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Abstract: This paper first proves that the sample based Pearson’s product-
moment correlation coefficient and the quotient correlation coefficient are
asymptotically independent, which is a very important property as it shows
that these two correlation coefficients measure completely different depen-
dencies between two random variables, and they can be very useful if they
are simultaneously applied to data analysis. Motivated from this fact, the
paper introduces a new way of combining these two sample based corre-
lation coefficients into maximal strength measures of variable association.
Second, the paper introduces a new marginal distribution transformation
method which is based on a rank-preserving scale regeneration procedure,
and is distribution free. In testing hypothesis of independence between two
continuous random variables, the limiting distributions of the combined
measures are shown to follow a max-linear of two independent χ2 random
variables. The new measures as test statistics are compared with several
existing tests. Theoretical results and simulation examples show that the
new tests are clearly superior. In real data analysis, the paper proposes to
incorporate nonlinear data transformation into the rank-preserving scale re-
generation procedure, and a conditional expectation test procedure whose
test statistic is shown to have a non-standard limit distribution. Data anal-
ysis results suggest that this new testing procedure can detect inherent
dependencies in the data and could lead to a more meaningful decision
making.
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1. Introduction

The determination of independence between variables enables us to measure
variable associations and draw accurate conclusions in a quantitative way. Test-
ing independence is a durable statistical research topic, and applications are
very broad. The seminal nonparametric test of independence by [16, 3] has been
widely used in many applications. The test (we shall use HBKR test through-
out the paper) is based on Hoeffding’s D-statistic which only uses ranks of
the observed values. In the literature, [13] introduced the extremely useful Z-
transformation function and test statistics, and [18] stated that the best present-
day usage in dealing with correlation coefficients is based on [12, 13]. Recently,
[14] showed that after Box-Cox transformation to approximate normal scales,
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the correlation based test is more efficient when testing independence between
two positive random variables. Besides Fisher’s Z-transformation test, many
other testing procedures have been developed, for instance, testing independence
in a two-way table ([9]), testing independence between two covariance stationary
time series ([17]), testing the independence assumption in linear models ([5]),
and others such as [1, 10, 29], as well as excellent reference books by [6, 7, 21]
and [27], among others.

When alternatives are either linearly dependent or nonlinearly dependent,
although much work has been done, there is no public consensus on which
method is the best. Empirical evidences have shown that the gamma test ([30])
performs much better than Fisher’s Z-transformation test when testing inde-
pendence while the alternatives are nonlinear dependence. There are certainly
other test statistics which can also achieve high detecting powers. In problems
for testing independence, it is not hard to find examples such that one test
performs better than another test, and vice versa. For example, Pearson’s cor-
relation coefficient based test statistics would have the best performance when
the alternative hypothesis is two random variables being linearly dependent,
especially when they are bivariate normal random variables.

Correlation is an extremely important and widely used analytical tool in
statistical data analysis. The classical correlation coefficient is Pearson’s prod-
uct moment coefficient which indicates the strength and direction of a linear
relationship between two random variables. Its history can be traced back to
the 19th century when Sir Francis Galton introduced correlation and regres-
sion, while Karl Pearson provided the mathematical framework we are familiar
with today. Since then, various (linear or nonlinear) correlation measures (coeffi-
cients) have been introduced in statistical inferences and applications. Examples
include Spearman’s rank correlation coefficient ([24]), Kendall tau rank corre-
lation coefficient ([22]), the distance correlation coefficient ([26]), the quotient
correlation coefficient ([30]), among many others. In the literature, there have
been attentions on other dependence measures such as positive dependence,
co-monotone dependence (or co-movement measures), negative dependence and
setwise dependence. [11, 20] are excellent reference books related to correlations
and multivariate dependencies like aforementioned ones. These dependence mea-
sures will not be considered in this paper.

An effective combination of correlation measures may be more informative
and useful in measuring association (strength) of the relationship, or in testing
independence, between two random variables. In some applications, one correla-
tion measure may lead to a better interpretation of data than another correlation
measure does, and vice versa. As a result, it is natural to consider a combination
of as many measures as possible to get a maximal strength measure of the rela-
tionship between two variables. This strategy may be too general to apply since
a limiting distribution of the combined measure may be difficult to derive, and
hence it is not applicable in testing hypothesis of independence. One may ar-
gue that a randomized permutation test can overcome this drawback. However,
a randomized permutation test does not guarantee a better performance. Our
simulation examples of combining Pearson’s correlation coefficient, Spearman’s
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rank correlation coefficient, Kendall tau rank correlation coefficient demonstrate
that combining more than two measures into a maximal strength measure does
not result in a better performance. The performance really depends on which
measures are included in the combination. Ideally, one would want a combined
measure which uses as few (say ≥ 2) measures as possible and achieves relatively
better performances when compared with commonly used measures.

Considering that Pearson’s correlation coefficient and the quotient correla-
tion coefficient are asymptotically independent, i.e., they measure completely
different dependence between two random variables, we propose to first combine
these two sample based correlation coefficients into a new association measure of
the relationship between two continuous random variables. On the other hand,
Pearson’s correlation coefficient may be the best linear dependence measure to
model dependence in the central region of the data, and the quotient correlation
is a nonlinear dependence measure to describe dependence in extreme values.
These facts indicate that a combination of these two coefficients will reveal more
inherent dependence between random variables. Due to the fact that the sample
based Pearson’s correlation coefficient is

√
n convergent, while the quotient cor-

relation coefficient is n convergent under the null hypothesis of independence,
the new associate measure is defined as the maximum of the squared root of the
quotient correlation coefficient and the absolute value of Pearson’s correlation
coefficient.

A combination of Pearson’s correlation coefficient and the quotient corre-
lation coefficient introduces a new dependence measure which leads to a new
test statistic for testing independence. We note that it is possible to find some
unusual examples from which both calculated coefficients are zero. In order to
overcome this drawback and to make a test statistic capable of testing every
alternative hypothesis, at least as broad as HBKR test, we include Hoeffding’s
D measure in our combination. We shall see that the magnitude of D statistic is
almost negligible in many examples. The asymptotic distribution of the new test
statistic follows a max-linear of two χ2 random variables with 1 and 4 degrees of
freedom respectively. This new test statistic performs better than existing tests.
For example, it performs as good as (or better than) existing tests when the
alternatives are linear dependence and guarantees the same detecting powers
as the gamma test when alternatives are nonlinear dependence. We shall see
that the newly proposed test statistic is constructed to sufficiently utilize and
maximize detecting powers of each component coefficient which may be used
as a test statistic alone, not just simply achieving a new test statistic which
outperforms a linear correlation based test statistic.

The rest of the paper is organized as follows. Main theoretical results deal-
ing with asymptotic independence are presented in Sections 2. Section 3 intro-
duces the new combined maximal strength measure. The limiting distribution
of the new combined correlation coefficient under the null hypothesis of two
random variables being independent is derived, and then a new max linear χ2

test statistic is introduced. In Section 4, we first derive a new rank-preserving
scale regeneration marginal transformation procedure using simulation which is
distribution free. The transformation procedure gives advantages in applying ex-
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treme value distributions. The limiting distribution of the test statistic defined
in Section 3 is again shown to be max linear χ2 distributed when the test statistic
is based on the transformed data. We further propose a new testing procedure,
i.e. a rank-preserving scale regeneration and conditional expectation (R.A.C.E)
test, from a practical perspective. The asymptotic distribution of R.A.C.E test
statistics is derived. Type I errors of the new test are illustrated. In Section 5,
power comparisons in simulation examples are presented for bivariate random
variables. In Section 6, we first extend our combined dependence measure to a
more general form and illustrate methods of data processing and variable scale
transformations. We apply the newly introduced max linear χ2 test in testing in-
dependencies among a group of random variables which are main index variables
related to cigarette taxes, cigarette sales, revenues, smoking rates, etc. Section 7
offers some remarks regarding application of our new results to statistical data
analysis. Finally, some technical proofs are summarized in Section 8.

2. Asymptotically independent sample statistics

2.1. The quotient correlation defined by two extreme order statistics

SupposeX and Y are identically distributed positive random variables satisfying
P(X ≥ Y ) > 0, P(X ≤ Y ) > 0. Then the quotients between X and Y are Y/X
and X/Y . Like the difference X − Y , the quotients can be used to measure the
relative positions between two variables.

Suppose {(Xi, Yi), i = 1, . . . , n} is a bivariate random sample of (X,Y ).
Let us consider two special cases: 1) X = Y , i.e. the perfect dependence, then
Y/X = 1, X/Y = 1, maxi≤n{Yi/Xi} = 1, and maxi≤n{Xi/Yi} = 1; 2) X ∈
(0,∞), Y ∈ (0,∞), and X and Y are independent, then maxi≤n{Yi/Xi} a.s.−→ ∞
and maxi≤n{Xi/Yi} a.s.−→ ∞ as n → ∞. When X and Y are neither perfectly
dependent nor independent, it is easy to see that both (maxi≤n{Xi/Yi}) and
(maxi≤n{Yi/Xi}) are asymptotically greater than 1 as n → ∞, or we say that
(maxi≤n{Xi/Yi}) and (maxi≤n{Yi/Xi}) are very likely to fall in (1,∞) for suf-
ficiently large n.

These relations clearly tell that maxi≤n{Yi/Xi} and maxi≤n{Xi/Yi} can be
used in defining a dependence measure between two random variables. When
maxi≤n{Yi/Xi} and maxi≤n{Xi/Yi} are close to 1 for any given large sam-
ple size, we can say that there are co-movements between {Xi} and {Yi},
i.e. there are strong correlation between X and Y . When maxi≤n{Yi/Xi} or
maxi≤n{Xi/Yi} is close to infinity or relatively very large, we can say that X
and Y are near independent.

Following the classical way of defining a correlation coefficient in a range of
(0,1), [30] introduced the sample based quotient correlation coefficient:

qn =
maxi≤n{Yi/Xi}+maxi≤n{Xi/Yi} − 2

maxi≤n{Yi/Xi} ×maxi≤n{Xi/Yi} − 1
. (2.1)
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Properties and geometric interpretation of (2.1) are illustrated in [30]. [30] also

showed that nqn
L−→ ζ (a gamma random variable), assuming that X and Y are

independent unit Fréchet random variables, i.e. FX(x) = FY (x) = e−1/x, x > 0.
For practical convenience, we make a convention that the marginal distributions
of X and Y in (2.1) are transformed to be unit Fréchet distributed. Under this
convention, quotient correlation coefficient can be applied to continuous random
variables, but not discrete random variables.

One of the most usages of the quotient correlation coefficient is to test the
hypothesis of independence between two random variables X and Y using the
gamma test statistic nqn. The testing hypotheses are

H0 : X and Y are independent versus H1 : X and Y are dependent. (2.2)

We shall see, for example, in a later section that the gamma test statistic nqn
does not achieve the best detecting power given that the alternative hypothesis
is bivariate normal. The reason is that qn measures the dependence among the
tail part (extreme values) of the data, so it may lose its detecting power if the
dependence mainly comes from the center part of the data. We note that a
more efficient test statistic related to qn for testing tail independence is the tail
quotient correlation coefficient. Our focus in this paper is testing independence,
not only testing tail independence.

As discussed in the introduction section, our goal is to find a test statistic
which works for every alternative hypothesis of dependence and leads to a better
performance than the existing test statistics. In the following sub-sections, we
study asymptotic independence of order statistics, and asymptotic independence
of sample correlations coefficients, which is very important in constructing a new
maximal strength dependence measure and a powerful test statistic.

2.2. Asymptotic independence of order statistics and extended

definition of quotient correlation coefficients

Now assume that {Xi, Yi}, i ≥ 1 are unit Fréchet distributed random variables.
Let Zi =

Yi

Xi
for 1 ≤ i ≤ n and Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be their order statistics.

We extend (2.1) to a general class of quotient correlation coefficients based on
the (n− i+ 1)th largest ratio and the jth smallest ratio:

qn(i, j) =
Z(n−i+1) + Z−1

(j) − 2

Z(n−i+1) × Z−1
(j) − 1

.

We note that the asymptotic independence of order statistics was first estab-
lished in [19]. Their results are very general. In Section 8, we re-state the asymp-
totic independence of order statistics in two lemmas (Lemmas 8.1 and 8.2) in
which certain specific marginal distributions are assumed, and the limit distri-
butions of the order statistics are characterized. Then for any fixed (i,j), from
Lemma 8.2, the limiting distribution of nqn(i, j) can be obtained. We state the
results in the following theorem whose proof is straightforward using Lemmas
8.1 and 8.2.
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Theorem 2.1. Suppose {Xi, Yi}, i ≥ 1 are iid unit Fréchet distributed random
variables. Then

nqn(i, j)
L−→ ζ,

where ζ is a random variable with the gamma(i+ j,1) density given by ((i+ j−
1)!)−1xi+j−1e−x, x > 0.

This theorem is very useful in constructing a robust statistical measure based
on observed values. For example, we can also consider the limiting distribution
for any weighted sum of qn(i, j) for 1 ≤ i, j ≤ k, where k ≥ 1 is a fixed integer.
However, this is beyond the scope of the current paper, and we shall consider
the choice of i and j and the weights as a future research project. Throughout
the paper, we will deal with the case of k = 1, and the results can be generated
to cases with an arbitrary k.

2.3. Asymptotic independence of Pearson’s correlation coefficient

and the quotient correlation coefficient

We first prove that under some mild conditions the sample mean vector of a
random sample of a random vector ξ is asymptotically independent of a sample
vector of componentwise maxima of a random vector η which is dependent of ξ.

Lemma 2.2. Let {(ξj ,ηj), 1 ≤ j ≤ n} be a sequence of independent random
vectors having the same distribution as that of vector (ξ,η) which are defined on
the same probability space, ξ = (ξ1, ξ2, . . . , ξp) is a random vector with finite co-
variance matrix Σξ, i.e. all elements in Σξ are finite, and η = (η1, η2, . . . , ηq) is
a random vector which belongs to the max-domain of attraction of a multivariate
extreme value distribution G(x1, . . . , xq), i.e.

lim
n→∞

[P (η1 ≤ a1nx1 + b1n, . . . , ηq ≤ aqnxq + bqn)]
n = G(x1, . . . , xq) for x ∈ R

q

(2.3)
where ain are positive normalizing constants, x = (x1, . . . , xq).

Set ξi = (ξ1i, ξ2i, . . . , ξpi), i = 1, . . . , n, ηi = (η1i, η2i, . . . , ηqi), i = 1, . . . , n,
and write µ = E(ξ), ξ̄ = 1

n

∑n
i=1 ξi = 1

n (
∑n

i=1 ξ1i,
∑n

i=1 ξ2i, . . . ,
∑n

i=1 ξpi) =
(ξ̄1, ξ̄2, . . . , ξ̄p), and Mη = (max1≤i≤n η1i, . . . ,max1≤i≤n ηqi). Then no matter
how random variables between ξ and η are dependent on each other, ξ̄ and Mη

are asymptotically independent, i.e.

P

(√
n(ξ̄ − µ) ≤ y,

max1≤i≤n ηki − bkn
akn

≤ xk, k = 1, . . . , q

)

→ Φ(Σ
−1/2
ξ yτ )G(x1, . . . , xq) (2.4)

as n → ∞, where Φ is the standard multivariate normal distribution function,
p and q are fixed integer numbers.

Suppose now that ξ = (ξ1, ξ2, ξ3, ξ4, ξ5), where ξ3 = ξ21 , ξ4 = ξ22 , ξ5 = ξ1ξ2;
η = (η1, η2), where η1 = g1(ξ1) and η2 = g2(ξ2) are unit Fréchet random
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variables. The sample Pearson correlation coefficient of ξ1 and ξ2 is given by

r(ξ1,ξ2)n =
ξ̄5 − ξ̄1ξ̄2

√

(ξ̄3 − ξ̄21)(ξ̄4 − ξ̄22)
. (2.5)

Then we have the following theorem.

Theorem 2.3. With the established notations, suppose ξ and η satisfy the
conditions in Lemma 2.2. Then

P

(√
n(r(ξ1,ξ2)n −r) ≤ z,

max1≤i≤n ηki − bkn
akn

≤ xk, k = 1, 2

)

→ Φ

(

z

σ

)

G(x1, x2)

(2.6)
as n → ∞, where r is Pearson correlation coefficient of ξ1 and ξ2, and µ1 =
E(ξ1), µ2 = E(ξ2), σ1 =

√

V ar(ξ1), σ2 =
√

V ar(ξ2),

σ2 =

(

1 +
r2

2

)

E

(

ξ1 − µ1

σ1

)2(
ξ2 − µ2

σ2

)2

+
r2

4
E

((

ξ1 − µ1

σ1

)2

+

(

ξ2 − µ2

σ2

)2)2

− rE

(

ξ1 − µ1

σ1

)(

ξ2 − µ2

σ2

)((

ξ1 − µ1

σ1

)2

+

(

ξ2 − µ2

σ2

)2)

,

and Φ is the standard normal distribution function.
Furthermore, when ξ1 and ξ2 are independent, and denote Xi = η1i, Yi = η2i

in (2.1). Then we have

lim
n→∞

P (
√
nr(ξ1,ξ2)n ≤ z, nqn ≤ x) = Φ

(

z

σ

)

Fg(x) (2.7)

with Fg(x) is a gamma(2,1) distribution function.

3. Integrating two correlation coefficients

The asymptotic independence of rn (the same as r
(ξ1,ξ2)
n throughout the pa-

per) and qn reveals that these two sample based correlation coefficients measure
completely different dependencies between two random variables. We can see
that the most popular sample based Pearson’s correlation coefficient defined
by (2.5) is mainly determined by the center part of data. It is an antithetical
and complementary measure of the quotient correlation, which is a very impor-
tant and desirable property to satisfy when one combines measures together.
A natural choice of the combination is simply taking the maximum of the two
correlation coefficients. We note that Pearson’s correlation coefficient requires
each marginal distribution having a finite second moment. Hence we may need
to perform scale transformation in calculating rn. In the rest of the paper, we
will first perform marginal transformation of {(Xi, Yi), i = 1, . . . , n} to

(i) unit Fréchet scale when qn is implemented;
(ii) pre-specified marginal with finite second moment, for example, a standard

normal distribution when rn is implemented;
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Such transformation is straightforward if the marginal distributions of X and
Y are known. In Section 4, a distribution free scale transformation procedure is
proposed to deal with the case when the marginal distributions are unknown.

3.1. How to combine two correlation coefficients: A view from

testing hypotheses

Suppose two unit Fréchet random variables X and Y satisfy the following prop-
erties:

P (X/Y < z) =

(

z

1 + z

)1+λ

, z > 0, 0 ≤ λ < 1, (3.1)

corr
(

Φ−1(e−1/X),Φ−1(e−1/Y )
)

= ρ. (3.2)

Then qn can be used to test the following hypotheses:

Hλ
0 : λ = 0 versus Hλ

1 : λ > 0, (3.3)

and rn can be used to test the following hypotheses:

Hρ
0 : ρ = 0 versus Hρ

1 : ρ 6= 0. (3.4)

Notice that H0 of (2.2) implies both Hλ
0 and Hρ

0 , but not reversely. There is no
direct connection between Hλ

0 and Hρ
0 . It is not known yet that whether Hλ

0

can imply H0. Nevertheless, if we simply use (3.3) or (3.4) to make inferences
about (2.2), the conclusion may not be optimal. A better inference problem is
to test

Hc
0 : max(λ, |ρ|) = 0 versus Hc

1 : max(λ, |ρ|) > 0. (3.5)

This motivates us to consider a maximal variable association measure by just
simply taking the maximum of two measures. We note that this idea is not
something new at all in the literature. One may argue that if we can take the
maximum of two measures, why not taking the maximum of as many measures
as possible. Theoretically, when we deal with sample based measures, taking the
maximum of many measures is not a good strategy since the limiting distribution
under Hc

0 can not be characterized even with the maximum of two coefficients
if they are not appropriately chosen, not to mention the derivations under the
alternatives. We aim to develop such a combination under which a limit dis-
tribution is characterized under H0, and a limit distribution and asymptotic
powers are also derived under local alternatives.

We also note that (3.3) is only one of applications of qn, and we shall not
consider that qn is derived for a family of distributions satisfying (3.1) only.

3.2. The maximum of two transformed and asymptotically

independent correlation coefficients

UnderH0 of (2.2), the quotient coefficient qn is shown to be n convergence ([30]),
and it is well known that rn is squared root n convergence. Therefore, qn and
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|rn| are not at the same scales, and qn is more likely to be smaller than |rn| for
a finite sample size. If we simply use the maximum of these two coefficients as
a new test statistic, qn may not be useful at all. To overcome this impediment,
we define a new combined variable association measure:

Cn = max(q1/2n , |rn|). (3.6)

When two random variables follow a bivariate normal distribution with the
correlation coefficient |ρ| < 1, we have Cn tending to |ρ| almost surely. In many
cases of two random variables being linearly dependent, we shall have Cn tending
to linear correlation coefficient |ρ| almost surely, i.e. for sufficiently large n, Cn

equals |rn|. In the cases of ρ = 0, the limit of Cn is the same as the limit of q
1/2
n .

In the case of co-monotone or positive dependent, the limit of Cn can be either

from q
1/2
n or from |rn| depending on which one is in dominance. Therefore, for

a finite sample size n, Cn can be regarded as a nonlinear dependence measure.
Here we shall regard ‘linear’ as a special case of ‘nonlinear’. An extended and
practically useful nonlinear dependence measure is defined by (6.1) in Section
6.1 and is used in our real data analysis.

Notice that in the definition of the new association measure, we have cho-
sen not to perform a power transformation of Pearson’s correlation coefficient
rn, i.e. not to use |rn|2. The reason for this construction is two folds. First,
a linear correlation is easy to implement and interpret, and it serves as the
first association measure to compute in practice. It is a bench mark in checking
variable associations. Second, there does not exist a commonly used nonlinear
dependence measure which is as popular as Pearson’s correlation coefficient.

3.3. The limiting distributions of Cn under H0

Under H0 defined in (2.2), we have the following proposition:

Proposition 3.1. Under H0, the limiting distributions of Cn have the following
forms:

nC2
n

L−→ max

(

χ2
1,

1

2
χ2
4

)

,

where χ2
1 and χ2

4 are two independent χ2 random variables with 1 and 4 degrees
of freedom, respectively. We denote this limit random variable as χ2

max.

In Section 4 and the Appendix section, we will show that the limiting dis-
tribution of qn is the same as a χ2

4 when qn is derived based on nonparametric
marginal transformations. This is an important property of the quotient cor-
relation coefficient. In this paper, we propose a test statistic mainly based on
Proposition 3.1, which controls empirical Type I error probabilities being less
than their pre-specified nominal levels and still gives high detecting powers in
testing independence between two dependent random variables.

The limiting distribution of nC2
n leads to the following testing procedure (a

new max linear χ2 test):
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• If nC2
n > χ2

max,α, H0 of (2.2) is rejected; otherwise it is retained. Here

χ2
max,α is the upper α percentile of the random variable max(χ2

1,
1
2χ

2
4).

We note that the new max linear χ2 test achieves asymptotic power 100%
when two random variables under the alternative hypothesis are dependent and
either rn or qn has a nonzero limit. When both r2n and qn tend to zero with a
slower rate than n, the new max linear χ2 test still achieves asymptotic power
100%.

It is worth noting that for example qn is
√
n convergence when Xi and Yi

follow a bivariate Gumbel copula distribution, see [28] for the derivation, and
hence the max linear χ2 test will have asymptotic power one under the alterna-
tive hypothesis of Gumbel copula dependence.

3.4. Asymptotic powers under local alternatives

It can easily be shown that under any fixed alternative hypothesis Hλ
1 with

λ = λ1 > 0, nqn is an asymptotic power one test, and hence nC2
n is also an

asymptotic power one test under any fixed alternative hypothesis Hc
1 . We now

study the asymptotic powers under a class of local alternatives:

Hc
0 : λ = λ0 = 0, ρ = ρ0 = 0

versus HcLn
1 : ρ = ρn = ∆/

√
n, λ = λn = ∆/

√
n, ∆ > 0. (3.7)

Note that the distribution function of random variable max(χ2
1,

1
2χ

2
4) is given by

Fmax(x) = 2

(

Φ(
√
x)− 1

2

)(

1− e−x − 1

2
xe−x

)

, x ≥ 0,

where Φ is the standard normal distribution function.
Denote σ in Theorem 2.3 under H0 and HcLn

1 as σ0 and σn respectively, and
let uα = χ2

max,α which is the α level critical value of Fmax(x). Assuming nqn
under the alternative has the same limit as it has under H0, then under HcLn

1 ,
the asymptotic power is

βn = Pn(nC
2
n > uα) = 1− Pn(nqn < uα, nr

2
n < uα)

= 1− Pn

(

nqn < uα, −
√
uα

σ0
<

√
n(rn − ρn)

σn

σn
σ0

+

√
n(ρn − ρ0)

σn
<

√
uα

σ0

)

→ 1−
[

Φ

(

−∆

σ0
+

√
uα
σ0

)

− Φ

(

−∆

σ0
−

√
uα
σ0

)](

1− e−uα − 1

2
uαe

−uα

)

.

It is easy to see that if we fix the cutoff value as uα, then the asymptotic power

of using test statistic nr2n alone is 1− [Φ(− ∆
σ0

+
√
uα

σ0
)−Φ(− ∆

σ0
−

√
uα

σ0
)], while the

asymptotic power of using test statistic nqn alone is 1− (1− e−uα − 1
2uαe

−uα).
As a result, the combination of the two test statistics increases the asymptotic
detecting power.
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3.5. Incorporating Hoeffding’s D statistic

There are some unusual situations that both r2n and qn tend to zeros with the
rate n, and hence nC2

n as a test statistic does not have detecting power under
such unusual situations of alternative hypothesis of dependence. We propose to
include Hoeffding’s D statistic in our proposed maximal dependence measure
as:

Cδ
n = max(q1/2n , |rn|, |D|1+δ), (3.8)

where δ is a small positive number, say δ = 10−16, and D is defined as follows
([16]). Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a population with
the d.f. F (x, y), n ≥ 5, and let

D = Dn =
1

n(n− 1) · · · (n− 4)
Σ′′φ(Xα1 , Yα1 ; . . . ;Xα5 , Yα5),

where Σ′′ denotes summation over all α such that

αi = 1, . . . , n; αi 6= αj if i 6= j, (i, j = 1, . . . , 5),

φ(x1, y1; . . . ;x5, y5) =
1

4
ψ(x1, x2, x3)ψ(x1, x4, x5)ψ(y1, y2, y3)ψ(y1, y4, y5)

and
ψ(x, y, z) = I(x≥y) − I(x≥z)

where I(x≥y) is an indicator function. It is shown in [16] that − 1
60 ≤ Dn ≤ 1

30 .
We have P (χ2

max < 1/30) = 7.8716× 10−5, which tells that under H0, the value
of D is almost negligible. Under H0 and with δ > 0, n|Dn|1+δ converges to 0 in
probability, and hence Cδ

n has the same limit distribution as Cn has. We still call
nCδ

n as the new max linear χ2 test statistic. Under the alternative hypothesis,
D has a positive limit, and hence nCδ

n is an asymptotic power one test.
The use of D as a nonparametric test (HBKR test) of independence has

been well-known due to [16, 3]. The HBKR test has been embedded in many
statistical softwares such as SAS and R. We note that D statistic uses only
rank information of the data, and the magnitudes of the data are ignored. As a
result, D statistic may not be as powerful as a statistic which uses both ranks
and magnitudes. We aim to develop such a test statistic, and our simulation
results show that nCδ

n has a better performance, and the computation of nCδ
n

is very simple and fast.

4. Distribution free approaches for unknown marginals

4.1. Marginal transformation via rank-preserving scale regeneration

In the previous discussions, we assume that {(Xi, Yi), i = 1, . . . , n} can be
transformed to unit Fréchet scale and any other margins with finite second
moment. Such a transformation is straightforward if the marginal distributions
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of X and Y are known. In practical applications, however, we often face the case
that the marginal distributions are unknown. In this section, we propose a rank-
preserving scale regeneration marginal transformation procedure to overcome
this impediment.

We first generate two unit Fréchet samples of size n and denote ZX
(1) < ZX

(2) <

· · · < ZX
(n), Z

Y
(1) < ZY

(2) < · · · < ZY
(n) as the ordered samples respectively, and the

rank-preserving scale regeneration marginal transformation procedure results in
the following transformed data

X∗
i = ZX

(rank[Xi])
, Y ∗

i = ZY
(rank[Yi])

, i = 1, . . . , n. (4.1)

Note that with this procedure, the ranks of the original data are preserved, and
the transformed scales have the desired distribution.
The rank-preserving scale regeneration quotient correlation is defined as

qRn =
maxi≤n{Y ∗

i /X
∗
i }+maxi≤n{X∗

i /Y
∗
i } − 2

maxi≤n{Y ∗
i /X

∗
i } ×maxi≤n{X∗

i /Y
∗
i } − 1

. (4.2)

One immediate advantage of this definition is that the transformation does not
depend on any correction term (for example 1/n as in an empirical distribution
function based transformation). The transformation procedure gives advantages
in applying extreme value theory. The following Lemma 4.1 and Theorem 4.2
are evidences. We note that the simulation procedure here is similar to the
procedure in [30] which uses one simulated sample in two populations X and
Y . Here we simulate one sample for each population. We have the following
important lemma whose proof is given in Section 8.

Lemma 4.1. Suppose X and Y are independent absolutely continuous random
variables (not necessarily being unit Fréchet), {(Xi, Yi), i = 1, . . . , n} is a
random sample from (X,Y ), and {(X ′

i, Y
′
i ), i = 1, . . . , n} is a different random

sample from (X,Y ). Denote ZX
(1) < ZX

(2) < · · · < ZX
(n), Z

Y
(1) < ZY

(2) < · · · < ZY
(n)

as the ordered samples of {(X ′
i, Y

′
i ), i = 1, . . . , n} respectively. Define

X∗
i = ZX

(rank[Xi])
, Y ∗

i = ZY
(rank[Yi])

, i = 1, . . . , n.

Then {(X∗
i , Y

∗
i ), i = 1, . . . , n} is a random sample from (X,Y ).

Theorem 4.2. Suppose X and Y are independent continuous random variables
(not necessarily being unit Fréchet), and {(Xi, Yi), i = 1, . . . , n} is a random

sample from (X,Y ). Then qRn is asymptotically χ2 distributed - i.e., 2anq
R
n

L−→
χ2
4, as an/n → 1, n → ∞, where χ2

4 is a χ2 random variable with 4 degrees of
freedom.

A rigorous proof of Theorem 4.2 is given in Section 8. We note that Theorem
3.2 in [30] was proved under a stronger condition than necessary. The proof of
the above theorem does not need to satisfy that condition.

We find that the form (4.2) is easy to implement and the simulation results
are very close to qn which is based on a parametric transformation. Theorem
4.2 delivers the following testing procedure:
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• If n(max{(qRn )1/2, |rRn |, |D|1+δ})2 > χ2
max,α, H0 of (2.2) is rejected; oth-

erwise it is retained. Here rRn is computed using (2.5) based on the trans-
formed data (X∗

i , Y
∗
i ), i = 1, 2, . . . , n in (4.1) and their corresponding

marginally transformed normal values.

One can immediately see that Type I error probabilities of the above defined
test are the same as the testing procedure introduced in Section 3.3. One can
also see that asymptotic powers of the above defined test under the alternative
hypothesis are equal to asymptotic powers of the testing procedure introduced
in Section 3.3.

4.2. The rank-preserving scale regeneration and conditional

expectation test

When the procedure (4.1) is used, one may argue that a different variable trans-
formation may result in a different conclusion since the test is based on simulated
unit Fréchet random variates. This issue can be resolved by performing a large
number of max linear χ2 tests and making a convincing conclusion based on
rates of rejecting the null hypothesis.

Our testing procedure is:

• For a given random sample {(Xi, Yi), i = 1, . . . , n} of (X,Y ), we repeat
(4.1) N times, i.e. for each j ∈ {1, . . . , N}, we generate two unit Fréchet
samples of size n and denote ZX

j(1) < ZX
j(2) < · · · < ZX

j(n), Z
Y
j(1) < ZY

j(2) <

· · · < ZY
j(n) as the ordered samples respectively, and the rank-preserving

scale regeneration marginal transformation procedure results in the fol-
lowing transformed data

Xi,j = ZX
j(rank[Xi])

, Yi,j = ZY
j(rank[Yi])

, i = 1, . . . , n, j = 1, . . . , N. (4.3)

For each j, the correlation coefficient rRnj and the simulation based quo-

tient qRnj are computed using (2.7) and (4.2) based on the transformed
data (Xi,j , Yi,j), i = 1, 2, . . . , n, j = 1, . . . , N , and their correspond-

ing marginally transformed normal values. Define p-values P̃R
nj = 1 −

Fmax(n(max{(qRnj)1/2, |rRnj |, |D|1+δ})2).
• The decision rule is:

– If TN = 1
N

∑N
j=1 P̃

R
nj < p̃α, we reject the null hypothesis of indepen-

dence. The cut-off value p̃α is derived from an approximation theorem
presented below.

Theorem 4.3. With the established notations, suppose {(Xi, Yi), i = 1, . . . , n}
is a random sample of (X,Y ) with marginals being unit Fréchet, qn and rn are
defined in (2.1) and (2.5) respectively. Then

TN
a.s.−→ E(P̃R

n1|G) as N → ∞

where G is the σ-algebra generated by the random vectors (Xj , Yj), j ≥ 1.
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We want P (TN < p̃α) ≤ α, or approximately P{E(P̃R
n1|G) < p̃α} ≤ α. The

distribution of E(P̃R
n1|G) is generally unknown but is distribution-free under the

null hypothesis. We obtain the cut-off value of p̃α using Monte Carlo method in
which we obtain 50,000 p-values. We present the following table for a set of α
values which may satisfy the need of the most applications.

α .001 .005 .01 .025 .05 .1
p̃α 0.0036 0.0203 0.0415 0.0956 0.1663 0.2567
p̃α/α 3.6000 4.0600 4.1500 3.8240 3.3260 2.5670

In practice, we compare the average p-value TN with the cut-off values p̃α
and then make inferences. Or equivalently, we can compare ˜̃p = TN/(p̃α/α)
with α directly. In this case, we call ˜̃p a rank-preserving scale regeneration
and conditional expectation (R.A.C.E) test p-value. We argue that this method
should provide more information in testing the hypothesis of independence and
make a better and accurate conclusion.

4.3. An integrated testing procedure

We now summarize our proposed test procedures into an integrated one:

• Specify the significant level α, and δ = 10−16;
• When marginal distributions are known,

– Transform data to unit Fréchet scales and normal scales respectively,
and compute qn using (2.1) and rn using (2.5);

– If n[Cδ
n]

2 > χ2
max,α, H0 of (2.2) is rejected; otherwise it is retained.

• When marginal distributions are unknown,

– Generate two unit Fréchet samples of size n and denote ZX
(1) < ZX

(2) <

· · · < ZX
(n), Z

Y
(1) < ZY

(2) < · · · < ZY
(n) as the ordered samples respec-

tively;

– Compute qRn using (4.2) and rRn based on marginally transformed
normal data;

– We repeat the above two steps N times, denote qRn and rRn as qRnj
and rRnj , j = 1, . . . , N respectively, and then compute

P̃R

nj = 1− Fmax(n(max{(qRnj)1/2, |rRnj |, |D|1+δ})2), j = 1, . . . , N ;

– If TN = 1
N

∑N
j=1 P̃

R
nj < p̃α, we reject the null hypothesis of indepen-

dence. The cut-off value p̃α is derived from Theorem 4.3.

Empirical Type I error probabilities based on the above procedure and finite
sample sizes are illustrated in next section. Empirical detecting powers of sim-
ulation examples will be given in Section 5.
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Fig 1. Empirical Type I error probabilities. The left panel is for a test with a significant level
α = .1, and the right panel is for a test with a significant level α = .05. Simulations are
implemented in Matlabr 7.5 installed in Red Hat Enterprise Linux 5.

4.4. Empirical Type I error probabilities

The empirical Type I errors at levels .1 and .05 are demonstrated in Figure 1.
Simulation sample sizes are n = 25, 26, . . . , 49, 50, 55, 60, . . . , 95, 100, 110, 120,
. . . , 230, 240. For each fixed sample size, we run the new χ2 test 1000 times, then
compute the empirical Type I error proportions. Simulations are implemented
in Matlabr 7.5 installed in Red Hat Enterprise Linux 5. One can see that the
proposed χ2 test controls Type I error probabilities within their nominal levels.
The overall average empirical test level on the left panel is .0854, and the overall
average empirical test level on the right panel is .0395. They are overall slightly
conservative Type I errors.

5. Simulation examples

In this section, we use the following simulation procedure:

(1) Simulate a bivariate random sample from a pre-specified joint distribution
using Matlabr 7.5 installed in Red Hat Enterprise Linux 5.

(2) For each simulated univariate sequence, we use the procedure (4.1) to
transform the simulated data into unit Fréchet scales.

(3) Use distribution functions to convert the transformed unit Fréchet values
into normal scales.

(4) Use these transformed values to perform the new integrated tests from
Section 4.3.

For comparison purpose, we also conduct Fisher’s Z-transformation test, the
gamma test introduced in [30].

In Figures 2, 3, 4, the blue-colored-(circled)-dotted-dashed lines, the red-
colored-(squared)-dashed lines, the dark-(diamond)-solid lines, the magenta-
colored-(plus)-dashed lines, the green-colored-(cross)-dotted-dashed lines are
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Fig 2. Comparisons among the gamma test, Fisher’s Z-transformation test (see [13, 30] for
the definition of the test), the HBKR test, the new max linear χ2 test, and the new R.A.C.E
test. The left panel is for tests with sample sizes of 25. The right panel is for tests with sample
size of 50.

drawn from empirical powers calculated based on the gamma test, Fisher’s Z-
transformation test, HBKR test, the new max (linear) χ2 test, the new R.A.C.E
test introduced in Subsection 4.2 respectively.

Example 5.1. In this example, we simulate bivariate normal samples with
correlation coefficients ranging from 0 to 0.8 with an increment 0.05 and fixed
sample sizes 25 and 50 respectively. At level α = 0.10, empirical detecting powers
are calculated based on 1000 repeated samples. Performances of the five tests
are shown in Figure 2.

It is clear that when data is drawn from bivariate normal, arguably Fisher’s
Z-transformation test should perform better than any other tests which are not
constructed from the correlation coefficients. We see that the new max linear
χ2 test in this example performs as good as Fisher’s Z-transformation test, the
R.A.C.E test and HBKR test also perform as good as Fisher’s Z-transformation
test. Their corresponding power curves are complected with each other. In this
example, we see that the gamma test is not as powerful as the other four tests. In
other words, under the alternative hypothesis of dependence the combined test
statistic (the max linear new χ2 test statistic) boosts the power of the gamma
test to as high as the most powerful test of Fisher’s Z-transformation test.

Example 5.2. In this example, we simulate bivariate random samples from
(X,Y ), where X = U ∗B+(1+V/1000) ∗ (1−B), Y =W ∗B+(1+V/1000) ∗
(1 − B), U, V,W are independent uniform random variables over [0,1], B is a
Bernoulli random variable with success probability .95. Sample sizes are 25, 26,
. . . , 240. Empirical powers for all tests are plotted in Figure 3.
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Fig 3. Empirical powers of five tests. All tests are at level α = .1 (left panel) and α = .05
(right panel).

From Figure 3, we see that the most powerful test is the gamma test in this
example, and the performance of the new max linear χ2 test is as good as the
gamma test. Notice that the dependence between X and Y in this example is in
extreme values, as a result the gamma test should have the best performance,
see [30]. In other words, under the alternative hypothesis of dependence the
combined test statistic (the new max linear χ2 test statistic) boosts the power
of Fisher’s Z-transformation test statistic to as high as the most powerful test of
the gamma test. Also notice that the R.A.C.E test was not as powerful as the
gamma test and the new max linear χ2 test in this example. This phenomenon
suggests that when we transform data using (4.1), the original ranks of the data
and how the data depends on each other affect the detecting powers. Neverthe-
less, it is still an acceptable approach in practice. We also make an important
note here. One may concern that rank transformations kill extreme values and
dependencies in data. This example shows that our proposed rank preserving
simulation transformation retains dependencies in data, which is very important
in practice.

In the next example, we demonstrate that the new max linear χ2 test and
the R.A.C.E test gain higher detecting power than the gamma test does. Due
to the fact that the moments do not exist in this example, we note that many
ordinary statistics may not be applicable to this example without performing
certain variable transformation procedures such as a Box-Cox transformation
or our newly proposed rank-preserving scale regeneration transformation.

Example 5.3. In this example, we simulate bivariate random samples from
(|X |, |Y |), where Y = X ∗E+W , and X is a standard Cauchy random variable,
E and W are independent standard normal random variables. Sample sizes are
25,26,. . . ,240. Empirical powers for all tests are plotted in Figure 4.
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Fig 4. Empirical powers of three tests. The significant levels in the left panel and in the right
panel are α = .1 and α = .05 respectively.

From Figure 4, under the alternative hypothesis of dependence the combined
test statistic (the max linear χ2 test statistic) boosts the powers of the gamma
test to higher levels. Note that Fisher’s Z-transformation test is not illustrated
here since it is not directly applicable to original data.

These three examples clearly suggest that the new max linear χ2 test is su-
perior. We have extensively applied the new max linear χ2 test to many other
simulation examples and observed that the new χ2 test outperforms existing
tests. Based on these test results, it may be safe to say that the new max linear
χ2 test has a better performance in testing independence between two ran-
dom variables. On the other hand, our newly proposed R.A.C.E test procedure
also achieves high detecting powers in our simulated examples. In practice, the
R.A.C.E test seems to be a more acceptable approach as it also suggests how
the null hypothesis of independence is rejected or retained.

In the next section, we conduct a real data of tobacco markets analysis.

6. Real data analysis

We first review some basic data processing and variable transformation proce-
dures. They are applied to our second new test procedure.

6.1. Measuring the maximum association: A practical perspective

In real data analysis, data are often transformed before computing various sta-
tistical measures. For example, in science and engineering, a log-log graph or a
log-log correlation is often used in data analysis. In the data processing, there
exist many transformation procedures in the literature, which satisfy different
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purposes. Popular transformations including Box-Cox transformation, logarithm
transformation, absolute value transformation, sign transformation, etc. It is
common to consider more than one transformation in a particular study. For
this purpose, let F be a collection of candidate transformations, we extend (3.6)
to be

C∗
n = sup

gx,gy∈F

max(q1/2n (gx, gy), |rn(gx, gy)|, |D(gx, gy)|1+δ), (6.1)

where qn(gx, gy) = qRn in (4.2) with (X∗
i , Y

∗
i ) being obtained from

X∗
i = ZX

(rank[gx(Xi)])
, Y ∗

i = ZY
(rank[gy(Yi)])

, i = 1, . . . , n,

rank[gx(Xi)] is obtained from transformed sample {gx(X1), gx(X2), . . . , gx(Xn)},
and rank[gy(Yi)] is defined similarly. |rn(gx, gy)| is calculated using (2.5) after
transforming (X∗

i , Y
∗
i ) into normal scales by distribution transformation, so is

D(gx, gy).
We regard (6.1) as the F maximum association measure between two random

variables. Of course, the choice of F is a practical issue, and one can choose
transformation functions for any special purposes. In this paper, we consider
the following family of six transformations which has very good performances in
most of our real data analysis. (i) X(i) = X ; (ii) X(ii) = −X ; (iii) X(iii) = |X |;
(iv) X(iv) = −|X |; (v) X(v) =

∣

∣ log
(

|X |/ak
)∣

∣; (vi) X(vi) = −
∣

∣ log
(

|X |/ak
)∣

∣,
where ak is the kth percentile of |X |.
Remark 1. When X is a positive random variable, (iii) is the same as (i), and
(iv) is the same as (ii). The purpose of (ii) is to study the negative dependence
between two random variables X and Y through (X(i), Y (ii)), or (X(ii), Y (i)).
The purpose of (iii) is to study the dependence between values near zero in X (or
respectively Y ) and values in any part in Y (or respectively in X). The purpose
of (v) is to study the dependence between values near the pth percentile of |X |
(or respectively of |Y |) and values in any other part in Y (or respectively in X).
The rest of transformations can be interpreted accordingly. We have total 36
combinations of transformations, i.e. (X(s), Y (t)), s, t,= i, ii, iii, iv, v, vi. One
can find an optimal choice of k. In our real data analysis, we will choose k from
two sets of numbers {.05, .20, .50, .80, .95} and {.10, .25, .30, .45, .60, .75}.

In the next subsection, we use the variable transformations (i), (ii), (v), and
(vi) with the choice of k from each of the above two sets of numbers. The number
of combinations of forming new bivariate transformed sample in {(X(s), Y (t)),
s, t = i, ii, v, vi} for each pair is 324.

Under the above variable transformations (or other F), our refined R.A.C.E
testing procedure is:

• For each transformed data {(Xi(s), Yi(t)), i = 1, . . . , n} where s, t ∈
{i, ii, iii, iv, v, vi}, we repeat (4.1) N times, and hence we get N p-values.
After taking the average TN of the N p-values, we get the rank-preserving
scale regeneration and conditional expectation (R.A.C.E) p-value ˜̃p =
TN/(p̃α/α), where cut-off value p̃α is given in Section 4.2. Then we keep
the combination which has the smallest ˜̃p-value.
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• If the smallest ˜̃p value is less than α, we reject the null hypothesis of
independence.

6.2. About the data

“Did You Know? Cigarettes kill about 4.8 million people every year around
the world. This is expected to rise to 10 million per year by 2020.” [25]. Such
situation makes it a significant public health problem, and a social economic
problem as well. Here, we are interested in exploring correlation measures among
seven main tobacco consumption related variables. They are cigarette tax per
pack in US dollar, FY 2007 cigarette pack sales in 100 millions, FY 2007 cigarette
tax revenue in 100 million US dollars, retail price per pack with all taxes in US
dollar, CDC state smoking costs per pack sold in US dollar, youth smoking
rate, adult smoking rate. These variables are denoted as Tax, Sales, Revenue,
Price, Costs, Youth, and Adult respectively in figures and tables. Our data
source is [4]. Behavior Risk Factor Surveillance Survey (BRFSS); State Cigarette
Taxes: http://www.tobaccofreekids.org/research/factsheets/pdf/0099.pdf. The
data sample size is 51 (50 US states plus Washington D.C.), i.e. each state has
one record in Year 2007. The paired scatter plots are demonstrated in Figure 5.

From Figure 5, we can see that only cigarette tax per pack and retail price per
pack with all taxes show a clear strong linear correlation (also positive depen-
dence and co-monotone as well). All other subplots either suggest a nonlinear
correlation or no correlation. Calculated kurtosis and skewness for each variable

Tax
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Fig 5. Scatter plots for seven tobacco market variables.

http://www.tobaccofreekids.org/research/factsheets/pdf/0099.pdf
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Table 1

This table reports p-values obtained when Fisher Z-transformation tests (upper triangle
part) were applied to data drawn from Figure 5

P-value Sales Revenue Price Costs Youth Adult
Tax 0.0003 0.0000 0 0 0.0000 0.0000
Sales 0 0.0030 0.2654 0.0806 0.0137
Revenue 0.0000 0.0000 0.0197 0.0278
Price 0 0.0000 0.0000
Costs 0.0000 0.0000
Youth 0

show that all variables are not normally distributed; variables Sales, Revenues
and Costs are showing fat tail behaviors, probably variable Adult too; variable
Youth is skewed to the left, and all other variables are skewed to the right.
Based on these observations, it may not be appropriate to calculate correlation
coefficients and to perform Fisher’s Z-transformation test since they are valid
under assumptions of either a finite first moment or a finite second moment from
each random variable. In other words, when using these calculated quantities,
one should use them with caution.

In this analysis, one of our primary goals is to demonstrate how to use the
newly combined measure, and the new χ2 test. We still calculate correlation
coefficients of variables and perform Fisher’s Z-transformation test by using
original data for comparison purpose.

In Table 1 (upper triangle part), we applied Fisher-Z transformation test
to all pairs. We see that there are two pairs which may suggest independence
or no correlation. This conclusion may be a misleading. For example, it may
not be appropriate to suggest cigarette pack sales and Youth smoking rate are
uncorrelated. One would argue that the higher the Youth smoking rate, the
more sales. This is a clear indication that we need a more powerful test for
testing independence between two random variables.

6.3. Testing hypothesis of independence via R.A.C.E test

For each combination of (X(s), Y (t)), we repeat (4.1) 100 times, and hence we
get 100 p-values. For each paired random variables, we keep the combination
which has the smallest ˜̃p-value, i.e., the rank-preserving scale regeneration and
conditional expectation p-value. Test results are reported in Tables 2 and 3.

In Table 2, [(s), (t)] stands for the kept combination, and two numbers in
the bracket below the kept combination stand for kth percentiles used in trans-
formations. For example, in the cell of Tax and Sales, observations in Tax are
divided by its 75th sample percentile, then taking the logarithm transforma-
tion, and finally taking the absolute value transformation, while observations
in Sales are divided by its 75th sample percentile, then taking the logarithm
transformation, the absolute value transformation, and finally taking a negative
sign transformation. In the cell of Price and Costs, observations in Price are
kept as their original values. In the cell of Revenue and Youth, observations in
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Table 2

This table reports percentiles and combinations used when the new χ2 tests were applied to
data drawn from Figure 5

Sales Revenue Price Costs Youth Adult
Tax [(vi), (v)] [(v), (v)] [(v), (v)] [(v), (v)] [(v), (vi)] [(vi), (v)]

[0.75, 0.75] [0.2, 0.5] [0.2, 0.05] [0.05, 0.05] [0.5, 0.3] [0.45, 0.10]
Sales – [(v), (v)] [(vi), (v)] [(v), (v)] [(v), (vi)] [(v), (vi)]

– [0.95, 0.95] [0.8, 0.95] [0.8, 0.05] [0.75, 0.10] [0.95, 0.20]
Revenue – [(v), (v)] [(vi), (vi)] [(ii), (v)] [(vi), (v)]

– [0.95, 0.05] [0.5, 0.05] [–, 0.05] [0.45, 0.45]
Price – [(i), (v)] [(v), (v)] [(v), (v)]

– [–, 0.05] [0.95, 0.05] [0.75, 0.10]
Costs – [(vi), (i)] [(vi), (v)]

– [0.05, –] [0.05, 0.05]
Youth – [(v), (v)]

– [0.05, 0.80]

Table 3

This table reports TN -values (upper triangle part) and their converted pseudo p-values
( ˜̃p = TN/(3.3260)) (lower triangle part) when 100 Max linear χ2 tests were applied to each

paired data

P-value Tax Sales Revenue Price Costs Youth Adult
Tax —— 0.0010 0.0194 0 0 0.0031 0.0001
Sales 0.0003 —— 0 0.0091 0.0784 0.0510 0.0187
Revenue 0.0058 0 —— 0.0147 0.0034 0.0678 0.1139
Price 0 0.0027 0.0044 —— 0 0.0009 0
Costs 0 0.0236 0.0010 0 —— 0.0055 0.0001
Youth 0.0009 0.0153 0.0204 0.0003 0.0017 —— 0.0003
Adult 0.0000 0.0056 0.0342 0 0.0000 0.0001 ——

Revenue are taken a negative sign transformation. The numbers in rest cells
can be interpreted similarly. We note that Table 2 also tells the directions of
the dependencies. For example, Tax and Sales are negatively correlated. When
Tax is at the 75th (sample) percentile or higher, Sales is more likely close to the
25th (sample) percentile.

We report TN -values in Table 3 (upper triangle part) and their converted
pseudo p-values (˜̃p = TN/3.3260) (lower triangle part), see the table in Section
4.2 regarding the factor number 3.3260. From the table and taking into account
of all possible transformations, we see that the TN -value between Sales and
Youth is 0.0510, while the TN -value between Revenue and Adult is 0.1139.
These are two largest TN -values in the analysis, and they are less than 0.1663.

Table 3 clearly gives more information on how a null hypothesis is rejected.
From this table, it may be safe to conclude that all paired variables are depen-
dent using the cut-off p̃α = 0.1663 when α = .05. We can see that it may be
problematic for conclusions based on Table 1 as some variables have heavy tails.
Especially using the new tests, we found that Sales and Costs are dependent,
and Revenue and Adult are also dependent.

Our analysis results can certainly be useful in guiding social economic re-
searchers for further studying correlations among those variables and influencing
their decision making. We argue that this kind of data analysis is very impor-
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tant in social economic studies. With powerful statistical tools, analysis results
can be influential in a sequence of political decisions, and economic decisions as
well. However, this task is beyond the scope of the current paper.

7. Conclusions

In general, it is not easy to derive the limiting distribution for the maxima
of several measures. Combining measures with the same or similar functional
properties is also not desirable as they do not give much gains in measuring
variable association strengths. In our combined measures, two candidate mea-
sures behave completely different. In the study of the combined measures, we are
able to not only derive the limiting distributions, but also provide normalizing
constants, which are especially useful for finite sample sizes. One can see that
from our simulation examples, the new max linear χ2 test at least achieves local
optimality in testing hypothesis of independence. The newly combined depen-
dence measures (6.1) can certainly be applied to many statistical applications in
clustering analysis, classifications, causality studies, just to name a few. It may
be safe to say that the newly combined coefficients can be used in any study
which may need to calculate correlation coefficients. In the cases where a ran-
dom variable does not have a finite second moment and a correlation coefficient
is not meaningful, the new measure is still meaningful. The new χ2 test can
easily be implemented in any statistical software packages. We note that the
new χ2 test performs much better than some existing tests when sample sizes
are small, which may be very useful when it is used in sample size calculations.

The methodology introduced in Section 4 can be used in many applications.
Lemma 4.1 and Theorem 4.3 deliver very general results which may lead to
new developments of statistical research topics. As illustrated in our simulation
examples and real data analysis, our refined testing procedure in Subsection 6.1
may give readers a better understanding and a clearer picture how the variables
are dependent of each other and how the null hypothesis of independence is
rejected.

8. Appendix

The limit results of the following two lemmas regarding the first k smallest
order statistics and the first k largest order statistics will be used in the proof
of Theorem 2.1.

Lemma 8.1. Let U1, U2, . . . , Un be n independent random variables uniformly
distributed over (0, 1), and U(1) ≤ U(2) ≤ · · · ≤ U(n) be their order statistics.
For any fixed integer k ≥ 1, set Wn = n(U(1), U(2), . . . , U(k)) and W ′

n = n(1 −
U(n), 1− U(n−1), . . . , 1− U(n−k+1)). Then

(Wn,W
′
n)

L−→ (W,W ′), (8.1)
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where W = (w1, w2, . . . , wk) and W
′ = (w′

1, w
′
2, . . . , w

′
k) are defined by

wi =
i
∑

j=1

Ej and w′
i =

i
∑

j=1

E′
j

for 1 ≤ i ≤ k, and Ej , E
′
j, j ≥ 1 are iid unit exponential random variables.

Lemma 8.2. Assume that Zi, i ≥ 1 are iid random variables with a distri-
bution function F (x). Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the order statistics of
Z1, Z2, . . . , Zn. Assume that

F (x) = x(1 + o(1)) and 1− F (
1

x
) = x(1 + o(1)) as x ↓ 0. (8.2)

Then for every fixed integer k ≥ 1 we have
(

nZ(1), nZ(2), . . . , nZ(k),
n

Z(n)
,

n

Z(n−1)
, . . . ,

n

Z(n−k+1)

)

L−→ (W,W ′),

where W and W ′ are defined as in Lemma 8.1.

Proof of Lemma 8.1. Since Wn and W ′
n have the same joint distributions, it

suffices to show that Wn
L−→W and that Wn and W ′

n are asymptotically inde-
pendent.

Let E(1) ≤ E(2) ≤ · · · ≤ E(n) be the order statistics of E1, E2, . . . , En. Then
it is well known that

(U(1), U(2), . . . , U(n))
d
=
(

1− exp(−E(1)), 1− exp(−E(2)), . . . , 1− exp(−E(n))
)

.
(8.3)

Further, we have from Eq (3.5.6) on page 34 of [2]:

(E(1), E(2), . . . , E(n))
d
=





1
∑

j=1

Ej

n− j + 1
,

2
∑

j=1

Ej

n− j + 1
, . . . ,

n
∑

j=1

Ej

n− j + 1



 .

(8.4)

For each fixed i, since E(i) → 0 in probability and nE(i)
L−→
∑i

j=1 Ej as n tends
to infinity, we have

Wn
d
= n

(

1− exp(−E(1)), 1− exp(−E(2)), . . . , 1− exp(−E(k))
)

= n(E(1), E(2), . . . , E(k)) +Op

(

1

n

)

L−→ (w1, w2, . . . , wk) as n→ ∞.

Set

Vn = n
(

1− exp(−E(1)), 1− exp(−E(2)), . . . , 1− exp(−E(k))
)

and
V ′
n = n

(

exp(−E(n)), exp(−E(n−1)), . . . , exp(−E(n−k+1))
)

.
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From (8.3), to show the asymptotic independence of Wn and W ′
n, it suffices to

prove the asymptotic independence of Vn and V ′
n. To this end, set

V ′′
n =n(exp(−(E(n)−E(k))), exp(−(E(n−1)−E(k))), . . . , exp(−(E(n−k+1)−E(k)))).

It follows from (8.4) that Vn and V ′′
n are independent. Since

V ′
n = V ′′

n exp(−E(k)) = V ′′
n (1 + op(1)),

the asymptotic independence of Vn and V ′
n is proved. This completes the proof

of the lemma. �

Proof of Lemma 8.2. Let F− denote the generalized inverse of F by

F−(u) = inf{x : F (x) ≥ u} for u ∈ (0, 1).

If U is a random variable uniformly distributed over (0, 1), then the distribu-
tion function of F−(U) is F . Therefore, F−(Ui), 1 ≤ i ≤ n are iid with the
distribution F and

(

Z(1), Z(2), . . . , Z(n)

) d
=
(

F−(U(1)), F
−(U(2)), . . . , F

−(U(n))
)

.

From condition (8.2) we have

F−(u) = u(1 + o(1)) and F−(1− u) =
1 + o(1)

u
as u ↓ 0.

Since U(i) → 0 and U(n−i+1) → 1 in probability, we have

F−(U(i)) = U(i)(1 + op(1)), F−(U(n−i+1)) =
1 + op(1)

1− U(n−i+1)

for 1 ≤ i ≤ k. Thus we have from Lemma 8.1
(

nZ(1), nZ(2), . . . , nZ(k),
n

Z(n)
,

n

Z(n−1)
, . . . ,

n

Z(n−k+1)

)

d
= (Wn,W

′
n) + op(1)

L−→ (W,W ′),

which completes the proof. �

Proof of Lemma 2.2. Without loss of generality assume µ = (0, . . . , 0). Let
t = (t1, . . . , tp) ∈ R

p. It suffices to show that ξ̄tτ and Mη are asymptotically
independent for every nonzero t. To this end, for every vector (x1, . . . , xq) with
G(x1, . . . , xq) ∈ (0, 1), set

Bn =

{

max1≤i≤n ηki − bkn
akn

≤ xk, k = 1, . . . , q

}

.

It suffices to show that the limit of the conditional distribution of
√
nξ̄tτ given

Bn is free of (x1, . . . , xq). Note that {τj := ξjt
τ , 1 ≤ j ≤ n} are iid random

variables with mean 0 and variance σ2
t := tΣξt

τ ∈ (0,∞).
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Set An = {ηk ≤ akn+bknxk, k = 1, . . . , q}. Then we have P (An) = 1+O( 1
n )

from (2.3). Let {τ ′n, 1 ≤ j ≤ n} denote a sequence of n iid random variables
distributed the same as the the conditional distribution of ξtτ given Bn. Then
we have

P
(√
nξ̄tτ ≤ y|Bn

)

= P

(

1√
n

n
∑

j=1

τ ′j ≤ y

)

(8.5)

for every y ∈ R.
Let Ān denote the complement of An and I(A) indicator function of event A.
It is easy to see by using Hölder’s inequality that

|E(τ ′1)| =
∣

∣

∣

∣

1

P (An)
E(τ1I(An))

∣

∣

∣

∣

=

∣

∣

∣

∣

1

P (An)
E(τ1I(Ān))

∣

∣

∣

∣

=
1

P (An)

√

E(τ21 I(Ān))
√

P (Ān) = o(n−1/2)

and

E(τ ′1)
2 =

1

P (An)
E(τ21 I(An)) =

1

P (An)
(σ2

t − E(τ21 I(Ān))) = σ2
t + o(1).

Note that
√
nξ̄tτ =

1√
n

n
∑

j=1

τj
d→ N(0, σ2

t ).

To conclude the theorem, from (8.5) we need to show that 1√
n

∑n
j=1 τ

′
j has the

same limiting distribution by verifying the following Lindeberg-Feller condition

1

n

n
∑

j=1

E(τ ′j)
2I(|τ ′j | > ε

√
nσt) ≤

1

P (An)
E(τ21 I(|τ | > ε

√
nσt)) → 0

for every ε > 0. The last step is obvious since E(τ21 ) ∈ (0,∞). This complete
the proof. �

Proof of Theorem 2.3. Without loss of generality we assume µ1 = µ2 = 0, and
σ1 = σ2 = 1. Then it follows from the central limit theorem that

√
n(ξ̄1, ξ̄2)

d→ N(0,Σ1) (8.6)

and

√
n

(

1

n

n
∑

k=1

ξ1kξ2k − r,
1

n

n
∑

k=1

ξ21k − 1,
1

n

n
∑

k=1

ξ22k − 1

)

d→ N(0,Σ2), (8.7)

where

Σ1 =

(

1 r
r 1

)
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and

Σ2 =





E(ξ21ξ
2
2)− r2 E(ξ31ξ2)− r E(ξ1ξ

3
2)− r

E(ξ31ξ2)− r E(ξ41)− 1 E(ξ21ξ
2
2)− 1

E(ξ1ξ
3
2)− r E(ξ21ξ

2
2)− 1 E(ξ42)− 1



 .

It follows from (8.6), (8.7) and Taylor’s expansion that

rn− r =
1

n

n
∑

k=1

ξ1kξ2k− r−
r

2n

n
∑

k=1

(ξ21k−1)− r

2n

n
∑

k=1

(ξ22k−1)+op(n
−1/2), (8.8)

which together with (8.7) yields

√
n(rn − r)

L−→ N(0, σ2).

The rest of the proof follows from Lemma 2.2 directly. �

The following result is closely related to Theorem 3.1 in [30]. It shows the
properties of a random sample of (X,Y ) with unit Fréchet margins.

Proposition 8.3. If X and Y are independent and have unit Fréchet margins,
i.e. FX(x) = FY (x) = e−1/x, x > 0, and (Xi, Yi), i = 1, . . . , n is a random
sample from (X,Y ), then

2anqn
L−→ χ2

4, (8.9)

where an/n → 1 as n → ∞, and χ2
4 is a χ2 random variable with 4 degrees of

freedom.

Proof of Lemma 4.1. Since {X1, . . . , Xn} is a random sample from a continuous
random variable, we have P{rank[Xi] = rank[Xj ], for i 6= j} = 0, which implies
that (rank[X1], . . . , rank[Xn]) takes any permutation of {1, . . . , n} with the same
probability 1/n!. Similarly, (rank[Y1], . . . , rank[Yn]) has the same distribution.

Note that (rank[X1], . . . , rank[Xn]) and (rank[Y1], . . . , rank[Yn]) are indepen-
dent, therefore (ZX

(rank[X1])
, . . . , ZX

(rank[Xn])
) and (ZY

(rank[Y1])
, . . . , ZY

(rank[Yn])
) are

independent.

We now derive the joint distribution of (ZX
(rank[X1])

, . . . , ZX
(rank[Xn])

). We have

P{ZX
(rank[X1])

≤ x1, . . . , Z
X
(rank[Xn])

≤ xn}

=
∑

(k1,...kn)∈T

P{ZX
(k1)

≤ x1, . . . , Z
X
(kn)

≤ xn, rank[X1] = k1, . . . , rank[Xn] = kn}

=
∑

(k1,...kn)∈T

P{ZX
(k1)

≤ x1, . . . , Z
X
(kn)

≤ xn}

× P{rank[X1] = k1, . . . , rank[Xn] = kn}

=
1

n!

∑

(k1,...kn)∈T

P{ZX
(k1)

≤ x1, . . . , Z
X
(kn)

≤ xn}



370 Z. Zhang et al.

where T is the collection of permutations of {1, . . . , n}. For any (k1, . . . , kn) ∈ T,
the joint density function of (ZX

(k1)
, . . . , ZX

(kn)
) is

fZX
(k1)

,...,ZX
(kn)

(t1, . . . , tn)

=

{

n!fZ(t1)fZ(t2) · · · fZ(tn), if rank[ti] = ki, i = 1, . . . , n;
0, otherwise.

Now define

D = {(t1, . . . , tn) | 0 < ti ≤ xi, i = 1, . . . , n},
A(k1, . . . , kn) = {(t1, . . . , tn) | rank[ti] = ki, 0 < ti ≤ xi, i = 1, . . . , n}.

Then we have
∑

(k1,...kn)∈T

P{ZX
(k1)

≤ x1, . . . , Z
X
(kn)

≤ xn}

=
∑

(k1,...kn)∈T

∫

A(k1,...,kn)

n!fZ(t1)fZ(t2) · · · fZ(tn)dt1 . . . dtn

= n!

∫

D
fZ(t1)fZ(t2) · · · fZ(tn)dt1 . . . dtn = n!

n
∏

i=1

P{ZX
i ≤ xi}.

The second equality holds because
⋃

(k1,...kn)∈T
A(k1, . . . , kn) = D, and for any

two permutations (k1, . . . , kn) and (k′1, . . . , k
′
n) we have

A(k1, . . . , kn) ∩ A(k′1, . . . , k
′
n) ⊂ {(t1, . . . , tn) | ti = tj , for some i, j}

which results in a zero probability event. Therefore, we obtain the joint proba-
bility of (ZX

(rank[X1])
, . . . , ZX

(rank[Xn])
, ZY

(rank[Y1])
, . . . , ZY

(rank[Yn])
) from

P{ZX
(rank[X1])

≤ x1, . . . , Z
X
(rank[Xn])

≤ xn, Z
Y
(rank[Y1])

≤ y1, . . . , Z
Y
(rank[Yn])

≤ yn}
= P{ZX

1 ≤ x1}P{ZX
2 ≤ x2} · · ·P{ZX

n ≤ xn}P{ZY
1 ≤ y1}P{ZY

2 ≤ y2}
· · ·P{ZY

n ≤ yn}

which implies that {ZX
(rank[X1])

, . . . , ZX
(rank[Xn])

} and {ZY
(rank[Y1])

, . . . , ZY
(rank[Yn])

}
are two independent samples from (X,Y ), and hence the proof is completed.�

Proof of Theorem 4.2. By Lemma 4.1, {ZX
(rank[X1])

, . . . , ZX
(rank[Xn])

} and

{ZY
(rank[Y1])

, . . . , ZY
(rank[Yn])

} are two independent samples from two independent
unit Fréchet random variables. Then we complete the proof by applying Propo-
sition 8.3. �

Proof of Theorem 4.3. For any fixed n, conditional on G, P̃R
nj , j ≥ 1 are bounded

iid random variables with a conditional expectation E(P̃R
n1|G). Therefore, the

theorem follows directly from the strong law of large numbers. �
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