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Abstract: The Pearson’s chi-square and the log-likelihood ratio chi-square
statistics are fundamental tools in multinomial goodness-of-fit testing. Cressie
and Read (1984) constructed a general family of divergences which in-
cludes both statistics as special cases. This family is indexed by a single
real parameter. Divergences at one end of the scale are powerful against
deviations of one type while being poor against deviations of the other
type. The reverse property holds for divergences at the other end of the
scale. Several other families of divergences available in the literature also
show similar behavior. We present several inlier control techniques in the
context of multinomial goodness-of-fit testing which generate procedures
having reasonably high powers for both kinds of alternatives. We explain
the motivation behind the construction of the inlier modified test statistics,
establish the asymptotic null distribution of the inlier modified statistics
and explore their performance through simulation and real data examples
to substantiate the theory developed.
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1. Introduction

The Pearson’s chi-square and the log likelihood ratio statistics have long been
used to perform goodness-of-fit tests in multinomial settings. Some other less
frequently used goodness-of-fit test statistics like the Neyman modified chi-
square statistic, the Freeman-Tukey statistic and the modified log likelihood
ratio statistic are also available in the literature. Several authors have com-
pared the performance of these test statistics; an excellent discussion of this
topic together with an extensive bibliography is available in Cressie and Read
(1984) [14] and Read and Cressie (1988) [29].

Cressie and Read (1984) [14] developed a rich class of goodness-of-fit test
statistics called the family of power divergence statistics. All the above men-
tioned statistics are particular members of the power divergence family. The
divergences within this family are indexed by a single parameter λ ∈ R. Cressie
and Read presented an analytical discussion of the asymptotic properties of
these test statistics along with a substantial amount of numerical results for the
finite sample case. The power divergence measure is a subclass of the family of
f -divergences or disparities (Csiszár, 1963 [15]; Lindsay, 1994 [18]).

For the illustration of the properties of their tests under multinomial models,
Cressie and Read considered the equiprobable null against the class of bump and
dip alternatives at a single cell. Their findings demonstrate that the power of the
test statistics increases with the parameter λ under a bump alternative; unfortu-
nately, the power of these tests decreases with λ for a dip alternative. Since the
expected deviation from the null hypothesis, if any, is unlikely to be known apri-
ori in many practical situations, the choice of an ordinary goodness-of-fit test
within the power divergence family prior to the experiment may conceivably
lead to poor results. This phenomenon is not limited to the power divergence
family alone. Goodness-of-fit tests based on many other families of divergences
behave similarly. Our intention here is to modify the inlier part of the diver-
gences generating these goodness-of-fit tests to develop new inlier modified test
statistics which might provide better overall protection against loss in power,
much in the spirit of the uniformly most powerful unbiased test against the two



1848 A. Mandal and A. Basu

sided alternative under the normal and some other models, or the maxi-min
philosophy.

In the context of probabilistic modeling of real data, we will denote elements
of the sample space having more data than predicted under the model (here, the
structure specified by the null hypothesis) as outliers. On the other hand, inliers
will denote elements of the sample space having less data than is predicted by
the model. Inliers have so far received less attention in the literature compared
to outliers. In this paper we will show that the proper controlling of inliers can
significantly alter the performance of the goodness-of-fit tests, particularly in
small samples.

At this point we make it clear that we follow the nomenclature considered by
Lindsay (1994) in our definition of inliers and outliers as given in the previous
paragraph. One could, of course, view the inliers as outliers with a negative
orientation. As our set up naturally follows from that of Lindsay we stick to the
“inlier” and “outlier” notations in this paper as described above.

The rest of the paper is organized as follows. In the next section we introduce
the ordinary disparity test statistics for testing goodness-of-fit in multinomial
models. In Section 3, we give a qualitative justification of why the controlling
of the inliers is expected to moderate the performance of the test statistics and
make them less extreme. Section 4 proposes several inlier control strategies. The
asymptotic null distributions of the inlier modified test statistics are derived in
Section 5. In Section 6 the improved performance of the inlier modified tests are
numerically demonstrated. Concluding remarks are presented in Section 7.

2. Disparity test statistics

Suppose X has a k-cell multinomial distribution with parameters n and π =
(π1, π2, . . . , πk)

T , where πi > 0 for i = 1, 2, . . . , k and
∑k

i=1 πi = 1. Let us
denote the observed proportions based on the above multinomial variable by
p = (p1, p2, . . . , pk)

T . Consider the null hypothesis of the goodness-of-fit testing
problem

H0 : π ∈ Π0, (2.1)

where Π0 represents a specified set of probability vectors that are hypothe-
sized for π. Suppose the null hypothesis is specified by s parameters θ =
(θ1, θ2, . . . , θs)

T , i.e. πi = fi(θ), i = 1, 2, . . . , k or equivalently π = (f1(θ), f2(θ),
. . . , fk(θ))

T = f(θ), where θ ∈ Θ ⊆ R
s, s ≤ k − 1 and f : Rs → R

k. We denote
the true value of θ as θ0, whereas the true value of π will be denoted by π0.

We define the Pearson residual function δi(θ) for the i-th cell by the relation

δi(θ) =
pi − fi(θ)

fi(θ)
, i = 1, 2, . . . , k.

Let G be a real-valued, thrice differentiable, strictly convex function on [−1,∞)
with G(0) = 0. The disparity between the probability vectors p and f(θ) based
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on G is denoted by ρG(p, f(θ)) and is defined as

ρG(p, f(θ)) =

k
∑

i=1

G(δi(θ))fi(θ). (2.2)

The function G will be called the disparity generating function of the measure
defined in equation (2.2). Let θ̂n be the estimator of θ that minimizes ρG over

θ ∈ Θ, provided such a minimizer exists; θ̂n will be called the minimum disparity
estimator (MDE) of θ corresponding to ρG. Under differentiability of the model
the estimating equation for θ is of the form

∑

i

AG(δi(θ))∇fi(θ) = 0, (2.3)

where
AG(δ) = (1 + δ)G′(δ)−G(δ), (2.4)

G′ is the first derivative of G with respect to its argument, and ∇ is the gradient
with respect to θ. The function AG is called the residual adjustment function
(RAF) of the disparity generated by G; it may be redefined, without changing
the estimating properties of the disparity so that it satisfies AG(0) = 0 and
A′

G(0) = 1, where A′
G is the derivative of AG (see Lindsay, 1994 [18] and Basu

et al., 1997 [7]). These two conditions are automatic if, in addition to its usual
properties, the associated G function satisfies

G′(0) = 0, and G′′(0) = 1, (2.5)

where G′ and G′′ are the indicated derivatives of G. The strict convexity of G
implies that AG is an increasing function. Also it is easily checked that given
a twice differentiable increasing function AG or a non-negative differentiable
function A′

G, one can reconstruct a disparity measure ρG by using the function

G(δ) =

∫ δ

0

∫ t

0

A′
G(s)(1 + s)−1ds dt. (2.6)

For our goodness-of-fit testing problem we will consider disparity test (DT)
statistics of the type

min
θ∈Θ

2nρG(p, f(θ)) = 2nρG(p, f(θ̂n)). (2.7)

Equation (2.7) also serves as the defining equation of θ̂n, the minimum disparity
estimator of θ under the null as generated by the disparity ρG. More generally,
one can consider test statistics of the form 2nρG(p, π̂0), where π̂0 is any BAN
(best asympotically normal) estimator of π under the null; see, e.g., Bishop et
al. (1975) [13] for a description of this concept.

In particular the power divergence test statistics 2nIλ(p, f(θ̂n)) are generated
by the power divergence (PD) family (Cressie and Read, 1984 [14]) given by

Iλ(p, f(θ)) =
1

λ(λ + 1)

k
∑

i=1

pi

{

(

pi
fi(θ)

)λ

− 1

}

, λ ∈ R, (2.8)
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which has the associated G function

G(δ) =
(δ + 1)λ+1 − (δ + 1)

λ(λ + 1)
−

δ

λ+ 1
.

For λ = 0 and λ = −1, the divergences are defined by the continuous limits
of the above expressions as λ → 0 and λ → −1 respectively. Several standard
distances such as the Pearson’s chi-square (PCS), Neyman’s chi-square (NCS),
Hellinger distance (HD) and likelihood disparity (LD) belong to this family for
different values of the tuning parameter λ. The test statistic for the case λ → 0
is the log likelihood ratio statistic (LDT), while the Kullback-Leibler divergence
(KLD) corresponds to λ → −1. The statistic based on the Hellinger distance is
also called the Freeman-Tukey statistic.

Other subfamilies of disparities include the blended weight Hellinger distance
(Basu and Lindsay, 1994 [8]; Lindsay, 1994 [18]), defined by

BWHDβ(p, f(θ)) =
1

2

k
∑

i=1

(pi − fi(θ))
2

(βpi1/2 + β̄f
1/2
i (θ))2

, β ∈ [0, 1], β̄ = 1− β. (2.9)

The G function for this subfamily is given by Gβ(δ) = 1
2

δ2

[β(δ+1)1/2+β̄]2
. For

β = 0, 1/2 and 1, this family generates the PCS, HD and NCS respectively.
Another such family is the blended weight chi-square divergence (Lindsay, 1994
[18]; Shin et al., 1996 [31]), defined by

BWCSτ (p, f(θ)) =
1

2

k
∑

i=1

(pi − fi(θ))
2

τpi + τ̄ fi(θ)
, τ ∈ [0, 1], τ̄ = 1− τ. (2.10)

The G function for this subfamily is given by Gτ (δ) =
1
2

δ2

[τ(δ+1)+τ̄] . This family

generates the PCS and NCS for τ = 0 and 1 respectively.
Suppose the disparity ρG(p, π) =

∑k
i=1 G(δi)πi is standardized so thatG(0) =

G′(0) = 0 andG′′(0) = 1. Moreover,G′′′ is bounded and continuous in the neigh-
borhood of zero. Then under the conditions of Birch (1964) [12] (see Read and
Cressie, 1988 [29]) the following theorem holds.

Theorem 2.1. Under the notation developed in this section, the disparity statis-
tic 2nρG(p, f(θ̂n)) has an asymptotic χ2(k − s − 1) distribution under the null

hypothesis in (2.1), where θ̂n is the minimum disparity estimator of θ under the
null hypothesis.

The theorem is proved in Basu and Sarkar (1994) [11]; also see Zografos
(1990) [33]. The essential step is to expand (2.7) in a Taylor series, and show
that under the null hypothesis the statistic is separated from the Pearson’s chi-
square by an op(1) term only. Basu and Sarkar also argue that 2nρG(p, π̂0) will
have the same asymptotic distribution as in Theorem 2.1 for any BAN estimator
π̂0 of π under the null hypothesis.

In the description of this section we have used the formulation of the dis-
parities as given by Lindsay (1994) [18]. The class of disparities has an exact
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one to one relationship with the class of f -divergences of Csiszár (1963) [15].
The central function φ in Csiszár’s f -divergence notation uses the argument
δi(θ) + 1 = pi/fi(θ), while the central function G in Lindsay’s notation uses
the argunent δi(θ). Disparities and f -divergences are simple reformulations of
each other. To be specific we have used the disparity formulation in this paper
which allows us to use the geometric interpretations of Lindsay (1994). How-
ever, all the conclusions of this paper could also have been arrived at by using
the f -divergence formulation. The PD, BWHD and BWCS are special cases
of the family of f -divergence, just as they are special cases of the family of
disparities.

3. The motivation for inlier control

In this section the motivation for the application of inlier control techniques
is discussed; we also qualitatively indicate why we expect this to improve the
performance of the disparity test statistics. This is the key section in developing
the theme of this paper. We begin with a description of the equiprobable null
hypothesis for the multinomial goodness-of-fit test, examine the performance of
the different methods within some prominent families of goodness-of-fit tests in
this context, and use the geometry of the structure of these test statistics to
explain why the observed extreme behaviors are as expected. We follow this up
with a description of how the inlier modification may be expected to provide
more stable results and guard against extremes.

Let us consider a multinomial distribution with parameters n and π = (π1,

. . . , πk)
T , where πi > 0 for i = 1, 2, . . . , k and

∑k
i=1 πi = 1. For illustration we

choose the equiprobable null hypothesis given by

H0 : πi =
1

k
, i = 1, 2, . . . , k, (3.1)

which is to be tested against the alternative

H1 : πi =

{ 1
k − η

k(k−1) , i = 1, 2, . . . , k − 1,
1+η
k , i = k,

(3.2)

where η ∈ [−1, k − 1]. Under H1 the primary violator of the null hypothesis
is the last cell which represents a bump or a dip depending on whether the
value η is positive or negative. If η > 0, there is a bump of magnitude η/k
in the probability of the k-th cell, and the probabilities of the other cells are
reduced uniformly so that the total probability adds up to unity; the reverse
phenomenon is observed for η < 0 which leads to a dip in the probability of the
last cell. The bump and the dip alternatives have been used by several authors
including Cressie and Read (1984) [14] to illustrate the performance of different
goodness-of-fit test statistics. Throughout the rest of the manuscript the symbol
η will be used to indicate the deviation from the equiprobable null as quantified
by the alternative in equation (3.2).
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Table 1

Exact power of the randomized tests for the equiprobable null against alternative (3.2) for
different values of λ and η, where n = 20, k = 5 and α = 0.1 (the cases λ = −1 and λ = 0

are evaluated using their respective forms obtained from the general power divergence
through continuity)

η

λ 2 1 −.6 −.8

−1.0 0.4202 0.1472 0.1833 0.3970

−0.5 0.6064 0.1640 0.1832 0.3962

−0.3 0.7551 0.2170 0.1808 0.3829

0 0.8665 0.3052 0.1650 0.3178

0.5 0.9096 0.3552 0.1442 0.2448

1 0.9190 0.3725 0.1334 0.2123

2 0.9338 0.3963 0.1137 0.1607

Table 1 presents the exact power of the disparity test statistics for various
values of η based on different members of the power divergence family. Here
we have taken a multinomial distribution with n = 20 and k = 5. The exact
powers are calculated for the appropriately randomized test of size α = 0.1;
this involves the enumeration of all possible samples, and the calculation of
the randomized critical value by determining the probabilities of these samples
under the null. The results show that for a bump alternative the exact powers
of the tests increase with λ, while for a dip alternative the exact powers of the
tests decrease with λ. Similar results have also been observed by, among others,
Cressie and Read (1984) [14].

Other families of disparities display similar characteristics. For example in
the BWHDβ and BWCSτ families (see Section 2) the power increases with β
and τ for negative η and decreases with β and τ for positive η. Some indications
of this behavior were presented in Basu and Sarkar (1994) [11]. For brevity we
refrain from further elaborating on this phenomenon.

The sensitivity of a disparity test statistic against different types of alterna-
tives may be described by the nature of the disparity generating function G (see
Basu et al., 2002 [10]). Figure 1 presents the G functions of several members of
the power divergence family. We will denote the positive side of the δ-axis as
the outlier side and the negative side as the inlier side. Notice that in relation
to the hypotheses (3.1) and (3.2), a bump in the last cell represents an outlier
while a dip indicates an inlier. For large positive values of λ the G functions
are fairly flat on the negative side of the δ axis, but curve away rapidly on the
positive side of δ axis. Thus the corresponding test statistics are strongly sen-
sitive to outliers (bumps), but present a dampened response to inliers (dips).
So the disparity test statistics with large positive values of λ may be expected
to perform well against bump alternatives while being poor discriminators for
dip alternatives. On the other hand, the results are just the opposite for the
statistics with large negative values of λ. No natural disparity within the power
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Fig 1. G functions for different values of λ in the power divergence family.

divergence family show high levels of sensitivity against both kinds of deviations
simultaneously.

Our aim is to work with divergences which are naturally sensitive for the out-
lier side and appropriately modify their behavior for the inlier side so that the
tests are simultaneously sensitive to both kinds of deviations. This is a delicate
matter since we need to do the same without disturbing the asymptotic null dis-
tribution of the test statistics. In some of the inlier control proposals presented
in the next section, the modified divergences belong to the class of disparities
so that the asymptotic null distribution of the goodness-of-fit statistics based
on the modified divergences follow from existing results. For the others, the
asymptotic distribution of the statistics have to be freshly derived.

Our goal is to construct a G function such that it curves up rapidly on both
sides of the origin so that, intuitively, the test may be expected to have good
overall power at all alternatives, although it may not be best at any. For most G
functions that arise naturally, sensitivity is limited to one side of the axis alone.
We expect that inlier modified statistics corresponding to large positive values of
λ will make the tests more sensitive on the left while preserving their sensitivity
on the right. Thus inlier modified tests with large values of λ within the power
divergence family (or similarly modified tests within the other families) may be
expected to be effective in detecting both kind of deviations.

The inlier control techniques are also useful in the context of robust esti-
mation based on the minimum disparity approach. However in the robust es-
timation problem the statistician uses the disparities to downweight the effect
of large residuals by making the disparity generating function (or, equivalently,
the residual adjustment function) less sensitive on both the inlier and outlier
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sides. Thus in the robust estimation case, the same inlier modification tech-
niques are used with the opposite objective. This topic is further discussed in
Mandal (2010) [19].

4. Methods for inlier control

In this section we will briefly introduce the techniques that may be used to
suitably modify the inlier part of the outlier sensitive disparities. In some cases
the modifications are applied directly to the disparity generating function G. In
other cases the modifications are applied on the residual adjustment function
AG; subsequently we go back and recover the form of the disparity generating
function using (2.6). Residual adjustment functions which dip further in the left
tail produce more inlier sensitive disparities.

In this paper we will consider five different strategies of dealing with the inlier
problem. The methods are based on the penalized disparities (see Harris and
Basu, 1994 [16]; Basu et al., 1996 [6], Basu and Basu, 1998 [5]; Yan, 2001 [32];
Park et al., 2001 [25]; Basu et al., 2002 [10]; Pardo and Pardo, 2003 [22]; Alin,
2007 [2], 2008 [3]; Alin and Kurt, 2008 [4]; Basu et al., 2009 [9]), the combined
disparities (e.g., Park et al., 1995 [24]; Basu et al., 2002 [10]; Mandal et al., 2011
[20]), the coupled disparities, the ǫ-combined disparities and the inlier shrunk
disparities (Patra et al., 2008 [26]).

4.1. Penalized disparities

Let us assume the set up of Section 2. Suppose the disparity generating func-
tion G satisfies the conditions in (2.5) in addition to its usual properties. The
disparity in (2.2) can be rewritten as

ρG(p, f(θ)) =
∑

i:pi>0

G(δi(θ))fi(θ) +G(−1)
∑

i:pi=0

fi(θ). (4.1)

This shows that the natural weight for the set {i : pi = 0}, i.e. the empty cells,
is G(−1); for the power divergence family this equals 1/(λ + 1) so that this is
a small positive number for large positive values of λ. The disparity generating
functions are very flat on the inlier side for such values of λ.

The penalized disparity between the densities p and fθ for the penalty weight
h is defined as

ρGh
(p, f(θ)) =

∑

i:pi>0

G(δi(θ))fi(θ) + h
∑

i:pi=0

fi(θ), h > 0, (4.2)

which simply replaces the natural weight of the empty cells in (4.1) with a
suitable positive constant h. It is clear that the penalized disparity in (4.2) is
non-negative; also evident is the fact that if the probability mass functions p and
fθ are identically equal the penalized disparity must equal zero. Again, for h > 0,
two probability mass functions which are not identically equal must necessarily



Multinomial goodness-of-fit tests under inlier modification 1855

produce a positive penalized disparity. If the support of fθ is independent of θ,
the range of h can be enhanced to include h = 0.

For goodness-of-fit problems with a large number of cells, replacing G(−1)
with a large value can lead to significant benefit particularly when the sample
size is small.

Leter on, in our description of the goodness-of-fit test statistics based on the
penalized disparities, we will use the minimum penalized disparity estimator of
θ for testing the composite null hypothesis. In order to get the correct results
in this context it is necessary that the minimum penalized disparity estimators
are BAN estimators. The results of Mandal et al. (2010) [21] ensure that the
minimum penalized disparity estimators are BAN in our context.

4.2. Combined disparities

In the combined disparity approach we combine two different disparities at the
positive and negative sides of the δ axis at the origin δ = 0. Suppose we have
two different disparities ρG1

and ρG2
; then the combined disparity ρGc is defined

by

ρGc(p, f(θ)) =
∑

i

Gc(δi(θ))fi(θ),

where

Gc(δ) =

{

G1(δ), if δ ≥ 0,
G2(δ), if δ < 0.

(4.3)

Suppose AG1
and AG2

are the residual adjustment functions corresponding to
G1 and G2. Then the residual adjustment function Ac of the combined disparity
ρGc is defined by

Ac(δ) =

{

AG1
(δ), if δ ≥ 0,

AG2
(δ), if δ < 0.

(4.4)

When using the combined disparity approach, our aim will be to combine a
sharply rising RAF on the positive side of the δ axis with a RAF which magnifies
the effect of inliers on the negative side of the δ axis. In general, however, the
second order smoothness of the residual adjustment function at δ = 0 is lost as
a result of this combination, i.e. A′′

c (δ) does not exist at δ = 0.
As in the case of the minimum penalized disparity estimators, the minimum

combined disparity estimators are also BAN, a result which follows from the
Mandal et al. (2011) [20]. We will use this fact in deriving the asymptotic dis-
tribution of combined disparity test statistics.

4.3. Coupled disparities

Suppose we start with an initial disparity ρG, whereG is the disparity generating
function, and AG(δ) is the corresponding residual adjustment function. In the
coupled disparity approach we replace AG(δ) for negative values of δ with a
third degree polynomial such that the following conditions hold:
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1. The new residual adjustment function Acp(δ) is a continuous function for
all δ ∈ [−1,∞). So Acp(0) = AG(0) = 0.

2. First two derivatives of Acp(δ) at δ = 0 match with the original residual
adjustment function AG(δ), i.e. A

′
cp(0) = A′

G(0) = 1 and A′′
cp(0) = A′′

G(0).
3. The function Acp(δ) gives a desired weight to the empty cells, i.e. Acp(−1) =

k0, where k0 < 0 is a suitable value. We denote k0 as the intercept param-
eter of the coupled disparity.

It may be noted that the first two conditions ensure that the coupled disparity
has the smoothness properties of a general disparity function (as described in
Section 2) at the origin δ = 0. The third condition is imposed to control the
inlier part of the disparity.

A large negative value of k0 will generate an inlier sensitive disparity. Under
some conditions described below the resulting coupled disparity is a genuine dis-
parity, and the related asymptotics can be studied within the already established
properties of disparities.

Conditions 1, 2 and 3 lead to four algebraic constraints on Acp(δ), viz.
Acp(0) = 0, A′

cp(0) = 1, A′′
cp(0) = A′′

G(0) and Acp(−1) = k0. We therefore
assume that Acp(δ) is a 3-rd degree polynomial of δ for δ ∈ [−1, 0]. Solving for
the coefficients of the above polynomial under the given constraints we get

Acp(δ) = δ +
1

2
A′′

G(0)δ
2 +

1

2
{A′′

G(0)− 2k0 − 2}δ3, δ ∈ [−1, 0], (4.5)

so that the residual adjustment function of the coupled disparity ρGcp has the
form

Acp(δ) =

{

AG(δ), if δ > 0,
δ + 1

2A
′′
G(0)δ

2 + 1
2{A

′′
G(0)− 2k0 − 2}δ3, if δ ∈ [−1, 0].

(4.6)

Using equation (2.6), the corresponding reconstructed G function is given by

Gcp(δ) =
1

4
(A2 − 2k0 − 2) δ3 −

1

4
(A2 − 6k0 − 6) δ2

−
1

2
(A2 − 6k0 − 4) (δ − (1 + δ) log(1 + δ)) ,

for δ ∈ [−1, 0], where A2 = A′′
G(0) is the curvature parameter of the disparity

ρG. It can be shown that Gcp will be strictly convex for k0 ≤ − 1
6{A2 + 4}

(see Mandal, 2010 [19]). In such a case the coupled disparity satisfies all the
properties of a regular disparity, so that the asymptotic null distribution of the
corresponding goodness-of-fit test statistic 2nρGcp(p, π̂0) follows from the exist-
ing results (e.g., Basu and Sarkar, 1994 [11]), where π̂0 is any BAN estimator
of π under the null hypothesis. However, also see the comments in Remark 1
later.

4.4. ǫ-combined disparities

In the ǫ-combined disparity approach we combine two residual adjustment func-
tions AG1

and AG2
of two different regular disparities near the origin δ = 0 by
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smoothing them using a seventh degree polynomial in the interval δ ∈ [−ǫ, ǫ],
where ǫ is a small positive number. This smooth joining allows the combined
function to retain the second order smoothness properties at δ = 0; otherwise
the method is similar in spirit to the combined disparity approach. The residual
adjustment function of the ǫ-combined disparity is defined by

Aǫ(δ) =







AG1
(δ), if δ > ǫ,

∑7
i=0 kiδ

i, if − ǫ ≤ δ ≤ ǫ,
AG2

(δ), if δ < −ǫ.

(4.7)

The smoothed function Aǫ should satisfy the following conditions:

1. Aǫ(0) = 0 and A′
ǫ(0) = 1.

2. Aǫ(δ) is a continuous function for −1 ≤ δ < ∞. So Aǫ(ǫ) = AG1
(ǫ) and

Aǫ(−ǫ) = AG2
(−ǫ).

3. The first derivative of Aǫ(δ) exists for all values of δ in the interval (−1,∞).
So A′

ǫ(ǫ) = A′
G1

(ǫ) and A′
ǫ(−ǫ) = A′

G2
(−ǫ).

4. The second derivative of Aǫ(δ) exists for all values of δ in the interval
(−1,∞). So A′′

ǫ (ǫ) = A′′
G1

(ǫ) and A′′
ǫ (−ǫ) = A′′

G2
(−ǫ).

The above generates eight algebraic constraints, so a seventh degree polynomial
serves the purpose. Whenever the resulting residual adjustment function Aǫ is
increasing, as it normally is, the associated disparity generating function Gǫ is
convex, so that the asymptotic distribution of the resulting goodness-of-fit test
statistic again follows from existing results.

4.5. Inlier-shrunk disparities

Let G be a function satisfying the disparity conditions in equation (2.5). Define
the corresponding inlier-shrunk class of disparity generating functions indexed
by the inlier shrinking parameter γ ∈ R through the relation

Gγ(δ) =







G(δ), δ ≥ 0,

G(δ)

(1 + δ2)γ
, δ < 0.

(4.8)

Notice that this strategy again keeps the G function intact on the outlier side
but modifies it in the inlier side. The function is shrunk closer to zero for γ > 0
and is magnified for γ < 0. For our purpose, inlier shrunk disparities with γ < 0
are the relevant ones (inspite of the “inlier shurnk” name). It can be easily
verified that G

′′′

γ (δ), the third derivative of the function Gγ(δ), exists and is
continuous at δ = 0; the same is true for the corresponding second derivative of
the residual adjustment function. Thus for every inlier shrinking parameter γ
one would only need to verify that Gγ is a convex function to establish that the
associated inlier-shrunk disparity satisfies the original disparity conditions, so
that the asymptotic null distribution of the corresponding goodness-of-fit test
will still be as given in Theorem 2.1.
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Remark 1. The primary use of the convexity of the function G(δ) is in es-
tablishing the non-negativity of the disparity ρG. The condition (2.5) assures
that the disparity generating function is non-negative throughout the range
δ ∈ [−1,∞). Any modification of the disparity generating function G which
keeps the function non-negative also keeps the resulting disparity non-negative,
irrespective of whether the G function remains convex or not. In such cases the
asymptotic distribution of the corresponding test statistic continues to hold as
long as conditions of Theorem 2.1 (Theorem 3.1 of Basu and Sarkar, 1994 [11])
are satisfied. In case of inlier shrunk disparities, for example, the modification
on the inlier side either shrinks it to a fraction of its existing value or magni-
fies it to a larger value, and thus the modified function Gγ continues to remain
non-negative. Therefore the asymptotic null distribution of the goodness-of-fit
statistic 2nρGγ (p, π̂0), where π̂0 is any BAN estimator under the null hypothesis,
follows from Theorem 2.1.

5. Some asymptotic results

Here we prove the asymptotic null distributions of the penalized and the com-
bined disparity test statistics, abbreviated hereafter as PDT and CDT respec-
tively. The proofs of the asymptotic distributions of the other three types of in-
lier modified test statistic – the coupled disparity statistic (CpDT), ǫ-combined
disparity statistic (ǫ-CDT) and the inlier shrunk disparity statistic (ISDT) –
follow directly from Theorem 2.1 as long as the modified G functions remain
non-negative.

5.1. Asymptotic null distribution of the PDT

In this section we establish the asymptotic distribution of the penalized disparity
test (PDT) statistic 2nρGh

(p, π̂0), where π̂0 is any BAN estimator of π under
H0. Here ρGh

is as defined in (4.2).

Theorem 5.1. Under the conditions of Birch (1964) [12] (see Read and Cressie,
1988 [29]) the penalized disparity statistic 2nρGh

(p, π̂0) has an asymptotic χ2(k−
s− 1) distribution under the null hypothesis given in (2.1).

Proof. By Theorem 2.1 the disparity statistic 2nρG(p, π̂0) has an asymptotic
χ2(k − s − 1) distribution under the null hypothesis. Hence it is sufficient to
show that under the null

Rn(θ) = 2nρG(p, π̂0)− 2nρGh
(p, π̂0) = op(1). (5.1)

Now

Rn(θ) = 2n(G(−1)− h)
∑

i:pi=0

π̂0i = 2n(G(−1)− h)

k
∑

i=1

π̂0iI(pi), (5.2)
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where I(y) = 1 if y = 0 and 0 otherwise. So

E [|Rn(θ)|] = 2n|G(−1)− h| E

[

k
∑

i=1

π̂0iI(pi)

]

≤ 2n|G(−1)− h|

k
∑

i=1

E [I(pi)]

≤ 2n|G(−1)− h|

k
∑

i=1

(1− π0i)
n. (5.3)

Suppose gn(x) = n(1 − x)n, where x ∈ (0, 1). Note gn(x) → 0 for all x ∈ (0, 1)
as n → ∞. As k is finite and π0i > 0 for each i, we get from (5.3)

E [|Rn(θ)|] → 0 as n → ∞.

Hence, by Markov’s inequality, the condition in equation (5.1) holds.

In Section 4 we have listed some of the previous applications of the empty
cell penalty approach in the literature. Park et al. (2001) [25] considered the
asymptotic distribution of the penalized disparity test statistic for the special
case of the blended weight Hellinger distance.

5.2. Asymptotic null distribution of the CDT

Here we will prove the asymptotic distribution of the combined disparity test
(CDT) statistic 2nρGc(p, π̂0), where π̂0 is any BAN estimator of π under H0.
We assume that the component functions G1 and G2 both satisfy the conditions
in (2.5); in addition G′′′

1 and G′′′
2 are assumed to be finite and conditions at zero,

where G′′′ is the third derivative of G.

Theorem 5.2. Under the conditions of Birch (1964) [12] (see Read and Cressie,
1988 [29]) the combined disparity statistic 2nρGc(p, π̂0) has an asymptotic χ2(k−
s− 1) distribution under the null hypothesis given in (2.1).

Proof. The combined disparity test statistic in given by

2n
k

∑

i=1

Gc

(

pi − π̂0i

π̂0i

)

π̂0i = 2n
∑

pi≥π̂0i

G1

(

pi − π̂0i

π̂0i

)

π̂0i

+ 2n
∑

pi<π̂0i

G2

(

pi − π̂0i

π̂0i

)

π̂0i.

When pi ≥ π̂0i a Taylor series expansion about pi = π̂0i gives

2nGc

(

pi − π̂0i

π̂0i

)

π̂0i = 2nG1(0)π̂0i + 2n(pi − π̂0i)G
′
1(0) +

n

π̂0i
(pi − π̂0i)

2G′′
1(0)

+
n

3π̂2
0i

(pi − π̂0i)
3G′′′

1

(

ξi − π̂0i

π̂0i

)

, (5.4)
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where ξi lies in the line segment joining the points pi and π̂0i. Now, from as-
sumption (2.5), G1(0) = G′

1(0) = 0 and G′′
1 (0) = 1. Hence, when pi ≥ π̂0i,

equation (5.4) reduces to

2nGc

(

pi − π̂0i

π̂0i

)

π̂0i =
n

π̂0i
(pi − π̂0i)

2 +
n

3π̂2
0i

(pi − π̂0i)
3G′′′

1

(

ξi − π̂0i

π̂0i

)

. (5.5)

Notice that ξi lies in the same side of π̂0 as pi.
Similarly when pi < π̂0i, using the properties of the function G2 we get

2nGc

(

pi − π̂0i

π̂0i

)

π̂0i =
n

π̂0i
(pi − π̂0i)

2 +
n

3π̂2
0i

(pi − π̂0i)
3G′′′

2

(

ζi − π̂0i

π̂0i

)

, (5.6)

where ζi lies in the line segment joining the points π̂0i and pi. Again ζi lies on
the same side of π̂0i as pi. As G

′′′
1 and G′′′

2 are bounded in the neighborhood of
zero, combining equations (5.5) and (5.6) we get

2nGc

(

pi − π̂0i

π̂0i

)

π̂0i =
n

π̂0i
(pi − π̂0i)

2 + op(1), i = 1, 2, . . . , k. (5.7)

Therefore adding the terms on both side of (5.7) for i = 1, . . . , k we get

2n

k
∑

i=1

Gc

(

pi − π̂0i

π̂0i

)

π̂0i = n

k
∑

i=1

(pi − π̂0i)
2

π̂0i
+ op(1).

So the asymptotic distribution of 2nρGc(p, π̂0) is equivalent to the distribution
of the Pearson’s chi-square statistic, and the required result holds.

In Section 4 we have listed some of the previous applications of the combined
distance approach in statistical literature. Basu et al. (2002) [10] attempted to
show that the asymptotic distribution of the combined disparity statistic differs
from the Pearson’s chi-square statistic by only a small order term. However,
they considered only the case of the simple null hypothesis, and their proof was
not completely rigorous.

6. Numerical results

In this section we will present the results of an extensive numerical study to
explore the properties of the inlier modified test statistics. Our illustrations will
primarily focus on the power divergence family, but will also use the blended
weight Hellinger distance and the blended weight chi-square distance for illustra-
tion. To ensure that the illustration is as streamlined as possible, we denote the
disparity tests according to the following convention. We denote the ordinary
disparity tests as DT, with the value of the tuning parameter indicated within
parentheses, and the subscripts λ, β and τ representing the power divergence,
the blended weight Hellinger distance and the blended weight chi-square families
respectively. Thus DTλ(2) will represent the disparity test within the power di-
vergence family with tuning parameter 2, DTβ(0.5) will represent the disparity



Multinomial goodness-of-fit tests under inlier modification 1861

test within the blended weight Hellinger distance family with tuning parameter
0.5, and so on. For the inlier modified families the prefixes P, C, Cp and IS
will represent the indicated inlier modification scheme, while the second argu-
ment will represent the inlier modification parameter. For example, PDTλ(2, 1)
will represent the penalized power divergence statistic with tuning parameter 2
and penalty weight h = 1; CDTβ(0.2, 0.5) will represent the combined disparity
statistic within the blended weight Hellinger distance family with the outlier
and inlier components represented by the statistics with tuning parameters 0.2
and 0.5 respectively; CpDTτ (0.2,−1) will represent the coupled disparity statis-
tic within the blended weight chi-square family with tuning parameter 0.2 and
intercept parameter k0 = −1, and so on.

In our numerical illustrations we have left out the ǫ-combined disparity statis-
tics, as they tend to present results very similar to the corresponding combined
disparity statistics for small values of ǫ.

6.1. Comparison of the exact power

In this section we present some evidence of the “improved” performance of the
inlier modified test statistics. For the first set of illustrations, we choose the
statistics within the power divergence family. Our aim is to start with a test
statistic with a large positive value of λ (so that the statistic is sensitive to
outliers) and suitably modify the inlier side. We consider the same equiprobable
testing problem as discussed in Section 3 for the particular values n = 20 and
k = 5. Choosing the disparity test corresponding to λ = 2 within the power
divergence family, we consider bump and dip alternatives over the range of
different values of η. In Figures 2 and 3 we present the exact powers (as discussed
in Section 3) of the penalized and coupled test statistics, respectively, for the
parameters indicated in the figures, together with the ordinary test statistic. In
either case the figure shows that the inlier modified disparity test significantly
improves the power of the test statistics on the inlier side, and is associated
with a small average drop in power on the outlier side. In Figure 4 the power
of the combined disparity test corresponding to the tuning parameters λ = 2 in
the outlier side and λ = −0.5 in the inlier side is presented together with the
two ordinary disparity tests; in the sense of protecting against the worst case
scenario, the combined statistic is clearly much more balanced in this illustration
compared to the two ordinary statistics.

6.2. Comparison of the corrected power

To calculate the exact power as reported in Table 1 and Figures 2, 3 and 4,
we need to determine the values of the test statistics for all

(

n+k−1
n

)

possible
samples. So the exact calculation is not feasible when n and k are large. However,
we can still get a reasonable comparison of the powers of the test statistics by
using simulated finite sample critical values (instead of the asymptotic chi-square
critical value). We now present some simulation results where the parameters
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Fig 2. Comparison of the exact powers of the ordinary and the penalized disparity test statis-
tics considered in Section 6.1.
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Fig 3. Comparison of the exact powers of the ordinary and the coupled disparity test statistics
considered in Section 6.1.

for the multinomial model are n = 50 and k = 10. The null and the alternative
hypotheses are given in equations (3.1) and (3.2) respectively, and the value of
η ranges from −1 to 4. The test statistics we have considered are (a) the log
likelihood ratio statistic (LDT), (b) the DTλ(−0.5) statistic; (c) the DTλ(3)
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Fig 4. Comparison of the exact powers of the ordinary and the combined disparity test statis-
tics considered in Section 6.1.
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Fig 5. Comparison of the corrected powers of the disparity test statistics considered in Sec-
tion 6.2.

statistic; (d) the PDTλ(3,2) statistic; (e) the CDTλ(3,−0.5) statistic and (f)
the CpDTλ(3,−2) statistic. Figure 5 shows the corrected powers where we have
used the simulated critical points. Here one can observe that the corrected power
for DTλ(3) is best for the bump alternatives, whereas it is worst for the dip
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alternatives. Exactly the opposite situation is seen for the DTλ(−0.5). Our
inlier modified test statistics show overall good performance for all alternatives.
It may be noticed that the LDT also provides a reasonable balance in all the
situations, but all three inlier modified tests appear to be either competitive or
better than the LDT everywhere over the range of η.

6.3. Real data examples

Example 6.1. A total of 182 psychiatric patients on drugs were classified ac-
cording to their diagnosis. This data set has been analyzed previously by Agresti
(1990 [1], p. 72, Table 3.10) and Basu et al., (2002) [10]. The breakdown of the
frequencies in the different classes is as shown in Table 2. The sample size is
fairly large, and we expect that the chi-square approximation will be reasonable
for all our ordinary and modified statistics.

Consider testing a simple null hypothesis where the probability vector is given
by π0 = (0.56, 0.06, 0.09, 0.25, 0.04)T . The deviations of the observed relative
frequencies from the null probabilities appear to be small; the research question
is whether these small deviations are enough to indicate a significant difference
from the null given the large sample size. The χ2 critical value at 4 degrees
of freedom and 5% level of significance is given by 9.488. The ordinary power
divergence statistics for λ = 2, 1 and 2/3 are 5.273, 7.690 and 9.142 respectively,
and these tests fail to reject the null hypothesis. However, for the associated
penalized tests (note that the data set contains one empty cell) corresponding
to λ = 2, 1 and 2/3 with penalty weight h = 2 the test statistics are 29.540,
29.530, and 29.526, so that these statistics reject the null hypothesis comfortably.
A bunch of other test statistics within the domain of our discussion are presented
in Table 3. Most of the ordinary test statistics either fail to reject H0 or provide
a marginal rejection; however the inlier modified statistics clearly improve the
discrimination.

Example 6.2. Next we consider the time passage example data (Read and
Cressie, 1988 [29], pp. 12-16) which studied the relationships between stresses
in life and illnesses in Oakland, California based on a sample of size n = 147,
fairly large value. These data have also been analyzed by Basu et al. (2002)
[10]. The data are in the form of an 18-cell multinomial, with the frequencies

Table 2

The null probabilities and the observed relative frequencies for 182 psychiatric patients used
in Example 6.1

Diagnosis Frequency Relative Null
Frequency Probability

Schizophrenia 105 0.577 0.56
Affective disorder 12 0.066 0.06
Neurosis 18 0.099 0.09
Personality disorder 47 0.258 0.25
Special symptoms 0 0.000 0.04
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Table 3

The test statistics for the schizophrenia data used in Example 6.1

DTλ(2/3) DTλ(1) DTλ(2)
9.142 7.690 5.273

PDTλ(2/3,2) PDTλ(1,2) PDTλ(2,2)
29.526 29.530 29.540

CDTλ(2/3,−0.5) CDTλ(1,−0.5) CDTλ(2,−0.5)
29.526 29.530 29.540

CpDTλ(2/3,−2) CpDTλ(1,−2) CpDTλ(2,−2)
29.526 29.530 29.540

ISDTλ(2/3,−1) ISDTλ(1,−1) ISDTλ(2,−1)
17.878 14.970 10.127

DTβ(0.1) DTβ(0.2) DTβ(0.3)
9.394 11.779 15.258

CpDTβ(0.1,−2) CpDTβ(0.2,−2) CpDTβ(0.3,−2)
29.527 29.524 29.521

DTτ (0.1) DTτ (0.2) DTτ (0.3)
8.495 9.503 10.801

ISDTτ (0.1,−1) ISDTτ (0.2,−1) ISDTτ (0.3,−1)
16.584 18.603 21.201

Table 4

The test statistics for the time passage data used in Example 6.2

DTλ(2/3) DTλ(1) DTλ(2)
22.896 22.349 21.706

PDTλ(2/3,2) PDTλ(1,2) PDTλ(2,2)
22.896 22.349 21.706

CDTλ(2/3,−0.5) CDTλ(1,−0.5) CDTλ(2,−0.5)
28.429 29.119 31.511

CpDTλ(2/3,−2) CpDTλ(1,−2) CpDTλ(2,−2)
28.584 28.753 29.530

ISDTλ(2/3,−1) ISDTλ(1,−1) ISDTλ(2,−1)
28.014 27.177 25.761

DTβ(0.1) DTβ(0.2) DTβ(0.3)
22.855 23.503 24.301

CpDTβ(0.1,−2) CpDTβ(0.2,−2) CpDTβ(0.3,−2)
28.595 28.472 28.384

DTτ (0.1) DTτ (0.2) DTτ (0.3)
22.567 22.942 23.486

ISDTτ (0.1,−1) ISDTτ (0.2,−1) ISDTτ (0.3,−1)
27.577 28.152 28.914

representing the total number of respondents for each month who indicated
one stressful event between 1 and 18 months before the interview. The null
hypothesis H0 : π0i = 1/18, i = 1, 2, . . . , 18, of equiprobability is clearly an
untenable one and is soundly rejected by practically all the ordinary disparity
tests. However, the model fit appears to improve if we consider a log-linear time
trend model H0 : log(π0i) = ϑ + βi, i = 1, 2, . . . , 18. The values of the test
statistics are given in Table 4. Expected frequencies on the basis of estimates of
ϑ and β were obtained by using the same minimum disparity estimators as used
in the corresponding test statistics, while Read and Cressie (1988 [29], Table 2.2)
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Table 5

Questionnaire data from Haut et al. (1987) used in Example 6.3

Wife’s Rating
Husband’s Rating Never or Fairly Very Almost

Occasionally Often Often Always
Never or Occasionally 7 7 2 3
Fairly Often 2 8 3 7
Very Often 1 5 4 9 (8)
Almost Always 2 8 9 14

used the maximum likelihood estimators in all cases. The test statistics are now
compared with the critical value of a χ2-statistic with 16 degrees of freedom
(rather than 17), and the critical value at 5% level of significance is 26.296. All
the ordinary power divergence test statistics with λ ∈ [0, 2] fail to reject the time
trend null hypothesis; for example, the DTλ(2) test generates a statistic equal to
21.706. However the combined statistics corresponding to CDTλ(2/3,−0.5) and
CDTλ(2,−0.5) are equal to 28.429 and 31.511 respectively, and in either case the
null is soundly rejected. Thus, unlike the ordinary disparity tests, the time trend
model fails to pass the goodness-of-fit standards of these inlier modified disparity
tests. Notice however that the penalized statistics provide no improvement as
there are no empty cells.

Remark 2. In Examples 6.1 and 6.2, the failure of the ordinary statistics
considered in Tables 3 and 4 to reject the null hypothesis is primarily due to
their inability to properly address the effect of the inliers. Some of the ordinary
inlier sensitive statistics would have also rejected the null hypothesis in these
cases; for example, the DTλ(−0.5) test statistic is equal to 29.515 and 26.377
for Examples 6.1 and 6.2 respectively, and this would lead to rejections in either
case at 5% level of significance. Similarly DTβ(0.7) statistic has values 81.278
and 29.129 in Example 6.1 and 6.2 respectively which would have led to rejection
in either case at the 5% level. The point this paper tries to make is that our
inlier modified statistics will continue to provide sharp discrimination even when
the ordinary inlier sensitive statistics fail, as we will see in Example 6.3.

Example 6.3. This example is from Haut et al. (1987) [17] which summarizes
the agreement between husband and wife based on the answers to some questions
of relevance. The data are given in Table 5. The survey was conducted on 91
married couples from the Tucson metropolitan area, again a reasonable large
sample size. For better illustration we have intentionally changed the (3,4)-th
element of the contingency table from 9 to 8, so the sample size is changed
to 90. We want to test the null hypothesis that the response between husband
and wife is independent. The values of different goodness-of-fit test statistics
are presented in Table 6. The asymptotic null distribution of the test statistics
is χ2 with 3 × 3 = 9 degrees of freedom, and the critical point at 5% level of
significance is 16.919. Here the ordinary power divergence statistics fail to reject
H0 for all λ ∈ [−1, 1.198]. But most of the inlier modified test statistics soundly
reject the null hypothesis. The results are provided in Table 6.
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Table 6

The test statistics for the questionnaire data used in Example 6.3

DTλ(2/3) DTλ(1) DTλ(2)
15.703 16.388 20.254

PDTλ(2/3,2) PDTλ(1,2) PDTλ(2,2)
15.703 16.388 20.254

CDTλ(2/3,−0.5) CDTλ(1,−0.5) CDTλ(2,−0.5)
17.585 18.680 23.538

CpDTλ(2/3,−3) CpDTλ(1,−3) CpDTλ(2,−3)
18.513 19.342 23.405

ISDTλ(2/3,−2) ISDTλ(1,−2) ISDTλ(2,−2)
19.536 19.954 23.179

DTβ(0.1) DTβ(0.4) DTβ(0.7)
15.747 14.929 15.421

CpDTβ(0.1,−4) CpDTβ(0.4,−4) CpDTβ(0.7,−4)
19.751 18.287 17.602

DTτ (0.1) DTτ (0.4) DTτ (0.7)
15.455 14.393 14.948

ISDTτ (0.1, −2) ISDTτ (0.4, −2) ISDTτ (0.7, −2)
19.224 18.943 20.697

To systematically summarize some of our findings in the above examples, we
note the following points.

1. When the primary violation is through a large inlier, as in the data in
Table 2, positive values of λ have little impact on the value of the inlier
modified statistics. Thus most of the inlier modified statistics in Table 3 are
of the order of the ordinary statistics DTλ(−0.5) (reported in Remark 2),
irrespective of the value of λ in the outlier component.

2. Instead of the frequencies reported in Table 2, if the observed frequency
vector in Example 6.1 was (98, 21, 15, 42, 6), then, for testing the same
null hypothesis the primary violator would be a (relatively moderate) out-
lier in cell 2. In this case the ordinary statistic DTλ(−0.5) is merely 7.336,
nowhere near the rejection region. Here the ordinary DTλ(1) and DTλ(2)
statistics are 10.066 and 12.904, respectively, leading to comfortable al-
though not overwhelming rejection. The inlier modified statistics CDTλ(1,
−0.5) and CDTλ(2, −0.5) are 10.107 and 12.970, respectively, and are of
the same order of the ordinary statistics. Thus in this case the positive
values of λ (and not the inlier component) primarily drive the statis-
tics.

3. Example 6.3 presents a combination of outliers and inliers. While the
ordinary power divergence statistics fail to reject the null for all λ ∈
[−1, 1.198], inlier modified statistics such as CDTλ(1, -0.5) comfortably
reject the null by taking into account the cumulative effect of both inliers
and outliers which any ordinary statistics fail to do.

4. The power divergence statistic DTλ(2/3) is one of the statistics highly
recommended by Cressie and Read (1984) [14]. This statistic provides a
moderate level of sensitivity for both inliers and outliers, and thus stands
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out among the class of ordinary statistics. However, our purpose is to make
the statistic strongly sensitive in both directions, and therefore DTλ(2/3)
does not appear to be an appropriate starting point for inlier modification.
In Example 6.1 the value of DTλ(2/3) is 9.142 which, although borderline,
does not lead to rejection. If the observed frequency vector was (98, 21, 15,
42, 6) instead of the frequencies reported in Table 2, the value of DTλ(2/3)
statistic would have been 9.329, again on the borderline but not strong
enough to recommend rejection. For positive values of λ there are many
choices (such as λ = 1 or 2) for which outlier sensitivity is stronger than
that of λ = 2/3. While DTλ(2/3) clearly has a leading role in the theory
of the ordinary power divergence statistics we expect it will have a more
little impact on the theory of the inlier modified statistics.

6.4. 3D plots for the inlier modified statistics

Now we present 3D plots of the corrected power surfaces of some of our inlier
modified test statistics applied to the hypotheses presented in (3.1) and (3.2);
the calculation of the corrected power is as described in Section 6.2. For a specific
value of the alternative, this allows us to look at the inlier modified statistics over
the totality of combinations of the tuning parameters and the inlier modification
parameters for fixed values of η. The results in this subsection are based on 2000
replications, and correspond to a sample size of n = 50, number of cells k = 10,
and a nominal level of α = 0.05.

6.4.1. Penalized disparity statistics

The penalized disparity statistics within the power divergence family are formed
by taking different members of the family and combining them with different
empty cell penalty weights. The values of η considered are η = 1.5 and η = −0.8,
and the resulting corrected 3D power surface plots are presented in Figure 6.
The tuning parameter λ and the penalty weight h are varied along the two
axes of the base. The black dots on the plot indicate the optimum observed
value of h (in terms of maximized power) when the tuning parameter λ is fixed.
The black lines on the surface and the base of the figures indicate the points
where h = 1/(1 + λ), i.e. where the value of h generates the ordinary disparity
tests. The figure shows that there is a marginal loss in power for the bump
alternative when the statistics corresponding to λ = 2 or 3 are penalized with
a large penalty weight, but there is a substantial gain in power for the same set
of parameters in case of the dip alternative.

6.4.2. Coupled disparity statistics

The 3D plots of the corrected power surfaces of the CpDTs within the power
divergence family for different combinations of the inlier intercept parameter k0
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Fig 6. (a) Corrected powers of the PDTλ statistic for different values of the tuning parameter
and the penalty parameter h, where η = 1.5, and (b) Corrected powers of the PDTλ statistic
for different values of the tuning parameter and the penalty parameter h, where η = −0.8.

and the tuning parameter λ are presented in Figure 7 corresponding to η = 1.5
and η = −0.8. Once again there are marginal drops in the power of these
tests for large positive values of the tuning parameter λ when coupled with
large negative values of k0 in case of the bump alternative; however in case of
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Fig 7. (a) Corrected powers of the CpDTλ statistic for different values of the tuning parameter
and the intercept parameter k0, where η = 1.5, and (b) Corrected powers of the CpDTλ

statistic for different values of the tuning parameter and the intercept parameter k0, where
η = −0.8.

the dip alternative these same set of modifications lead to substantial gains in
power.

Figure 8 shows the rising pattern of the G function of a typical coupled
disparity on the inlier side as the value of k0 decreases, and gives an indication
of the increased inlier sensitivity of the corresponding statistic.
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6.5. Plot over the sample sizes

We next considered the performance of the inlier modified test statistics for
several sets of values of the tuning parameters to demonstrate the performance
over increasing sample sizes. Here we have taken the same set of disparity test
statistics as presented in Figure 5; the null and the alternative hypothesis are
the ones presented in equations (3.1) and (3.2) respectively, where k = 10.
All the tests are of level α = 0.05. For brevity we only present the corrected
powers at sample sizes varying from 25 to 300 for the case η = 1.5. The results
clearly show that the power of the inlier modified tests are competitive with
those of the ordinary disparity test DTλ(3), which is expected to do well in this
situation. Inlier modified tests corresponding to other values of η lead to similar
conclusions in general.

7. Concluding remarks

In this paper our main goal has been to develop inlier modified goodness-of-fit
tests; our purpose in doing so is to generate procedures which provide balanced
performances irrespective of the alternative rather than variable performances
fluctuating over extremes. Intuitively, disparity generating functions which are
sharply increasing on both sides of the δ axis are likely to generate the kinds of
tests we are looking for.

We have seen that the disparity test statistics with large positive values of
λ perform well against bump alternatives while being poor in case of dip alter-
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Fig 9. Corrected powers of the disparity test statistics for different values of n, where η = 1.5.

natives. The results are just the opposite for the statistics with large negative
values of λ. In real life it is often the case that the direction of deviation from
the null, if any, is unknown. In this respect a test which performs reasonably
well in all situation may be preferred to other more extreme tests. Our inlier
modified tests serve this objective.

In this paper we have focused on improving the small sample performance of
the procedures. Although we do handle the necessary asymptotics, our emphasis
is on small sample applications. In many cases we can actually derive the exact
small sample distributions of the statistics as we have described earlier in the
paper. In this connection it is worth mentioning that several approximations
to the exact power functions of disparity based goodness-of-fit tests in small
samples are available in the literature. See, for example, Cressie and Read (1984)
[14], Read (1984a [27] and 1984b [28]), Shin et al. (1995 [30] and 1996 [31]) and
Pardo (1998) [23]. While we do not explore this issue further, this technique
may be a useful tool in our analysis since inlier modifications can make the
chi-square approximation worse in small samples.

Our illustrations in this paper have been provided mostly in terms of the
equiprobable null hypothesis. While this provides a very convenient platform
for illustration, they are not, by any means the only type of models where these
modifications are useful. The main issue is the nature of discrepancy between
the observed and expected frequencies. In Example 6.2 the null hypothesis is
of a time trend type (and not the equiprobable type) and the ordinary test
statistics with large positive values of λ fail to detect the presence of a couple of
large inliers. However, the situation changes dramatically when inlier correction
is added.
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Read and Cressie (1988, Section 7.2) [29] have considered the application
of goodness-of-fit tests for continuous models based on the power divergence
statistics. In our case, all the inlier modified statistics (except for the penalized
statistics) will be meaningful and useful for testing goodness-of-fit hypotheses
in continuous models. For obvious reasons, penalized disparities cannot be con-
structed in such cases.

Another important issue is the asymptotic distribution of the test statistics
under contiguous alternatives. Cressie and Read (1984, Section 3) [14] have
discussed the asymptotic distribution of the power divergence statistics in this
case. We plan to study these distributions for the inlier modified statistics in a
sequel paper.

Finally, we conclude with some brief reflections on whether it is meaningful to
perform the exact opposite modifications to those considered in this paper. For
example, one could start with a highly inlier sensitive disparity on the left and
use modifications to make them outlier sensitive on the right. In some cases like
combined and ǫ-combined distances the concepts coincide. In other cases such as
those of the penalized disparities and coupled disparities, no natural analogues
of the inlier modified tests are available, since the range of the argument δ of
the G function is unbounded on the right. However the inlier shrunk disparity
can be adapted in this case by modifying the G function on the right to get a
test with the appropriate properties.
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