
Statistical Science
2011, Vol. 26, No. 2, 296–298
DOI: 10.1214/11-STS349REJ
Main article DOI: 10.1214/10-STS349
© Institute of Mathematical Statistics, 2011

Rejoinder
Carl Morris

I thank all four discussants for their valuable in-
sights. Before responding to their specific comments,
let me help clarify to readers that adjustment for den-
sity (or likelihood, if appropriate) maximization is a
method for approximation and not a stand-alone proce-
dure for inference. The favorable frequency properties
of the ADM-SHP procedure rely particularly on the flat
prior chosen for the random effects variance A. After
that, the responses of Partha Lahiri and Santanu Pra-
manik and of Claudio Fuentes and George Casella are
addressed.

Because shrinkage factors Bj are constrained to
[0,1], a Beta distribution ostensibly serves as a better
approximation to the likelihood function or posterior
density of Bj than does a Normal distribution. MLE
and ADM methods are fitted based on computing two
derivatives, and they agree exactly when a Normal den-
sity is chosen to approximate a likelihood function (or
a posterior with a flat prior). However, as Lahiri and
Pramanik’s Figure 2 shows, sometimes no Normal dis-
tribution can closely approximate the distribution of a
shrinkage factor Bj and then the MLE will yield mis-
leading inferences unless it can be liberated from its
usual Normal approximation.

ADM (Morris, 1988) was designed to approximate a
given (one-dimensional) distribution with any chosen
Pearson family, perhaps with a Normal distribution if
for MLE purposes, or a Beta for shrinkage factors, or
a Gamma, an Inverted Gamma, an F , a t , or a Skew-t
distribution for other situations. ADM does not alter
a posterior density or a likelihood function. The new
curve that the ADM creates via multiplication by the
“adjustment” (A, in this paper) has no meaning other
than to provide a mode in the interior of the parameter
space that one believes will lie closer to the mean of
the actual density, or likelihood.
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The statistical properties of the ADM approximation
depend crucially on the corresponding properties of the
procedure it approximates. While ADM can be used to
approximate various Bayes procedures, for proper and
for improper priors, that is not the goal in this paper.
Rather, the objective is to provide estimates of shrink-
age factors via calculations similar to those of MLE
procedures that improve on the MLE for resulting in-
ferences about random effects. The flat prior on A was
chosen neither for Bayesian reasons nor for subjective
reasons, but because it leads to Stein’s harmonic prior
(SHP) on the Level-I parameter vector θ and yields
formal Bayes point estimators of the random effects
with verified and dominant mean squared error risks
in the frequency sense. The paper provides additional
strong evidence that the formal Bayes posterior inter-
vals, whether computed exactly or as approximated by
ADM, meet (or nearly meet) their nominal (95% in the
paper) confidence coverage rates in the equal variance
two-level Normal model, whatever be the unknown be-
tween groups parameters β,A.

Crucially, the conditional Level-II mean and vari-
ance of each random effect θj depends linearly on Bj

and nonlinearly on A. For that reason ADM, which
is designed to approximate a mean, starts in this ap-
plication by approximating Bj with a Beta distribu-
tion, rather than applying ADM directly to A (perhaps
with an approximating F or a Gamma distribution). By
good fortune this turns out to be equivalent to setting
Â = argmax(AL(A)) with L(A) the likelihood func-
tion [or perhaps a REML version of L(A) if r ≥ 1] so
that A legitimately can be viewed as a likelihood “ad-
justment.” However, this adjustment actually arises as a
principled choice based on three considerations: (a) the
established frequency properties of formal Bayes pro-
cedures that stem from SHP; (b) the ADM approxima-
tion that uses a Beta distribution, for which the adjust-
ment is Bj(1 − Bj); and (c) that the shrinkage factor
Bj enters linearly in the first two Level-II moments,
given (β,A), of θj .

Perhaps other confidence interval shrinkage pro-
cedures for the Normal two-level model have been
proven to do as well by frequency standards as the pro-
cedures based on SHP and its ADM-SHP hybrid here.
We know from Figures 6 and 7 that coverage rates
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for these two procedures hold up very well, even for
very few groups. Data analysts regularly use two-level
procedures and report the nominal confidence interval
coverage rates, but it is unclear how often, if ever, the
claimed frequency coverages have been verified.

We turn first to the comments of Lahiri and Pra-
manik. Analysts working with small area data, almost
by definition of “small,” encounter noisy estimates
for individual small areas. Fortunately, SAE data sets
provide an opportunity to borrow strength by using
information from neighboring areas, a technique for
which the Fay–Herriot random effects model is widely
used. However, maximizing the likelihood functions
for the shrinkage factors that arise in such models
not uncommonly produces full or nearly full shrink-
ages, as Lahiri and Pramanik show in Figures 1 and 2.
In such cases MLE procedures typically (and non-
conservatively) overestimate shrinkages and produce
intervals too narrow to meet their nominal confidences.
That concern has inspired Lahiri, with Pramanik and
other co-authors, to develop procedures that reduce or
avoid over-shrinkage, and ADM reasoning has helped
them with that.

The ADM (dashed) curves in Figures 1 and 2 of
Lahiri–Pramanik are Beta densities that show each
state’s own density plotted against Bj = Vj/(A + Vj )

(solid curves). If these densities were defined with re-
spect to dBj , ADM then would have to be multiplied
by Bj(1 − Bj), the adjustment for a Beta density, to
produce a new curve with a mode aimed to lie closer
to the mean E(Bj | data) of the (“exact”) posterior den-
sity (solid curve) of Bj than does its own mode. How-
ever, that adjustment already has been made in Fig-
ures 1 and 2, and we see that all four dashed curves in
Figure 2 are maximized when Bj < 1 [the Beta den-
sities in Figures 1 and 2 are relative to the measure
dBj/(Bj (1 − Bj))].

Lahiri and Pramanik ponder at the end of their first
section whether “. . . there is any need to find different
adjustment factors, possibly depending on the Vi, . . . .”
Letting a prior depend on the available sample size
means that it will change should more data become
available. If new data provide the only additional in-
formation and their additional impact is properly as-
sessed in an updated analysis, there would be no basis
for changing the prior. Perhaps this consideration will
be useful even from a frequency perspective.

Lahiri and Pramanik ask, “How may the ADM
method be useful in a non-Bayesian paradigm?,” de-
scribing the SHP and ADM-SHP procedures as “essen-
tially Bayesian.” That second section mainly concerns

whether and how well ADM-like ideas can help en-
hance familiar frequentist procedures such as EBLUP,
REML, MLE, and their own AML modification of
ADM for estimating A in the presence of unknown
(nuisance) regression coefficients β . Their likelihood
adjustment g(A) is designed for the same two-level re-
gression model as is the procedure in Section 2.8 of the
paper.

They investigate likelihood adjustment factors other
than A by considering the resulting bias of shrinkage
factors. A likelihood multiplier Aq with 0 < q < 1 will
increase shrinkages. These may be effective if q is not
too close to 0 (q = 0 returns us to MLE’s problem
of maximizing at the boundary). Such powers arise in
our paper when ADM approximations are developed
for scale-invariant priors on A. There is little reason
to consider q > 1 since the SHP rule (q = 1) already
is quite conservative. With q < 1 the resulting confi-
dence interval estimators may have insufficient cover-
age for some hyperparameters, particularly for larger
values of A. The bias of B̂j may not provide the best
criterion, as the James–Stein shrinkage estimator is the
uniformly minimum variance unbiased estimator of B

in the equal variances setting, and then that unbiased-
ness comes at the cost of allowing the shrinkage factor
to exceed 1.00, making the James–Stein rule inadmis-
sible.

Lahiri and Pramanik’s referring to the SHP and the
ADM-SHP procedures as “essentially Bayesian” could
suggest to some frequentists that these rules are to
be avoided. As already noted, Stein’s (improper) har-
monic prior has been chosen here for the excellent fre-
quency performance it endows on its formal Bayesian
point and interval procedures. From a frequency per-
spective, any procedure that uniformly (whatever the
unknown parameters) outperforms traditionally ac-
cepted frequentist procedures must be accepted, even
preferred, regardless of how it has been or could be
constructed. As is well known, and as Fuentes and
Casella also emphasize, the fundamental theorem of
frequentist decision theory asserts that all admissible
procedures are essentially Bayesian, that is, are con-
structed from proper or formal priors. Procedures not
thusly constructed can be improved upon uniformly.
The ADM-SHP procedure here also performs well in
repeated sampling, and it too compares favorably with
many procedures regularly used by frequentists, with
excellent confidence interval coverages.

Claudio Fuentes and George Casella confine their
discussion to the equal variances case, even though real
data almost always involve unequal variances. They
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have adopted this setting, as have many theorists, be-
cause the equal variance setting enables mathemati-
cal calculations which otherwise would be nearly in-
tractable.

Their discussion starts by considering shrinkage es-
timates of the vector θ that would arise if the Level-II
variance A were allowed to be negative, showing that
this inevitably leads to impossible distributions on θ .
We are reminded that the James–Stein estimator other-
wise would be admissible for k ≥ 3, which would vio-
late fundamental theorems in decision theory. The case
k = 2 is not considered, although then the James–Stein
estimator reduces to the unbiased sample mean vector,
which is known to be admissible.

Even so, being aware of what happens if integrals
over A (not θ ) are extended to include −V ≤ A < 0
gives insight into the James–Stein estimator’s over-
shrinkage problem. It inspires the obvious and success-
ful idea of truncating at A = 0, in which case the re-
sulting flat prior on A makes the likelihood function
of A agree with the posterior density and in turn this
induces Stein’s harmonic prior (SHP) on θ . Extend-
ing the integral to allow A < 0 even enables an easy
gamma-function approximation to the SHP shrinkage
factor when A is large, which reveals the similarities
between the SHP and the James–Stein shrinkage fac-
tors when shrinkages are small.

I appreciate Fuentes and Casella’s reminding readers
that the ADM-SHP estimator is minimax in the equal
variance Normal setting, and for noting that the proof
is an immediate consequence of Al Baranchik’s 1970
result. Their discussion about the left panel of Fig-
ure 1 embraces the range of minimax procedures cov-
ered by Baranchik’s result. Al Baranchik was a Hunter
College professor for over 40 years, after having been
Charles Stein’s Ph.D. student and a colleague to many
of us at Stanford when he proved his theorem for his
1964 dissertation. Al passed away not long ago, but
“Baranchik’s minimax theorem” is forever.

The right-hand panel of their Figure 1 plots risks
as a function of θ , revealing the SHP risk to be uni-
formly lower than that of its ADM-SHP approxima-
tion. This must happen in the equal variance setting
because the ADM approximation of SHP’s shrinkage
factor always underestimates slightly, as seen in Fig-
ure 2 of Section 2.7. That makes ADM-SHP estimators
of θ be more conservative than SHP estimators, which
forfeits some of SHP’s risk improvement over the sam-
ple mean vector.

Fuentes and Casella point out that frequency min-
imax theorems in the spirit of Stein estimation also

have been developed for non-Normal models settings.
True, and the earliest non-Normal minimax results I re-
member were for Poisson estimation, by Clevenson
and Zidek and by J. T. Gene Hwang. However, fre-
quency confidence interval evaluations for two-level
Poisson models largely have been ignored. In practice,
Bayesian methods are used for various non-Normal
settings to provide inferences in multilevel models that
include posterior interval estimates for random effects.
Again, there have been very few global evaluations to
determine whether these Bayesian intervals can serve
as approximate confidence intervals as Level-II hyper-
parameters vary throughout their range.

Christiansen and Morris (1997) used ADM to ap-
proximate shrinkage factors for a two-level Poisson
random effects regression model. Conjugate Gamma
Level-II distributions are specified there to ensure exis-
tence of conditional shrinkage factors. Just as here, the
ADM approximation to the SHP shrinkages there used
Beta distribution approximations of shrinkage distribu-
tions to obtain component-wise point and interval es-
timates for the Poisson random effects. (The SHP is
transported there to the Poisson setting via a shrink-
age factor analogy.) The results there have been im-
plemented computationally by the PRIMM (Poisson
regression interactive multilevel modeling) software.
Our frequency-based evaluations of the resulting in-
terval estimates (limited to using PRIMM for simula-
tion methods) successfully have met frequency cover-
age standards, even for quite small k and for unequal
sample sizes, regardless of the hyperparameters tested.
The PRIMM procedure can serve SAE with Poisson
multilevel data, such as that of Manton, Woodbury and
Stallard (1981).

I extend special appreciation to Dr. Lahiri for invit-
ing this paper and for organizing its discussion, in ad-
dition to his participating in the discussion.
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