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1. Introduction

Many estimators in statistics are defined as the maximizers of certain stochastic
processes, called objective functions. This procedure for computing estimators is
known as M-estimation and is quite common in modern statistics. A standard
way to find the asymptotic distribution of a given M-estimator, is to obtain
the limiting law of the (appropriately normalized) objective function and then
apply the so-called argmax continuous mapping theorem (see Theorem 3.2.2,
page 286 of Van der Vaart and Wellner (1996) for a quite general version of
this result). Chapter 3.2 in Van der Vaart and Wellner (1996) gives an excellent
account of M-estimation problems and applications of the argmax continuous
mapping theorem.

Despite its proven usefulness in a wide range of applications, there are some
M-estimation problems that cannot be solved by an application of the usual
argmax continuous mapping theorem. This is particularly true when the objec-
tive functions converge in distribution to the law of some process that admits
multiple maximizers. This situation arises frequently in problems concerning
change-point estimation in regression settings. In these problems, the estima-
tors are usually maximizers of processes that converge in the limit to two-sided,
compound Poisson processes that have a complete interval of maximizers. See,
for instance, Kosorok (2008) (Section 14.5.1, pages 271–277), Lan et al. (2009),
Kosorok and Song (2007), Pons (2003) and Seijo and Sen (2010). This issue has
been noted before by several authors, such as Ferger (2004).

The main goal of this paper is to derive a version of the argmax continuous
mapping theorem specially taylored for situations like the one described in the
previous paragraph. A distinctive feature of the argmax continuous mapping
theorem in this setup is that it requires the weak convergence, not only of the
objective functions, but also of some associated pure jump processes. Although
this requirement has been overlooked by some authors in the past (we discuss
these omissions in Section 5), its necessity can be easily seen; see Section 4 for
an example.

To illustrate the situations on which our results are applicable, we start with
the following simple problem that arises in least squares change-point regres-
sion. Detailed accounts of this type of models can be found in Kosorok (2008)
(Section 14.5.1, pages 271–277), Lan et al. (2009) and Seijo and Sen (2010). In
its simplest form the model considers a random vector X = (Y, Z) satisfying
the following relation:

Y = α01Z≤ζ0 + β01Z>ζ0 + ǫ, (1)

where Z is a continuous random variable, α0 6= β0 ∈ R, ζ0 ∈ [c1, c2] ⊂ R

and ǫ is a continuous random variable, independent of Z with zero expectation
and finite variance σ2 > 0. The parameter of interest is ζ0, the change-point.
Given a random sample from this model, the least squares estimator θ̂n of θ0 =
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(ζ0, α0, β0) ∈ Θ := [c1, c2]×R
2 is obtained by maximizing the criterion function

Mn (θ) := − 1

n

n∑

i=1

(Yi − α1Zi≤ζ + β1Zi>ζ)
2 ,

i.e.,

θ̂n := (ζ̂n, α̂n, β̂n) = sargmax
θ∈Θ

{Mn(θ)} , (2)

where sargmax denotes the maximizer with the smallest ζ value. This distinction
is made as there is no unique maximizer for ζ, in fact, for any α, β, Mn(·, α, β)
is constant on every interval [Z(j), Z(j+1)), where Z(j) stands for the j-th order
statistic. It can be shown, see either Kosorok (2008) (Section 14.5.1, pages 271–

277) or Seijo and Sen (2010), that n(ζ̂n − ζ0) converges in distribution to the
smallest maximizer a two-sided, compound Poisson process. The convergence
results in this paper, Theorems 3.1 and 3.2, can, in particular, be applied to
derive the asymptotic distribution of this estimator (see Section 5.1).

Our results will be applicable to M-estimation problems for which the objec-
tive function takes arguments in some compact rectangle K ⊂ R

d, d ≥ 1. We
focus on functions belonging to the Skorohod space DK as defined in Neuhaus
(1971). The elements of DK are functions with finite “quadrant limits” (gen-
eralized one-sided limits) and are “continuous from above” (generalization of
right-continuity) at each point in K. In Section 2 we describe the Skorohod
space DK in details and state some fundamental properties of the sargmax
functional. Some of the results developed in this connection can also be of in-
dependent interest. In Section 3 we prove a version of the continuous mapping
theorem for the sargmax functional for elements of DK which are cádlág in the
first component and jointly continuous on the last d−1. In Section 4 we describe
an example that illustrates the necessity of the convergence of the associated
pure jump processes in the results of Section 3. Finally, in Section 5 we ap-
ply the theorems of Section 3 to the change-point regression problem described
above and to the estimation of a change-point in time and in a covariate in the
Cox-proportional hazards model.

2. The Skorohod space DK

2.1. Definition and basic properties

We start by recalling the Skorohod space as discussed in Neuhaus (1971). To
simplify notation, we write the coordinates of any vector in R

d with upper
indices. We consider a compact rectangle K = [a, b] = [a1, b1] × · · · × [ad, bd]
for some a < b ∈ R

d with the inequality holding componentwise. For any space
R

m we will write | · | for the Euclidian norm (although the L
∞-norm is used

in Neuhaus (1971), the results in there hold if one uses the Euclidian norm
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instead). For k ∈ {1, . . . , d}, t ∈ [ak, bk] and s ∈ {ak, bk} we write:

Ik(s, t) :=

{
[ak, t) if s = ak,
(t, bk] if s = bk.

Jk(s, t) :=






[ak, t) if s = ak and t < bk,[
ak, bk

]
if s = ak and t = bk,

∅ if s = bk and t = bk,[
t, bk

]
if s = bk and t < bk.

and for any ρ ∈ V :=
∏d

k=1{ak, bk}, x = (x1, . . . , xd) ∈ R
d,

Q(ρ, x) :=

d∏

k=1

Ik(ρ
k, xk),

Q̃(ρ, x) :=
d∏

k=1

Jk(ρ
k, xk).

Remark. Some properties of the sets Q̃(ρ, x) are:

(a) Q̃(ρ, x) ∩ Q̃(γ, x) = ∅ for every γ 6= ρ ∈ V and every x ∈ K.
(b) K =

⋃
ρ∈V Q̃(ρ, x) for every x ∈ K.

Hence, {Q̃(ρ, x)}ρ∈V forms a partition of K. We are now in a position to define
the so-called quadrant limits, the concept of continuity from above and the
Skorohod space.

Definition 2.1 (Quadrant Limits and Continuity from Above). Consider
a function f : Rd → R, ρ ∈ V and x ∈ K. We say that a number l is the ρ-limit
of f at x if for every sequence {xn}∞n=1 ⊂ Q(ρ, x) satisfying xn → x we have
f(xn) → l. In this case we write l = f(x + 0ρ). When ρ = b we may write
f(x + 0+) := f(x + 0b). With this notation, f is said to be continuous from
above at x if f(x+ 0+) = f(x).

Definition 2.2 (The Skorohod Space). We define the Skorohod space DK

as the collection of all functions f : K → R which have all ρ-limits and are
continuous from above at every x ∈ K.

Remark. It is easily seen that if f ∈ DK , ρ ∈ V , x ∈ K and {xn}∞n=1 ⊂ Q̃(ρ, x)
is a sequence with xn → x, then f(xn) → f(x + 0ρ). This follows from the

continuity from above as Q(ρ, x) ∩Q(b, ξ) 6= ∅ for every ξ ∈ Q̃(ρ, x).
Before stating some of the most important properties of DK we will introduce

some further notation. Consider the partitions Tj = {aj = tj,0 < tj,1 < · · · <
tj,rj = bj} for j = 1, . . . , d. We define the rectangular partition R(T1, . . . , Td)
determined by T1, . . . , Td as the collection of all rectangles of the form

R =

d∏

k=1

[tk,jk−1, tk,jk〉 , jk ∈ {1, . . . , rk}, k = 1, . . . , d,



The sargmax functional 425

where 〉 stands for “)” or “]” if tk,jk < bk or tk,jk = bk, respectively. With the
aid of this notation, we can now state two important lemmas.

Lemma 2.1. Let f ∈ DK . Then, for every ǫ > 0 there is δ > 0 and partitions Tj
of [aj , bj ], j = 1, . . . , d, such that for any R ∈ R(T1, . . . , Td) and any θ, ϑ ∈ R
with |θ − ϑ| < δ the inequality |f(θ) − f(ϑ)| < ǫ holds. Furthermore, we can
take the partitions in such a way that supθ,ϑ∈R{|θ − ϑ|} < δ for every R ∈
R(T1, . . . , Td).
Lemma 2.2. Every function in DK is bounded on K.

Lemmas 2.1 and 2.2 are, respectively, Lemma 1.5 and Corollary 1.6 in Neuhaus
(1971). Their proofs can be found there.

Let K1 = [a1, b1] and K2 = [a2, b2]×· · ·× [ad, bd], so K = K1×K2. We will be
dealing with functions which are cádlág on the first coordinate and continuous
on the remaining d− 1. For this purpose we will turn our attention to the space
D̃K ⊂ DK of all functions f ∈ DK such that f(t, ·) : K2 → R is continuous ∀
t ∈ K1 and f(·, ξ) : K1 → R is cádlág ∀ ξ ∈ K2.

Remark. It is worth noting that all elements in DK are componentwise cádlág,
so it is really the continuity in the last d−1 coordinates what makes D̃K a proper
subspace of DK .

Lemma 2.3. Let f ∈ D̃K and ǫ > 0. Then, there is δ > 0 such that

sup
|ξ−η|<δ
ξ,η∈K2

{|f(t, ξ)− f(t, η)|} ≤ ǫ ∀ t ∈ K1.

Proof. From Lemma 2.1 we can find δ0 > 0 and partitions Tj of [aj , bj], j =
1, . . . , d such that the conclusions of the lemma hold true with ǫ replaced by ǫ

3 .
We take the partitions in such a way that whenever θ and ϑ belong to the same
rectangle, the distance between them is less than δ0. Let s ∈ T1. Since K2 is
compact and f(s, ·) is continuous, we can find δs such that for any ξ, η ∈ K2

with |ξ − η| < δs we get |f(s, ξ) − f(s, η)| < ǫ
3 . Let δ = mins∈T1{δs} and pick

t ∈ K1 and ξ, η ∈ K2 with |ξ− η| < δ. Take the largest s ∈ T1 with s ≤ t. Then,
|s− t| < δ0 and hence

|f(t, η)− f(t, ξ)| ≤ |f(t, ξ)− f(s, ξ)|+ |f(s, η)− f(s, ξ)|+ |f(t, η)− f(s, η)| < ǫ.

The proof is then finished by taking the supremum over ξ and η and noticing
that the choice of δ was independent of t.

2.2. The Skorohod topology

So far we have not yet defined a topology on DK , so we turn our attention to this
issue now. We will start by defining the Skorohod metric as given in Neuhaus
(1971). Then, we will define a second metric on D̃K and show that it is equivalent
to the corresponding restriction of the Skorohod metric. This second metric will
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be more natural for the structure of D̃K and will prove useful in the proof of
the continuous mapping theorem for the smallest argmax functional. In order
to define both of these metrics and state some of their properties, we will need
some additional notation.

Consider a closed interval I ⊂ R and the class ΛI of all functions λ : I → I
which are surjective (onto) and strictly monotone increasing. Define the func-

tion 9 · 9I : ΛI → R by the formula 9λ9I = sups6=t

{∣∣ log
(λ(t)−λ(s)

t−s

)∣∣}. We
write ΛK := Λ[a1,b1] × · · · × Λ[ad,bd] and for λ := (λ1, . . . , λd) ∈ ΛK , 9λ9K :=
max1≤k≤d{9λk9[ak,bk]}. In a similar fashion, we define ΛK2 := Λ[a2,b2] × · · · ×
Λ[ad,bd] and for λ ∈ ΛK2 , 9λ9K2 := max2≤k≤d{9λk9[ak,bk]}. Note that for
(λ1, λ) ∈ ΛK = ΛK1 × ΛK2 we have 9(λ1, λ)9K = 9λ1 9K1 ∨ 9 λ9K2 . We
will use the sup-norm notation also: for a function f : A → R we write
‖f‖A = supx∈A{|f(x)|}.
Definition 2.3 (The Skorohod metric). We define the Skorohod metric
dK : DK ×DK → R as follows:

dK(f, g) = inf
λ∈ΛK

{9λ 9K +‖f − g ◦ λ‖K} .

With this definition we can now state the following fundamental result about
the Skorohod space.

Lemma 2.4. The Skorohod metric is a metric. If DK is endowed with the
topology defined by dK , then it becomes a Polish space.

For a proof of the last result, we refer the reader to Section 2 in Neuhaus
(1971). We now proceed to define another metric, d̃K , on DK by the formula:

d̃K(f, g) = inf
λ∈Λ[a1,b1]

{
9λ 9[a1,b1] + sup

(t,ξ)∈K1×K2

{|f(t, ξ)− g(λ(t), ξ)|}
}
.

To properly describe the properties of d̃K we need the ball notation for metric
spaces: given a metric space (X, d), r > 0 and x ∈ X we write Bd

r (x) for the open
ball of radius r and center at x with respect to the metric d. Additionally, the
following lemma will prove to be useful.

Lemma 2.5. Let I ⊂ R be any compact interval. Then, for ǫ > 0 there is δ > 0
such that for any λ ∈ ΛI with 9λ9I < δ we also have

sup
s∈I

{|λ(s)− s|} < ǫ.

Proof. Assume that I = [u, v]. It suffices to choose δ < 1
4 ∧ ǫ

2|v−u| . To see

this, observe that for any τ ∈ (0, 14 ), τ < 2τ − 4τ2 ≤ log(1 + 2τ) and for any
τ > −1, log(1 + τ) ≤ τ . It follows that for λ ∈ ΛI with 9λ9I < δ and any

s ∈ I, log(1 − 2δ) < −δ ≤ log λ(s)−u

s−u
≤ δ < 2δ − 4δ2 ≤ log(1 + 2δ) and thus,

|λ(s) − s| < 2(s − u)δ ≤ 2|u − v|δ. In the previous inequalities we have made
implicit use of the fact that λ(u) = u.
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The next lemma contains some of the most relevant properties of d̃K .

Lemma 2.6. The following statements are true:

(i) d̃K is a metric on DK .

(ii) dK(f, g) ≤ d̃K(f, g) ≤ ‖f − g‖K ∀ f, g ∈ DK .

(iii) If f ∈ D̃K , then for every r > 0 there is δ > 0 such that BdK

δ (f) ⊂ Bd̃K
r (f).

Moreover, the metrics dK and d̃K generate the same topology on D̃K .

(iv) If f is continuous, then for every r > 0 there is δ > 0 such that Bd̃K

δ (f) ⊂
B

‖·‖K
r (f). Moreover, the metrics dK and d̃K and ‖ · ‖K generate the same

topology on the space of continuous functions on K.
(v) (D̃K , d̃K) is a Polish space.

Proof. It is straightforward to see that (ii) holds. The proof of (i) follows along
the lines of the proof of the analogous results for the classical Skorohod metric
(see Chapter 3 of Billingsley (1968)). For the sake of brevity we omit these

arguments. For (iii) we use Lemma 2.3. Let f ∈ D̃K , r > 0 and take δ1 > 0 such
that the conclusions of Lemma 2.3 hold with r

3 replacing ǫ. Also, consider δ2 > 0
such that 9λ9K2 < δ2 implies supξ∈K2

{|λ(ξ) − ξ|} < δ1 (whose existence is a

consequence of Lemma 2.5 applied to each of the intervals [a2, b2], . . . , [ad, bd]).
Let δ = δ2 ∧ r

3 and take g ∈ BdK

δ (f). Find (λ1, λ) ∈ ΛK = ΛK1 ×ΛK2 such that
9(λ1, λ)9K < δ and ‖g − f ◦ (λ1, λ)‖K < r

3 . Then, for any (t, ξ) ∈ K1 ×K2 we
have:

|g(t, ξ)− f(λ1(t), ξ)| ≤ |g(t, ξ)− f(λ1(t), λ(ξ))| + |f(λ1(t), λ(ξ)) − f(λ1(t), ξ)|
<

r

3
+
r

3
,

where the second term in the sum of the right-hand side of the first inequality
in the preceding display is less than r

3 because of Lemma 2.3 since 9λ9K2 < δ2.
Taking supremum over (t, ξ) ∈ K and considering that 9λ19K1 < r

3 we get

that d̃K(f, g) < r. Thus, BdK

δ (f) ⊂ Bd̃K
r (f). Taking (ii) into account we can

conclude that d̃K and dK are equivalent metrics on D̃K .
We now turn out attention to (iv). Let r > 0. Then, there is δ1 > 0 such

that |f(x) − f(y)| < r
2 whenever |x − y| < δ1. Also, there is δ2 > 0 such that

9λ9K1 < δ2 implies supt∈K1
{|λ(t)−t|} < δ1. Let δ = δ2∧ r

2 and let g ∈ DK with

d̃K(f, g) < δ and λ ∈ ΛK1 such that 9λ 9K1 +‖g(·, ·) − f(λ(·), ·)‖K1×K2 < δ.
Then, for any (t, ξ) ∈ K1 ×K2 we have

|f(t, ξ)− g(t, ξ)| ≤ |f(t, ξ)− f(λ(t), ξ)|+ |f(λ(t), ξ) − g(t, ξ)| < r.

Thus, Bd̃K

δ (f) ⊂ B
‖·‖K
r (f).

To prove (v) it suffices to show that D̃K is a closed subset of DK , as the
latter space is known to be Polish (see Neuhaus (1971)). Let (fn)

∞
n=1 be a

sequence in D̃K such that fn
dK−→ f for some f ∈ DK . We will show that

f(t, ·) is continuous for every t and that will imply that f ∈ D̃K since f is
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automatically componentwise cádlág. Let (t, ξ) ∈ K1 × K2 = K and ǫ > 0.
Consider n ∈ N large enough so that dK(f, fn) <

ǫ
3 and take δ1 > 0 such that

the conclusions of Lemma 2.3 hold true for fn and ǫ
3 . Let (λn,1, λn) ∈ ΛK1×ΛK2

such that 9(λn,1, λn) 9K +‖f − fn ◦ (λn,1, λn)‖K < ǫ
3 . Since λn is continuous,

there is δ > 0 such that |ξ − η| < δ implies |λn(ξ)− λn(η)| < δ1. It follows that
|fn(λn,1(t), λn(ξ))− fn(λn,1(t), λn(η))| < ǫ

3 whenever |ξ − η| < δ. Hence,

|f(t, ξ)− f(t, η)| ≤ |f(t, ξ)− fn(λn,1(t), λn(ξ))|+ |f(t, η)− fn(λn,1(t), λn(η))|
+ |fn(λn,1(t), λn(ξ))− fn(λn,1(t), λn(η))|

< ǫ, ∀ ξ, η ∈ K2 such that |ξ − η| < δ.

It follows that f(t, ·) is continuous for every t ∈ K1. Hence, f ∈ D̃K and D̃K is
closed.

Remark. Observe that the previous lemma implies that for a convergent se-
quence in DK with a limit in D̃K convergence in the d̃K and dK metrics are
equivalent. When the limit is continuous, convergence in any of these metrics is
equivalent to convergence in the sup-norm topology.

2.3. The sargmax functional on DK

We now turn our attention to the smallest argmax functional on DK .

Definition 2.4 (The sargmax Functional). A function f ∈ DK is said to
have a maximizer at a point x ∈ K if any of the quadrant-limits of x equals
supξ∈K{f(ξ)}. For any f ∈ DK we can define the smallest argmax of f over the
compact rectangle K, denoted by sargmaxx∈K{f(x)}, as the unique element
x = (x1, . . . , xd) ∈ K satisfying the following properties:

(i) x is a maximizer of f over K,
(ii) if ξ = (ξ1, . . . , ξd) is any other maximizer, then x1 ≤ ξ1,
(iii) if ξ is any maximizer satisfying xj = ξj ∀ j = 1, . . . , k for some k ∈

{1, . . . , d− 1}, then xk+1 ≤ ξk+1.

We say that x is the largest maximizer of f , denoted by largmaxξ∈K{f(ξ)}, if it
is a maximizer that satisfies (ii) and (iii) above with the inequalities reversed.

The first question that one might ask is whether or not the sargmax is well
defined for all functions in the Skorohod space. Before attempting to give an
answer, we will use our notation to clarify the concept of a maximizer: a point
x ∈ K is a maximizer of f ∈ DK if

max
ρ∈V

{f(x+ 0ρ)} = sup
ξ∈K

{f(ξ)}.

We can now prove a result concerning the set of maximizers of a function in DK .

Lemma 2.7. The set of maximizers of any function in DK is compact.
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Proof. Let f ∈ DK . Since the set of maximizers of f is a subset of the compact
rectangleK, it suffices to show that any convergent sequence of maximizers con-
verges to a maximizer. Let (xn)

∞
n=1 be a sequence of maximizers with limit x. For

each xn we can find ξn with |xn−ξn| < 1
n
and such that |f(ξn)−maxρ∈V{f(xn+

0ρ)}| < 1/n. Then we have that ξn → x and |f(ξn) − supξ∈K{f(ξ)}| < 1/n ∀
n ∈ N. Since K is the disjoint union of {Q̃(ρ, x)}ρ∈V , it follows that there is

ρ∗ ∈ V and a subsequence (ξnk
)∞k=1 such that ξnk

∈ Q̃(ρ∗, x) ∀ k ∈ N. Therefore,
the remark stated right after the definition of the Skorohod space implies that
f(ξnk

) → f(x+ 0ρ∗
) and, consequently, f(x+ 0ρ∗

) = supξ∈K{f(ξ)}.

The previous lemma can be used to show that the sargmax functional is well
defined on DK .

Lemma 2.8. For each f ∈ DK there is a unique element in x ∈ K such that
x = sargmaxξ∈K{f(ξ)}.

Proof. Let f ∈ DK . Since the set of maximizers of f is compact, if we can show
that it is nonempty then the compactness will imply that there is a unique
element x ∈ K satisfying properties (i), (ii) and (iii) of Definition 2.4. Hence, it
suffices to show that f has at least one maximizer. For this purpose, for each
n ∈ N choose xn such that supξ∈K{f(ξ)} < f(xn)+

1
n
. SinceK is compact, there

is x ∈ K and a subsequence (xnk
)∞k=1 such that xnk

→ x. Just as in the proof
of the previous lemma, we can find ρ∗ ∈ V and a further subsequence (xnks

)∞s=1

such that xnks
∈ Q̃(ρ∗, x) ∀ s ∈ N. It follows that f(xnks

) → f(x + 0ρ∗
) and

hence supξ∈K{f(ξ)} = f(x+0ρ∗
). Therefore, the set of maximizers is nonempty

and the sargmax is well defined.

We finish this section with a continuity theorem for the sargmax functional
on continuous functions.

Lemma 2.9. Let W ∈ DK be a continuous function which has a unique maxi-
mizer x∗ ∈ K. Then, the smallest argmax functional is continuous at W (with

respect to dK , d̃K and the sup-norm metric).

Proof. Let (Wn)
∞
n=1 be a sequence converging to W in the Skorohod topology.

Let ǫ > 0 be given and G be the open ball of radius ǫ around x∗ and let δ :=
(W (x∗) − supx∈K\G{W (x)})/2 > 0. By Lemma 2.6 we have ‖Wn −W‖K < δ

for all large n (dK , d̃K and ‖ ·‖K generate the same local topology onW ). Then

W (x∗) = 2δ + sup
x∈K\G

{W (x)} > δ + sup
x∈K\G

{Wn(x)} .

But ‖Wn −W‖K < δ also implies that supx∈K{Wn(x)} > W (x∗)−δ. The com-
bination of these two facts shows that if ‖Wn −W‖K < δ, then any maximizer
of Wn must belong to G. Thus, | sargmaxx∈K{Wn(x)} − x∗| < ǫ for n large
enough.
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3. A continuous mapping theorem for the sargmax functional on

functions with jumps

Lemma 2.9 shows that the sargmax functional is continuous on continuous func-
tions with unique maximizers. However, its raison d’être is to fix a unique max-
imizer on a function having multiple maximizers. Thus, a continuous mapping
theorem on functions with jumps and possibly multiple maximizers is desired.
We will show a version of the continuous mapping theorem on a suitable subset
of our space D̃K .

To state and prove our version of the continuous mapping theorem for the
sargmax functional, we need to introduce some notation. We start with the
space D0

K consisting of all functions ψ : K1 ×K2 → R which can be expressed
as:

ψ (t, ξ) = V0(ξ)1a−1≤t<a1 +

∞∑

k=1

Vk(ξ)1ak≤t<ak+1
+

∞∑

k=1

V−k(ξ)1a−k−1≤t<a−k
(3)

where (· · · < a−k−1 < a−k < · · · < a0 = 0 < · · · < ak < ak+1 < · · · )k∈N
is a se-

quence of jumps and (Vk)k∈Z
is a collection of continuous functions. Note that

D0
K ⊂ D̃K . Observe that the representation in (3) is not unique. However,

knowledge of the function ψ and of the jumps (ak)k∈Z completely determines
the continuous functions (Vk)k∈Z.

Our theorem will require not only Skorohod convergence of the elements of
D0

K , but also convergence of their associated pure jump functions. To define
properly these jump functions, we introduce the space S all piecewise constant,
cádlág functions ψ̃ : R → R such that ψ̃(0) = 0; ψ̃ has jumps of size 1; and
ψ̃(−t) and ψ̃(t) are nondecreasing on (0,∞). For any closed interval I ⊂ R we
introduce the space SI := {f |I : f ∈ S}. We endow the spaces SI with the usual
Skorohod topology dI . Observe that the fact that all elements of S are cádlág
and have jumps of size one implies that any function in SI has a finite number
of jumps on I.

We associate with every ψ ∈ D0
K , expressed as in (3), a pure jump function

ψ̃ ∈ S whose sequence of jumps is exactly the ak’s, i.e.,

ψ̃ (t) =

∞∑

k=1

1ak≤t +

∞∑

k=1

1a−k>t. (4)

We will show that Skorohod-convergence of functions in D0
K and Skorohod

convergence of their associated pure jump functions implies convergence of the
corresponding sargmax and largmax functionals.

The following convergence result is a generalization of both, Lemma 3.1 of
Lan et al. (2009) and Lemma A.3 in Seijo and Sen (2010).

Theorem 3.1. Assume that d ≥ 2 and let (ψn, ψ̃n)
∞
n=1, (ψ0, ψ̃0) be functions

in D0
K × SK1 such that ψn satisfies (3) for the sequence of jumps of ψ̃n for any

n ≥ 0. Assume that (ψn, ψ̃n) → (ψ0, ψ̃0) in D0
K × SK1 (with the product topol-

ogy). Suppose, in addition, that ψ0 can be expressed as (3) for the sequence of
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jumps (· · · < a−k−1 < a−k < · · · < a0 = 0 < · · · < ak < ak+1 < · · · )k∈N
of ψ̃0

and some continuous functions (Vj)j∈Z, each having a unique maximizer on
K2, with the property that for any finite subset A ⊂ Z there is only one j ∈ A
for which

max
m∈A

{
sup
ξ∈K2

{Vm(ξ)}
}

= sup
ξ∈K2

{Vj(ξ)} . (5)

Finally, assume that ψ0 has no jumps at the extreme points of K1. Then,

(i) sargmax
x∈K

{ψn(x)} → sargmax
x∈K

{ψ0(x)} as n→ ∞;

(ii) largmax
x∈K

{ψn(x)} → largmax
x∈K

{ψ0(x)} as n→ ∞.

The result is also true when d = 1 under the same assumptions, but taking the
sequence (Vj)j∈Z to be a sequence of constants such that for any finite subset
A ⊂ Z there is a unique j ∈ A such that maxm∈A{Vm} = Vj .

Proof. We focus on the case when d > 1 as the one-dimensional case is just
Lemma 3.1 of Lan et al. (2009). Without loss of generality, assume that K1 =
[−C,C] for some C > 0.

We can write ψn in the form (3) with (· · · < an,−k−1 < an,−k < · · · < an,0 =
0 < · · · < an,k < an,k+1 < · · · )k∈N being the sequence of jumps of ψn and

Vn,j being the continuous functions. Consequently, ψ̃n, the pure jump function
associated with ψn, can be expressed as (4) with jumps at (an,k)k∈Z.

LetNr andNl be the number of jumps of ψ̃0 in [0, C] and [−C, 0) respectively.
Let ǫ > 0 be sufficiently small such that all the points of the form aj ± ǫ are
continuity points of ψ0, for −Nl ≤ j ≤ Nr. Since convergence in the Skorohod
topology of ψ̃n to ψ̃0 implies point-wise convergence for continuity points of ψ̃0

(see page 121 of Billingsley (1968)), and all of them are integer-valued functions,
we see that ψ̃n(aj − ǫ) = j − 1 and ψ̃n(aj + ǫ) = j for any 1 ≤ j ≤ Nr, and

ψ̃n(C) = Nr for all sufficiently large n. Thus, for all but finitely many n’s we
have that ψ̃n has exactly Nr jumps between 0 and C and that the location of
the j-th jump to the right of 0 satisfies |an,j − aj | < ǫ. Since ǫ > 0 can be made
arbitrarily small, we get that all the jumps an,j converge to their corresponding
aj for all 1 ≤ j ≤ Nr. The same happens to the left of zero: for all but finitely

many n’s, ψ̃n has exactly Nl jumps in [−C, 0) and the sequences of jumps
(an,−j)

∞
n=1, 1 ≤ j ≤ Nl, converge to the corresponding jumps a−j .

Let V ∗ = sup {Vj(ξ) : ξ ∈ K2,−Nl ≤ j ≤ Nr}. Our assumptions on the Vj ’s
imply that this supremum is actually achieved at some unique vector ξ∗ ∈ K2

and that there is a unique “flat stretch” at which this supremum is attained
(the last assertion follows form (5)).

Suppose, without loss of generality, that the maximum value is achieved in
an interval of the form [ak, ak+1 ∧ C) for a unique k ∈ {1, . . . , Nr}. Now, write
b0 = 0; bj =

aj+C∧aj+1

2 for 1 ≤ j ≤ Nr; and bj =
aj+(−C)∨aj−1

2 for −Nl ≤ j ≤
−1. Note that the bj ’s (for any value of ξ ∈ K2) are continuity points of both

ψ0 and ψ̃0.
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Let κ = min−Nl≤j≤Nr+1(C ∧ aj − (−C)∨ aj−1) be the length of the shortest
stretch. Take 0 < η, δ < κ/4. Considering the convergence of the jumps of ψn

to those of ψ0, there is N ∈ N such that for any n ≥ N , the following two
statements hold:

(a) Consider ρ > 0 such that if 9λ9K1 < ρ, then

sup {|s− λ(s)| : s ∈ [−C,C]} < δ.

The existence of such ρ follows from Lemma 2.5. By the convergence of ψn to
ψ0 in the Skorohod topology, there exists λn ∈ ΛK1 such that 9λn9K1 < ρ
and

sup
(t,ξ)∈K1×K2

{|ψn(λn(t), ξ)− ψ0(t, ξ)|} < η.

(b) For any 1 ≤ j ≤ Nr (respectively, j = 0, −Nl ≤ j ≤ −1), bj lies some-
where inside the interval (an,j + δ, C ∧ an,j+1 − δ) (respectively (an,−1 + δ,
an,1 − δ), ((−C) ∨ an,j−1 + δ, an,j − δ)). This follows from what was proven
in the first two paragraphs of this proof.

From (a) we see that |λn(bj) − bj | < δ for all −Nl ≤ j ≤ Nr. But (b) and
the size of δ in turn imply that bj and λn(bj) belong to the same “flat stretch”
of ψn and thus ψn(λn(bj), ξ) = ψn(bj , ξ) = Vn,j(ξ) for all ξ ∈ K2 and all
−Nl ≤ j ≤ Nr. Considering again (b) and the second inequality in (a), we
conclude that ‖Vn,j − Vj‖K2

< η for all −Nl ≤ j ≤ Nr and all n ≥ N . Hence,
all the sequences (Vn,j)

∞
n=1 converge uniformly in K2 to their corresponding Vj .

Consequently:

max
−Nl≤j≤Nr

j 6=k

{
sup
ξ∈K2

Vn,j(ξ)

}
−→ max

−Nl≤j≤Nr

j 6=k

{
sup
ξ∈K2

Vj(ξ)

}
,

max
ξ∈K2

{Vn,k(ξ)} −→ max
ξ∈K2

{Vk(ξ)} = Vk(ξ
∗),

argmax
ξ∈K2

{Vn,k(h1, h2)} −→ argmax
ξ∈K2

{Vk(ξ)} = ξ∗,

lim
n→∞

max
−Nl≤j≤Nr

j 6=k

{
sup
ξ∈K2

Vn,j(ξ)

}
< lim

n→∞
max
ξ∈K2

{Vn,k(ξ)} .

The above, together with (5) and the fact that an,k → ak and an,k+1 → ak+1,
imply that

sargmax
x∈K

{ψn(x)} → (ξ∗, ak) = sargmax
x∈K

{ψ0(x)}
largmax

x∈K

{ψn(x)} → (ξ∗, ak+1) = largmax
x∈K

{ψ0(x)}

as n→ ∞.

We now present a version of the previous result but for random elements in
D0

K . To prove it, we will use Lemma 4.2 in Prakasa Rao (1969). In the remaining
of the paper we will use the symbol  to represent weak convergence.
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Lemma 3.1. Consider the random vectors {Wnǫ,Wn,Wǫ}n∈N

ǫ≥0 and W . Suppose
that the following conditions hold:

(i) limǫ→0 limn→∞ P (Wnǫ 6=Wn) = 0,
(ii) limǫ→0 P (Wǫ 6=W ) = 0,
(iii) Wnǫ  Wǫ (as n→ ∞) for every ǫ > 0.

Then, Wn  W .

In the next theorem we will be taking the sargmax and largmax functionals
over rectangles that may not be compact. When this happens, we say that
these functionals are well defined if there is an element in the corresponding
rectangle satisfying conditions (i)−(iii) defining the smallest and largest argmax
functionals (see Definition 2.4). If we are given a rectangle Θ ⊂ R

d which can
be written as the Cartesian product of possibly unbounded closed intervals, we
will denote by DΘ the collection of functions f : Θ → R whose restrictions to
all compact rectangles K ⊂ Θ belong to DK .

Theorem 3.2. Assume that K = K1 × K2 is a closed rectangle in R
d and

that 0 ∈ K◦
1 . Let (Ω,F ,P) be a probability space and let (Ψn,Γn)

∞
n=1, (Ψ0,Γ0)

be random elements taking values in D0
K × SK1 such that Ψn satisfies (3) for

the sequence of jumps of Γn for any n ≥ 0, almost surely. Moreover, suppose
that, with probability one, we have that: Ψ0 satisfies (5); Γ0 has no fixed time
of discontinuity; the sargmax and largmax functionals over K are finite for Ψ0

(this assumption is essential as K is not necessarily compact). If the following
hold:

(i) For every compact subinterval B1 ⊂ K1 and compact sub-rectangle B :=
B1 ×B2 ⊂ K we have (Ψn,Γn) (Ψ0,Γ0) on DB ×DB1 ;

(ii)

(
sargmax

θ∈K

{Ψn(θ)}, largmax
θ∈K

{Ψn(θ)}
)

= OP(1);

then we also have
(
sargmax

θ∈K

{Ψn(θ)}, largmax
θ∈K

{Ψn(θ)}
)
 

(
sargmax

θ∈K

{Ψ0(θ)}, largmax
θ∈K

{Ψ0(θ)}
)
.

Proof. Consider C > 0 and let

φn :=

(
sargmax

θ∈K

{Ψn(θ)}, largmax
θ∈K

{Ψn(θ)}
)

φn,C :=

(
sargmax

θ∈[−C,C]d∩K

{Ψn(θ)}, largmax
θ∈[−C,C]d∩K

{Ψn(θ)}
)
,

for all n ≥ 0. To prove the result, we will apply Theorem 3.1 and Lemma 3.1. Us-
ing the notation of the latter, set ǫ = 1

C
,Wnǫ = φn,C for n ≥ 1,Wǫ = φ0,C ,Wn =

φn for n ≥ 1 andW = φ0. From (ii) we see that limǫ→0 limn→∞ P (Wnǫ 6=Wn) =
0. Our assumptions on Ψ0 and Γ0 imply that limǫ→0 P (Wǫ 6=W ) = 0. Finally,
Theorem 3.1 and an application of Skorohod’s Representation Theorem (see
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either Theorem 1.8, page 102 in Ethier and Kurtz (2005) or Theorems 1.10.3
and 1.10.4, pages 58 and 59 in Van der Vaart and Wellner (1996)) show that
Wnǫ  Wǫ and hence, from Lemma 3.1, we conclude that φn  φ0.

4. On the necessity of the convergence of the associated pure jump

processes

Condition (i) in Theorem 3.2 involves the joint convergence of the processes
whose maximizers are being considered and their associated pure jump pro-
cesses. One may ask whether or not this condition is actually necessary for the
weak convergence of the corresponding smallest maximizers. A simple coun-
terexample shows that such a condition is indeed essential to guarantee the
desired weak convergence under the assumptions of Theorem 3.2.

Let Ψ be a two-sided, right-continuous Poisson process and T±1 := ± inf{t >
0 : Ψ(±t) > 0}. Consider the following DR-valued random elements: Ψ0 := −Ψ
and Ψn = Ψ0 +

1
n
1[ 12T−1,

1
2T1). Then, Ψn  Ψ in DI for every compact interval

I (in fact, the weak convergence holds in DR with the corresponding Skorohod
topology). However,

(
sargmax

R

{Ψn}, largmax
R

{Ψn}
)

=
1

2

(
sargmax

R

{Ψ0}, largmax
R

{Ψ0}
)
,

for all n ∈ N. It is easily seen that all the conditions of Theorem 3.2 hold, with
the exception of (i). Hence, the weak convergence of the processes Ψn alone is
not enough to guarantee weak convergence of the corresponding maximizers.

5. Applications

5.1. Stochastic design change-point regression

We start by analyzing the example of the least squares change-point estima-
tor given by (2) in the Introduction. Assume that we are given an i.i.d. se-
quence of random vectors {Xn = (Yn, Zn)}∞n=1 defined on a probability space
(Ω,A,P) having a common distribution P satisfying (1) for some parameter
θ0 := (ζ0, α0, β0) ∈ Θ := [c1, c2]×R

2. Suppose that Z has a uniformly bounded,
strictly positive density f (with respect to the Lebesgue measure) on [c1, c2] such
that inf |z−ζ0|≤η f(z) > κ > 0 for some η > 0 and that P(Z < c1)∧P(Z > c2) > 0.
For θ = (ζ, α, β) ∈ Θ, x = (y, z) ∈ R

2 write

mθ (x) := − (y − α1z≤ζ − β1z>ζ)
2
,

and Pn for the empirical measure defined by X1, . . . , Xn. Note that Mn (θ) :=

−Pn[mθ] and recall the definition of θ̂n.
The asymptotic properties of this estimator are well-known and have been

deduced by several authors. They are available, for instance, in Kosorok (2008)
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or Seijo and Sen (2010). It follows from Proposition 3.2 in Seijo and Sen (2010)

that
√
n(α̂n − α0) = OP (1),

√
n(β̂n − β0) = OP (1) and n(ζ̂n − ζ0) = OP (1).

For h = (h1, h2, h3) ∈ R
3, let ϑn,h := θ0 +

(
h1

n
, h2√

n
, h3√

n

)
and

Ên(h) := nPn

[
mϑn,h

−mθ0

]
.

A consequence of the rate of convergence result in Seijo and Sen (2010) is that
with probability tending to one, we have

ĥn := sargmax
h∈R3

Ên(h) =
(
n(ζ̂n − ζ0),

√
n(α̂n − α0),

√
n(β̂n − β0)

)
.

Write Ĵn for the pure jump process associated with Ên. It is shown in Lemma
3.3 of Seijo and Sen (2011) that

(a) (Ên, Ĵn) (E∗, J∗) in DK × SI ,

on every compact rectangle K = I × A × B ⊂ R
3 for some process E∗ ∈ DR3

with an associated pure jump process J∗. Then, an application of Theorem 3.2
shows that

ĥn =
(
n(ζ̂n − ζ0),

√
n(α̂n − α0),

√
n(β̂n − β0)

)
 sargmax

h∈R3

{E∗(h)}.

It must be noted that the results in Seijo and Sen (2010) are stated in terms
of a triangular array of random vectors that satisfy some regularity conditions.
Even in such generality, Proposition 3.3 in Seijo and Sen (2010) can be derived
from Theorem 3.2.

We would like to point out that the derivation of the asymptotic distribution
of this estimator can also be found in Kosorok (2008). The arguments there can
be modified to obtain the result from an application of Theorem 3.2.

5.2. Estimation in a Cox regression model with a change-point in

time

Define Θ := (0, 1) × R
p+2q for given p, q ∈ N. For θ = (τ, ξ) = (τ, α, β, γ) ∈

Θ = (0, 1) × R
p × R

q × R
q consider a survival time T 0, a censoring time C

and covariate cáglád (left-continuous with right-hand side limits) R
p+q-valued

process Z = (Z1, Z2) where the sample paths of Z1 and Z2 live in R
p and R

q,
respectively. Assume that C and Z have laws G and H , respectively. Note that
G is a distribution on the nonnegative real line and H a probability measure on
the space of left continuous processes with right-hand side limits. In our Cox
model with a change-point in time we make the additional assumption that,
conditionally on Z, the hazard function of the survival time is given by:

λ(t|Z) := lim
∆t↓0

P
(
t ≤ T 0 < t+∆t|T 0 ≥ t; Z(s), 0 ≤ s ≤ t

)

∆t

= λ(t)eα·Z1(t)+(β+γ1t>τ)·Z2(t)
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where λ is the baseline hazard function and · denotes the standard inner product
on Euclidian spaces. We write Pθ,λ,G,H for the law of (T 0, C, Z). We would like
to point out that we assume that G and the finite dimensional distributions of
Z are all continuous.

Suppose that there is a random sample

(T 0
1 , C1, Z1,1, Z2,1), . . . , (T

0
n , Cn, Z1,n, Z2,n)

i.i.d.∼ Pθ0,λ0,G0,H0

from which we are only able to observe Z1,j , Z2,j, ∆j := 1T 0
j
≤Cj

and Tj :=

T 0
j ∧ Cj for j = 1, . . . , n. The goal is to estimate the change-point τ0 ∈ (0, 1)

given these observations.

A standard method of estimation in this setting is via Cox’s partial likelihood,
in which case the likelihood and log-likelihood functions are given by

Ln(τ, α, β, γ) :=
∏

1≤k≤n

T 0
k≤Ck

e
α·Z1,k(T

0
k )+(β+γ1

T0
k
>τ

)·Z2,k(T
0
k )

∑
{1≤j≤n: T 0

k
≤T 0

j
∧Cj} e

α·Z1,j(T 0
k
)+(β+γ1

T0
k
>τ

)·Z2,j(T 0
k
)
,

ln(θ) := log (Ln(τ, ξ)) = log (Ln(τ, α, β, γ)) .

In this case, the maximum partial likelihood estimator of the change-point and
the covariate multipliers is given by

θ̂n = (τ̂n, ξ̂n) = (τ̂n, α̂n, β̂n, γ̂n) := sargmax
θ∈Θ

{ln(θ)}.

Pons (2002) derived the asymptotics for this estimator. For u = (u1, u2, . . . ,

u1+p+2q) = (u1, v) ∈ R
1+p+2q define θn,u =

(
τ0 + u1

n
, ξ0 + v√

n

)
. Then, under

some regularity conditions, Theorem 2 in Pons (2002) shows that

(
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
= sargmax

u∈R1+p+2q : θn,u∈Θ

{ln(θn,u)− ln(θ0)} = OP(1).

It can also be inferred from Proposition 3 and Theorem 3 of the same paper that
Ψn := ln(θn,u)− ln(θ0) Ψ on DK for every compact rectangle K ⊂ R

1+p+2q,
where Ψ is a stochastic process of the form

Ψ(u1, v) = Q(u1) + v · W̃ − 1

2
vĨ · v, (6)

with Q being a two-sided, compound Poisson process, W̃ a Gaussian random
variable independent of Q and Ĩ some positive definite matrix on R

(p+2q)×(p+2q).
For a detailed description of Q, W̃ and Ĩ we refer the reader to Section 4 of
Pons (2002).

If one defines Γn and Γ to be the pure jump processes associated with Ψn

and Ψ, respectively, it can be shown, using similar techniques as in the proof
of Theorem 3 of Pons (2002), that (Ψn,Γn)  (Ψ,Γ) on DB × DB1 for every
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compact subinterval B1 ⊂ R and compact rectangle B := B1 × B2 ⊂ R
1+p+2q.

Hence, Theorem 3.2 can be applied in this situation to conclude that
(
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
 sargmax

u∈R1+p+2q

{Ψ(u)}.

It must be noted that the proof of Theorem 4 in Pons (2002) makes no mention
of the pure jump processes Γn and Γ. On the second sentence of this proof,
the author claims that the asymptotic distribution follows just from the weak
convergence of the processes Ψn. As we saw in Section 4 this fact alone is not
enough to conclude the weak convergence of the smallest maximizers. Thus, the
argument given in this section completes the mentioned proof in Pons (2002).

5.3. Estimating a change-point in a Cox regression model according

to a threshold in a covariate

We will now discuss another application from survival analysis. Consider again
a Cox regression model but now with a covariate process of the form Z =
(Z1, Z2, Z3) where Z1 and Z2 are as in Section 5.2 and Z3 is a continuous
random variable in R. We will denote the survival and censoring times as in
Section 5.2. We are now concerned with a hazard function of the form

λ(t|Z) = λ(t)eα·Z1(t)+β·Z2(t)1Z3≤ζ+γ·Z2(t)1Z3>ζ ,

for α ∈ R
q, β, γ ∈ R

q and some ζ ∈ I where I is a closed interval entirely
contained in the interior of the support of Z3. We now consider the parameter
space Θ := I × R

p+2q and we write θ = (ζ, ξ) := (ζ, α, β, γ) ∈ Θ. The partial
likelihood and log-likelihood functions are now given by

Ln(ζ, α, β, γ)

:=
∏

1≤k≤n

T 0
k≤Ck

e
α·Z1,k(T

0
k )+β·Z2,k(T

0
k )1Z3,k≤ζ+γ·Z2,k(T

0
k )1Z3,k>ζ

∑
{1≤j≤n: T 0

k
≤T 0

j
∧Cj} e

α·Z1,j(T 0
k
)+β·Z2,j(T 0

k
)1Z3,j≤ζ+γ·Z2,j(T 0

k
)1Z3,j>ζ

,

ln(θ) := log (Ln(ζ, ξ)) = log (Ln(ζ, α, β, γ)) .

As before, we assume that the observations come from a model with some spe-
cific value θ0 ∈ Θ. Following the notation of Section 5.2, for u = (u1, u2, . . . ,

u1+p+2q) = (u1, v) ∈ R
1+p+2q define θn,u =

(
ζ0 + u1

n
, ξ0 + v√

n

)
. Then, under

some regularity conditions, Theorem 2 in Pons (2003) shows that
(
n(ζ̂n − ζ0),

√
n(ξ̂n − ξ0)

)
= sargmax

u∈R1+p+2q: θn,u∈Θ

{ln(θn,u)− ln(θ0)} = OP(1).

Lemma 5 and Theorem 3 in Pons (2003) show that Ψn := ln(θn,u)− ln(θ0) 
Ψ on DK for every compact rectangleK ⊂ R

1+p+2q, where Ψ is another stochas-
tic process of the form (6) but with different two-sided, compound Poisson pro-
cess Q, Gaussian random variable W̃ and positive definite matrix Ĩ. The details
can be found in Section 4 of Pons (2003).
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Letting Γn and Γ to be the pure jump processes associated with Ψn and Ψ,
respectively, it can be shown that (Ψn,Γn)  (Ψ,Γ) on DB × DB1 for every
compact subinterval B1 ⊂ R and compact rectangle B := B1 × B2 ⊂ R

1+p+2q.
Hence, another application of Theorem 3.2 shows that

(
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
 sargmax

u∈R1+p+2q

{Ψ(u)}.

As in Pons (2002), the argument to derive the asymptotic distribution given
in the proof of Theorem 5 lacks a proper discussion of the convergence of the
associated pure jump processes. Therefore, the analysis just given can be seen
as a complement to the proof of Theorem 5 in Pons (2003).

More general models involving right censoring for survival times and a change-
point based on a threshold in a covariate can be found in Kosorok and Song
(2007). There, the change-point estimator also achieves a n−1 rate of conver-
gence. The asymptotic distribution of this estimator also corresponds to the
smallest maximizer of a two-sided, compound Poisson process and can be de-
duced from an application of Theorem 3.2. We would like to point out that the
above authors omit a discussion about the associated pure jump processes. They
claim the desired stochastic convergence follows from an application of Theorem
3.2.2 in Van der Vaart and Wellner (1996) (see the last paragraph of the proof
of Theorem 5 in page 985 of Kosorok and Song (2007)), but this theorem can-
not be applied as the maximizer of a compound Poisson process is not unique.
Thus, a proper application of Theorem 3.2 would complete the argument in
Kosorok and Song (2007).
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