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1. Introduction

A state space model is a statistical model where a Markov process (the state
process) is only partially observed through an observation process. The two
processes are linked in that the values (the states) of the hidden Markov process
govern the distribution of the corresponding observations, which are assumed
to be conditionally independent given the states. In some cases the unobserved
variables can simply not be measured, while in other cases measurement costs
limit the information available (e.g. meteorological and environmental data).
The use of hidden states makes this class of models to an outermost generic
and powerful statistical modeling tool, and state space models are nowadays
successfully applied within a variety of scientific disciplines such as genetics [6],
neurophysiology [2], target tracking [27], and speech recognition [26]. In many
examples, the state process can be considered as a continuous time Markov
process with observations occurring at discrete time points only, and of special
interest is the case where the state process is a diffusion process; we will refer
to such models as partially observed diffusion (POD) processes.

In this paper we discuss the use of sequential Monte Carlo (SMC) methods
(alternatively termed particle methods) for likelihood-based inference in PODs.
Maximum likelihood inference in general state space models is a nontrivial task,
and for PODs the problem is complicated further by the fact that most diffusion
processes lack closed-form transition densities. In cases where the transitions of
the latent process can be simulated it is possible to produce pointwise and con-
sistent estimates of the likelihood function using the standard bootstrap particle
filter [14], in which the particles are assigned importance weights determined
completely by the known local likelihood function. In such a framework, the
likelihood surface can be explored using grid-based methods [16, 22] or stochas-
tic approximation [17]. However, simulating exactly the transitions a diffusion
process is in general infeasible and we are most often referred to discretisation
methods, such as the Euler scheme, imposing a bias of the particle estimates; see
[7]. Moreover, proposing (or mutating), as in the bootstrap filter, the particles
“blindly” without taking into account the information provided by the current
observation will in general lead to serious degeneracy of the particle weights,
especially for models where the observations are informative.

In this contribution we take an approach to likelihood-based inference in
PODs that relies on a novel technique of estimating diffusion process transition
densities via so-called generalised Poisson estimators (GPEs). More specifically,
we show how the expectation-step (E-step) of the expectation-maximisation
(EM) algorithm [8] can be approximated efficiently using a GPE-based random
weight particle smoother. There are two main difficulties with applying the EM
algorithm to PODs: firstly, as mentioned, the transition density of the diffusion
process and, as a consequence, the complete data log-likelihood function lack an-



1092 J. Olsson and J. Ströjby

alytic expressions in general; secondly, computing the intermediate quantity of
the E-step involves the computation of expectations under the smoothing distri-
bution, i.e. the conditional distribution of the hidden states at the time points of
observation given the observed data, which is not—even in the case of a known
transition density—available on closed-form. In this paper we address these
problems by applying the GPE suggested (as a refinement of results obtained
in [4]) in [12] in conjunction with SMC smoothing algorithms. Unfortunately,
it has been observed by several authors (see e.g. [5, Chapter 8]) that applying
standard SMC methods to smoothing may be unreliable for larger observation
sample sizes n, since resampling systematically the particles leads to degeneracy
of the particle paths. As a solution, we adapt the fixed-lag smoother proposed
in [21] to the framework of PODs. This technique relies, in the spirit of [18], on
forgetting properties of the conditional hidden chain; by this is meant that the
hidden chain forgets its past when evolving, backwards as well as forwards, con-
ditionally on the given observation sequence. The constructed algorithm avoids
efficiently the problem of particle path degeneracy at the cost of a bias that may
be controlled by a suitable choice of the introduced lag parameter.

In order to obtain a high performance of the particle smoother it is in gen-
eral necessary to mutate the particles according to a kernel that incorporates
the information provided by the current observation; however, such an improved
mutation strategy is not straightforwardly adopted to PODs, since computing
the resulting importance weights involves computing a ratio of the transition
density of the hidden diffusion process (for which a closed-form expression is
missing in general) to the transition density of the chosen proposal kernel. To
cope with this, we follow [12] and replace each evaluation of the latent process
transition density by a draw from the GPE. Thus, the GPE serves two purposes
in our algorithm as it is used, firstly, for computing unbiased estimates of the
importance weights of a particle filter based on a proposal kernel possibly dif-
ferent from the transition kernel of the hidden diffusion process and, secondly,
for estimating the complete data log-likelihood function itself.

The proposed EM intermediate quantity estimator

• approximates efficiently the E-step in a single sweep of the data record,
yielding an algorithm with a computational complexity of order O(nN);
• copes, as it is not based on any Euler discretisation or linearisation tech-
nique, efficiently with model nonlinearities;
• has only limited computer data storage requirements, which is essential in,
e.g., high frequency applications where sometimes very long measurement
sequences are considered;
• is provided with a rigorous convergence result describing its convergence
to the true intermediate quantity. This result is derived via a convergence
result, obtained under minimal assumptions, for the GPE-based particle
smoother.

The paper is organised as follows: In Section 2 we recall the concept of PODs
and discuss likelihood-based inference in such models via the EM-algorithm.
GPEs are described in Section 2.1 (with additional details in Section B) and
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Section 2.2 is devoted to SMC smoothing in general. In Section 2.3 we introduce
the fixed-lag smoother and discuss how the fixed-lag approach can be used
for state estimation in PODs via GPEs. A theoretical result describing the
convergence of the fixed-lag-based estimator is found in Section 2.3.1 and in the
implementation part, Section 3, we illustrate the method on two examples. In
Section 4, the paper is concluded by some final conclusions and remarks. Proofs
are found in Section A.

2. Preliminaries

In the following we assume that all random variables are defined on a common
probability space (Ω,F ,P) and let E denote expectations associated with P.
Denoting by 1 the indicator function and letting X be any random variable on
(Ω,F), we will often make use of the short-hand notation E[X ;A] = E[X1A].
Let X

def
= (Xt)t≥0 be continuous-time diffusion process taking values in some

state space (X,X ), with X ⊆ RdX . More specifically, the dynamics of the process
is governed by the the stochastic differential equation

dXt = µ(Xt, θ) dt+ σ(Xt, θ) dWt , (2.1)

where W
def
= (Wt)t≥0 is Brownian motion. We denote by W(x) the law of W

given that W0 = x and let (Ft)0≤t be the filtration generated by W . The
functions µ(·, θ) and σ(·, θ) are assumed to satisfy regularity conditions (locally
Lipschitz with a linear growth bound) that guarantee a weakly unique, global
solution of (2.1). We will consider a framework where the process X is only

partially observed at discrete time points (tk)k≥0 through the process Y
def
=

(Yk)k≥0 taking values in some measurable space (Y,Y). The observations of Y
are assumed to be, conditionally on the latent process X , independent and such
that the conditional distribution Gθ of Yk given X depends on Xtk only. In
the following we write, in order to simplify the notation, Xk instead of Xtk .
The dynamics of the diffusion as well as the measurement process depend on
some unknown model parameter θ which is assumed to belong to some compact
parameter space Θ ⊆ Rdθ . Our main target is to estimate θ using the maximum
likelihood method. For simplicity we assume that the observation time points
are equally spaced and denote by Qθ and χ the transition kernel and initial
distribution, respectively, of the time homogeneous Markov chain (Xk)k≥0. The
family (Qθ(x, ·);x ∈ X, θ ∈ Θ) is assumed to be dominated by the Lebesque-
measure λ with corresponding Radon-Nikodym derivatives (qθ(x, ·);x ∈ X, θ ∈
Θ). Moreover, suppose that Gθ has a density function gθ with respect to some
measure µ on (Y,Y) such that, for k ≥ 0,

P(Yk ∈ A|Xk) =

∫

A

gθ(Xk, y)µ(dy) , A ∈ Y .

Given a record Y0:n = (Y0, Y1, . . . , Yn) (this will be our generic notation for vec-
tors) of observations, a consistent estimate of the parameter θ is ideally formed
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by maximising the observed data likelihood function ℓn(θ;Y0:n)
def
= log Ln(θ;Y0:n),

where

Ln(θ;Y0:n)
def
=

∫

· · ·
∫

gθ(x0, Y0)χ(dx0)
n
∏

k=1

gθ(xk, Yk)Qθ(xk−1, dxk) .

A problem with this approach is that we in general cannot compute Ln on
closed-form, since this involves the evaluation of a high-dimensional integral
over a complicated integrand. Since the partially observed diffusion model above
is, like more general latent variable models, specified using conditional depen-
dence relations, computation of parameter posterior distributions is facilitated
significantly by maximising instead the complete data log-likelihood function
by means of the EM algorithm. Thus, assume that we have at hand an initial
estimate θ′ of the parameter vector; in the EM algorithm an improved estimate
is obtained by computing and maximising the intermediate quantity

Qn(θ; θ′) def
= Eθ′

[

n−1
∑

k=0

log qθ(Xk, Xk+1)

∣

∣

∣

∣

∣

Y0:n

]

+ Eθ′

[

n
∑

k=0

log gθ(Xk, Yk)

∣

∣

∣

∣

∣

Y0:n

]

,

(2.2)
with respect to θ′. Here we have written Eθ′ to stress that the expectations
are taken under the dynamics determined by the initial parameter θ′. Under
weak assumptions, repeating recursively this procedure yields a sequence of
parameter estimates that converges to a stationary point θ̂ of the observed data
log-likelihood [28]. As clear from (2.2), computing Qn requires the computation
of expectations under the smoothing distribution, i.e. the distribution of the
state sequence X0:n conditionally on the observations Y0:n, given by, for A ∈
X�(n+1),

φn(A; θ)
def
=

∫

· · ·
∫

A
gθ(x0, Y0)χ(dx0)

∏n
k=1 gθ(xk, Yk)Qθ(xk−1, dxk)

Ln(θ;Y0:n)
. (2.3)

Of special interest is the filter distribution, i.e. the distribution of Xn condition-

ally on Y0:n, given by the restriction φn|n(A)
def
= φn(X

n × A), A ∈ X , of the
smoothing distribution to the last component. It is easily shown that the flow
(φk)

∞
k=0 satisfies the well-known forward smoothing recursion

φk+1(A; θ) =
Lk(θ;Y0:k)

Lk+1(θ;Y0:k+1)

∫∫

A

gθ(xk+1, Yk+1)Qθ(xk, dxk+1)φk(dx0:k; θ) ,

(2.4)
where A ∈ X⊗(k+2). By introducing the (non-Markovian) transition kernel

Lk(xk, A; θ)
def
=

∫

A

gθ(xk+1, Yk+1)Qθ(xk, dxk+1) ,

for xk ∈ X and A ∈ X , we may rewrite the recursion (2.4) as

φk+1(A; θ) =

∫∫

A
Lk(xk, dxk+1; θ)φk(dx0:k; θ)

∫∫

Lk(xk, dxk+1; θ)φk(dx0:k; θ)
. (2.5)
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Here the normalised (Markovian) kernel Lk(xk, A; θ)/Lk(x,X; θ) is the so-called
optimal kernel describing the distribution of Xk+1 given Xk = xk and the new
observation Yk+1.

In general, a closed-form solution of the recursion (2.4) is not available. A
standard approach is thus to apply some SMC smoothing algorithm (described
in Section 2.2) to approximate the expectations in (2.2). Unfortunately, both
the SMC smoother itself as well as the intermediate quantity (2.2) call for the
transition density qθ, which is usually unknown except in a few special cases.
Nevertheless, results obtained by Beskos et al. [4] and Fearnhead et al. [12]
offer a method for estimating this density without bias. A full treatment of
this technique—which is a key ingredient of the estimation technique proposed
here—is beyond the scope of this paper; nevertheless, the main framework and
assumptions are described briefly in the next section. In addition, some more
details can be found in Appendix B.

2.1. Generalised Poisson estimators

Define

η(u, θ)
def
=

∫ u 1

σ(v, θ)
dv

and set X̃t
def
= η(Xt, θ). Denote by f−1 the inverse of any invertable function f .

By applying Itô’s formula we obtain the stochastic differential equation

dX̃t = β(X̃t, θ) dt+ dWt , (2.6)

where

β(u, θ)
def
=

µ{η−1(u, θ), θ}
σ{η−1(u, θ), θ} +

1

2
σ′{η−1(u, θ), θ} ,

for the transformed process X̃
def
= (X̃t)t≥0. Using again the notation X̃k = X̃tk ,

let q̃θ be the transition density (with respect to the Lebesgue measure λ) of
(X̃k)k≥0. Then, straightforwardly,

qθ(x, x
′) = q̃θ(x, x

′)|η′(x′, θ)| . (2.7)

Assume the following:

(A1) The process (Mt)t≥0, with

Mt
def
= exp

(∫ t

0

β(X̃s, θ) dX̃s +

∫ t

0

β2(X̃s, θ) ds

)

,

is a martingale with respect to W(x);

(A2) β(·, θ) is continuously differentiable;

(A3) β2(·, θ) + β′(·, θ) is bounded from below by some function l(θ).
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Under these conditions, which are satisfied for a relatively large class of diffu-
sions, the GPE approach developed by [12] makes it possible to construct a ker-
nel Pθ on X

2×B(R+) such that
∫

v Pθ(x, x
′, dv) = q̃θ(x, x

′) for (x, x′) ∈ X
2. Con-

sequently, and draw Ṽθ(x, x
′) ∼ Pθ(x, x

′, ·) is an unbiased estimate of q̃θ(x, x
′).

Then, letting Vθ(x, x
′)

def
= Ṽθ(x, x

′)|η′(x′, θ)| gives, by (2.7), an unbiased esti-
mator also of qθ(x, x

′). A full description of GPEs is beyond the scope of this
paper; however, its main features are discussed in Appendix B. Similarly, using
a related algorithm developed in [4], it is possible to construct a kernel P̄θ on
X
2 × B(R) such that

∫

vP̄θ(x, x
′, dv) = log qθ(x, x

′) for (x, x′) ∈ X
2, i.e. any

draw V̄θ(x, x
′, θ) ∼ P̄θ(x, x

′, ·) is an unbiased estimate of log qθ(x, x
′). Appeal-

ingly, it is in many cases (see Section 3 for examples) even possible to construct
Pθ and P̄θ such that the functions θ 7→ Vθ(x, x

′)(ω) and θ 7→ V̄θ(x, x
′)(ω) are

continuous for any fixed outcome ω ∈ Ω, yielding unbiased estimates of qθ(x, x
′)

and log qθ(x, x
′) for all θ ∈ Θ simultaneously. This useful property makes, as

we will see, the GPE approach well suited to numerical (log-)likelihood function
optimisation.

2.2. GPE-based particle smoothing

Since we in this part deal with the problem of sampling φk(·; θ) for a given fixed
parameter value, we will throughout this section expunge θ from the notation.
To begin with, we assume that we know the transition kernel density q.

In order to describe precisely how SMC methods may be used for producing
approximate solutions to the smoothing recursion (2.4), we suppose that we are
given a weighted sample (ξi0:k|k, ω

i
k)
N
i=1 of particles and associated unnormalised

weights, each particle ξi0:k|k = (ξi0|k, . . . , ξ
i
k|k) being a random vector in X

k+1,
approximating φk in the sense that

φNk (f)
def
=
(

ΩNk
)−1

N
∑

i=1

ωikf(ξ
i
0:k|k) ≈ φk(f) , (2.8)

where ΩNk
def
=
∑N

ℓ=1 ω
ℓ
k normalises the weights, for a large class of estimand

functions f on X
k+1. Now, in order to form an updated particle sample approx-

imating φk+1 as a new observation Yk+1 becomes available, a natural approach
is to replace φk in (2.5) by its particle approximation (2.8). This yields the
mixture (recall the notation δa for a Dirac mass located at a)

φ̄Nk+1(A)
def
=

N
∑

i=1

ωikLk(ξ
i
k|k,X)

∑N
ℓ=1 ω

ℓ
kLk(ξ

ℓ
k|k,X)

∫∫

A

Lk(ξ
i
k|k, dxk+1)

Lk(ξik|k,X)
δξi

0:k|k
(dx0:k) ,

for A ∈ X�(k+2). Now, the aim is to simulate a new set of particles from φ̄Nk+1

and then repeat the whole procedure recursively to obtain particle samples
approximating the smoothing distributions at all time steps. However, since we
in general cannot neither simulate draws from the optimal kernel nor compute
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the mixture weights Lk(ξ
i
k|k,X), we apply importance sampling and draw instead

new particles from the instrumental mixture distribution

πNk+1(A)
def
=

N
∑

i=1

ωikψ
i
k

∑N
ℓ=1 ω

ℓ
kψ

ℓ
k

∫∫

A

δξi
0:k|k

(dx0:k)Rk

(

ξik|k, dxk+1

)

,

for A ∈ X�(k+2), where Rk is a Markovian proposal kernel and (ψik)
N
i=1 are

positive numbers referred to as adjustment multiplier weights. We will from now
on assume that ψik = Ψk(ξ

i
0:k|k) for some nonnegative function Ψk : Xk+1 → R+

and that each kernel Rk has a density rk with respect to λ. Simulating a particle
ξi0:k+1|k+1 from πNk+1 is easily done by, firstly, drawing, according to the proba-

bility distribution proportional to (ωikψ
i
k)
N
i=1, a mixture component (or ancestor)

index Iik among {1, . . . , N} and, secondly, extending the selected ancestor with

a draw from the proposal kernel, i.e. letting ξi0:k+1|k+1

def
= (ξ

Ii
k

0:k|k, ξ
i
k+1|k+1) with

ξi
k+1|k+1 ∼ Rk(ξ

Ii
k

k|k, ·). After this, the drawn particle is assigned the importance

weight

ωik+1
def
= Φk+1

(

ξi0:k+1|k+1

)

, (2.9)

where, for x0:k+1 ∈ X
k+2,

Φk+1(x0:k+1)
def
=

g(xk+1, Yk+1)q(xk, xk+1)

Ψk(x0:k)rk(xk, xk+1)
,

implying ωik+1 ∝ dφ̄Nk+1/dπ
N
k+1(ξ

i
0:k+1|k+1). Finally, the weighted particle sample

formed by the updated particles and weights is returned as an approximation
of φk+1. Moreover, since the filter distribution is the marginal of the smoothing
distribution with respect to the last component, an estimate of φk+1|k+1 is
formed by the marginal sample (ξi

k+1|k+1, ω
i
k+1)

N
i=1.

Proposing and selecting the particles according to the dynamics of the latent
process, i.e. without making use of the information about the current state
provided by the current observation, by letting Rk ≡ Q and Ψk ≡ 1 for all k,
corresponds to the bootstrap particle filter proposed by Gordon et al. [14].

The algorithm, which was developed gradually by, mainly, Handschin and
Mayne [15], Gordon et al. [14], and Pitt and Shephard [25], will be referred to
as the auxiliary particle smoother (APS). In the setting of a partially observed
diffusion process we do not have access to a closed-form expression of the transi-
tion density q, which is needed when evaluating the importance weight function
Φk+1. However, the GPE makes it possible to estimate this density without bias
via the kernel P . This yields following algorithm, in following referred to as the
GPE-based particle smoother (GPEPS), in which q in the weighting operation
(2.9) is replaced by the Monte Carlo estimate

qα(x, x′)
def
=

1

α

α
∑

ℓ=1

V ℓ(x, x′) , (2.10)
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where the V ℓ(x, x′)’s are drawn independently from P (x, x′, ·). Denote by

Φαk+1(x0:k+1)
def
=

g(xk+1, Yk+1)q
α(xk, xk+1)

Ψk(x0:k)rk(xk, xk+1)
, (2.11)

the resulting estimated importance weight function. One iteration of the GPEPS
is described in detail in the following scheme.

Algorithm 1

(∗ One iteration of GPEPS ∗)
Input: (ξi0:k|k, ω

i
k)
N
i=1

1. for i← 1 to N
2. simulate Iik ∼ (ωjkψ

j
k/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k)
N
j=1;

3. simulate ξi
k+1|k+1 ∼ Rk(ξ

Ii
k

k|k, ·);
4. set ξi0:k+1|k+1 ← (ξ

Ii
k

0:k|k, ξ
i
k+1|k+1);

5. simulate V 1:α(ξik:k+1|k+1) ∼ P�α(ξik:k+1|k+1 , ·);
6. compute Φαk+1 via (2.11);
7. set ωik+1 ← Φαk+1(ξ

i
k:k+1|k+1);

8. return (ξi0:k+1|k+1, ω
i
k+1)

N
i=1.

Here we have used the notations V 1:α(x, x′)
def
= (V 1(x, x′), . . . , V α(x, x′)) and

P�α(x, x′, ·) def
= P (x, x′, ·)�· · ·�P (x, x′, ·) (α times). Algorithm 1 is the smooth-

ing mode formulation of the random weight auxiliary particle filter proposed by
Fearnhead et al. [12]. Note that we have, in the scheme above, suppressed the
dependence of the particles and the particle weights on α from the notation for
clarity.

In Algorithm 1 selection is carried through by drawing indices (Iik)
N
i=1 multi-

nomially with respect to weights (ωjkψ
j
k/
∑N
ℓ=1 ω

ℓ
kψ

ℓ
k)
N
j=1. There are however al-

ternative selection approaches, such as deterministic plus residual multinomial
resampling proposed in [20] and described in detail in Section C. All theoreti-
cal results obtained in the following hold for multinomial resampling as well as
residual plus multinomial resampling. In addition, our results can easily be ex-
tended to so-called branching selection (see Remark 2.1 below); however, since
the number of drawn indices is random in this case, we omit these results for
brevity.

2.2.1. Convergence of the GPEPS

We will describe the convergence, as N tends to infinity, of the self-normalised
Monte Carlo approximations formed by weighted particle samples returned by
Algorithm 1 using the concept of consistency adopted from [10] and defined in
the following. Let (Ξ,B(Ξ)) denote some given state space and (ξN,i, ωN,i)

N
i=1

a Ξ-valued particle sample.
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Definition 2.1. A weighted sample (ξN,i, ωN,i)
N
i=1 is consistent for a probability

measure µ and a set C ⊆ L
1(Ξ, µ) if, as N →∞,

Ω−1
N

N
∑

i=1

ωN,if(ξN,i)
P−→ µ(f) , for all f ∈ C , (2.12)

and, additionally,

Ω−1
N max

1≤i≤N
ωN,i

P−→ 0 . (2.13)

The following assumption is mild but essential when establishing consistency
of the GPEPS scheme.

(A4) For all 0 ≤ k ≤ n, Ψk ∈ L
1(Xk+1, φk) and Lk(·,X) ∈ L

1(X, φk).

Proposition 2.1. Assume (A1–3) (p. 5) and (A4). In addition, assume that
the initial sample (ξi0, ω

i
0)
N
i=1 is consistent for (φ0, L

1(X, φ0)). Then, for all 1 ≤
k ≤ n, each sample (ξi0:k|k, ω

i
k)
N
i=1 produced by Algorithm 1 is consistent for

(φk, L
1(Xk+1, φk)). The same holds when the multinomial selection schedule is

replaced by deterministic plus residual multinomial selection.

The proof of Proposition 2.1 is postponed to Appendix A.1. Proposition 2.1
provides a qualitative statement about the particle estimates produced by Al-
gorithm 1 by establishing that, for all k ≥ 0, φNk (f) converges in probability
to φk(f) for all φk-integrable target functions f . Remarkably, convergence is
obtained for any fixed GPE sample size α.

Remark 2.1. Proposition 2.1 can, without any additional assumptions and
with only very small changes of the proof, be extended to the cases where
selection is based on Poisson, binomial, or Bernoulli branching (see [10] for a
theoretical analysis of these branching algorithms). In these cases, the particle
sample sizes are random at all time steps. On the other hand, if a constant
number N of particles is targeted at each time step, it holds, for all k, that

Nk/N
P−→ 1 as N tends to infinity, where Nk is the random particle sample size

at time step k.

In a companion paper [23], Proposition 2.1 is complemented with a quanti-
tative statement about the convergence of Algorithm 1 (when based on multi-
nomial selection) in terms of a central limit theorem (CLT). More specifically,
under the assumption that input particle sample (ξi0:k|k, ω

i
k)
N
i=1 of Algorithm 1

is asymptotically normal in the sense that

√
N(φNk (f)− φk(f)) D−→ N (0, σ2

k(f)) , as N →∞ ,

for some nonnegative functional σ2
k defined on some “large” class of target func-

tions f , it can be shown inductively [the details are given in 23] that the updated
particle sample obtained using Algorithm 1 satisfies the similar CLT

√
N(φNk+1(f)− φk+1(f))

D−→ N (0, σ2
k+1(f)) , as N →∞ .
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Here the asymptotic variance σ2
k+1 can be expressed as

σ2
k(f) = σ2

APS,k+1(f) + ς2k+1(f)/α , (2.14)

where σ2
APS,k+1(f) is the asymptotic variance [obtained in 11, Theorem 3.2]

of an ideal particle approximation obtained by updating the ancestor sample
(ξi0:k|k, ω

i
k)
N
i=1 using a standard APS where the importance weight functions Φk

are assumed to be known on closed-form; moreover,

ς2k+1(f)
def
=

φk(Ψk)
∫∫

{f〈φk〉2(x′)σ2
Pk
(x, x′)/Ψk(x)}Rk(x, dx′)φk(dx)

[φkLk(X)]2
,

with f〈φk〉(x) def
= f(x)− φk(f) and

σ2
Pk
(x, x′)

def
=

(

g(x′, Yk+1)

rk(x, x′)

)2 ∫

{v − q(x, x′)}2 Pk(x, x′, dv) , (x, x′) ∈ X
2 ,

being the conditional variance of the estimates of the Radon-Nikodym derivative
dLk/dRk obtained with the GPE. Thus, ignoring its dependence on the mul-
tiplier weights and the target function, the quantity ς2k+1(f) can be viewed as
the expected variance of the GPE under the asymptotic proposal distribution of
the particle filter; consequently, the expression (2.14) can be interpreted as the
standard decomposition of variance into expected conditional variance and vari-
ance of conditional expectation. The asymptotic variance (2.14) provides some
guidance for how to select an optimal sample size α; indeed, for a sufficiently
large number of particles,

Var
(

φNk (f)
)

≈ 1

N
(σ2

APS,k(f) + ς2k(f)/α) , (2.15)

and assuming that it takes time τGPE to produce a draw from the GPE and time
τAPS to select and mutate a particle, the total cost for evolving the particle cloud
one step using Algorithm 1 is N(τAPS+ατGPE). Assuming further that we have
a fixed computational time τ available, we consider the constrained optimisation
problem











minα,N
1
N
(σ2

APS,k(f) + ς2k(f)/α) ,

N(τAPS + ατGPE) = τ ,

α > 0 , N > 0 ,

where α and N are treated as continuous variables, having solution

αopt =

√

ς2k(f)/τGPE

σ2
APS,k(f)/τAPS

.

The expression above is entirely in line with our expectations: the sample sizes
α and N should be increased resp. decreased if the precision of the GPE is low
relatively the precision of the (ideal) particle smoother (and vice versa) or if
the computational cost of operating the GPE is low compared to the cost of
mutating and selecting the particles.
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2.3. Fixed-lag smoothing

Unfortunately, it has been observed by several authors that using standard
SMC methods in the smoothing mode may be unreliable for larger observation
sample sizes n, since resampling systematically the particles degenerates the
particle paths [see e.g. 5, Section 8.3]. Indeed, when k ≪ n, most (or possibly
all) marginal particles (ξi

k|n)
N
i=1 coincide with a large probability, inflicting large

variance when estimating Xk conditionally to Y0:n using these particles. Espe-
cially, returning to the problem of estimating the intermediate quantity Qn in

(2.2), for any type of additive functional t(x0:n)
def
=
∑n−1

k=0 sk(xk:k+1), (sk)
n−1
k=0

being a set of functions (cf. the two terms of (2.2)), we may expect that the
estimator

(ΩNn )−1
n−1
∑

k=0

N
∑

i=1

ωinsk(ξ
i
k:k+1|n) (2.16)

of E[t(X0:n)|Y0:n] is poor when n is large. To compensate for this degeneracy the
particle sample size N has to be increased drastically, yielding a computationally
inefficient algorithm.

On the other hand, since we may expect that remote observations are only
weakly dependent, it should hold that, for a large enough integer ∆n,

E [sk(Xk:k+1)|Y0:n] ≈ E
[

sk(Xk:k+1)|Y0:k(∆n)

]

,

where k(∆n)
def
= min{k +∆n, n}, yielding

E[t(X0:n)|Y0:n] =
n−1
∑

k=0

E [sk(Xk:k+1)|Y0:n] ≈
n−1
∑

k=0

E
[

sk(Xk:k+1)|Y0:k(∆n)

]

.

(2.17)
Thus, as long as the approximation (2.17) is relatively precise for a ∆n which is
smaller than the average particle trajectory collapsing time, i.e. most marginal
particles (ξi

k|k(∆n))
N
i=1 are different for all k, we should replace (2.16) by the

estimator
n−1
∑

k=0

(

ΩNk(∆n)

)−1 N
∑

i=1

ωik(∆n)
sk

(

ξik:k+1|k(∆n)

)

. (2.18)

The lag-based approximation (2.18) may be computed recursively in a single
sweep of the data with only limited computer data storage demands, and com-
puting (2.18) is clearly not more computationally demanding than computing
(2.16) (having O(nN) complexity); see Olsson et al. [21] for details. Finally,
using (2.18) in conjunction with the kernel P̄θ for estimating log qθ gives us the
following approximation of the intermediate quantity Qn(θ; θ′):

QNn (θ; θ′)
def
=

n−1
∑

k=0

(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)
sᾱk

(

ξi,θ
′

k:k+1|k(∆n); θ
)

, (2.19)
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where, for (x, x′) ∈ X
2,

sᾱk (x, x
′; θ)

def
= ᾱ−1

ᾱ
∑

ℓ=1

V̄ ℓθ (x, x
′) + log gθ(x

′, Yk+1)

and
V̄ 1:ᾱ
θ (x, x′) ∼ P̄�ᾱ

θ (x, x′, ·) .
In (2.19) we have added θ′ as an index to the particles as well as the associated
weights to indicate that the particle system of the fixed-lag smoother is evolved
under the dynamics determined by the initial parameter value.

2.3.1. Convergence of the intermediate quantity

Under weak assumptions on the functions Ψk, the kernels Lk and P̄ , and the
local likelihoods functions log gθ(·, Yk) one may establish the convergence of the
GPEPS-based fixed-lag approximation QNn defined in (2.19). Define, for a given
lag ∆n and parameters (θ, θ′),

bn(∆n, θ, θ
′)

def
=

n−1
∑

k=0

∫

sk(xk:k+1, θ)φk(∆n)(dxk:k+1 , θ
′)

−
n−1
∑

k=0

∫

sk(xk:k+1, θ)φn(dxk:k+1, θ
′) ; (2.20)

then the following result, which is the main result of this section, establishes
the pointwise convergence (in probability as N tends to infinity) of QNn to a
limit quantity that differs from the true intermediate quantity Qn by bn. Conse-
quently, bn is the bias imposed by the lag. Note that this convergence does not
follow directly from Proposition 2.1, since the latter result states convergence
of the GPEPS for given deterministic target functions only (whereas the terms
of the complete data log-likelihood lack closed-form expressions and thus have
to be replaced by random estimates obtained using the GPE).

Theorem 2.1. Assume (A1–3). Let n ≥ 0, (θ, θ′) ∈ Θ2, and (∆n, α, ᾱ) ∈ N3.
Suppose that (A4) holds for Ψk(·; θ′), Lk(·; θ′), and φk(·; θ′) and that the initial

sample (ξi,θ
′

0 , ωi,θ
′

0 )Ni=1 is consistent for (φ0(·; θ′), L1(φ0(·; θ′),X)). Moreover, as-
sume that the mappings x0:k(∆n) 7→ log gθ(xk, Yk), 0 ≤ k ≤ n, and x0:k(∆n) 7→
∫

|v|P̄θ(xk, xk+1, dv), 0 ≤ k < n, belong to L
1(φk(∆n)(·; θ′),Xk(∆n)+1). Then, as

N →∞,

QNn (θ, θ′)
P−→ Qn(θ, θ′) + bn(∆n, θ, θ

′) ,

where the bias bn is defined in (2.20).

The proof of Theorem 2.1 is found in Appendix A.2.
The bias term bn, which was studied by [21], is controlled by the speed with

which the hidden chain (Xk)k≥0 forgets its initial distribution when evolving
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conditionally on the observations. Indeed, when the state space X is compact it
can be shown [see 21, for details] that bn is O(nρ∆n), where 0 < ρ < 1 is the
uniform (with respect to observation records Y0:n as well as initial distributions
χ) mixing coefficient of the conditional chain. From this we deduce that the lag
∆n should be increased with n at the minimum rate c logn, c > −1/ log ρ, in
order to keep the bias suppressed. Increasing ∆n faster eliminates the bias and
increases the variance of the approximation; see again Olsson et al. [21] for a
detailed study of these issues. Since a similar forgetting property holds also in
the case of a non-compact state space X [9], the same arguments can be applied
for very general models; however, the analysis of the general case is significantly
more involved since the mixing coefficient is neither uniform with respect to
observation records nor initial distributions χ in this case.

Remarkably, the convergence stated in Theorem 2.1 holds for any fixed sample
sizes (α, ᾱ). In particular, nothing prevents us from setting α = ᾱ = 1, yielding a
fast algorithm; this is indeed the choice made in Section 3. However, more under-
standing of how to select optimally the sample size ᾱ can be gained by proceed-
ing as in the discussion following Proposition 2.1. Indeed, let FNn denote the σ-
algebra generated by all random numbers of the GPEPS up to time n and write

Var
(

QNn (θ; θ′)
)

= E
[

Var
(

QNn (θ; θ′)
∣

∣FNn
)]

+Var
(

E
[

QNn (θ; θ′)
∣

∣FNn
])

= ᾱ−1
n−1
∑

k=0

E

[

(

ΩN,θ
′

k(∆n)

)−2 N
∑

i=1

(

ωi,θ
′

k(∆n)

)2

σ2
P̄θ

(

ξi,θ
′

k:k+1|k(∆n)

)

]

+Var

(

n−1
∑

k=0

∫

sk (xk:k+1; θ) φ
N
k(∆n)(dxk:k+1; θ

′)

)

,

(2.21)

where σ2
P̄θ

(x, x′)
def
=
∫

{v − log qθ(x, x
′)}2 P̄θ(x, x′, dv), (x, x′) ∈ X

2, is the condi-
tional variance of the log-density estimator. Note that the second term in the
expression above corresponds to the variance of an ideal fixed-lag approximation
where the terms of the complete data log-likelihood is supposed to be known on
closed-form (and thus involving (sk)

n−1
k=0 instead of (sᾱk )

n−1
k=0 ). To obtain the last

equality in (2.21) we used the conditional unbiasedness and independence of the
GPE draws estimating the latent chain log-density. By applying theory derived
in the companion paper [23] it can be established (see Theorem 3.2 in the paper
in question) that the first sum on the RHS of (2.21) behaves asymptotically like
ς̂2/(ᾱN) where ς̂2 can be interpreted as expected GPE variance. Moreover, in a
work in progress we establish a CLT for fixed-lag approximations of type (2.18),
implying that the last term on the RHS of (2.21) behaves asymptotically like
σ̂2/N , where σ̂2 is the asymptotic variance of a fixed-lag approximation of the
intermediate quantity for a known complete data log-likelihood. Consequently,
the arguments of the discussion following Proposition 2.1 apply immediately and
we obtain, for a given available computational time τ , the optimal sample size

ᾱopt =

√

ς̂2/τGPE

σ̂2/τGPEPS
,
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where τGPE is the average computational time needed for producing a single
unbiased estimate of the log-density and τGPEPS the average time needed for
updating (in terms of selection, mutation, and random weight association) a
single particle of the GPEPS.

3. Simulation study

3.1. Log-growth model

In the first example we estimate the parameters of the so-called log-growth model

dXt = κXt(1−Xt/γ) dt+ σXt dWt (3.1)

(discussed in [4]) from simulated data. In our framework, we assume that we
access only noisy observations (Yk)k≥0 of the process (3.1) according to

Yk = X0.6k + ǫk , (3.2)

where (ǫk)k≥0 are i.i.d. Gaussian random variables with zero mean and standard
deviation 50. The noise sequence (ǫk)k≥0 is supposed to be independent of the
Brownian motion (W )t≥0 driving the latent process. Applying Itô’s formula to

the transformation X̃t = η(Xt, σ), with η(x, σ)
def
= − log(x)/σ, yields

dX̃t = β(X̃t) + dWt , (3.3)

where β(x)
def
= σ/2 − κ/σ + κ/(σγ) exp(−σx). Since β is bounded from above,

we are only required to simulate the minimum of the Brownian path and let
W̃−
β be β evaluated at this minimum (see Section B for the meaning of W̃−

β ).
The minimum of the Brownian bridge has a known law and conditionally on
the minimum the bridge can be simulated retrospectively using Bessel bridges

[see 4]. Our aim is to estimate all the unknown parameters θ
def
= (κ, γ, σ) of

(3.1) given a record Y0:200 of observations obtained through simulation under
the parameters θ∗ = (0.1, 1000, 0.1).

To get an idea of how the quality of the proposed particle approximation of
the EM intermediate quantity is influenced by the lag, we computed lag-based
approximations ofQ200(θ, θ

′) evaluated on the diagonal θ= θ′ =(0.15, 1100, 0.15).
Here the number of particles was fixed to N = 400, while the lag ∆200 was
varied over the values {1, 2, 3, 4, 6, 20}. The outcome is displayed in the box-
and-whisker diagram in Figure 1 together with a reference value (the dashed
line) obtained as the arithmetic average of 10 values obtained by executing,
equally many times, the smoother with the relatively large particle sample size
N = 10, 000 and lag ∆200 = 20 (for which the bias is negligible). As seen in
the figure, the lag-based approximation clearly suffers from bias for small lags;
however, already at the lag ∆200 = 4 the bias appears to be eliminated, and
increasing the lag further only adds undesired variance to the estimates. This
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Fig 1. Box-and-whisker diagram (on logarithmic scale) of estimates of Q200(θ, θ′) for the
partially observed log-growth model (3.1). Here θ = θ′ = (0.15, 1100, 0.15) and the estimates
are obtained using GPE-based fixed-lag smoothers with varying lags ∆200 = {1, 2, 3, 4, 6, 20}.
Each box (with adjuvant whisker) contains 200 estimates, where each estimate is based on
N = 400 particles. The dotted line is a reference value obtained as the arithmetic average of
the output of 10 independent smoothers using each N = 10, 000 particles and lag ∆n = 20.

indicates a quite strong forgetting in the model under consideration due to the
relatively large distance between the observations.

Next, we implemented a full MCEM algorithm providing the likelihood es-
timate of θ for the same 200 observations. This algorithm combines the Monte
Carlo-based E-step above with a subsequent maximization step and loops the
two 50 times. At the E-step of each iteration, an approximation of the interme-
diate quantity was obtained using a fixed-lag smoother with lag ∆200 = 4, i.e.
the optimal lag obtained in the previous, and a particle sample size Nℓ that was,
in order to obtain convergence, increased with the iteration index ℓ according
to Nℓ = 100

√
ℓ+ 1. To increase the Monte Carlo sample size at a polynomial

rate is in line with the recommendation of [13] for the case of MCMC-based
MCEM. The M-step was carried through using the Nelder-Mead simplex algo-
rithm as implemented in Matlab’s fminsearch-command and in order to gain
computational speed we used consequently α = ᾱ = 1. At the mutation step
the random weight fixed-lag smoother used the proposal

Rk(x,A) =
1

σx

∫

A

t4

(

x′ − κx(1 − x/γ)
σx

)

dx′ , (3.4)

obtained by discretising the hidden dynamics according to the Euler scheme.
Here t4 denotes the density of the student’s t-distribution with 4 degrees of
freedom. Further the adjustment multiplier weights are set to unity. This full
MCEM algorithm, which was initialised with θ0 = (0.7, 1500, 0.7), was executed
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Fig 2. EM learning curves (on logarithmic scale) for the parameters of the partially observed
log-growth model (3.1). The E-step of the MCEM algorithm was carried through by running
the fixed-lag smoother with lag ∆200 = 4. Each plot overlays 20 independent realizations and
the histograms refer to the values of the last (i.e. the 50th) EM iteration.

Table 1

Means and standard deviations of the MCEM parameter estimates plotted in the histograms
of Figure 2 and Figure 3

Algorithm κ γ σ

standard smoother 0.0990 1020 0.0959
std. 0.0064 std. 3.5 std. 0.0031

fixed-lag smoother 0.0994 1020 0.0962
std. 0.0018 std. 2.8 std. 0.0007

repeatedly 20 times, resulting in the bundle of EM learning trajectories plotted
in Figure 2. We have chosen to plot the trajectories on logarithmic scale due
to the large deviation of the initial values. The same figure also displays his-
tograms of the parameter output pertaining to the last (i.e. the 50th) iteration.
As seen in the figure, the learning trajectories converge smoothly around the
parameter values θ̂ = (0.099, 1020, 0.096). For a comparison, the same experi-
ment was repeated when the fixed-lag smoother was replaced by the standard
random weight particle smoother using the complete genealogical history of the
particles; see Figure 3. Table 1 displays means and standard deviations of the
20 parameter estimates obtained at the last iteration and evidently the fixed-lag
method outperforms, in terms of standard deviation, the standard method by
about a factor of 4 for the κ and σ parameters and a factor of 1.25 for the γ
parameter. The arithmetic average of the final parameter estimates are more or
less indistinguishable for the two approaches, re-confirming that the choice of
the lag is indeed consistent with the speed of the forgetting of the model.
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Fig 3. The same experiment as in Figure 2 with the difference that the E-step of the MCEM
algorithm was carried through using standard particle smoothing based on the full genealogical
history of the particle trajectories.

3.2. Genetics diffusion model

In a second example we consider noisy observations of the so-called genetics
diffusion model presented in [19] and discussed in [3]. More specifically, we let
the observations be generated according to

dVt = (µ+ νVt) dt+ σVt(1− Vt) dWt ,

Yk = Vk + ǫk ,
(3.5)

where the noise sequence (ǫk)k≥0 consists of i.i.d. Gaussian variables with zero
mean and standard deviation 0.1. In this setting we used the proposed MCEM-

algorithm to estimate the unknown parameters θ
def
= (µ, ν, σ) given a record

Y0:1000 of observations obtained through simulation under the parameters θ∗ =
(0.05, 0.1, 1). Applying Itô’s formula to the transformation X̃t = η(Vt, σ), where

η(v, σ)
def
= (log(v) − log(1 − v))/σ, allows for using the GPE for estimating the

transition density of the latent process. In this case, the drift function β of the
transformed process becomes more involved than in the previous example, and
it is neither bounded from above nor below. Thus, we have to draw both W̃−

β

and W̃+
β and a Brownian bridge (W̃s)

t
s=0 such that W̃−

β ≤ β(W̃s) ≤ W̃+
β for

all 0 ≤ s ≤ t; see Section B for a justification of this. For this purpose we ap-
ply the method proposed in [3], which involves sampling first a maximum W̃+

id

and a minimum W̃−
id and then a Brownian bridge such that W̃−

id ≤ W̃s ≤ W̃+
id

for all 0 ≤ s ≤ t. Since a linear transformation of a Brownian bridge is still
a Brownian bridge, it suffices to consider the case when the path (W̃s)

t
s=0 is
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conditioned to start and end in zero. Sampling a lower and upper bound can
then be done by using rejection sampling in the following way: let (ai)i≥0 with
a0 = 0 be an increasing sequence and consider the intervals (−ai, ai]. Since the
probability that a Brownian bridge stays in a specific interval [−K,K] has a
known expression (having the form of an infinite series), it is possible to cal-
culate the probability that it is contained in (−ai, ai] but not in (−ai−1, ai−1];
this means that either its maximum is contained in (ai−1, ai] or its minimum is
contained in (−ai,−ai−1] or both. Thus, we first propose an interval (ai−1, ai];
given this interval, we then propose, with probability 1/2, a maximum condi-
tioned to belong to (ai−1, ai], otherwise a minimum in (−ai,−ai−1]. Since the
distributions of the maximum and minimum are known on closed-form, this is
easily done. Next, we propose a Brownian bridge by decomposing around the
proposed maximum (minimum) as in the previous example. The resulting path
(W̃s)

t
s=0 is accepted, with a probability depending on the path in question, only

if it remains in the interval; see [3] for details. Finally, we set W̃±
β

def
= β(W̃±

id ).

For brevity, we do not repeat the extensive simulation study of the previous
example in order to extract the optimal lag; instead we hedge—ad hoc—with
the value ∆n = 20. Since the state space R(0, 1) is compact, we may propose
the particles simply by using the uniform distribution over (0, 1) as independent
sampler. As in the previous example, we set α = ᾱ = 1. The MCEM-algorithm,
in which the M-step was again carried through using the Nelder-Mead simplex
algorithm, was executed 25 iterations and as in the previous example the particle
sample size was increased with the iteration index as Nℓ = 100

√
ℓ+ 1. Figure 4

displays the resulting EM learning curves.
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Fig 4. Convergence of σ (continuous line, left y-axis), ν (dashed line, right y-axis) and µ
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4. Conclusion

We have proposed an EM-based method for estimating unknown parameters of
PODs. The method combines recent approaches to efficient estimation of the
joint smoothing distribution in hidden Markov models with recently proposed
techniques of estimating, without bias, transition densities of a large class of dif-
fusion processes via GPEs. Interestingly, the GPE provides a way of producing
unbiased estimates of the transition densities simultaneously for all parame-
ter values; this is critical when carrying through the maximisation-step of the
resulting EM-algorithm. For models having forgetting properties, the degener-
acy of the particle trajectories can be efficiently avoided by means of fixed-lag
smoothing [18, 21]. The decrease of variance gained by the fixed-lag approxi-
mation is obtained at the cost of a bias; the bias is however easily controlled
by increasing logarithmically the size of the lag with the size of the observation
record, yielding an algorithm of O(N) computational complexity. We have pro-
vided a detailed study of the convergence of the GPE-based particle smoother as
well as the full intermediate quantity of EM. The results were obtained under,
what we believe, minimal assumptions and may, since we analyse separately the
GPE-based mutation step (Lemma A.1), be extended to any selection schedule
for which consistency has been established in the literature. In this way, our
GPEPS convergence results differ significantly from that presented in [12]. The
method was successfully demonstrated on two examples.

Finally we should mention that there exist alternative techniques, either
Monte Carlo-based [see e.g. 24] or based on basis expansions [1], for approx-
imating the transition density. Nevertheless, none of these approaches produce
unbiased estimates. The former is, while quite general, computationally very de-
manding and the latter is only valid for very short time intervals (recall that the
performance of the GPE is independent of the size of the time grid). Sometimes
more direct numerical approaches, such as solving the Fokker-Plank equations
or taking the Fourier inverse of the characteristic function of the SDE, are
possible; however, these methods often tend to be computationally expensive.
Anyway, the theoretical results obtained by us presume only unbiasedness of
the transition density estimator, and thus other approximation schemes may be
applicable within our framework.

Acknowledgements
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Appendix A: Proofs

The proofs of Proposition 2.1 and Theorem 2.1 rely on recent results on limit
theorems for weighted samples obtained by [10]. Since we in this section deal
exclusively with asymptotic properties of the sample as the sample size tends
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to infinity, we let, when not specified differently, the limit notation → refer to
an increasing number N of particles only. In addition, we let also the particles
and the associated weights be indexed by N for clearness. The following kernel
notation will be useful in the following: Let µ be a measure on (Ξ,B(Ξ)), f a
measurable function on (Ξ̃,B(Ξ̃)), and K a kernel from (Ξ,B(Ξ)) to (Ξ̃,B(Ξ̃));
then we set

µK(A)
def
=

∫

µ(dξ)K(ξ, A)

and

K(ξ, f)
def
=

∫

f(ξ̃)K(ξ, dξ̃) .

The following definition specifies the structure that we want any class of esti-
mand functions to have.

Definition A.1. A set C of measurable functions on Ξ is proper if the following
holds.

(i) C is a linear space; that is, if f and g belong to C and (α, β) ∈ R2, then
αf + βg ∈ C;

(ii) if g ∈ C and f is measurable with |f | ≤ |g|, then f ∈ C;
(iii) for all c ∈ R, the constant function ξ 7→ c belongs to C.

We will frequently make use of the following lemma obtained by Douc and
Moulines [10]. Let (Ω,F ,P) be a probability space and (FN,i)Ni=0, N ≥ 1, a
triangular array of sub-σ-fields of F such that FN,i−1 ⊆ FN,i for all 1 ≤ i ≤ N
and N ≥ 1. In addition, let (UN,i)

N
i=1, N ≥ 1, be a triangular array of random

variables such that each UN,i is FN,i-measurable.

Theorem A.1 ([10]). Assume that E [|UN,j||FN,j−1] <∞, P-a.s., for all N ≥ 1
and 1 ≤ j ≤ N . Suppose that

(i) as λ→∞,

sup
N≥1

P





N
∑

j=1

E [ |UN,j|| FN,j−1] ≥ λ



 −→ 0 ; (A.1)

(ii) in addition, for all ǫ > 0,

N
∑

j=1

E [ |UN,j|; |UN,j| ≥ ǫ| FN,j−1]
P−→ 0 (A.2)

as N →∞. Then

max
1≤i≤N

∣

∣

∣

∣

∣

∣

i
∑

j=1

UN,j −
i
∑

j=1

E [UN,j| FN,j−1]

∣

∣

∣

∣

∣

∣

P−→ 0 .
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A.1. Proof of Proposition 2.1

Algorithm 1 is conveniently analysed within a more general framework of ran-
dom weight mutation (RWM). Assume that we are given a Ξ-valued, weighted
particle sample (ξN,i, ωN,i)

N
i=1 which is consistent for some measure ν on B(Ξ)

and let L be a finite transition kernel from (Ξ,B(Ξ)) to (Ξ̃,B(Ξ̃)). We wish
to transform (ξN,i, ωN,i)

N
i=1 into another sample (ξ̃N,i, ω̃N,i)

N
i=1 targeting the

measure

µ(A) =
νL(A)

νL(Ξ̃)
, A ∈ B(Ξ̃) ,

by means of the RWM operation described below. The input parameters are: a
proposal kernel R such that R(ξ, ·) dominates L(ξ, ·) for all ξ ∈ Ξ, a random
weight kernel S from (Ξ× Ξ̃,B(Ξ× Ξ̃)) to (R+,B(R+)) targeting dL/dR in the
sense that, for all (ξ, ξ̃) ∈ Ξ× Ξ̃,

∫

v S(ξ, ξ̃, dv) =
dL(ξ, ·)
dR(ξ, ·) (ξ̃) ,

and, finally, a Monte Carlo sample size α ∈ N.

Algorithm 2

(∗ random weight mutation ∗)
Input: (ξN,i, ωN,i)

N
i=1, R, S, α

1. for i← 1 to N
2. do simulate ξ̃N,i ∼ R(ξN,i, ·);
3. simulate V 1:α(ξN,i, ξ̃N,i) ∼ S�α(ξN,i, ξ̃N,i, ·);
4. ω̃N,i ← ωN,iα

−1
∑α

ℓ=1 V
ℓ(ξN,i, ξ̃N,i);

5. return (ξ̃N,i, ω̃N,i)
N
i=1.

The sample (ξ̃N,i, ω̃N,i)
N
i=1 returned by the algorithm is taken as an approx-

imation of µ. In order to evaluate the quality of this sample, define the set

C̃
def
=
{

f ∈ L
1(µ, Ξ̃) : L(·, |f |) ∈ C

}

; (A.3)

then the following result stating consistency for weighted samples produced by
Algorithm 2 is instrumental when establishing Proposition 2.1.

Lemma A.1. Assume the weighted sample (ξN,i, ωN,i)
N
i=1 is consistent for (ν,C)

and that the function L(·, Ξ̃) belongs to C. Then the set C̃ defined in (A.3) and
the weighted particle sample (ξ̃N,i, ω̃N,i)

N
i=1 produced by Algorithm 2 are proper

resp. (µ, C̃)-consistent for any fixed α ∈ N.

Proof. Properness of the set C̃ is straightforwardly established: To check Prop-
erty (i) in Definition A.1, suppose that f and g belong to C̃ and let (α, β) ∈ R2;
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then

∫∫

|αf(ξ̃) + βg(ξ̃)|v S(·, ξ̃, dv)R(·, dξ̃)

≤ |α|
∫∫

|f(ξ̃)|v S(·, ξ̃, dv)R(·, dξ̃)

+ |β|
∫∫

|g(ξ̃)|v S(·, ξ̃, dv)R(·, dξ̃)

= |α|L(·, |f |) + |β|L(·, |g|) ,

where the function on the right hand side belongs to C by construction of C̃ and
the fact that C is a linear space. That the integral on the left hand side belongs
to C is now a consequence of Property (ii) in Definition A.1. Properties (ii) and
(iii) are checked in a similar manner.

To establish Condition (2.12) in Definition 2.1 it is enough to show that, for
all f ∈ C̃,

Ω−1
N

N
∑

i=1

ω̃N,if(ξ̃N,i)
P−→ νL(f) ; (A.4)

indeed, since C̃ contains the unity mapping ξ̃ 7→ 1 (as C̃ is proper), (A.4) implies
that

Ω−1
N

N
∑

i=1

ω̃N,i
P−→ νL(Ξ̃) , (A.5)

from which Condition (2.12) in Definition 2.1 follows by Slutsky’s lemma. Thus,

we define the triangular array UN,i
def
= ω̃N,if(ξ̃N,i)/ΩN , N ≥ 1, 1 ≤ i ≤ N ,

and sub-σ-fields FN def
= σ{(ξN,i, ωN,i)Ni=1}, N ≥ 1. We then get, by applying the

tower property of conditional expectations and the consistency of the ancestor
sample,

N
∑

i=1

E [UN,i| FN ]

= Ω−1
N

N
∑

i=1

ωN,iE

[

E

[

α−1
α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i)

∣

∣

∣

∣

∣

ξ̃N,i,FN
]

f(ξ̃N,i)

∣

∣

∣

∣

∣

FN
]

= Ω−1
N

N
∑

i=1

ωN,i

∫

f(ξ̃)

∫

v S(ξN,i, ξ̃, dv)R(ξN,i, dξ̃)

= Ω−1
N

N
∑

i=1

ωN,iL(ξN,i, f)
P−→ νL(f) ,

since L(·, f) ≤ L(·, |f |) ∈ C. To show that
∑N

i=1 UN,i tends to
∑N
i=1 E[UN,i|FN ]

in probability, implying (A.4), we apply Theorem A.1. In order to establish
the first condition of that theorem we reuse the arguments above and use that
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L(·, |f |) ∈ C, yielding the limit

N
∑

i=1

E [ |UN,i|| FN ]
P−→ νL(|f |) .

Now, since convergence in probability implies tightness, we conclude that Con-
dition (i) in Theorem A.1 is fulfilled.

To verify (ii), define, for some ǫ > 0, AN
def
=
∑N

i=1 E[|UN,i|; |UN,i| ≥ ǫ|FN ].
Since, as the ancestor sample is assumed to be consistent, max1≤i≤N ωN,i/ΩN
vanishes in probability as N tends to infinity, the same holds for the product
AN1{Cmax1≤i≤N ωN,i > ǫΩN}, where C > 0 is an arbitrary constant. On the
other hand,

AN1{C max
1≤i≤N

ωN,i ≤ ǫΩN
}

≤
N
∑

i=1

E

[

|UN,i|; |f(ξ̃N,i)|
α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ αC
∣

∣

∣

∣

∣

FN
]

= Ω−1
N

N
∑

i=1

ωN,i

∫

|f(ξ̃)|
∫

|f(ξ̃)|
∑

α

ℓ=1
vℓ≥αC

v1S
�α(ξN,i, ξ̃, dv1:α)R(ξN,i, dξ̃) .

Now, since, for all ξ ∈ Ξ,
∫

|f(ξ̃)|
∫

|f(ξ̃)|
∑

α

ℓ=1
vℓ≥αC

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃) ≤ L(ξ, |f |) ,

where L(·, |f |) ∈ C, we conclude, using Property (ii) of Definition A.1, that the
mapping

ξ 7→
∫

|f(ξ̃)|
∫

|f(ξ̃)|
∑

α

ℓ=1
vℓ≥αC

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃)

on Ξ belongs to C as well. Thus, consistency of the ancestor sample implies that

N
∑

i=1

E

[

|UN,i|; |f(ξ̃N,i)|
α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ αC
∣

∣

∣

∣

∣

FN
]

P−→
∫∫

|f(ξ̃)|
∫

|f(ξ̃)|
∑

α

ℓ=1
vℓ≥αC

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃) ν(ξ) . (A.6)

In addition, since the constant C may be chosen arbitrarily large, the limit
(A.6) can be made arbitrarily small by the dominated convergence theorem. We
hence conclude that AN tends to zero in probability as N tends to infinity. This
establishes (A.4).

In order to establish (2.13) it is, by Slutsky’s theorem and (A.5), enough to
prove that

Ω−1
N max

1≤i≤N
ω̃N,i

P−→ 0 . (A.7)
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Thus, take again a constant C > 0 and write

Ω−1
N max

1≤i≤N
ω̃N,i1{ α

∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ αC
}

≤ Ω−1
N

N
∑

i=1

ω̃N,i1{ α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ αC
}

. (A.8)

To prove that the right hand side of (A.8) converges, we introduce the trian-

gular array UN,i
def
= ω̃N,i1{∑α

ℓ=1 V
ℓ(ξN,i, ξ̃N,i) ≥ αC}/ΩN , N ≥ 1, 1 ≤ i ≤ N ,

and let the sub-σ-fields FN , N ≥ 1, be defined as above. Next, we use again
Theorem A.1. To verify the first condition, take conditional expectation with
respect to FN and reuse (A.6) with f being the unity function; this yields

N
∑

i=1

E [UN,i| FN ]
P−→
∫∫∫

∑
α

ℓ=1
vℓ≥αC

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃) ν(dξ) ,

implying (i). To verify (ii), take an ǫ> 0 and define AN
def
=
∑N

i=1 E[|UN,i|; |UN,i| ≥
ǫ|FN ]. Then

AN =Ω−1
N

N
∑

i=1

ωN,iE

[

V 1(ξN,i, ξ̃N,i); ω̃N,i≥ ǫΩN ,
α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ αC
∣

∣

∣

∣

∣

FN
]

,

implying that, for an arbitrary constant C′ > 0, following the lines of (A.6),

AN1{C′ max
1≤i≤N

ωN,i ≤ ǫΩN
}

≤ Ω−1
N

N
∑

i=1

ωN,iE

[

V 1(ξN,i, ξ̃N,i);
α
∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) ≥ α(C ∨ C′)

∣

∣

∣

∣

∣

FN
]

P−→
∫∫∫

∑
α

ℓ=1
vℓ≥α(C∨C′)

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃) ν(dξ) . (A.9)

On the other hand,

Ω−1
N max

1≤i≤N
ω̃N,i1{ α

∑

ℓ=1

V ℓ(ξN,i, ξ̃N,i) < αC

}

≤ CΩ−1
N max

1≤i≤N
ωN,i

P−→ 0 .

Thus, since the limit (A.9) can be made arbitrarily small by increasing C′, we
conclude that AN tends to zero as N tends to infinity. This in turn implies that
the upper bound in (A.8) tends to

∫∫∫

∑
α

ℓ=1
vℓ≥αC

v1S
�α(ξ, ξ̃, dv1:α)R(ξ, dξ̃) ν(dξ) . (A.10)

Finally, we complete the proof by noting that (A.10) can be made arbitrarily
small by increasing C.
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We now use Lemma A.1 to prove consistency of Monte Carlo estimates pro-

duced by the GPEPS. For this purpose, let ξ̄i0:k|k
def
= ξ

Ii
k

0:k|k, 1 ≤ i ≤ N , denote the

selected particles obtained in Step (2) of Algorithm 1. Consequently, the sample
(ξ̄i0:k|k)

N
i=1 is obtained by resampling the ancestor particles (ξi0:k|k)

N
i=1 multino-

mially with respect to the normalised adjusted weights (ωjkψ
j
k/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k)
N
j=1.

This operation will in the following be referred to as selection. Using this nota-
tion and terminology it is now possible to describe one iteration of the GPEPS
by the following three transformations:

(ξi0:k|k, ω
i
k)
N
i=1

I: Weighting−−−−−−−−→ (ξi0:k|k, ψ
i
kω

i
k)
N
i=1 →

II: Selection−−−−−−−−→ (ξ̄i0:k|k, 1)
N
i=1

III: Mutation−−−−−−−−→ (ξi0:k+1|k+1, ω
i
k+1)

N
i=1 .

Here the third operation refers to the random weight mutation procedure de-
scribed in Algorithm 2.

To prove Proposition 2.1 we proceed by induction and assume that
(ξi0:k|k, ω

i
k)
N
i=1 is consistent for (φk, L

1(Xk+1, φk)). Next, we show how consis-
tency is preserved through one iteration of the algorithm by analysing separately
Steps (I–III).

Step I. Define the modulated smoothing measure

φk〈Ψk〉(A) def
=

φk(Ψk1A)
φk(Ψk)

, A ∈ X�(n+1) ;

then the weighting operation in Step I can be viewed as a transformation ac-
cording Algorithm 2 with Ξ = X

n+1, Ξ̃ = X
n+1, and































ν = φk ,

µ = φk〈Ψk〉 ,
R(x0:k, A) = δx0:k

(A) ,

L(x0:k, A) = Ψk(x0:k) δx0:k
(A) ,

S(x0:k, x
′
0:k, A) = δΨk(x′

0:k
)(A) .

Thus, by applying Lemma A.1 we conclude that (ξi0:k|k, ψ
i
kω

i
k)
N
i=1 is consistent

for φk〈Ψk〉 and the (proper) set

{

f ∈ L
1(φk〈Ψk〉,Xn+1) : Ψk|f | ∈ L

1(φk,X
n+1)

}

= L
1(φk〈Ψk〉,Xn+1) .

Step II. Applying Theorem 3 in [10] gives immediately that (ξ̄i0:k|k, 1)
N
i=1 is

consistent for [φk〈Ψk〉, L1(φk〈Ψk〉,Xn+1)] for both the selection schedules (C.1)
and (C.2).
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Step III. Also the third step is handled using Lemma A.1. In this case, we
set Ξ = X

n+1, Ξ̃ = X
n+2, and







































ν = φk〈Ψk〉 ,
µ = φk+1 ,

R(x0:k, A) =
∫

A
δx0:k

(dx′0:k)Rk(x
′
k, dx

′
k+1) ,

L(x0:k, A) =
∫

A
Φk(x

′
0:k+1) δx0:k

(dx′0:k)Rk(x
′
k, dx

′
k+1) ,

S(x0:k, x
′
0:k+1, A)

=
∫ 1A{vg(x′k+1, Yk+1)/[Ψk(x

′
0:k)rk(x

′
k, x

′
k+1)]}P (x′k, x′k+1, dv) ,

where P is the GPE described in Section 2.1 (and in more detail in Appendix B).
Thus, using Lemma A.1 yields that (ξi0:k+1|k+1, ω

i
k+1)

N
i=1 is consistent for φk+1

and the set

{

f ∈ L
1(φk+1,X

k+2) : L(·, |f |) ∈ L
1(φk〈Ψk〉,Xn+1)

}

= L
1(φk+1,X

k+2) .

Finally, we complete the proof by noting that the induction hypothesis is fulfilled
for k = 0 by assumption.

A.2. Proof of Theorem 2.1

Decompose the error according to

QNn (θ, θ′)−Qn(θ, θ′)

=
n−1
∑

k=0

[

(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)
sᾱk

(

ξi,θ
′

k:k+1|k(∆n), θ
)

−
∫

sk(xk:k+1; θ)φk(∆n) (dxk:k+1; θ
′)

]

+ bn(∆n, θ, θ
′) , (A.11)

where the bracket terms are errors originating from the GPEPS and the second
term bn, defined in (2.20), is the cost of introducing the fixed lag. By combining
Proposition 2.1 with Slutsky’s theorem we conclude that

n
∑

k=0

(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)
log gθ

(

ξi,θ
′

k|k(∆n), Yk

)

P−→
n
∑

k=0

∫

log gθ (xk, Yk) φk(∆n)(dxk; θ
′) , (A.12)

as x0:k(∆n) 7→ log gθ(xk, Yk) belongs to L
1(φk(∆n)(·; θ′),Xk(∆n)+1) by assump-

tion. Thus, the second term of the intermediate quantity estimator (2.19) is
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consistent. In order to establish consistency of the complete estimator it re-
mains to prove that

n−1
∑

k=0

(

ᾱΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)

ᾱ
∑

ℓ=1

V̄ ℓθ

(

ξi,θ
′

k:k+1|k(∆n)

)

P−→
n−1
∑

k=0

∫

log qθ (xk, xk+1) φk(∆n)(dxk:k+1; θ
′) . (A.13)

To do this, we define ŪN,i
def
= ωi,θ

′

k(∆n)

∑ᾱ

ℓ=1 V̄
ℓ
θ (ξ

i,θ′

k:k+1|k(∆n))/ᾱΩ
N,θ′

k(∆n)
and F̄N def

=

σ{(ξi,θ
′

0:k(∆n)|k(∆n)
, ωi,θ

′

k(∆n)
)Ni=1} and appeal to Theorem A.1 and Proposition 2.1.

Since log qθ(xk, xk+1) ≤
∫

|v| P̄θ(xk, xk+1, dv) for all xk:k+1 ∈ X
2, the mapping

x0:k(∆n) 7→ log qθ(xk, xk+1) belongs to L
1(φk(∆n)(·; θ′),Xk(∆n)+1). Hence,

N
∑

i=1

E
[

ŪN,i
∣

∣F̄N
]

=
(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)
log qθ

(

ξi,θ
′

k:k+1|k(∆n)

)

P−→
∫

log qθ(xk, xk+1)φk(∆n)(dxk:k+1; θ
′) , (A.14)

from which we conclude that (A.13) may be established by verifying the two
assumptions of Theorem A.1. Following (A.14) and using again that x0:k(∆n) 7→
∫

|v|P̄θ(xk, xk+1, dv) belongs to L
1(φk(∆n)(·; θ′),Xk(∆n)+1) by assumption, we

conclude that

N
∑

i=1

E
[∣

∣ŪN,i
∣

∣

∣

∣F̄N
]

P−→
∫∫

|v| P̄θ(xk, xk+1, dv)φk(∆n)(dxk:k+1; θ
′) ,

which verifies Assumption (i) (by tightness of sequences converging in probabil-

ity). To verify (ii), let ǫ > 0 and set ĀN
def
=
∑N

i=1 E[|ŪN,i|; |ŪN,i| ≥ ǫ|F̄N ]. Then,
for any constant C > 0, by consistency of the particle sample,

ĀN1{C max
1≤i≤N

ωi,θ
′

k(∆n)
> ǫΩN,θ

′

k(∆n)

}

P−→ 0 . (A.15)

On the other hand,

ĀN1{C max
1≤i≤N

ωi,θ
′

k(∆n)
≤ ǫΩN,θ

′

k(∆n)

}

≤
N
∑

i=1

E

[

|ŪN,i|;
∣

∣

∣

∣

∣

ᾱ
∑

ℓ=1

V̄ ℓθ

(

ξi,θ
′

k:k+1|k(∆n)

)

∣

∣

∣

∣

∣

≥ Cᾱ
∣

∣

∣

∣

∣

F̄N
]

≤
(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)

∫

|
∑

ᾱ

ℓ=1
vℓ|≥Cᾱ

|v1| P̄�ᾱ
θ (xk, xk+1, dv1:ᾱ) .
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Now, since, for all xk:k+1 ∈ X
2,

∫

|
∑

ᾱ

ℓ=1
vℓ|≥Cᾱ

|v1| P̄�ᾱ
θ (xk, xk+1, dv1:ᾱ) ≤

∫

|v| P̄θ(xk, xk+1, dv) ,

we get, using Proposition 2.1,

(

ΩN,θ
′

k(∆n)

)−1 N
∑

i=1

ωi,θ
′

k(∆n)

∫

|
∑

ᾱ

ℓ=1
vℓ|≥Cᾱ

|v1| P̄�ᾱ
θ (xk, xk+1, dv1:ᾱ)

P−→
∫∫

|
∑

ᾱ

ℓ=1
vℓ|≥Cᾱ

|v1| P̄�ᾱ
θ (xk, xk+1, dv1:ᾱ)φk(∆n)(dxk:k+1; θ

′) . (A.16)

We now note that the limit in (A.16) can be made arbitrarily small by in-
creasing C. This verifies condition (ii) in Theorem A.1, which completes the
proof of (A.13). Finally, combining (A.13) with (A.12) completes the proof of
Theorem 2.1.

Appendix B: More on the GPE

The outline of this section follows Beskos et al. [4] and Fearnhead et al. [12],
and we limit our scope to the one-dimensional case; multivariate extensions
are treated by Beskos et al. [3]. Let (C[0, t], C[0, t]) be the measurable space of

continuous functions on [0, t] and denote by S
(x)
θ the law of X̃ on (C[0, t], C[0, t])

for the initial condition X̃0 = W0 = x. Also, let W(t,x,x′) be the law, on the
same space, of the Brownian bridge process W̃ = (W̃s)0≤s≤t starting in x at

time zero and ending in x′ at time t. Similarly, denote by S
(t,x,x′)
θ the law of the

diffusion bridge obtained when X̃ is conditioned to start at X̃0 = W0 = x and
to finish at X̃t = x′. Recall the definition (2.1) of β(·, θ) and let

A(u, θ)
def
=

∫ u

β(v, θ) dv

be any antiderivative of β(·, θ). The role of Assumptions (A1–A3) is to guaran-

tee that S
(t,x,x′)
θ is absolutely continuous with respect to W(t,x,x′) with Radon-

Nikodym derivative

dS
(x,x′,t)
θ

dW(x,x′,t)
(w)

=
Nt(x′ − x)
q̃θ(x, x′, t)

exp

(

A(x′, θ)−A(x, θ) − 1

2

∫ t

0

(β2 + β′)(ws, θ) ds

)

, (B.1)

where w ∈ C[0, t] and Nt denotes the density function of the zero mean normal
distribution with variance t. Now, define, for u ∈ R, the drift functional

φ(u, θ)
def
=

β2(u, θ) + β′(u, θ)

2
− l(θ) ,
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where l(θ) is the lower bound given in Assumption (A3). The transition density
q̃θ can, using (B.1), be expressed as

q̃θ(x, x
′, t) = Nt(x′ − x) exp (A(x′, θ)−A(x, θ) − l(θ)t)

×
∫

exp

(

−
∫ t

0

φ(ws, θ) ds

)

W
(t,x,x′)(dw) ,

Accordingly, we wish to calculate expectations of the form

∫

exp

(

−
∫ t

0

f(ws) ds

)

W
(t,x,x′)(dw) . (B.2)

Now assume that it is possible to simulate simultaneously a pair (W̃−
f , W̃

+
f ) of

random variables and a trajectory (W̃s)
t
s=0 such that

W̃−
f ≤ f(W̃s) ≤ W̃+

f , for all s ∈ [0, t] ;

in practice this will most often be carried through by first simulating a maximum
and a minimum of the Brownian bridge process W̃ and hereafter interpolating,
using Bessel bridges, the rest of the bridge conditionally on these. Let κ be a
discrete random variable having, conditionally on W̃±

f , probability distribution

pt(·|W̃±
f ). Then it is easily established that the GPE

exp(−W̃+
f t)

tκ

κ!pt(κ|W̃±
f )

κ
∏

ℓ=1

[W̃+
f − f(W̃ψℓ

)]

(associated with pt) is an unbiased estimator of (B.2). Here (ψℓ)ℓ≥1 are mutually
independent variables that are uniformly distributed over [0, t] and independent
of Ft. Note that the distribution pt can be chosen freely, yielding a whole class
of GPEs, and an optimal choice is discussed by Fearnhead et al. [12]. In all
applications considered in this paper we will use let κ be Poisson-distributed.

Using the Girsanov theorem, it can be shown that

log q̃t(x, x
′) = −1

2
log(2πt)− (x′ − x)2

2t

+A(x′, θ)−A(x, θ) − l(θ)t−
∫ (∫ t

0

φ(ws, θ) ds

)

S
(x,x′,t)(dw) . (B.3)

Since the right hand side of (B.1) can be bounded from above and below,
a rejection sampler producing samples from the diffusion bridge can be con-
structed. This is possible as the right hand side of (B.1) is proportional to
the probability that a marked Poisson process on [0, t] × [0, 1] with intensity

r
def
= supx{φ(x); W̃−

φ < x < W̃+
φ } is below the graph s 7→ φ(W̃s; θ)/r. However,

while observing the path for all s is impossible, a finite construction can be de-
vised by sampling the Brownian bridge at points specified by the marked Poisson
process; we refer to Beskos et al. [4] for details. The algorithm is described by
the following.
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Algorithm 3

(∗ Sampling a skeleton of a diffusion bridge ∗)
1. simulate an outcome (χℓ, ψℓ)

κ
ℓ=1 of the marked Poisson process with inten-

sity r and κ ∼ Po(r);
2. conditional on W̃±

φ , simulate (W̃χℓ
)κℓ=1;

3. if φ(W̃χℓ
)/r < ψℓ

4. then return (W̃χℓ
)κℓ=1

5. else go to (1)

By interpolating the returned skeleton (W̃χℓ
)κℓ=1, samples W̃u, with (W̃s)

t
s=0 ∼

S(x,x
′,t), can be obtained for any 0 ≤ u ≤ t. Given samples from the diffusion

bridge, an unbiased estimator of (B.3) can be straightforwardly constructed in
the following way. Let ψ ∼ Unif(0, t) be independent of Ft. Then −tφ(W̃ψ , θ) is

an unbiased estimator of
∫

(
∫ t

0
φ(ws, θ) ds)S

(x,x′,t)(dw) since

E

[

tφ(W̃ψ , θ)
]

= E

[

E

[

tφ(W̃ψ , θ)
∣

∣

∣Ft
]]

= E

∫ t

0

φ(W̃s, θ) ds =

∫ (∫ t

0

φ(ws, θ) ds

)

S
(x,x′,t)(dw) .

Finally, plugging this estimator into (B.3) yields an unbiased estimator of log q̃t.

Appendix C: Residual resampling

In the selection operation in Step 2 of Algorithm 1, each particle index is drawn
from the probability distribution formed by the weights (ωjkψ

j
k/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k)
N
j=1.

Consequently, letting M i
k denote the number of times that index i was drawn,

this selection operation may be alternatively expressed as

(M1
k , . . . ,M

N
k ) ∼ Mult



N,

(

ωjkψ
j
k

∑N
ℓ=1 ω

ℓ
kψ

ℓ
k

)N

j=1



 . (C.1)

In the deterministic plus residual multinomial resampling approach one sets

instead M i
k

def
= ⌊Nωikψik/

∑N
ℓ=1 ω

ℓ
kψ

ℓ
k⌋+Hi

k with

(H1
k , . . . , H

N
k )

∼Mult





N
∑

i=1

〈

Nωikψ
i
k

∑N

ℓ=1 ω
ℓ
kψ

ℓ
k

〉

,

(

〈Nωikψik/
∑N
ℓ=1 ω

ℓ
kψ

ℓ
k〉

∑N

j=1〈Nω
j
kψ

j
k/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k〉

)N

i=1



 , (C.2)

where ⌊x⌋ denotes the integer part of a real number x and 〈x〉 def
= x − ⌊x⌋. In

this selection schedule, index i is first copied ⌊Nωikψik/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k⌋ times; the

remaining
∑N

i=1〈Nωikψik/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k〉 indices are hereafter drawnmultinomially
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with respect to weights proportional to the residuals (〈Nωikψik/
∑N

ℓ=1 ω
ℓ
kψ

ℓ
k〉)Ni=1.

In [10] it is proved that deterministic plus residual resampling preserves consis-
tency as well as asymptotic normality of the particle sample.
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