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Discussion of “Multiple Testing for
Exploratory Research” by J. J. Goeman
and A. Solari
Peter H. Westfall

1. INITIAL COMMENTS

Closure-based multiple testing procedures for con-
trolling the familywise error rate (FWER) have been
around for decades, but they have not been well un-
derstood, and hence have been under-appreciated and
under-utilized. Goeman and Solari (GS) provide a ser-
vice by highlighting important practical features of clo-
sure. Using elegant notation for closure-based meth-
ods, they develop a handy book-keeping tool for pre-
senting additional results of closed testing that are
available when non-consonant testing methods are
used, and they prove its validity.

In their Figure 1, GS provide the confidence set
τ({2,3}) ∈ {0,1}, where τ({2,3}) is the number of true
nulls in the set {H2,H3}. In doing so, GS highlight a
not-so-well known fact about closure: inferences for
the additional (2n − 1) − n composite hypotheses HI

are available “free of charge” whenever one performs
closed testing for the original n elementary hypothe-
ses Hi. This follows from the fact that “the closure
of the closure is the closure;” that is, that no new hy-
potheses are generated when the set of 2n − 1 inter-
section hypotheses is treated as the set of elementary
hypotheses. Hence, in GS’s Figure 1, the significance
of H{2,3} can be stated with full FWER control over
the set of 23 − 1 = 7 hypotheses, and the conclusion
τ({2,3}) ≤ 1 follows immediately. Again, GS provide
a service in reminding statisticians (or in teaching those
who have not heard about it in the first place) of this
nice feature of closure.

GS’s paper also implicitly explains the following
paradox: while closure is based on composite hy-
potheses, it is not true that more powerful compos-
ite tests lead to more powerful closure-based multiple
tests. When considering only the elementary hypothe-
ses, Bonferroni (or MaxT) types of composite tests,
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which are usually thought to be the least powerful of
the class of composite testing methods (e.g., Naka-
gawa, 2004), tend to give higher power for closure-
based multiple tests (Romano, Shaikh and Wolf, 2011).
However, when the goal is to establish how many true
effects there might be among a collection of hypothe-
ses, GS suggest indeed that more powerful composite
tests lead to more powerful multiple tests.

The Fisher combination test is a useful choice of
composite test, as noted by GS. But it is worth pointing
out how bad this test can be compared to the Bonferroni
test, when both are used via closure for testing elemen-
tary hypotheses. Consider analyzing a version (avail-
able from the author) of the classic dataset reported by
Golub at al. (1999), testing 7,129 genes for associa-
tion with either acute myeloid or acute lymphoblastic
leukemia, using 7,129 two-sample t-tests. The closed
Fisher combination method is and has been available
in PROC MULTTEST of SAS/STAT with the O(n2)

shortcut since release 8.1 of SAS in 2000; this software
computes closure-based adjusted p-values (defined be-
low) to assess significance of elementary hypotheses.
Despite the fact that the Fisher combination test is
liberal with correlated data, the smallest adjusted p-
value using the closed Fisher combination test is 1.000
(rounded), hence none of the 7,129 tests are significant
at any reasonable nominal FWER level. On the other
hand, 37 of the 7,129 genes have adjusted p-values less
than the nominal 0.05 FWER level when using closed
Bonferroni (or Holm, 1979) tests; the smallest adjusted
p-value is 1.7 × 10−6 and is therefore extremely sig-
nificant, even after multiplicity adjustment.

I have some other comments/critiques about the pa-
per that fall into the following categories: (i) the as-
sumption of free combinations and its consequences,
(ii) use of adjusted p-values rather than rigid nominal
thresholds, (iii) computational shortcuts, and (iv) per-
mutation testing.
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FIG. 1. Closed testing with Fisher combination tests in a one-way ANOVA setting, ignoring logical constraints.

2. ADDITIONAL COMMENTS

2.1 Free Versus Restricted Combinations

Implicit in GS’s discussion of closure is that the ele-
mentary hypotheses obey the free combinations condi-
tion, which states that there are 2n −1 distinct hypothe-
ses in the closure. Under restricted combinations there
are duplicates, and hence the set of intersections has
many fewer elements; by exploiting this fact one can
obtain tighter confidence sets. For example, suppose
Yi ∼ N(μi,1), with H1 :μ1 = μ2, H2 :μ1 = μ3 and
H3 :μ2 = μ3. Then there are only four elements in the
closure rather than 23 − 1 = 7, since H{1,2} = H{1,3} =
H{2,3} = H{1,2,3}. GS’s method is valid but conserva-
tive when all seven hypotheses are considered.

For example, suppose the data are y1 = −2, y2 = 0
and y3 = +2, yielding z-statistics z1 = (−2 − 0)/

21/2 = −1.414, z2 = −2.828 and z3 = −1.4141, with
corresponding two-sided p-values p1 = 0.157299,

p2 = 0.004678 and p3 = 0.157299. The Fisher combi-
nations statistics are thus c12 = c23 = −2 ×
ln(0.157299 × 0.004678) = 14.4291, c13 = 7.3984
and c123 = 18.1283. The chi-squared distribution can-
not be used to find p-values for these composite tests
since the Z’s are not independent, but under the null
hypothesis, the vector of Z statistics is multivariate

normal with mean vector
[

0
0
0

]
and covariance matrix[

1 0.5 −0.5
0.5 1 0.5

−0.5 0.5 1

]
. Thus, the p-values can be obtained

by simulating Z’s from this distribution, computing the
two-sided p-values, constructing the Fisher combina-
tion statistics CI , and counting how often the simulated

CI exceeds the observed cI . Figure 1 displays the re-
sults using these p-values for each subset I , as well as
closure-based adjusted p-values.

Suppose that inference is considered for the set
{H1,H3}. Here, the confidence set for the number of
true nulls is {0,1,2}, since H13 is not rejected. But the
possibility that τ({1,3}) = 2 contradicts the rejection
of the global hypothesis H123, and thus seems wrong.

Incorporating logical constraints, the graph is as
shown in Figure 2. Using logical constraints, the confi-
dence set for τ({1,3}) is {0,1} rather than {0,1,2}.

One can improve the power of closure-based conso-
nant procedures as well by utilizing logical constraints
(Westfall and Tobias, 2007).

2.2 Adjusted p-Values

Adjusted p-values are simple and natural by-pro-
ducts of closure. Let pI be the local p-value for
testing HI . With closure, HI is rejected only when
HJ is rejected for all J ⊇ I , or equivalently, when
maxJ⊇I pJ ≤ α, where α is the nominal FWER. Hence

FIG. 2. Closed testing with Fisher combination tests in a one-way
ANOVA setting, incorporating logical constraints.



606 P. H. WESTFALL

maxJ⊇I pJ is the adjusted p-value for testing HI , and
these are shown in my Figure 1.

As GS note, exploratory inference should be mild,
flexible and post hoc. However, the use of a strict 0.05
(or other) nominal FWER threshold seems to violate
the latter two of these criteria. For the same reasons
that ordinary p-values are seen as more natural and
useful than the 0.05-level determined “accept/reject”
decision, it is also more natural and useful to report an
adjusted p-value along with any claim about the num-
ber of true alternatives within a set of hypotheses.

For example, suppose my Figure 1 was from a case
of free combinations, as with GS’s Figure 1. Then for
the set {H1,H3}, one cannot claim any alternatives at
the usual 0.05 nominal FWER level, but one can con-
clude at least one alternative at the nominal 0.13 level.
The report could state “For familywise significance
levels as low as 0.125, there is at least one alternative
among {H1,H3}.”

In GS’s discussion of Huang and Hsu’s n = 4 exam-
ple where there are no elementary significances, their
conclusion is “at least two out of the first three hy-
potheses are false.” After calculating the adjusted p-
values for these data, one can say “at least two out
of the first three hypotheses are false (adjusted p =
0.038).” With other data, the conclusion might be that
“at least two out of the first three hypotheses are false
(adjusted p = 0.001),” which communicates quite dif-
ferent information, even though the claimed number of
alternatives is the same at the nominal FWER = 0.05
level.

Yet another benefit of adjusted p-values is that they
offer a more realistic assessment in the face of violated
assumptions. Assumptions are usually wrong, and an
adjusted p-value of 0.055 might be more appropriately
reported as 0.041 with a more correct analysis; con-
versely, 0.045 might be more appropriately reported as
0.053. Use of adjusted p-values rather than fixed deci-
sions better recognizes this fact, as savvy readers un-
derstand that p-values are themselves approximations,
and can use their own knowledge or simulation studies
to assess the accuracy of a “0.045” report.

A disadvantage of using adjusted p-values rather
than “accept/reject” decisions is that there are addi-
tional computations. But this disadvantage seems mi-
nor to me compared to problems with rigidly fixed
nominal FWER levels.

2.3 Computational Shortcuts

The methodology GS espouse can be computation-
ally prohibitive. While closure allows a simple O(n)

shortcut in the case of the consonant Bonferroni–Holm
procedure, the GS methods will require something ap-
proaching O(2n) evaluations for most other cases of
interest. Shortcuts are available, with less power as GS
note. Westfall and Tobias (2007) use a tree-based repre-
sentation of the 2n−1 hypotheses, along with a branch-
and-bound algorithm for obtaining conservative, but
computationally simpler analyses. These methods are
available in a wide variety of SAS/STAT procedures as
of version 9.2 of SAS.

Oddly, GS do not mention Hommel’s (1988) O(n2)

closure shortcut when using Simes’ test; this shortcut
is essentially identical to the one mentioned by Zaykin
et al. (2002) for the truncated product (and by special
case, Fisher combination) test.

2.4 Permutation Tests

Permutation tests offer, under certain assumptions,
exact rather than approximate inference. They also al-
low, in the case of binary data, exceptionally higher
power than corresponding methods based on continu-
ous data, by utilizing sparseness (Westfall, 2011). In
addition, tests that assume independence require some
correction for correlation structure, as would be the
case for the adverse event data of Table 3 of GS. Hence,
permutation tests are useful for gaining power, as well
as for obtaining valid p-values.

Problems with permutation-based testing include
computational difficulties and hidden assumptions.
There is the obvious computational burden of either
enumerating or simulating the permutation distribu-
tion; doing this separately for O(2n) subsets is impos-
sible, even for moderate n. When the “subset pivotal-
ity” condition of Westfall and Young (1993) is valid,
one can use a single global permutation distribution
rather than 2n − 1 separate permutation distributions.
The subset pivotality condition is valid for many mul-
tivariate models, but fails for multiple comparisons
with three or more groups, since the global permuta-
tion distribution is not valid for making pairwise com-
parisons involving two groups. If the subset pivotality
condition is satisfied, and if the (consonant) MinP tests
are used, the computational burden is greatly reduced,
making the Westfall–Young method feasible for large-
scale multiple testing applications.

One must also state their assumptions about the in-
tersection hypotheses when doing permutation-based
analysis. When using permutation tests, the simplest
form of an elementwise null hypothesis is that the data
are exchangeable between groups. However, the inter-
section of exchangeable elementwise hypotheses does
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not imply joint exchangeability. For example, consider
the two-group MANOVA with bivariate data. If group
one is bivariate normal with mean vector 0 and iden-
tity covariance matrix, while group two has the same
mean vector but covariance matrix

[
1.0 0.5
0.5 1.0

]
, then

the data in variable 1 are exchangeable between the
groups [specifically, i.i.d. N(0,1)], the data in vari-
able 2 are exchangeable between the groups [also i.i.d.
N(0,1)], but the two-dimensional vectors are not ex-
changeable between the groups. Thus, an assumption
that marginal exchangeability implies joint exchange-
ability is required when performing permutation-based
closed testing with multivariate multisample data.

On the other hand, with consonant Bonferroni-based
closed permutation procedures, one can dispense with
such assumptions. These methods are computationally
simple, control the FWER for all sample sizes, and
retain the power advantage associated with permuta-
tion tests; details are given by Westfall and Troendle
(2008).
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