endowed on the series, and inference about the un-
known parameters done via a Bayesian approach. A computationally inten-
sive Markov Chain Monte Carlo (MCMC) algorithm is invoked to implement
the approach. The algorithm shares some parallels with that used in the parti-
cle Kalman filter. The approach is validated against simulated as well as data
generated by a physics code pertaining to the quark masses of protons. The
value of our approach is that we are now able to answer questions that could
not be readily answered using some standard approaches in particle physics.

The structure of the Lattice QCD equations is not unique to physics. Such
architectures also appear in mathematical biology, nuclear magnetic imaging,
network analysis, ultracentrifuge, and a host of other relaxation and time de-
cay phenomena. Thus, the methodology of this paper should have an appeal
that transcends the Lattice QCD scenario which motivated us.

The purpose of this paper is twofold. One is to draw attention to a class
of problems in statistical estimation that has a broad appeal in science and
engineering. The second is to outline some essentials of particle physics that
give birth to the kind of problems considered here. It is because of the latter
that the first few sections of this paper are devoted to an overview of particle
physics, with the hope that more statisticians will be inspired to work in one
of the most fundamental areas of scientific inquiry.
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1. INTRODUCTION AND OVERVIEW

Lattice Quantum Chromodynamics, or Lattice QCD,
is an actively researched topic in particle physics.
Many investigators in this field have received the
Physics Nobel Prize, the 2004 prize going to Gross,
Politzer and Wilczek, developers of the notion of
“asymptotic freedom” that characterizes QCD. Under-
lying the Lattice QCD equations are issues of parame-
ter estimation that have proved to be challenging. Es-
sentially, one needs to estimate an infinite number of
parameters from a finite number of equations, each
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equation being an infinite sum of exponential func-
tions.

The approach proposed here is Bayesian; it is driven
by a computationally intensive Markov Chain Monte
Carlo (MCMC) implementation. However, to invoke
this approach, we need to introduce a latent parame-
ter and then explore the “anatomy” of the QCD equa-
tions. This reveals a pattern, which when harnessed
with some reasonable statistical assumptions provided
a pathway to a solution. The inferences provided by our
approach were successfully validated against simulated
as well as real data. However, the real value of our ap-
proach is that it is able to answer questions that could
not be answered using some of the conventional ap-
proaches of particle physics. The approach can there-
fore be seen as an addition to the lattice field theorists’
data analysis tool kit.

The structure of the Lattice QCD equations is not as
specialized as one is inclined to suppose. Indeed, such
equations also appear in other contexts of engineering,
physics, nuclear magnetic imaging and mathematical
biology where they go under the label of “exponential
peeling;” see Section 3.1. Our focus on the physics sce-
nario is due to the fact that this is how we got exposed
to the general problem addressed here.

This paper is directed toward both statisticians and
physicists, and could serve as an example of the inter-
play between the two disciplines. The former may gain
an added appreciation of problems in modern physics
that can be addressed via statistical methods. In the se-
quel, they may also get to know more about particle
physics and the beautiful theories about it that Mother
Nature has revealed. It is, with the above in mind, that
Section 2 is devoted to an overview of aspects of par-
ticle physics, its associated terminology and the awe
inspiring discoveries about it. Reciprocally, the physi-
cists may benefit by exposure to some modern statis-
tical technologies that can be brought to bear for ad-
dressing problems that may have caused them some
consternation.

Section 2 gives an overview of some essentials of
particle physics, and the ensuing Lattice QCD equa-
tions. This section, written by a nonphysicist (NDS)
but reviewed by a physicist (FXL), has been developed
by fusing material from a variety of sources, some no-
table ones being Pagels (1982), Dzierba, Meyer and
Swanson (2000), Yam (1993), Riordan and Zajc (2006)
and Frank Wilczek’s (2005) Nobel lecture. Interjected
throughout this section are a few comments of histor-
ical interest; their purpose is to inform a nonphysicist
reader about the individuals who have contributed to

the building of a magnificent edifice. Section 2 con-
cludes with a graphical display of the structure of mat-
ter via a template that is familiar to statisticians, in par-
ticular, those working in network theory and in relia-
bility.

Section 3 pertains to an anatomy of the Lattice QCD
equations and the resulting mathematical pattern that
it spawns. It is not necessary to read Section 2 (save
perhaps for an inspection of Figure 5) in order to read
Section 3, which is where this paper really begins; in-
deed, Section 2 could have been delegated to an Ap-
pendix. Section 3 is a foundation for the rest of the pa-
per. It is here that the inferential problem is introduced
along with its accompanying notation and terminology.
Section 3.1 gives a broad overview of the several other
scenarios in science and engineering where the Lattice
QCD type equations also arise. Of particular note are
the several examples in mathematical biology wherein
the QCD like equations are often discussed.

Section 4 pertains to the statistical model that the
material of Section 3 creates, and an outline of the
MCMC approach that is used to estimate the param-
eters of the model. These are the parameters that are
of interest to physicists and other scientists. Section 5
pertains to validation against simulated and actual data
and proof of principles. Section 6 pertains to some sug-
gestions for extending the work done here, and strate-
gies for overcoming some of the encountered difficul-
ties. Section 7 concludes the paper.

Since the Lattice QCD equations can be seen as a
prototype for similar equations that arise in other sci-
entific endeavors, this paper also serves as an invitation
to other statisticians to develop approaches for solv-
ing such equations using methods more sophisticated
and/or alternate to the one we have entertained.

2. ESSENTIALS OF PARTICLE PHYSICS

The smallest quantity of anything we can see or feel
is a molecule, and all matter is made up of molecules,
which in turn are made up of atoms. Molecules and
atoms are called particles, and the physics that de-
scribes the interactions between the particles is known
as particle physics; see, for example, Griffiths (1987).

An atom consists of electrons, which carry a negative
charge, and the electrons are centered around a nucleus
that is made up of protons that carry a positive charge,
and neutrons that carry no charge. Figure 1 illustrates
the architecture of a carbon atom which has six elec-
trons, six protons and six neutrons; it is denoted 12

6 C.
The protons and the neutrons are held together

within the nucleus by a nuclear glue called the pion.
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FIG. 1. Architecture of a carbon atom.

Similarly, the protons and the electrons are held to-
gether within the atom by a glue called the photon.
The pions are said to be carriers (or mediators) of the
strong force (or the nuclear force), and the photons are
carriers of the electromagnetic force. Physicists look at
the nuclear glues as force carrying particles, and thus
collectively regard the electrons, the neutrons, the pho-
tons, the pions and the protons as subatomic particles.
Figure 2 displays the structure of matter as understood
around the 1946 time frame. The dotted lines of Fig-
ure 2 indicate the glued members.

In 1911, when Rutherford announced the structure
of the atom, the existence of electrons and protons
was known. The neutron, as a major constituent of the
nucleus, was discovered in 1932 by Chadwick, and

the pion was discovered in 1946. But these discover-
ies were just the tip of the iceberg. Many more sub-
atomic particles have subsequently been discovered.
Collectively, these subatomic particles are now called
hadrons. Physicists speculate that there exist an infi-
nite number of such hadrons. This discovery of hadrons
was made possible by accelerators, which are essen-
tially microscopes for matter.

The invention of the accelerators opened up the sub-
nuclear world with the experimental discovery of thou-
sands of new particles. The question thus arose as to
what the hadrons could be saying about the ultimate
structure of matter.

2.1 The Quark Structure of Matter

The current view is that hadrons are composite ob-
jects made out of more fundamental particles called
quarks, and no one has ever seen a quark! This point
of view came about in the early 1960s when Mur-
ray Gell-Mann discovered that the hadrons organized
themselves into classes (or families) based on a math-
ematical symmetry. An easy way to understand why
this organizational principle worked is to assume that
the hadrons are made up of quarks, only three of which
were needed to build the hadrons. These quarks were
named the up quark, the down quark and the strange
quark. For example, a proton has two up quarks and
one down quark, whereas a neutron has two down
quarks and one up quark. In general, every hadron is
made up of quarks that orbit around each other in a
specific configuration, each configuration resulting in
a hadron. Figure 3 is an illustration of a quark orbit.

FIG. 2. The structure of matter (circa 1946).
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FIG. 3. Illustration of a quark orbit.

Since there could be several orbit configurations,
there ought to be an infinite number of hadrons. The
essence of Gell-Mann’s idea is that hadrons are bound
states of quarks, just like how the atoms are bound
states of electrons, neutrons and protons. Furthermore,
Gell-Mann postulated that there ought to exist a force
carrying particle, called the gluon, that holds the quarks
together. The gluon is said to be the carrier of the
strong force. Figure 4 illustrates the quark structure of
a hadron.

The quark model was purely a theoretical construct.
Its validity was affirmed when Gell-Mann used it to
postulate in 1962 the existence of a particle never seen
before. This was a scientific breakthrough of the high-
est order! It showed that discoveries in physics can
come from mathematical patterns—not just the labo-

ratory. For unraveling the mathematical symmetries of
the hadron, Gell-Mann received the 1969 Nobel Prize
in Physics.

Figure 5 gives a pictorial representation of the quark
structure of matter using a template that is familiar to
statisticians. It represents an atom as a coherent (or log-
ical) system with quarks as the basic building blocks
of the system. The logic symbols of “and” and “or” are
represented by and respectively. The neutrons and the
protons can be regarded as subsystems, and the glu-
ons, photons and the pions that link the quarks, the nu-
cleus and the electrons can be seen as the structure (or
link) functions of the system (cf. Barlow and Proschan,
1975). These are the carriers of the strong force and
the electromagnetic force, respectively. Figure 5 con-
tains Gell-Mann’s famous quote that “everything that

FIG. 4. The quark structure of hadrons.
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FIG. 5. Matter as a coherent system.

is not forbidden is compulsory;” the logical systems
analogue to this quote is the notion of “irrelevance.”

2.2 Quantum Chromodynamics and Lattice QCD

The theory of QCD can be thought of as a recipe
for producing hadrons from quarks and gluons. Since
quarks and gluons make up most of the known mass
of the physical world, unraveling the quark structure of
matter is the key to an understanding of the physical
world, and thus the importance of the subject of this
paper.

The QCD theory was successful in enunciating the
properties of the hadrons. However, its complexity
made its use for predicting unobservable quantum
quantities, like quark masses, almost impossible. This
is because solving the QCD equation (which is just one
line) by analytical methods is difficult. The current ap-
proach is to solve the QCD equation numerically, by
discretizing it over a space–time lattice. Lattice QCD
refers to the representation of space–time as a scaffold
in four dimensions wherein the quarks rest on the con-
necting sites, and the gluons as connections between
the lattice points.

The scaffold is first restricted to a finite volume; it is
then replicated with periodic boundary conditions. All
this entails on the order of 100 million billion arith-
metic operations on typical lattices; this is one exam-
ple as to why physicists need supercomputers. Lattice

QCD has been able to explain as to why a free quark
has not been seen and will not be seen; this is because
it will take an infinite amount of energy to isolate a
quark.

Lattice QCD, being an approximation to the QCD,
improves as the lattice points increase indefinitely and
as the volume of the lattice grid expands. In so do-
ing it opens up avenues for statistical methods to en-
ter the picture. Physicists have explored some of these
avenues, one of which is the focus of this paper; see
Section 3 below.

3. THE UNDERLYING PROBLEM: QCD EQUATIONS

With Lattice QCD, an archetypal scenario is the esti-
mation of an infinite number of parameters from a finite
number of equations. The left-hand side of each equa-
tion is the result of a physics based Monte Carlo run,
each run taking a long time to complete. Thus, there
are only a finite number of runs. For example, a me-
son correlator, G(t |·), takes the form (cf. Lepage et
al., 2002)

G(t |·) =
∞∑

n=1

Ane
−Ent for t = 0,1,2, . . . ,(3.1)

where the parameters An denote the amplitude, and En

denote the energy. Also, E1 < E2 < · · · < En < · · ·.
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Interest centers around the estimation of An and En,
n = 1,2, . . . , based on G(t |·), estimated as Ĝ(t |·), t =
0,1, . . . , k, for some finite k [23 in the case of Lepage
et al. (2002)]. The physics codes which generate the
Ĝ(t |·)’s do not involve the An’s and the En’s, and are
autocorrelated, thus the label “correlator.” The physics
codes also provide estimates of the autocorrelation ma-
trix.

Deterministic approaches to solve for the An’s and
the En’s cannot be invoked, and statistical approaches
involving curve fitting by chi-square, maximum like-
lihood and empirical Bayes have proved to be un-
satisfactory (cf. Morningstar, 2002). For an apprecia-
tion of these efforts, see Lepage et al. (2002), Fiebig
(2002) and Chen et al. (2004); the latter authors pro-
pose what they call a “sequential empirical Bayes ap-
proach.” However, empirical Bayes approaches use ob-
served data to influence the choice of priors, and, as
asserted by Morningstar (2002), are a violation of the
Bayesian philosophy. Indeed, Fiebig (2002) states that
“Bayesian inference has too long been ignored by the
lattice community as an analysis tool. . . . The method
should be given serious consideration as an alternative
for conventional ways.”

Bayesian approaches alternate to ours have been
considered by Nakahara, Asakawa and Hatsuda (1999).
These authors entertain the use of maximum entropy
priors, but, as claimed by Lepage et al. (2002), the
accuracy of their estimator of E2 is inferior to those
obtained using other approaches. Because priors based
on the principle of maximum entropy result in default
priors, such priors also violate the Bayesian philoso-
phy. The approach of Lepage et al. (2002) is Bayesian
in the sense that prior information is used to augment
a chi-square statistic which is then minimized. We find
this work valuable because it articulates the underly-
ing issues and provides a framework for examining the
anatomy of the QCD equations, which enables us to
identify a pattern, which in turn enables us to invoke
the Bayesian approach we propose.

3.1 Relevance to Other Scenarios in Science and
Engineering

The Lattice QCD architecture of equation (3.1) is
not unique to physics. They occur in several other sce-
narios in the physical, the chemical, the engineering
and the biological sciences, a few of which are high-
lighted below. Most attempts at estimation of the un-
derlying parameters have involved least squares or nu-
merical techniques based on local linearization with

iterative improvements. Besides lacking a theoreti-
cal foundation vis-à-vis the requirement of coherence
(cf. Bernardo and Smith, 1994, page 23), techniques
have proved notoriously unreliable and not robust to
slight changes in the experimental data (cf. Hildebrand,
1956).

Mathematical biology: exponential peeling in com-
partment systems. When considering radioactive trac-
ers used for studying transfer rate of substances in
living systems (cf. Robertson, 1957; Rubinow, 1975,
page 125), sums of exponentials are encountered. Here,
the G(t |·) of equation (3.1) represents the concentra-
tion of a substance, the t’s are integer values of time,
and the Ai ’s and the Ei ’s are constants that need to be
estimated. Here interest generally centers around the
case of n = 2, and the coefficients An and En of equa-
tion (3.1) are negative. An ad hoc graphical procedure
called the method of exponential peeling is used to es-
timate the parameters (cf. Smith and Morales, 1944,
Perl, 1960; van Liew, 1967).

Some other scenarios in biology where the Lattice
QCD type equations appear are in bone metabolism
studies and cerebral blood flow (cf. Glass and de Gar-
reta, 1967), and in biological decay (cf. Foss, 1969). In
the latter context, Dyson and Isenberg (1971) consider
for fluorescence decay an equation of the type

y(t) =
m∑

j=1

αj exp(−t/τj ), 0 ≤ t ≤ T ,

where y(t) represents “moments of the fluorescence,”
αj ’s the amplitudes [the An’s of equation (3.1)], and
the τj ’s are time constants corresponding to the En’s
of equation (3.1). Here the αj ’s are zero for j ≥ m+ 1.

Gene expression data. When considering a time se-
ries of gene expression data (cf. Giurcaneanu et al.,
2005), a system of equations paralleling that of equa-
tion (3.1) arises again. In this context G(t |·) represents
“mRNA concentrations” as a function of time, and the
parameters An and En describe interactions between
the genes. In the gene expression context, as in the
Lattice QCD context, the parameters En are increasing
in n.

Nuclear magnetic resonance (NMR). NMR exper-
iments often generate data that are modeled as the
sum of exponentials (cf. Bretthorst et al., 2005). Ex-
periments relying on NMR to probe reaction kineti-
cis, diffusion, molecular dynamics and xenobiotic
metabolism are some of the applications where pa-
rameter estimates provide insight into chemical and
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biological processes. See, for example, Paluszny et al.
(2008/09) who study brain tissue segmentation from
NMR data.

Here one considers equations of the type

di = C +
m∑

j=1

Aj exp{−αj ti} + ni,

where m is the number of exponentials and di a data
value sampled at ti . The parameters of interest are the
decay rate constants αj , the amplitudes Aj and the con-
stant offset C. The ns ’s are the error terms.

Electromechanical oscillations in power systems.
Equations entailing the sum of exponentials are also
encountered in the context of low frequency electrome-
chanical oscillations of interconnected power systems,
the impulse response of linear systems in networks,
ultracentrifuge and a host of other relaxation and time-
decay phenomena (cf. Dyson and Isenberg, 1971). For
example, in the electromagnetic oscillations scenario,
Sanchez-Gasca and Chow (1999) encounter an equa-
tion analogous to our equation (3.1) with G(t |·) denot-
ing a signal and An connoting a signal residue associ-
ated with the “mode” En.

To summarize, the relationships of the type given by
equation (3.1) arise in so many contexts of science and
engineering that it seems to be quintessential, and al-
most some kind of law of nature. The Lattice QCD
problem considered here can therefore be seen as a pro-
totype and a convenient platform to exposit a statistical
problem of general applicability. In most of the appli-
cation scenarios described above, statistical methods
have been used, many ad hoc, some empirical Bayesian
and a few Bayesian (under the rubric of maximum en-
tropy). Many of these methods have not exploited an
underlying telescopic pattern in these equations which
makes an appearance when a latent parameter is intro-
duced into the system, and inference about the latent
parameter made.

3.2 Anatomy of the Lattice QCD equations

An examination of equation (3.1) yields the fol-
lowing boundary conditions. G(0|·) = ∑∞

n=1 An, im-
plying that the An’s are constrained. When t → ∞,
G(t |·) = 0, which implies that for large values of t ,
An and the En cannot be individually estimated. Thus,
simulating G(t |·) for large t does not have a payback;
consequently, it is futile to do such a simulation.

Since the En’s increase with n, we may, as a start,
reparameterize the En’s as En − En−1 = c, for some

unknown c, c > 0, for n = 2,3, . . . . It will be argued
later, in Section 6.1, that c is a latent parameter. Thus,

En = E1 + (n − 1)c, n = 2,3, . . .(3.2)

with E1 and c unknown. With the above assumption
in place, a parsimonious version of the Lattice QCD
equation takes the form

G(t |·) = e−E1t
∞∑

n=1

Ane
−(n−1)ct ,(3.3)

t = 0,1,2, . . . .

With c fixed, the parsimonious model given above re-
veals the following features:

(a) When t is small, the number of An’s entering
equation (3.3) is large; indeed, infinite when t = 0.

(b) When t is large, the number of An’s we need to
consider is small, because the combination of a large t

with any n will make the term An exp(−(n − 1)ct) get
small enough to be ignored.

(c) Moderate values of t and n will also make the
above term small, causing An to be irrelevant.

Figure 6 illustrates the feature that as t gets large, the
number of An’s one needs to consider gets small.

As a consequence of the above, for any fixed c, we
can find a t1 such that in the expression

e−tE1
[
A1 + A2e

−ct + A3e
−2ct + · · ·

+ Ane
−(n−1)ct + · · ·],

all the terms, save for A1, are essentially zero.
Similarly, we can find a t2, t2 < t1, such that all the

terms save for A1 and A2e
−ct2 get annihilated. Contin-

uing in this vein, there exists a sequence tk < tk−1 <

· · · < t2 < t1, such that all that matters are the terms

FIG. 6. Number of An’s as a function of t .
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associated with A1,A2, . . . ,Ak . In what follows, we
suppose that k is specified.

Thus, for any fixed c and k, with t1 > t2 > · · · > tk
chosen in the manner described above, our parsimo-
nious version of the Lattice QCD equations telescope
as follows:

G(t1|·) = e−E1t1A1,

G(t2|·) = e−E1t2(A1 + A2e
−ct2),

G(t3|·) = e−E1t3(A1 + A2e
−ct3 + A3e

−2ct3),
(3.4)

...

G(tk|·) = e−E1tn
(
A1 + A2e

−ctk + · · ·
+ Ake

−(k−1)ctk
)
.

To summarize, by introducing the constant c, fixing
a k, and identifying an underlying pattern in the Lat-
tice QCD equations, we have reduced the problem
to the case of k equations and (k + 2) unknowns,
A1, . . . ,Ak,E1 and c. The choice of what k to choose
is determined by the number of physics code based es-
timates Ĝ(t), t = 0,1, . . . , k, that can be done and are
available.

4. STATISTICAL MODEL: SOLVING THE QCD
EQUATIONS

Many have expressed the view that it would be
considered good progress if trustworthy estimates of
just A1,A2,E1 and E2 can be had. The other pairs
(A3,E3), (A4,E4), . . . , can be considered later; see
Section 6. Thus, we start by focusing attention on the
first two equalities of equation (3.4); that is, the case
k = 2 and some fixed c. Specifically, we consider

G(t1|A1,E1) = e−E1t1A1 and
(4.1)

G(t2|A1,E1,A2, c) = e−E1t2(A1 + A2e
−ct2).

If yi = Ĝ(ti |·), i = 1,2, denotes the physics code
based evaluations of G(ti |·), then our aim is to esti-
mate A1, E1, A2 and c, in light of y1 and y2. To set
up our likelihoods, we take a lead from what has been
done by Nakahara, Asakawa and Hatsuda (1999), and
by Lepage et al. (2002), to write

Y1 = G(t1|·) + ε1 and
(4.2)

Y2 = G(t2|·) + ε2,

where εi ∼ N(0, σ 2
i ), i = 1,2, and Corr(ε1, ε2) = ρ12.

Besides providing y1 and y2, the physics codes also
provide σ 2

1 , σ 2
2 and ρ12. As a consequence, the statisti-

cal model boils down to the bivariate normal distribu-
tion, [

Y1
Y2

]
(4.3)

∼ N

([
G(t1)

G(t2)

]
,

[
σ 2

1 ρ12σ1σ2

ρ12σ1σ2 σ 2
2

])
.

Writing out a likelihood function for the unknowns A1,
E1, A2 and c, based on equation (4.3), is a straightfor-
ward matter. However, we need to bear in mind that
since the parameters A1 and E1 appear in both G(t1|·)
and G(t2|·), both y1 and y2 provide information about
A1 and E1, with y2 providing information about A2
and c as well. To exploit this feature, we construct our
likelihoods based on the marginal distribution of Y1,
and the conditional distribution of Y2 given Y1. That is,
on

Y1 ∼ N(A1e
−E1t1, σ 2

1 )(4.4)

and

(Y2|Y1 = y1) ∼ N

(
G(t2|·) + ρ12

σ2

σ1

(
y1 − G(t1|·)),

(4.5)

σ 2
2 (1 − ρ2

12)

)
.

Specifically, the likelihood of A1 and E1, with y1 fixed,
is

L(A1,E1;y1) ∝ exp
[
−(y1 − A1e

−E1t1)2

2σ 2
1

]
,(4.6)

and the likelihood of A1, E1, A2 and c, with y2 fixed,
and the effect of y1 incorporated via the posterior dis-
tribution of A1 and E1, is of the form

L(A1,E1,A2, c;y1, y2)

∝ exp
[
−

{
y2 − (

e−E1t2(A1 + A2e
−ct2)

)
(4.7)

+ ρ12
σ2

σ1
(y1 − A1e

−E1t1)

}2

· [2σ 2
2 (1 − ρ2

12)]−1
]
.

In the above development, the covariance matrix is pro-
vided by the physics code. As suggested by a referee,
a deeper investigation of this matrix may be called for,
because with increasing t , the variances are likely to
increase, posing computational challenges to the pro-
posed approach.
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4.1 Specification of the Prior Distributions

To implement our Bayesian approach, we need to
make assumptions about conditional independence,
and assign prior distributions for the unknown param-
eters. The priors that we end up choosing in Section 5
are not based on knowledge of the underlying physics,
but are proper priors based on an appreciation of the
material in Morningstar (2002), Lepage et al. (2002)
and Fleming (2005).

The Ai’s are supposedly between 0 and 1, and no re-
lationship between them has been claimed. Thus, it is
natural to assume that A1 and A2 are apriori indepen-
dent, and have a beta distribution on (0,1) with param-
eters (α,β); we denote this as B(Ai;α,β), i = 1,2.
The relationship between E1 and c is less straightfor-
ward. We conjecture that the larger the E1, the smaller
the c, and that E1 can take values over (0,∞). It is
therefore reasonable to assume that the prior on E1 is
a gamma distribution with scale parameter η and shape
parameter λ; we denote this by G(E1;η,λ). Some
other meaningful choices for a prior on E1 could be
a Weibull, or a Pareto, the latter being noteworthy as a
fat-tailed distribution. To encapsulate the dependence
between E1 and c, we suppose that, given E1, c has a
uniform distribution over (0,ω/E1), for some ω > 0.
Finally, we also assume that E1 and c are independent
of all the Ai ’s.

The above choice of priors, with user specified hy-
perparameters α, β , ω, λ and η, is illustrative. In prin-
ciple, any collection of meaningful priors can be used,
since the ensuing inference is done numerically via a
Markov chain Monte Carlo (MCMC) approach.

Lepage et al. (2002), and also Morningstar (2002),
seem to use independent Gaussian priors for the param-
eters in question—see equations (8) and (11) respec-
tively. Indeed, Morningstar (2002) makes the claim
that “practitioners often restrict the choice of a prior
to some familiar distributional form.” The restricted
parameter space makes the choice of Gaussian priors
questionable. An overview of how the MCMC is in-
voked here is given next.

4.2 An Outline of the MCMC Excercise

The telescopic nature of the Lattice QCD equations
suggests that the MCMC will have to be conducted in
the following three phases:

Phase I. Using E
(0)
1 as a starting value and y1 as data,

obtain the posterior distribution of A1 and E1 via equa-
tion (4.6) as the likelihood, and 1,000 iterations of the
MCMC run.

Phase II. Using c(0) as a starting value, and y2 as
data, obtain a sample from the posterior distribution of
A1, E1, A2 and c via the likelihood of equation (4.7),
and 1,000 iterations of the MCMC run. Sample val-
ues of A1 and E1 from their posterior distributions ob-
tained in Phase I will serve as the priors of A1 and E1
in Phase II. Since the parameters A1 and E1 reappear
in the likelihood of equation (4.7) as the mean of y2,
Phase II of the MCMC run captures the effect of y2
on these parameters. The effect of y1 was captured in
Phase I.

Phase III. Repeat Phase I and Phase II m times using
new starting values of E1 and c to produce a sample of
size m from the posterior distribution of A1, E1, A2
and c, with y1 and y2 as the data.

The MCMC exercise described above is routine,
but computer intensive and entails 12 steps, six in
each phase, and this too for a highly curtailed ver-
sion of the Lattice QCD equations. The details of how
this is done could be interesting, because they involve
some discretization of the simulated posterior distri-
butions, and working with individual sampled values
reminiscent of that done in particle Kalman filtering
(cf. Gordon, Salmond and Smith, 1993). Thus, we la-
bel our approach as Particle MCMC. More details are
given in Landon (2007), and the method illustrated
in the Appendix. The software can be downloaded at
http://www.gwu.edu/~stat/irra/Lattice_QCD.htm.

4.3 A Caveat of the Proposed Scheme

The caveat mentioned here stems from the features
that c has been fixed, and that the MCMC runs are cen-
tered around fixed values of y1 and y2. To see why, re-
call that our parsimonious version of the Lattice QCD
equations [see equation (3.4)] is based on those ti’s for
which the exponential terms vanish; however, the ti’s
are determined by a fixed value of c. Thus, any change
in the value of c will bring about a change in the values
of ti , and, as a consequence, the Lattice QCD equa-
tions will also have to be different. This would be tan-
tamount to obtaining new values of the yi ’s. However,
all the likelihoods in the MCMC runs are based on
fixed values of the yi’s; see equations (4.6) and (4.7).
But a change in the value of c is inevitable, because in
Phase II of the MCMC run one iterates around sam-
pled values from the posterior distribution of c, so
that the initial c(0) systematically gets replaced by c(1),
c(2), . . . , c(1,000).

A way to overcome this caveat is to recognize that
for any c(i) > c(0), i = 1,2, . . . , the exponential terms
mentioned above will continue to vanish, so that any

http://www.gwu.edu/~stat/irra/Lattice_QCD.htm
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specified values of yi will continue to satisfy the right-
hand side of equation (4.2).

A strategy to ensure that the successively generated
values of c(i), i = 1,2, . . . , will tend to be greater than
c(0) is to pick small values of c(0) for each of the m iter-
ations of Phase III of the MCMC algorithm. During the
course of the MCMC runs, should one encounter a gen-
erated value of c(i) that is smaller than c(0), then one
should discard the so-generated value c(i), and gen-
erate another value of c(i). Hopefully, the number of
discarded c(i)’s will not be excessive, but if they are,
then the starting value c(0) should be decreased, and
new values of t1 and t2 obtained. This of course would
be tantamount to obtaining new values of y1 and y2 as
well.

5. PROOF OF PRINCIPLE: VALIDATION AGAINST
DATA

We first validate the accuracy of our approach
against simulated data. For this, we choose A1 = 0.8,
A2 = 0.6, A3 = 0.4, A4 = 0.2, A5 = 0.1, and Ai = 0
for i ≥ 6. We also choose E1 = 0.9 and c = 0.5. Using
these values in equation (3.3), we compute G(t), for
t = 1,2, . . . ,12; these are shown in column 3 of Ta-
ble 1. Since Yt = G(t |·) + εt , with εt ∼ N(0, σ 2

t ) [see
equation (4.2)], we generate y1, . . . , y12, assuming the
εt ’s are independent, with σt = 0.001×G(t)× t ; these
are shown in column 4 of Table 1. We next identify
those t’s for which the leading exponential terms van-
ish. These happen to be t1 at t = 12, t2 at t = 6, and t3
at t = 4; see column 2 of Table 1. Our aim is to invoke
the methods of Section 4 on the entries of Table 1, to
see if the constants specified above can be returned.

TABLE 1
Simulated data for validating approach

Time t Index ti G(t) yi

1 0.54874373 0.54900146
2 0.17764687 0.17756522
3 0.06387622 0.06373037
4 t3 0.02422158 0.02414992
5 0.00945326 0.00952723
6 t2 0.00375071 0.00377058
7 0.00151265 0.00151498
8 0.00060552 0.00061147
9 0.00024486 0.00024698

10 0.00009923 0.00009821
11 0.00004026 0.00004007
12 t1 0.00001635 0.00001625

With the above in place, Phases I, II and III of the
MCMC run were made arbitrarily choosing the hyper-
parameters α = β = η = λ = ω = 1, and m = 1,000.

5.1 Results Based on Simulated Data

Figure 7(a) and (b) shows the posterior distributions
of E1 based on y12, and on y12 and y6, respectively.
Recall that y12 corresponds to t1, and y6 corresponds
to t2. Note that the posterior distribution of Figure 7(a)
becomes the prior distribution for the construction of
the posterior distribution of Figure 7(b). Both the dis-
tributions of Figure 7 indicate a modal value of 0.9,
suggesting a tendency to converge to the true value of
E1. Furthermore, the difference between the two dis-
tributions is not very great, suggesting that y6 may not
be contributing much toward inference for E1, beyond
that provided by y12.

(a) (b)

FIG. 7. Posterior distribution of E1. (a) Posterior of E1 based on y12. (b) Posterior of E1 based on y12 and y6.
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(a) (b)

FIG. 8. Posterior distribution of A1. (a) Posterior of A1 based on y12. (b) Posterior of A1 based on y12 and y6.

A similar feature is revealed by the posterior distri-
butions of A1, shown in Figures 8(a) and (b). These dis-
tributions have a modal value of 0.8, suggesting again
a convergence to the true value of A1.

Figures 9 and 10 show the posterior distributions of
A2 and c, based on y12 and y6. Their modal values of
0.6 and 0.5 suggest convergence of the posteriors to
their true values. Thus, based on this simulation ex-
ercise, we may claim that, despite an arbitrary choice
of hyperparameters, the proposed MCMC procedure is
able to show recovery of the input values of A1, E1, A2

and c to a meaningful degree of accuracy.

5.1.1 Sensitivity of posteriors to priors. In this sec-
tion we explore the sensitivity of the posterior distribu-
tions of A1, E1, A2 and c when the hyperparameters
of their prior distributions vary. We also explore the ef-
fect of using a thick-tailed prior distribution for E1, in

FIG. 9. Posterior of A2 based on y12 and y6.

particular, a Pareto distribution, instead of the gamma
distribution used before.

Figure 11 shows the posterior distributions of E1 for
different values of the scale λ and shape η parameters
of its gamma prior. Verify that the posterior distribu-
tions get centered around its true value of 0.9 even
when the prior mean is as large as 10. The values of
the chosen hyperparameters are indicated in the legend
accompanying Figure 11.

In Figures 12 and 13 we show the posterior distribu-
tions of A1 and A2 for different values of the hyperpa-
rameters α and β; see the legend accompanying these
figures. Whereas the posterior distribution of A2 ap-
pears to be very robust against the various choices for
its prior distributions, the posterior distribution of A1
shows some sensitivity—albeit minor—to the choice
of its priors. These priors are centered at (in the case of
A2) and around (in the case of A1) their true values of
0.6 and 0.8, respectively.

FIG. 10. Posterior of c based on y12 and y6.
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FIG. 11. Posterior distribution of E1 with different values of η and λ.

Since the prior on c is a uniform on (0,ω/E1),
changing the value of ω would simply change the range
of values that c can take. It will not change the shape
of the posterior distribution of c. Finally, a use of the
Pareto as a prior for E1 results in a posterior distribu-
tion that looks much like that of Figure 7 produced by a
gamma prior. This result—not illustrated here—is true
irrespective of the choice of the hyperparameters of the
Pareto prior. Indeed, the Pareto prior for E1 indicates a
higher degree of robustness of its resulting posterior as
compared to the gamma prior.

Overall, it seems to be the case that the proposed pro-
cedure is robust to the choice of priors, and that the
resulting posteriors converge to their correct values no
matter the choice of priors.

5.2 Validation Against Physics Code Data

In this section we validate our approach using data
pertaining to a pion that has been generated by a
physics based code. These data are given in Table 2 and
parallel those of Table 1, save for the fact that the data
run from t = 2 to t = 13, and that G(t), t = 2, . . . ,13,

FIG. 12. Posterior distribution of A1 with different values of α and β .
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FIG. 13. Posterior distribution of A2 with different values of α and β .

is not known. However, the Yt ’s and their associated er-
rors are provided by the code, the errors being a proxy
for σ 2

t . The choice of t1, t2 and t3 is based on the
following consideration. By default, t1 has to be the
largest t for which the data are available; thus, in our
case t1 corresponds to t = 13. At t1 all the exponen-
tial terms in equation (3.3) vanish. At t2 we need to
have the terms starting with e−2ct vanish; this means
that t2 ≈ t1/2, which in our case would be 7. Similarly,
t3 ≈ t1/3, which is 4, and so on.

In Figure 14 (a), (b), (c) and (d), we show the pos-
terior distributions of A1, E1, A2 and c, respectively,
based on y13 and y7. The modes of these posterior

TABLE 2
Physics code based data on a pion

t Index ti Yt Errors

2 0.043865236 0.00013635 0.00014836
3 0.009347211 0.00008205 0.000089027
4 t3 0.00406969 0.000051302 0.000057832
5 0.002187666 0.000031545 0.000034867
6 0.001252858 0.000018805 0.000018559
7 t2 0.000735911 0.000011131 0.00001124
8 0.0004358 6.6393E−06 6.8252E−06
9 0.00025829 0.000004049 4.3108E−06

10 0.000153161 2.4808E−06 2.6302E−06
11 9.1412E−05 1.5264E−06 0.000001683
12 5.552E−05 9.5081E−07 1.0741E−06
13 t1 3.54336E−05 6.3079E−07 7.0522E−07

distributions suggest the values of 0.52, 0.029, 0.02
and 0.4, for E1, A1, A2 and c, respectively. The val-
ues of A1 and E1 given above are in good agreement
with the values obtained by a physics based simulation
code. Since the physics based codes are unable to ob-
tain good estimates of A2 and E2 (equivalently, c), the
results on A2 and c obtained by us constitute a contri-
bution toward the solution of an underlying scientific
problem.

Based on this exercise, plus others that are given
in Landon (2007), our conclusion therefore is that the
proposed approach is successfully validated against
both simulated data as well as the physics code gen-
erated data. The exercises in Landon (2007) pertain to
the quark masses of 4 photons and 5 pions.

6. EXTENDING THE APPROACH

The approach outlined in Sections 3 and 4 has some
limitations. The purpose of this section is to prescribe
strategies for overcoming these. By far, the most note-
worthy limitation is that the model of equation (4.1)
restricts attention to a consideration of the parameters
A1, E1, A2 and c, whereas the Lattice QCD equations
have an infinite number of Ai ’s and Ei ’s. The second
concern pertains to the fact that in Section 5, data asso-
ciated with the t’s intermediate to t1 and t2 are not used
in the MCMC algorithm. The proposed approach there-
fore does not exploit all the available data yt . Finally,
there is a question of assuming a constant spacing c of
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(a) (b)

(c) (d)

FIG. 14. Posterior distributions of A1, E1, A2 and c based on y13 and y7. (a) Final posterior of E1. (b) Final posterior of A1. (c) Final
posterior of A2. (d) Final posterior of c.

the Ei’s. What is the effect of unequally spaced Ei ’s
on inference? Recall that the role played by c is impor-
tant. First, it imparts parsimony by eliminating all the
Ei’s save for E1. Second, it gives birth to the telescopic
series which is central to our approach. It turns out that
the effect of c is transitionary (it is a nuisance parame-
ter) and that inferences about E2, A3, E3, A4, . . . , are
possible if we exploit a result observed in Section 5.

6.1 Inferences for E2,A3 and Beyond

Our ability to extend the approach of Sections 3
and 4 to the case of E2, A3, E3, A4, . . . , is driven by
the feature noticed in Section 5.1, that y6 does not con-
tribute much toward the inferences for A1 and E1, be-
yond that provided by y12. Thus, the effect of y4, which
corresponds to t3 of Table 1, will be less so, making it
possible for us to do the following:

Rewrite equation (3.1) as

G(t |·) − A1e
−E1t =

∞∑
n=2

Ane
−Ent ,(6.1)

and let G∗(t |·) = G(t |·) − Â1e
−Ê1t , where Â1 and Ê1

are the modes (means) of the posterior distributions
of A1 and E1 obtained via the likes of Figures 7(b)
and 8(b). Thus,

G∗(t |·) ≈
∞∑

n=2

Ane
−Ent ,

and setting A∗
n = An+1 and E∗

n = En+1, for n =
2,3, . . . , we have

G∗(t |·) ≈
∞∑

n=1

A∗
ne

−E∗
nt .(6.2)

The right-hand side of equation (6.2) parallels the
right-hand side of equation (3.1), save for the fact
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that A∗
n and E∗

n replace An and En. The material of
Sections 3 and 4 now applies, but with the caveat
that since equation (6.2) is an approximation, whereas
equation (3.1) is exact, the variance of the error terms
associated with the former should be larger than those
associated with the latter.

The posterior distributions of E∗
1 and A∗

2 will be the
posterior distributions of E2 and A3. The role of c as
a nuisance parameter is now apparent. The posterior
distribution of A∗

1 will serve as a revised posterior dis-
tribution of A2. Indeed, for the MCMC runs associated
with the treatment of equation (6.2), we may sample
from the posterior distribution of A2 to generate the
posterior distribution of A∗

1.
We may continue in the above vein to estimate E3

and A4 by defining G∗∗(t |·) = G∗(t |·) − Â∗
1e

−Ê∗
1 t ,

where Â∗
1 and Ê∗

1 are the modes of the posterior distri-
butions of A∗

1 and E∗
1 , respectively, and similarly with

(E4,A5), (E5,A6), and so on.

6.2 Using Additional Yt ’s

For enhanced inferences about the parameters A1
and E1 we may want to use all values of Yt interme-
diate to those associated with the labels t1 and t2 of Ta-
bles 1 and 2 and, similarly, with the Yt ’s intermediate
to the ones associated with the labels t2 and t3, and so
on. What makes this possible is the fact that t1 is the
largest value of t for which (A2,E2), (A3,E3), . . . ,

gets annihilated, whereas t2 is the largest value of
t at which (A3,E3), (A4,E4), . . . , gets annihilated,
and so on. Thus, values of t intermediate to t1 and
t2 will continue to annihilate (A2,E2), (A3,E3), . . . ,

and those intermediate to t2 and t3 will annihilate
(A3,E3), (A4,E4), . . . , and so on.

Let y11, y12, . . . , y15 denote the Yt ’s intermediate to
those associated with the labels t1 and t2. Then, to in-
corporate the effect of y11, . . . , y15 for enhanced infer-
ence about A1 and E1, the iterative scheme described
in Phase I of Section 4.2 will have to be cycled five
more times, each cycle involving a use of the y1j ,
j = 1, . . . ,5, before proceeding to Phase II, wherein
the effect of y6 (of Table 1) and y7 (of Table 2) comes
into play and, similarly, with y21, the single value in-
termediate to that associated with the labels t2 and t3.

7. SUMMARY AND CONCLUSIONS

In this paper we have proposed and developed a
statistical approach for addressing a much discussed
problem in particle physics. Indeed, a problem that
has spawned several Nobel prizes in Physics. The

essence of the problem boils down to estimating a large
(conceptually infinite) number of unknown parameters
based on a finite number of nonlinear equations. Statis-
ticians refer to such problems as large p—small n.
Each equation in our problem comprises of the sum
of several exponential functions.

Previous approaches for addressing this problem
have been physics based—such as perturbation meth-
ods—and statistics based—such as chi-squared good-
ness of fit, and Empirical Bayes. Physicists have found
such approaches unsatisfactory, and have called for a
use of proper Bayesian approaches, thus this paper.

The Bayesian approach proposed by us has been fa-
cilitated by the fact that by introducing a latent param-
eter, the architecture of the nonlinear equations reveals
an attractive pattern. This pattern boils down to our
consideration of a truncated telescopic series of equa-
tions, each equation being the sum of a finite num-
ber of exponential functions. Similar sets of equations
also arise in other arenas of science, as mentioned
in Section 3.1. The nonlinear nature of the equations
mandates that our proposed approach—which entails
stylized proper priors—be implemented by a particle
style Markov chain Monte Carlo (MCMC) approach.
Such a procedure turns out to be computationally very
intensive—about one million iterations for making in-
ference about three parameters.

The proposed procedure, when invoked on simulated
data, is able to reproduce the input parameters. This
is one way to claim the validity of our approach. The
procedure, when invoked on some real data pertaining
to the quark masses of protons and pions, is also able
to produce results that are in agreement with the re-
sults produced using alternate physics based methods.
However, the physics based methods are able to obtain
only partial results. By contrast, our approach can pro-
duce estimates of as many parameters as is desired—
but there is no way to validate these against alternate
approaches or actual numbers, because these are not
available.

Future work in this arena will entail enhancements
to gain computational efficiencies and the choice of
proper priors that are motivated by a consideration of
the underlying physics. This means that an undertak-
ing such as this will call for insights and skills that go
beyond mathematics, statistics and computing. Some
appreciation of the underlying physics is necessary for,
among other things, interest and inspiration! A referee
of this paper has made the interesting suggestion of
considering “reference priors.” This we have been un-
able to do because, for the parameters in question, such
priors are not readily available.
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APPENDIX

Schemata of the 3 Phase MCMC algorithm, which
can be downloaded at the following: http://www.gwu.
edu/~stat/irra/Lattice_QCD.htm.
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