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Frasian Inference
Larry Wasserman

Abstract. Don Fraser has given an interesting account of the agreements
and disagreements between Bayesian posterior probabilities and confidence
levels. In this comment I discuss some cases where the lack of such agree-
ment is extreme. I then discuss a few cases where it is possible to have
Bayes procedures with frequentist validity. Such frequentist-Bayesian—or
Frasian—methods deserve more attention.

1. INTRODUCTION

Don Fraser has long advocated the idea that users
of Bayesian methods have an obligation to study the
frequentist properties of those methods. He makes the
case quite forcefully when he states: “The failure to
make true assertions with a promised reliability can
be extreme with the Bayes use of mathematical priors”
and, more ominously:

The claim of a probability status for a state-
ment that can fail to approximate confi-
dence is misrepresentation. In other areas of
science such false claims would be treated
seriously.

I completely agree with Don and I enjoyed reading
his essay highlighting cases where approximate confi-
dence does or does not hold. In this comment I will
mention a few other places where Bayes methods have
poor frequentist coverage. Then, on a more optimistic
note, I’ll discuss a few cases where Bayes methods
do have good frequentist properties. I’ll refer to these
methods as Frasian, both to honor the author and as
a handy way to refer to methods that meld frequentist
guarantees with Bayesian ideas.

2. HIGH-DIMENSIONAL MODELS

Don’s article shows that even in low-dimensional
parametric models, Bayesian probability statements
and confidence statements can diverge in nontrivial
ways. The situation can be dramatically worse in high-
dimensional and infinite dimensional models.
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DKW versus DP

A simple example concerns estimating the cumula-
tive distribution function F . Let X1, . . . ,Xn ∼ F . Let
Fn(x) = 1

n

∑n
i=1 I (Xi ≤ x) be the usual empirical dis-

tribution function. By the famous DKW (Dvoretsky–
Kiefer–Wolfowitz) inequality, we know that

sup
F

PF

(
sup
x

|Fn(x) − F(x)| > ε
)

≤ 2e−2nε2
.

Hence,

(L(x),U(x))

≡ (
max{Fn(x) − εn,0},min{Fn(x) + εn,1})

is a valid 1 − α confidence band, if we set εn =√
1

2n
log(2/α). (Of course, narrower bands are possi-

ble.)
The usual Bayesian approach is the DP (Dirichlet

Process) approach. Here, F is a given Dirichlet pro-
cess prior with mean F0 and concentration parame-
ter β , F ∼ DP(F0, β). The posterior is DP(F n,β + n)

where Fn = β
β+n

F0 + n
β+n

Fn. Let (L,U) be a poste-
rior 1 − α confidence band. In general, the coverage
infF P(L ≤ F ≤ U) is 0. This is a striking deviation
from frequentist validity. The frequentist estimator can
be recovered by formally letting β → 0, although do-
ing so is to just give up on Bayes.

Normal Means

Let Yi = θi + 1√
n
εi , i = 1,2, . . . , where ε1, ε2, . . .

are N(0,1). This is the standard Normal means prob-
lem and many other problems, such as nonparametric
regression, have been shown to be equivalent to this
problem.
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Suppose that θ = (θ1, θ2, . . .) is in the Sobolev ellip-
soid

� =
{
θ :

∞∑
j=1

θ2
i i2p ≤ C2

}
.

This corresponds to smooth regression functions in the
nonparametric regression problem. The minimax rate
is n−2p/(2p+1) and simple shrinkage estimators achieve
this risk. Zhao (2000) and Shen and Wasserman (2001)
showed that the priors that yield posterior that achieve
the minimax rate are quite strange and unnatural and
are never used in practice. The obvious prior—Normal
on each coordinate—is not minimax unless we allow
the prior to put zero mass on �. This hints at the diffi-
culties inherent in melding Bayes and frequentist ideas
in high dimensions.

It gets worse when we look at the type of validity that
Don focuses on. Can we find a prior in this problem
such that the 1 − α posterior regions also have approx-
imate 1 − α coverage? To the best of my knowledge,
there is no definitive answer. But the results in Cox
(1993) and Freedman (1999) suggest that the answer
is no.

Missing Data and Causal Inference

Robins and Ritov (1997) construct an example that
is motivated by missing data problems and causal in-
ference problems. I refer the reader to their paper for
details. But the punch line is dramatic. The frequentist
interval (based on the Horwitz–Thompson estimator)
shrinks at rate O(1/

√
n). For a Bayesian region to have

correct coverage, its size will have to shrink no faster
than a logarithmic rate. Hence, there is a drastic loss in
efficiency if we want validity.

3. FRASIAN INFERENCE

Is it possible to force Bayesian methods to have fre-
quentist guarantees? Don’s article shows that the an-
swer can be subtle. It depends on the structure of the
model. Here I highlight two general techniques where
we can force the Bayesian procedure to have finite
sample frequentist guarantees.

Prediction

Let π(θ |Yn) ∝ f (Y n|θ)π(θ) denote the posterior
where Yn = (Y1, . . . , Yn). The predictive distribution
for a new observation Z (drawn from the same distri-
bution as Yn) is π(z|Yn) = ∫

f (z|θ)π(θ |Yn) dθ . The
usual Bayesian approach for prediction is to choose

a set B such that
∫
B π(y|Yn) dy = 1 − α. Of course,

B need not have frequentist coverage validity.
But we can adapt the ideas in Vovk, Gammerman

and Shafer (2005) to get a predictive region A with fi-
nite sample frequentist validity. To construct A, we test
the null hypothesis H0 :Z = z using the Bayesian pre-
dictive density as a test statistic. We then invert the test
to get A. Here are steps in detail:

1. Fix Z at some value z.

(a) Set Yn+1 = z and form the augmented data
set Y1, . . . , Yn, Yn+1.

(b) Compute the predictive density π(·|Y1, . . . ,

Yn, Yn+1) = ∫
f (·|θ)π(θ |Y1, . . . , Yn, Yn+1) dθ .

(c) Compute the discrepancy statistics D1, . . . ,

Dn+1 where Di = π(Yi |Y1, . . . , Yn, Yn+1), i = 1,

. . . , n + 1.
(d) Compute the p-value p(z) for testing H0 :

Z = z by

p(z) = 1

n + 1

n∑
i=1

I (Di ≤ Dn+1).

Under H0, D1, . . . ,Dn+1 are exchangeable so this
is a valid p-value.

2. After computing the p-value p(z) for each value z,
invert the test: let

A = {z :p(z) ≥ α}.
It follows that

P(Z ∈ A) ≥ 1 − α.

This is true no matter what the prior is. In fact, it is true
even if the model is wrong. Using the Bayesian predic-
tive region as a test statistic is how we let the prior enter
the problem. A good prior might lead to small predic-
tion regions A. Thus, validity is guaranteed; only effi-
ciency is in question. Here we are making use of the
Bayesian machinery while maintaining frequentist va-
lidity. I will refer to A as the frequentized region.

Figure 1 shows a toy example. The data are N(θ,1)

and the prior is θ ∼ N(0,1). To make the effect clear,
we use a tiny sample size of n = 2 and we use α =
0.05. The top plot shows the case where θ = 0 so the
prior is consistent with the truth. The two vertical lines
show the locations of the two data points. The dashed
horizontal line is the frequentized region. The solid
horizontal line is Bayes predictive region.

The second plot shows an example with θ = 5. Here
there is a conflict between the prior and the truth. The
Bayes region is shorter but of course does not have
frequentist validity. The frequentized region is longer.
This is the compensation for having a bad prior.
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FIG. 1. In the top plot Y1, Y2 ∼ N(0,1). In the bottom plot Y1, Y2 ∼ N(5,1). In both cases, the prior is θ ∼ N(0,1). The two vertical lines
show the locations of the two data points. The dashed horizontal line is the frequentized region. The solid horizontal line is Bayes predictive
region.

Weighted Hypothesis Testing

Consider testing m null hypotheses H01, . . . ,H0m

based on p-values P1, . . . ,Pm. The Bonferroni method
takes the rejection set to be R = {j :Pj ≤ α/m}. It is
well known that this procedure controls the error rate
in the sense that

P(R ∩ H0 �= ∅) ≤ α,(1)

where H0 = {j :H0j is true}.
Suppose we have prior information that favors some

of these null hypotheses. We could include this prior
information by adopting a Bayesian analysis. But then
we lose the frequentist guarantee given in (1). Is there a
way to tilt the analysis according to our prior informa-
tion while preserving (1)? The answer is yes. Simply
replace the p-values by weighted p-values Pj/wj and
carry out the Bonferroni procedure. As long as the prior
weights are non-negative and sum to one, then (1) still
holds. (See Roeder and Wasserman, 2009, and Gen-
ovese, Roeder and Wasserman, 2006.) Although not
formally a Bayesian procedure, it does allow us to have

a nugget of Bayesianism by including prior weights
while still preserving the frequentist guarantee.

For one-sided testing of Normal means, the opti-
mal weights are wj = (m/α)�(θj/2 + c/θj ), where
� is the Gaussian survivor function and c is the con-
stant that makes the weights sum to one. The optimal
weights depend on the unknown means θj . Here is an-
other opportunity to blend frequentist with Bayes by
using a prior on the θj ’s to optimize the weights.

4. CONCLUSION

Don Fraser has shown that, except in special circum-
stances, Bayesian posterior probabilities and frequen-
tist confidence can diverge. The degree of divergence
depends on features of the model such as nonlinearity.

I have discussed cases where the divergence can be
extreme. On the other hand, I have also discussed some
approaches for forcing Bayesian methods to have fre-
quentist validity. But in general, we must be vigilant
and pay careful attention to the sampling properties
of procedures. Don’s paper is a useful reminder of the
need for that vigilance.
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