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First, I would like to thank the three discussants
(Glen Meeden, Joe Sedransk and Eric Slud) for con-
structive comments on my paper and for providing ad-
ditional relevant references, particularly on frequentist
model diagnostics (Slud) and Bayesian model check-
ing (Sedransk). I totally agree with Sedransk that
studying alternative methods of making inference for
finite populations is an “underserved field of research.”
I will first address the constructive comments of the
discussants on the comparison of methods for handling
sampling errors in the context of estimation with fairly
large domain samples. Subsequently, I will respond to
the discussions on small area estimation.

HANSEN ET AL. EXAMPLE

In Section 3.2, I cited the well-known Hansen,
Madow and Tepping (HMT) example illustrating the
dangers of using model-dependent methods with fairly
large samples even under minor model misspecifica-
tions. Sedransk argues in his discussion that new ad-
vances in model diagnostics, such as model averaging,
might remedy the difficulty noted by HMT and provide
improvements over the “straw man, the usual ratio es-
timator.” I agree with Sedransk that it would be worth-
while analyzing this example and other examples to
show how one can make valid model-dependent infer-
ences routinely with fairly large domain samples that
can provide significant improvements over the design-
based (possibly model-assisted) methods, particularly
in the context of official statistics with many variables
of interest. If this goal can be achieved, then I believe
model-dependent methods (frequentist or Bayesian)
will have significant impact on practice, similar to their
current use in small area estimation with small domain
samples. The HMT example showed the importance
of using design weights under their design with deep
stratification by size and disproportional sample allo-
cation. The usual design unbiased weighted estimator
is almost as efficient as the usual combined weighted
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ratio estimator under the HMT design because of deep
stratification by size, so I do not agree with Sedransk’s
comment on the importance of ratio estimator in the
HMT example. It is interesting to note that under pro-
portional sample allocation, the BLUP estimator (un-
weighted ratio estimator) under the incorrectly speci-
fied ratio model is identical to the combined weighted
ratio estimator and hence it performs well because it is
design consistent, unlike under disproportional sample
allocation. The HMT example demonstrated the im-
portance of design consistency, and in fact as noted in
Section 3.2, Little (1983) proposed restricting attention
to models that hold for the sample and for which the
corresponding BLUP estimator is design consistent. I
have noted some limitations of this proposal in Sec-
tion 3.2. It should be noted that the HMT illustration
of the poor performance of the BLUP estimator used
the repeated sampling design-based approach to eval-
uate confidence interval coverage. On the other hand,
model-based inference is based on the distribution in-
duced by the model conditional on the particular sam-
ple that has been drawn. However, Rao (1997) showed
that the HMT conclusions still hold in the conditional
framework because of the effective use of size infor-
mation through size stratification.

ROLE OF DESIGN WEIGHTS

I will now turn to Meeden’s useful comments on
the role of design weights and the use of Polya poste-
rior (PP) for making inferences after the sample is ob-
served. As noted in Section 4.2, the PP approach when
applicable permits routine interval estimation for any
finite population parameter of interest through simula-
tion of many finite populations from PP and this gen-
eral interval estimation feature of PP is indeed attrac-
tive. Meeden notes in his discussion that an R package
is also available for simulating many complete popula-
tions. However, so far the PP methodology considered
only simple designs that may satisfy the assumption
that the un-sampled units are like the sampled units
(exchangeability) which limits its applicability in prac-
tice. Meeden agrees with my comment that the PP
approach needs extension to more complex designs
before it becomes attractive to users. Even for the sim-
ple designs where it is applicable, it would be useful
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to identify scenarios where the PP can perform sig-
nificantly better than the routine design-based meth-
ods in terms of confidence interval coverage, especially
in cases where the traditional methods do not perform
well; for example, the Woodruff interval on quantiles
under size stratification noted in Section 1. Meeden
notes the work of Lazar, Meeden and Nelson (2008) on
the constrained PP which incorporates known popula-
tion information about auxiliary variables without any
model assumptions about how the auxiliary variables
are related to the variables of interest, similar to cal-
ibration estimation. It appears that the constraints al-
lowed by this method are more flexible than those in
the usual calibration estimation, such as the population
median falls in some known interval, and this feature
might prove attractive to the user, especially due to the
availability of an R package. However, the constrained
PP could run into problems when the number of popu-
lation constraints is large, similar to traditional calibra-
tion estimation.

In his concluding remarks, Meeden says that one
should not focus on estimating the variance of an es-
timator, but this is a customary practice as it allows
reporting estimated coefficient of variation (CV) of the
estimator as a quality measure and the user can com-
pute confidence interval from this variance estimator
for any desired confidence level using normal approx-
imation. Meeden also expresses concerns that the fre-
quentist practice is often “obscured by the prominent
and unnecessary role played by the design weights af-
ter the sample has been selected.” But design weights
or calibration weights are needed for asymptotically
valid design-based inferences, although it is often nec-
essary to modify the weights to handle special situ-
ations, such as outlier weights. In fact, the PP-based
estimators of a population mean are often close to
the traditional weighted estimators, for example under
stratified random sampling.

CALIBRATION ESTIMATORS

Slud and I seem to agree on the limitations of model-
dependent approaches (frequentist or Bayesian) when
the sample size in a domain of interest is sufficiently
large: possible design inconsistency of the resulting
estimators under minor model misspecifications, lead-
ing to erroneous inferences. In Section 3.1 I noted the
popularity of model-free calibration estimators in the
large-scale production of official statistics from com-
plex surveys because of their ability to produce com-
mon calibration weights and accommodate arbitrary

number of user-specified calibration constraints. In
practice, design weights are adjusted first for unit non-
response and then calibrated to known user-specified
totals. The calibration weights are often modified to
satisfy specified range restrictions and calibration con-
straints simultaneously, but there is no guarantee that
such modified weights can be found. Rao and Singh
(1997, 2009) proposed a “ridge shrinkage” approach
(assuming complete response) to get around the lat-
ter problem by relaxing some calibration constraints
incrementally while satisfying the range restrictions.
Slud mentions a new method he has developed recently
(Slud and Thibaudeau, 2010) that can do simultane-
ous weight adjustment for nonresponse, calibration and
weight compression. This method looks very interest-
ing and his empirical results are encouraging. But a
solution satisfying specified range restrictions on the
weights may not exist and it would be interesting to
extend the Rao–Singh approach to handle simultane-
ous nonresponse adjustment and calibration.

I agree with Slud that if the weights and calibration
totals are correctly specified, the resulting calibration
estimator is design consistent even if the underlying
working linear regression model uses an incorrect or
incomplete set of predictor variables, as in the exam-
ple of Section 3.1. The effect of gross misspecifica-
tion of the working model is on the coverage perfor-
mance of the associated confidence intervals and hence
it is “more subtle than design-consistency” as noted
by Slud. Incidentally, Dorfman (1994) used this exam-
ple to question the contention of Hansen and Tepping
(1990) that “design-based estimators that happen to in-
corporate a model are inferentially satisfactory, despite
failure of the model” and concluded that the results
on coverage for the linear regression estimator cali-
brated on the population size N and the population to-
tal X “dramatically call this contention into question.”
Dorfman’s statement may be correct in regard to cal-
ibration estimators based solely on user-specified to-
tals Z, but as noted in Section 3.1 a model-assisted ap-
proach based on a working model obtained after some
model checking to eliminate gross misspecification of
the working model can lead to good confidence interval
coverage in the Dorfman example.

ANALYSIS OF SURVEY DATA

Section 3.3 of my paper on the analysis of complex
survey data is somewhat brief due to my focus on esti-
mating totals and means, but I should have mentioned
goodness-of-fit tests that take account of survey de-
sign. I am thankful to Slud for pointing this out and
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making reference to my own work (Rao and Scott,
1984) on goodness-of-fit chi-squared tests for cross-
classified survey data based on log-linear models. I
might add that Roberts, Rao and Kumar (1987) consid-
ered goodness-of-fit tests of logistic regression mod-
els with categorical predictor variables and binary re-
sponse. Graubard, Korn and Midthune (1997) extended
the well-known Hosmer and Lemeshow (1980) group-
ing method of goodness-of-fit for logistic regression
to complex survey data. Roberts, Ren and Rao (2009)
studied goodness-of-fit tests for mean specification in
marginal models for longitudinal survey data and ob-
tained an adjusted Hosmer and Lemeshow test using
Rao–Scott corrections as well as a quasi-score test ob-
tained by extending the method of Horton et al. (1999)
to survey data.

Multilevel models for analysis of survey data are
more complex than the marginal models for estimat-
ing regression parameters because of the presence of
random effects in the models. Goodness-of-fit meth-
ods for two-level models, when the model holds for
the sample, are available in the literature (e.g., Pan and
Lin, 2005) but very little is known for survey data in
the presence of sample selection bias. I am presently
studying model-checking methods for two-level mod-
els taking account of the survey design.

SMALL AREA ESTIMATION

Turning now to small area estimation, Slud notes
“But one serious objection is that each response vari-
able would require its own Bayesian model” unlike
direct calibration estimators using common weights.
Yet model-dependent small area methods (either HB
or EB) are gaining acceptability because direct cali-
bration estimators are unreliable due to small sample
sizes. However, practitioners often prefer benchmark-
ing the small area estimators to agree with a reliable
direct calibration estimator at a higher level.

Sedransk notes that “almost all of the applications
use an area-level model” even though it makes strong
assumptions such as known sampling variances, as
noted in Section 5. I agree with him that the qual-
ity of the smoothing methods used in practice to get
around the assumption of known sampling variances is
questionable although smoothed sampling variance es-
timates may be satisfactory for point estimation. How-
ever, as noted in Section 5, area-level models remain
attractive because the sampling design is taken into
account through the direct estimators, and the direct
estimators and the associated area-level covariates are

more readily available to the users than the correspond-
ing unit-level sample data. Also, in using unit-level
models one need to ensure that the population model
holds for the sample and this could be problematic,
although more complex methods have been proposed
recently to handle sample selection bias in unit-level
models (Pfeffermann and Sverchkov, 2007). Never-
theless, I agree with Sedransk that unit-level models
should receive more attention in the future.

Turning to HB model diagnostics, I have noted
in Section 5 some difficulties with the commonly
used posterior predictive p-value (PPP) for checking
goodness-of-fit of a model because of “double use” of
data. Alternative methods that have been proposed to
avoid double use of data are more difficult to imple-
ment, especially in the context of small area models
as noted. Sedransk mentioned three additional refer-
ences (Yan and Sedransk, 2006, 2007, 2010) that stud-
ied alternative measures in the context of detecting
unknown hierarchical structures under somewhat sim-
plified assumptions. In particular, Yan and Sedransk
demonstrated that the unit-specific PPP-values act like
uniformly distributed random variables under the sim-
ple mean null model (without random area effects)
and hence a Q–Q plot should reveal departures from
the model. They assumed normality and absence of
outliers in their study, but it would be interesting to
see if their unit-specific P-values can in fact detect
nonnormality of random effects, studied by Sinharay
and Stern (2003). The use of unit-specific PPP-values
might be more attractive than using the traditional
PPP-function because it does not require the selec-
tion of an appropriate checking function, but further
work is needed including the detection of nonnormal-
ity as noted above. Yan and Sedransk showed that the
PPP-function, based on the F-statistic as the check-
ing function, is very effective for detecting hierarchical
structure when the true model is correctly guessed as
the mean model with random area effects. This seems
to imply that the PPP-function is chosen to reject the
null model and yet Sedransk criticizes the frequentist
goodness-of-fit tests by saying that “such tests are con-
structed to reject null hypotheses whereas one would
like to accept a postulated model if the data are con-
cordant with it.” In the simulation study of Yan and
Sedransk (2007) the F-statistic based PPP-value de-
tected even small correlations when the sample size is
large and the corresponding frequentist test would also
lead to similar results. I do not agree with Sedransk
that global frequentist goodness-of-fit tests necessar-
ily reject the null model when the data are concor-
dant with the model. In fact, many published papers
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have identified models from real data, using frequen-
tist tests. For example, Datta, Hall and Mandal (2011)
developed a frequentist model selection method by
testing for the presence of small area random effects
and applied the method to two real data sets involv-
ing 13 and 23 areas, respectively. Their test is based
on simple bootstrap methods and it is free of normal-
ity assumption. The null model in both applications is
a regression model without random area effects and
they showed that the frequentist p-value is as large as
0.2, suggesting that the data are concordant with the
simpler null model. Slud mentioned the work of Jiang,
Lahiri and Wu (2001) and Jiang (2001) on mixed linear
model diagnostics in the frequentist framework. I per-
sonally prefer using prior-free frequentist methods for
model checking because they can handle a variety of
model deviations including selection of variables and
random effects selection in linear or generalized linear
mixed models (e.g., Jiang et al., 2008) and detection
of outliers in multilevel models (Shi and Chen, 2008).
A model selected by the frequentist methods can be
further subjected to Bayesian selection methods if nec-
essary before using HB methods for inference. Slud
notes difficulties with model checking in the context
of SAIPE for sample counties where no poor children
were seen. This is also the case for counties or areas
not sampled. Model checking in those cases is indeed
challenging.

Finally, Slud makes an important observation on
goodness-of-fit tests when the primary interest is
prediction: “excellent predictions can be provided
through estimating models which are too simple to
pass goodness-of-fit checks.” Slud notes that this ob-
servation “has not yet been formulated with mathemat-
ical care” and that both frequentists and Bayesians will
benefit by characterizing “which target parameters and
which combinations of true and oversimplified mod-
els could work in this way.” In this context, the recent
work of Jiang, Nguyen and Rao (2011) on best predic-
tive small area estimation is relevant. This paper devel-
ops a new prediction procedure, called observed best
prediction (OBP), and shows that it can significantly
outperform the traditional EBLUP.
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