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SIMULTANEOUS CONFIDENCE BANDS FOR YULE–WALKER
ESTIMATORS AND ORDER SELECTION

BY MORITZ JIRAK

Graz University of Technology

Let {Xk, k ∈ Z} be an autoregressive process of order q. Various estima-
tors for the order q and the parameters �q = (θ1, . . . , θq)T are known; the
order is usually determined with Akaike’s criterion or related modifications,
whereas Yule–Walker, Burger or maximum likelihood estimators are used
for the parameters �q . In this paper, we establish simultaneous confidence
bands for the Yule–Walker estimators θ̂i ; more precisely, it is shown that the
limiting distribution of max1≤i≤dn

|θ̂i − θi | is the Gumbel-type distribution

e−e−z
, where q ∈ {0, . . . , dn} and dn = O(nδ), δ > 0. This allows to modify

some of the currently used criteria (AIC, BIC, HQC, SIC), but also yields a
new class of consistent estimators for the order q. These estimators seem to
have some potential, since they outperform most of the previously mentioned
criteria in a small simulation study. In particular, if some of the parameters
{θi}1≤i≤dn

are zero or close to zero, a significant improvement can be ob-
served. As a byproduct, it is shown that BIC, HQC and SIC are consistent for
q ∈ {0, . . . , dn} where dn = O(nδ).

1. Introduction. Let {Xk}k∈Z be a qth-order autoregressive process AR(q)

with coefficient vector �q ∈ Rq . A considerable literature in the past years dealt
with various aspects and problems on AR(q)-processes; see, for instance, [4, 17,
23, 29] and the references therein. More recently, people have moved on to more
complicated models such as ARCH [14, 19], GARCH [13] and related models,
which again have been extended in many different directions. However, in many
applications, AR(q)-processes still form the backbone and are often used as first
approximations for further analysis; in particular, many estimation and fitting pro-
cedures can be based on preliminary AR(0q) approximations. This includes, for
instance, ARMA, ARCH and GARCH models [11, 22, 24]. Thus, AR(q) processes
have moved from the spotlight to the backstage area, yet their significance remains
unchallenged.

When fitting an AR(q) model, two important questions arise: how to choose
the order q , and having done so, which estimators are to be used. Naturally, these
two problems can hardly be separated and are often dealt with simultaneously,
or at least so in preliminary estimates. An extensive literature has evolved around
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these two issues. Pioneering contributions in this direction are due to Akaike [1, 2],
Mallows [30, 31], Walker [44] and Yule [49]; for more details we refer to [4, 15, 17,
23, 29] and the references there. In order to be able to describe some of the basic
results, we recall that an AR(q) process {Xk}k∈Z is defined through the recurrence
relation

Xk = θ1Xk−1 + · · · + θqXk−q + εk,(1.1)

where it is often assumed that {εk}k∈Z is a mean-zero i.i.d. sequence. Let φh =
E(XkXk+h), k,h ∈ Z, be the covariance function. A natural estimate for φh is the
sample covariance φ̂n,h = 1

n

∑n
i=h+1 XiXi−h. Depending on the magnitude of h,

a different normalization, such as (n − h)−1, is sometimes more convenient. De-
note with �q = (θ1, . . . , θq)

T the parameter vector and put �q = (φ1, . . . , φq)
T ,

and let �q = (φ|i−j |)1≤i,j≤q be the (q × q)-dimensional covariance matrix. Then
it follows from (1.1) that �q�q = �q; hence a natural idea is to replace the corre-
sponding quantities by estimators �̂q = (φ̂n,1, . . . , φ̂n,q)

T , �̂q = (φ̂n,|i−j |)1≤i,j≤q ,
and thus define the estimator �̂q = (θ̂1, . . . , θ̂q)

T via

�̂
−1
q �̂q = �̂q and σ̂ 2(q) = φ̂0 − �̂

T
q �̂q,(1.2)

where σ 2 = E(ε2
0). These estimators are commonly referred to as the Yule–Walker

estimators, and they have some remarkable properties. For example, if {Xk}k∈Z is
causal, then the fitted model

Xk = θ̂1Xk−1 + · · · + θ̂pXk−q + εk

is still causal; see, for instance, [17] and [34]. Another interesting feature is that
even though the Yule–Walker estimators are obtained via moment matching meth-
ods, their variance is asymptotically equivalent with those obtained via a maximum
likelihood approach. More precisely, for m ≥ q it holds that

√
n(�̂m − �m)

d→ N (0, σ 2�−1
m ),(1.3)

where �m = (θ1, . . . , θq,0, . . . ,0)T ; see, for instance, [17]. These asymptotic re-
sults form the basis for earlier estimation methods of the order q [37, 43, 45],
which focused on a fixed, finite number of possible orders and consist of multiple-
testing-procedures, which in practice leads to the difficulty of having a required
level. On the other hand, as it was pointed out by Shwarz [39], a direct likeli-
hood approach fails, since it invariably chooses the highest possible dimension.
Akaike [1] and Mallows [30, 31], developed a different approach, which is based
on a “generalized likelihood function.” Shibata [41] investigated the asymptotic
distribution and showed that the estimator based on (1.4) is not consistent. This
issue was successfully dealt with by Akaike [2] (BIC), Hannan and Quinn [25]
(HQC), Parzen [36], Rissanen [38] and Shwarz [39] (SIC), who introduced con-
sistent modifications (Parzen’s CAT-criterion is conceptually different). For more
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recent advances and generalizations, see, for instance, Barron et al. [6], Foster
and George [20], Shao [40] and the detailed review on model selection given by
Leeb and Pötscher [28]. A particularly interesting direction addresses AR(∞) ap-
proximations; recent contributions are due to Bickel and Yel [12] and Ing and
Wei [26, 27]. Here and now, we will content ourselves with briefly discussing
Akaike’s approach and closely related criteria. Akaike’s generalized likelihood
function leads to the expression

AIC(m) = n log σ̂ 2(m) + 2m,(1.4)

where n is the sample size and σ̂ 2(m) is as in (1.2). An estimator for the order q

is then obtained by minimizing AIC(m), m ∈ {0,1, . . . ,K}, for some predefined
0 ≤ q ≤ K . Consistent modifications are obtained by inserting an increasing se-
quence Cn, and AIC(m) then becomes

ÃIC(m) = n log σ̂ 2(m) + 2Cnm, m ∈ {0,1, . . . ,K}.(1.5)

Most modifications result in Cn = O(logn), even though the arguments are some-
times quite different. A notable exception is the idea of Hannan and Quinn [25],
who successfully employed the LIL to obtain Cn = O(log logn).

The aim of this paper is to introduce a different approach, based on the quan-
tity max1≤i≤dn |θ̂i − θi |, where dn is an increasing function in n. It is shown, for
instance, that, appropriately normalized, this expression converges weakly to a
Gumbel-type distribution. On one hand, this allows to construct simultaneous con-
fidence bands for the Yule–Walker estimators �̂dn , but also permits us to construct
a variety of different, consistent estimators for the order q of an autoregressive
process. The asymptotic distribution of such a particular estimator is also derived.
As a byproduct, it is shown that known consistent criteria such as BIC, SIC and
HQC are also consistent if the parameter space is increasing; that is, consistency
even holds if q ∈ {0, . . . , dn}, where dn = O(nδ). This partially gives answers to
questions raised by Hannan and Quinn [25] and Shibata [41], and extends results
given by An et al. [3]. In addition, the general method seems to be very useful for
model fitting for subset autoregressive processes (see, e.g., [33]), which is high-
lighted in Remark 2.11 and Section 3. A more thorough treatment of this issue is
postponed to a subsequent paper.

2. Main results. We will frequently use the following notation. For a vec-
tor x = (x1, . . . , xd)T , we put ‖x‖∞ = max1≤i≤d |xi |, and for a matrix A =
(ai,j ){1≤i≤r,1≤j≤s}, r, s ∈ N we denote with

‖A‖∞ = max{Ax|x ∈ Rs,‖x‖∞ = 1} = max
1≤i≤r

s∑
j=1

|ai,j |(2.1)

the usual induced matrix norm. In addition, we will use the abbreviation ‖ · ‖p =
(E(| · |p))1/p , p < ∞. The main results involve an array of AR(q) processes;
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more precisely, we consider the family of AR(dn) processes {X(r)
k }k∈Z, 1 ≤ r ≤ dn,

where dn = O(nδ) (more details are given later). Since we are always only dealing
with a single member of this array, the index (r) is dropped for convenience, and
we just consider an AR(dn) process {Xk}k∈Z, keeping in mind that the parameters
{θi}1≤i≤dn may depend on n. This implies that Xk satisfies the recurrence relation

Xk = θ1Xk−1 + · · · + θdnXk−dn + εk, k ∈ Z,(2.2)

where {εk}k∈Z defines the usual innovations. Note that dn does not need to reflect
the actual order q of the AR(dn) process, as we do not require that {θi}1≤i≤dn are all
different from zero. All of the results are derived under the following assumption
regarding the AR(dn) process {Xk}k∈Z.

ASSUMPTION 2.1. {Xk}k∈Z admits a causal representation Xk =∑∞
i=0 αi ×

εk−i , such that:

• supn �(m) = O(m−ϑ), ϑ > 0, where �(m) :=∑∞
i=m|αi |,

• {εk}k∈Z is a mean-zero i.i.d. sequence of random variables, such that ‖εk‖p < ∞
for some p > 4, ‖εk‖2

2 = σ 2 > 0, k ∈ Z,
• supn

∑∞
i=1|θi | < ∞, |θn| = O((logn)−1).

In accordance with the previously established notation, we introduce the inverse
and estimated inverse matrix

�−1
dn

= (γ ∗
i,j )1≤i,j≤dn, �̂

−1
dn

= (γ̂ ∗
i,j )1≤i,j≤dn.(2.3)

In addition, we will use the convention that θ0 = θ̂0 = −1. We can now formulate
our main result.

THEOREM 2.2. Let {Xk}k∈Z be an AR(dn) process satisfying Assumption 2.1.
Suppose that dn → ∞ as n increases, with dn = O(nδ) such that

0 < δ < min{1/2, ϑp/2}, (1 − 2ϑ)δ < (p − 4)/p.(2.4)

If we have in addition that infh|γ ∗
h,h| > 0, then for z ∈ R

P
(
a−1
n

(√
n max

1≤i≤dn

|(γ̂ ∗
i,i σ̂

2(dn))
−1/2(θ̂i − θi)| − bn

)
≤ z

)
→ exp(−e−z),

where an = (2 logdn)
−1/2 and bn = (2 logdn)

1/2 − (8 logdn)
−1/2(log logdn +

4π − 4).

REMARK 2.3. Condition infh |γ ∗
h,h| > 0 may be explicitly expressed in terms

of {θi}1≤i≤dn [see (4.1)], and is quite general. In fact, it is only needed to control
or exclude possible pathological cases.
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REMARK 2.4. Note that if we have |αi | = O(i−3/2), then ϑ ≥ 1/2. Hence
condition p > 4 implies that we may choose δ arbitrarily close to 1/2, which es-
sentially results in dn = O(

√
n).

The above remark indicates that we may obtain simple bounds for dn, provided
that we can control αi asymptotically. If the cardinality of the set {1 ≤ i ≤ dn|θi 
=
0} tends to infinity as n increases, then establishing general and simple conditions
on the relation between {θi}1≤i≤dn and �(m) seems to be very difficult. One may,
however, obtain the following corollary.

COROLLARY 2.5. Suppose that {εk}k∈Z is a mean-zero i.i.d. sequence of ran-
dom variables, such that ‖εk‖p < ∞ for some p > 4, ‖εk‖2

2 = σ 2 > 0, k ∈ Z, and
that one of the following conditions holds:

(i) supn

∑dn

i=1|θi | < 1,
(ii) θi = 0, q < i ≤ dn for some fixed q ∈ N which does not depend on n.

Then the conditions of Theorem 2.2 are satisfied and we can choose any dn =
O(nδ) with δ < 1/2.

REMARK 2.6. The rate of convergence to an extreme-value type distribution
as given in Theorem 2.2 can be rather slow; see, for instance, [5, 35]. Hence, in
view of (1.3) (and Theorem 6.1), it may be more appropriate to use the approxi-
mation

P
(

max
1≤i≤n

∣∣√n(γ̂ ∗
i,i σ̂

2)−1/2(θ̂i − θi)
∣∣≤ x

)
≈ P(‖ξdn

‖∞ ≤ x)

in practice, where ξdn
= (ξn,1, . . . , ξn,dn)

T is a dn-dimensional mean-zero Gaus-
sian random vector with the same covariance structure. Corresponding quantiles
can be obtained, for instance, via a Monte Carlo technique. However, if dn is suf-
ficiently large, one has that

P(‖ξdn
‖∞ ≤ x) ≈ P(‖ηdn

‖∞ ≤ x),

where ηdn
= (ηn,1, . . . , ηn,dn)

T is a sequence of i.i.d. mean-zero Gaussian random
variables with unit variance. A bound for the error can be given by using the tech-
niques developed by Berman [9] and Deo [18]; see also the proof of Theorem 2.8.

The above results allow us to construct the simultaneous confidence bands

M1(dn) =
{
�dn ∈ Rdn

∣∣
(2.5)

a−1
n

(√
n max

1≤i≤dn

|(γ̂ ∗
i,i)

−1/2(θ̂i − θi)| − bn

)
≤
√

σ̂ 2(dn)V1−α

}
,
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where V1−α denotes the 1 − α quantile of the Gumbel-type distribution given
above. In the literature [4, 17, 23] one often finds the confidence ellipsoids

M2(m) = {�m ∈ Rm|
(2.6)

(�̂m − �m)�̂m(�̂m − �m)T ≤ n−1σ̂ 2(m)χ2
1−α(m)},

where χ2
1−α(m) denotes the 1 − α quantile of the chi-squared distribution with m

degrees of freedom. Note that in general M1(dn) � M2(dn) and vice versa. The
confidence region M2(dn) can be viewed as a global measure, where the impact of
single elements {|θ̂i − θi |}1≤i≤dn is negligible, which in turn leads to suboptimal
confidence regions for single elements. In contrast, M1(dn) can be viewed as a
local measure where single elements have a large impact, which clearly leads to
significantly tighter bounds for the single elements {|θ̂i − θi |}1≤i≤dn . This is a very
important issue for so-called subset autoregressive models; see Remark 2.11.

Theorem 2.2 not only can be used to construct simultaneous confidence bands
for the Yule–Walker estimators �̂dn , but also provides a test for the degree of an
AR(q)-process. To be more precise, for an AR(q)-process {Xk}k∈Z satisfying the
assumptions of Theorem 2.2, we formulate the null hypothesis H0 :q ≤ q0, and
the alternative HA :q > q0. Since for any fixed k ≥ 1

P
(
a−1
n

(√
n max

1≤i≤k
|(γ̂ ∗

i,i σ̂
2(dn))

−1/2θ̂i | − bn

)
≤ z

)
→ 1

as n increases, it follows immediately from Theorem 2.2 that under H0 we have

P
(
a−1
n

(√
n max

q0+k≤i≤dn

|(γ̂ ∗
i,i σ̂

2(dn))
−1/2θ̂i | − bn

)
≤ z

)
→ exp(−e−z)

for any fixed integer k ≥ 1, since we are assuming that θi = 0 for i > q0. Con-
versely, it is not hard to verify (see the proof of Theorem 2.8 for details) that the
quantity

a−1
n

(√
n max

q0+1≤i≤dn

|(γ̂ ∗
i,i σ̂

2(dn))
−1/2θ̂i | − bn

)
explodes under the alternative HA :q > q0. This can be used to establish a lower
bound for the order q or to test if the order was chosen sufficiently large. This
is particularly useful if q is large compared to the sample size and the magnitude
of �q , in which case the AIC and related criteria sometimes heavily fail to get near
the true order. More details on this subject and examples are given in Section 3.
Generally speaking, such situations are often encountered in subset autoregressive
models; see Remark 2.11.

The above conclusions lead to the following family of estimators q̂
(1)
zn for q . Let

zn be a monotone sequence that tends to infinity as n increases. Then we define
the estimator

q̂(1)
zn

= min
{
q ∈ N

∣∣a−1
n

(√
n max

q+1≤i≤dn

|(γ̂ ∗
i,i σ̂

2(dn))
−1/2θ̂i | − bn

)
≤ zn

}
.(2.7)
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Using the above ideas, it is not hard to show that the estimators q̂
(1)
zn are consis-

tent if zn does not grow too fast. In fact, under some more conditions imposed on
the sequence zn, we can even derive the asymptotic distribution of the estimators.

ASSUMPTION 2.7. In addition to Assumption 2.1, suppose that:

• ∑∞
i=1|θi | < ∞, |θn| = O((logn)−2−η), η > 0,

• E(exp(λ|εk|)) < ∞, for some λ > 0 and all k ∈ Z,
• |αi | = O(i−β), β > 3/2.

THEOREM 2.8. Let {Xk}k∈Z be an AR(q)-process such that Assumption 2.7 is
valid. Assume in addition that infh |γ ∗

h,h| > 0 and zn = O(logn). Then if zn → ∞,

the estimator q̂
(1)
zn in (2.7) is consistent. Moreover, the following expansion is valid:

P
(
q̂(1)
zn

= k + q
)= e−zn

dn

+ O
(

e−zn

dn

+ d
−z2

n+1
n

)
for k ∈ N, k = O(nδ), δ < 1/7.

REMARK 2.9. The stronger conditions of Assumption 2.7 are necessary to
control the rate of convergence in Theorem 2.2, which in turn allows for the explicit
expansion given above. This, however, also leads to the more restrictive bound
q + k = O(dn) = O(nδ), δ < 1/7; see also Remark 6.2. If we are only interested
in establishing consistency, then we may drop these more restrictive assumptions;
see in particular Theorem 2.12 below.

REMARK 2.10. Theorem 2.8 yields that in some sense the estimators q̂
(1)
zn

possess a discrete uniform asymptotic distribution, which leads to the surprising
conclusion

P
(
q̂(1)
zn

= 1 + q
)≈ P

(
q̂(1)
zn

= 1000 + q
)
.

This fact can be explained by the maximum function in the definition of q̂
(1)
zn , more

precisely, due to the weak dependence of the Yule–Walker estimators �̂dn . The
maximum function essentially does not care at which index i the boundary zn is
exceeded, and this results in the uniform distribution. It turns out (see Section 3)
that a modified version of the estimator q̂

(1)
zn is a very efficient preliminary estima-

tor that establishes a decent lower bound.

An asymptotic uniform-type distribution clearly is not a desirable property for
an estimator. However, similarly to Akaike’s method, we can introduce a penalty
function and construct different yet also consistent estimators for the order q .
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To this end, for x ∈ R put (x)+ = max(0, x) and let ϒn,i = a−1
n (

√
n|(γ̂ ∗

i,i ×
σ̂ 2(dn))

−1/2θ̂i | − bn). Then we introduce a new estimator q̂
(2)
zn as

q̂(2)
zn

= arg min
q∈N

{
max

q+1≤i≤dn

{(ϒn,i − zn)
+} + log(1 + q)

}
.

More generally, let F = (fd)d∈N be a collection of continuous functions such that:

• fd is a map from Rd+2 to R,
• fd(0, . . . ,0, q, d) < fd(0, . . . ,0, q + 1, d) for all d, q ∈ N,
• if an, dn → ∞ as n increases, then fdn(. . . , an, . . . , q, dn) → ∞ as n increases,

regardless of the values of the other coordinates.

Define

q̂(f )
zn

= arg min
q∈N

fdn

(
0, . . . ,0, (ϒn,q+1 − zn)

+, . . . , (ϒn,dn − zn)
+, q, dn

)
.(2.8)

Then arguing as in the proof of Theorem 2.8 it can be shown that this constitutes a
consistent estimator for the true value q . For example, the following estimator

q̂(3)
zn

= arg min
q∈N

{ ∑
q+1≤i≤dn

(ϒn,i − zn)
+ + q

}
satisfies the conditions above and is consistent.

REMARK 2.11. Note that instead of defining a specific order q , one can
also consider a special lag configuration, for example, �q = (θ1, θ2,0, . . . ,0, θ10,

θ11, . . . , θq)
T . Such configurations are commonly referred to as subset autoregres-

sive models; see, for instance, [16, 32, 33, 42, 46] and the references therein.
The AIC(m) and especially related consistent criteria have problems dealing with
such subset autoregressive models, which can be seen as follows. By Hannan [23],
Chapter VI, we have for m ∈ N

ÃIC(m)n−1 = log(σ̂ 2(m)) + 2n−1Cnm
(2.9)

= log φ̂n,0 +
m∑

i=1

log
(
1 − θ̂2

i (m)
)+ 2n−1Cnm.

This shows that in case of subset autoregressive models, the penalty function
2n−1Cnm is too severe and should be replaced, at least in theory, by 2n−1Cn ×∑m

i=1 1{θi 
=0}, since this is impossible in practice. Of course the same problem
arises if some of the {θi}1≤i≤q are close to zero. A maximum based estimator

like q̂
(1)
zn gets less effected, which is empirically confirmed in Section 3.

An often encountered theoretical assumption for estimators related to AIC(m)

is that the parameter space for q is finite; that is, it is usually assumed in advance
that q ∈ {0, . . . ,K}, where K is “chosen sufficiently large,” but finite. In [25], K is
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allowed to increase with the sample size with unknown rate, which was specified
later by An et al. [3]. Note, however, that for the estimators defined above we
allow K = Kn = dn. Before extending this result, we give precise definitions of
BIC, HQC, MIC (=miscellaneous information criterion) and SIC, as the literature
does not seem to be very clear on this subject, in particular in the case of the BIC
and SIC. In the sequel, the following definitions are used:

BIC(m) = SIC(m) = log σ̂ 2(m) + mn−1 logn,

MIC(m) = log σ̂ 2(m) + m/2n−1 logn,(2.10)

HQC(m) = log σ̂ 2(m) + n−12cm log logn, c > 1.

This means that we use the same definitions for BIC and SIC (asymptotically),
which is the case mostly encountered in the literature. The MIC differs from the
BIC by the choice of the constant 1/2 that naturally leads to a less parsimonious
criterion, which performs quite well in the examples given in Section 3. Using
some of the results of Section 4 and 6, one may prove the following.

THEOREM 2.12. Assume that the conditions of Theorem 2.2 hold, and addi-
tionally assume that infh |1 − θ2

h | > 0. Let Cn be a positive sequence such that:

• limn Cn(2 log logn)−1 > 1, Cn = O(n),
• logdn ≤ O(Cn).

Then the estimators for the order q defined as

q̂∗
n = arg min

0≤m≤dn

(
log σ̂ 2(m) + n−1Cnm

)
are consistent.

REMARK 2.13. Note that condition infh|1 − θ2
h | > 0 essentially is already

provided by the causality condition in Assumption 2.1.

Theorem 2.12 thus implies the bounds dn ∈ O{O(n1/2), O(n1/2), O(logn)} for
BIC, MIC and HQC, and thus significantly improves the bounds provided by An
et al. [3] [BIC: O(logn), HQC: O(log logn)]. On the other hand, the setting in
An et al. [3] is more general, and it is also shown that the estimators are strongly
consistent.

3. Simulation and numerical results. In this section we will perform a
small simulation study to compare some of the previously mentioned estimators.
We will look at the performance in case of AR(6), AR(12) and AR(24) pro-
cesses. The sample size n satisfies n ∈ {125,250,500,1000}; as for the dimen-
sion dn, we chose the functions dn ∈ {2 logn,4 logn,6 logn}, and rounded up
the values. This implies that the parameter space q ∈ {0, . . . ,K} satisfies K ∈
{10,12,13,14}, K ∈ {20,23,25,29}, K ∈ {29,34,38,42}. For reference, note
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that {�√125
, �√250
, �√500
, �√1000
} = {12,16,23,32}. To introduce the
estimators q̂

(4)
zn (dn), q̂

(5)
zn (dn), we require some additional notation. For 1 ≤ k ≤ dn,

define {γ̂ ∗
i,i(k)}1≤i≤k and {θ̂i (k)}1≤i≤k via the usual relation

�̂k = �̂
−1
k �̂k.(3.1)

The estimators are now defined as

q̂(4)
zn

(k) = min
{
q ∈ N

∣∣a−1
n

(√
n max

q+1≤i≤k
|(γ̂ ∗

i,i(k)σ̂ 2(k))−1/2θ̂i(k)| − bn

)
≤ zn

}
,

q̂(5)
zn

(dn) = max
1≤k≤dn

q̂(4)
zn

(k).

Note that the definition of an, bn remains unchanged. This modification signifi-
cantly improves the performance in practice, which is due to the following rea-
son: if one just considers the estimator q̂

(4)
zn (dn) and hence only the equation

�̂dn = �̂−1
dn

�̂dn , the bias may be quite large since the estimate �̂−1
dn

is rather poor
for larger dn. Note that this is also true when computing the AIC or related criteria,
which is a well-established fact in the literature (cf. [2, 17, 23, 25]). Hence one may
expect that the “maximum” version q̂

(5)
zn (dn) outperforms its counterpart q̂

(4)
zn (dn),

which is indeed the case in the examples given below. The values for zn were
chosen as zn ∈ {xn, yn}, where xn satisfies anxn + bn = 2.71 for n ∈ {125,250},
anxn + bn = 2.91 for n ∈ {500,1000}. Similarly, we have anyn + bn = 3 for
n ∈ {125,250}, anyn + bn = 3.2 for n ∈ {500,1000}. This means that the estima-
tors get less parsimonious when dn increases. Of course an adaption to maintain
the same confidence level is possible, but the general picture remains the same.

For the criteria AIC, BIC, HQC and MIC we use the definitions given in (1.4)
and (2.10); in case of HQC we choose c = 1, since, as pointed out by Hannan and
Quinn [25], “it would seem pedantic to choose values as c = 1.01.” The following
modifications are also considered:

AIC(m)∗ = max
{
AIC(m), q̂(5)

yn
(dn)

}
,

BIC(m)∗ = max
{
BIC(m), q̂(5)

yn
(dn)

}
,

(3.2)
HQC(m)∗ = max

{
HQC(m), q̂(5)

yn
(dn)

}
,

MIC(m)∗ = max
{
MIC(m), q̂(5)

yn
(dn)

}
.

All simulations were carried out using the program R;1 in order to get a sam-
ple of size n, a sample path of size 1000 + n was produced and the first 1000
observations were discarded.

Generally speaking, unreported simulations show that in many cases the modi-
fied criteria AIC(m)∗,BIC(m)∗, . . . perform nearly identically as the nonmodified

1http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/Homepages/i5060/
research/R_Code.

http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/Homepages/i5060/research/R_Code
http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/Homepages/i5060/research/R_Code
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ones AIC(m),BIC(m), . . . . This is in particular the case when dealing with full
parameter sets, that is, θi 
= 0, 1 ≤ i ≤ q , and θq is sufficiently large. If this is the

case, the performance of the estimators q̂
(5)
xn (dn), q̂

(5)
yn (dn) is somewhere between

the BIC(m) and HQC(m). On the other hand, if the model is not full and/or the
order q is sufficiently large, then the differences can be quite striking. The aim of
the following examples is to illustrate this behavior.

3.1. AR(6). First note that the definitions of xn, yn result in

P(max|ξ | ≤ 2.71) ≥ 0.92, P (max |ξ | ≤ 3) ≥ 0.97, dn ∈ {10,12},
P (max|ξ | ≤ 2.91) ≥ 0.95, P (max |ξ | ≤ 3.2) ≥ 0.98, dn ∈ {13,14},

where ξ = (ξ1, . . . , ξdn)
T is a dn-dimensional mean-zero Gaussian random vector

where the covariance matrix is the identity.
The results shown in Tables 1 and 2 hint at what is to be expected in case of

full models, namely that the modifications AIC(m)∗,BIC(m)∗, . . . perform nearly
as well as the normal versions AIC(m),BIC(m), . . . . The estimators q̂

(5)
xn (dn),

q̂
(5)
yn (dn) perform also quite well.

Contrary to the previous results, Tables 3 and 4 show the difference of the mod-
ified estimators [and q̂

(5)
xn (dn), q̂

(5)
yn (dn)], if the model is very sparse. Except for the

case n = 1000, the modifications are notably better.

3.2. AR(12). The definitions of xn, yn result in

P(max|ξ | ≤ 2.71) ≥ 0.85, P (max|ξ | ≤ 3) ≥ 0.94, dn ∈ {20,23},
P (max|ξ | ≤ 2.91) ≥ 0.9, P (max|ξ | ≤ 3.2) ≥ 0.96, dn ∈ {25,29},

TABLE 1
Simulation of an AR(6) process with coefficients �6 = (0.1,−0.3,0.05,0.2,−0.1,0.2)T ,

ε ∼ N (0,1), 1000 repetitions, dn ∈ {10,12}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <5 428 427 943 808 746 704 550 545 816 701
5 65 65 10 30 32 40 58 58 28 41
6 344 341 45 143 191 214 295 294 137 196
7 66 65 1 5 23 24 54 53 5 14

<7 97 102 1 14 8 18 43 50 14 48

250 <5 93 89 693 432 328 282 202 188 440 299
5 24 23 14 32 32 32 33 31 42 38
6 646 632 287 481 586 595 649 634 467 543
7 96 95 5 8 37 35 74 73 4 9

>7 141 161 1 47 17 56 42 74 47 111
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TABLE 2
Simulation of an AR(6) process with coefficients �6 = (0.1,−0.3,0.05,0.2,−0.1,0.2)T ,

ε ∼ N (0,1), 1000 repetitions, dn ∈ {13,14}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <5 1 1 177 75 29 25 15 15 86 52
5 3 3 9 11 6 6 3 3 17 14
6 730 713 805 874 913 889 892 867 865 849
7 108 108 8 8 42 42 57 57 0 2

<7 158 175 1 32 10 38 33 58 32 83

1000 <5 0 0 3 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 724 709 990 951 952 917 934 901 955 885
7 103 101 7 9 36 34 47 44 5 7

>7 173 190 0 40 12 49 19 55 40 108

where ξ = (ξ1, . . . , ξdn)
T is a dn-dimensional mean-zero Gaussian random vector

where the covariance matrix is the identity.
The results are depicted in Tables 5, 6, 7 and 8, and are quite similar to the case

of the AR(6) processes. If the model is rather full, AIC(m)∗,BIC(m)∗, . . . perform
nearly as well as the normal versions AIC(m),BIC(m), . . . , whereas in case of the
sparse model, a significant difference can be observed.

3.3. AR(24). In this case, the definitions of xn, yn result in

P(max|ξ | ≤ 2.71) ≥ 0.795, P (max|ξ | ≤ 3) ≥ 0.912, dn ∈ {29,34},

TABLE 3
Simulation of an AR(6) process with coefficients �6 = (0.1,0,0.05,0,0,0.2)T , ε ∼ N (0,1),

1000 repetitions, dn ∈ {10,12}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <5 719 699 998 854 944 842 839 787 854 747
5 11 11 0 0 2 2 7 7 0 11
6 168 181 2 124 43 126 107 145 124 184
7 44 44 0 4 8 11 23 24 4 8

<7 58 65 0 18 3 19 24 37 18 50

250 <5 290 276 960 437 723 424 550 396 438 321
5 6 6 0 3 2 3 5 5 3 5
6 491 488 39 513 245 503 376 494 513 573
7 91 90 1 2 21 21 40 40 1 7

>7 122 140 0 45 9 49 29 65 45 94
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TABLE 4
Simulation of an AR(6) process with coefficients �6 = (0.1,0,0.05,0,0,0.2)T , ε ∼ N (0,1),

1000 repetitions, dn ∈ {13,14}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <5 21 21 761 102 267 98 164 85 102 56
5 0 0 1 0 0 0 0 0 0 1
6 663 655 234 871 675 822 736 796 874 863
7 125 124 4 3 50 49 69 68 0 10

<7 191 200 0 24 8 31 31 51 24 70

1000 <5 0 0 168 1 3 1 1 1 1 0
5 0 0 0 0 0 0 0 0 0 0
6 702 683 822 949 940 905 919 887 955 898
7 121 119 9 9 43 42 52 52 3 9

>7 177 198 1 41 14 52 28 60 41 93

P(max|ξ | ≤ 2.91) ≥ 0.86, P (max|ξ | ≤ 3.2) ≥ 0.94, dn ∈ {38,42},
where ξ = (ξ1, . . . , ξdn)

T is a dn-dimensional mean-zero Gaussian random vector
where the covariance matrix is the identity. The behavior shown in Tables 9, 10,
11 and 12 is as in the previous two cases. The difference in the sparse model is
perhaps the most striking one.

4. Proofs and ramification. In this section, we will prove Theorems 2.2, 2.8,
2.12, and also explicitly mention some auxiliary results which have interest in
themselves. For dn ≤ m let �−1

m = (γ ∗
i,j )1≤i,j≤m be the inverse of the covariance

TABLE 5
Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1, θ3 = −0.4, θ5 = 0.5,
θ7 = −0.1, θ8 = 0.05, θ10 = −0.3, θ12 = 0.2, ε ∼ N (0,1), 1000 repetitions, dn ∈ {20,23}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <11 705 701 995 966 931 917 812 807 969 929
11 79 79 2 3 22 22 54 54 1 2
12 141 141 3 23 40 47 97 98 22 47
13 48 48 0 4 6 9 30 30 4 11

>13 27 31 0 4 1 5 7 11 4 11

250 <11 257 257 854 730 573 560 423 421 748 620
11 39 39 9 10 31 31 39 39 3 11
12 495 493 135 247 349 356 442 441 237 313
13 115 115 2 4 40 40 65 65 3 13

>13 94 96 0 9 7 13 31 34 9 43
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TABLE 6
Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1, θ3 = −0.4, θ5 = 0.5,
θ7 = −0.1, θ8 = 0.05, θ10 = −0.3, θ12 = 0.2, ε ∼ N (0,1), 1000 repetitions, dn ∈ {25,28}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <11 19 19 367 256 110 106 75 73 269 183
11 4 4 4 4 6 6 6 6 2 2
12 684 680 618 705 808 793 808 797 702 758
13 129 128 10 12 63 62 78 76 4 8

>13 164 169 1 23 13 33 33 48 23 49

1000 <11 0 0 11 2 0 0 0 0 2 1
11 0 0 0 0 0 0 0 0 0 0
12 679 676 970 947 925 900 896 873 958 914
13 151 150 17 17 61 60 79 78 6 13

>13 170 174 2 34 14 40 25 49 34 72

matrix �m = (γi,j )1≤i,j≤m associated to the AR(dn) process {Xk}k∈Z. Due to Gal-
braith and Galbraith [21], it holds that

σ 2γ ∗
i,j =

α∑
r=0

θrθr+j−i −
dn+i−j∑

r=β

θrθr+j−i , 1 ≤ i ≤ j ≤ m,(4.1)

where

α = min{i − 1, dn + i − j,m − j}, β = max{i − 1,m − j},
and either of the sums is taken to be zero if its upper limit is less than its lower
limit. The second sum is zero unless m − dn + 1 ≤ i ≤ j ≤ dn while both sums

TABLE 7
Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1, θ3 = −0.4, θ12 = 0.2,

ε ∼ N (0,1), 1000 repetitions, dn ∈ {20,23}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <10 884 853 1000 920 995 920 963 910 920 861
11 3 3 0 0 0 0 1 1 0 3
12 68 94 0 71 5 71 25 70 71 114
13 11 13 0 3 0 3 4 7 3 5

>13 34 37 0 6 0 6 7 12 6 17

250 <10 509 421 999 555 934 552 792 530 555 424
11 3 3 0 3 0 2 2 3 3 4
12 340 419 1 421 59 419 170 416 421 514
13 67 68 0 2 4 6 18 19 2 5

>13 81 89 0 19 3 21 18 32 19 53
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TABLE 8
Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1, θ3 = −0.4, θ12 = 0.2,

ε ∼ N (0,1), 1000 repetitions, dn ∈ {25,28}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <11 77 58 983 125 613 125 402 115 125 78
11 0 0 0 2 0 2 0 1 2 1
12 663 678 17 858 360 834 532 808 858 870
13 104 103 0 3 15 16 39 40 3 4

>13 156 161 0 12 12 23 27 36 12 47

1000 <11 0 0 689 2 67 2 35 2 2 2
11 0 0 0 0 0 0 0 0 0 0
12 706 701 307 971 880 926 893 907 972 936
13 124 123 2 2 39 38 54 53 1 3

>13 170 176 2 25 14 34 18 38 25 59

are zero if j − i > dn. Note that this implies σ 2(m)γ ∗
m,m = 1 for m > dn, and in

particular that

sup
|h|≥n

sup
i

|γ ∗
i,i+h| = O((logn)−1),(4.2)

if Assumption 2.1 is valid. Throughout this section and particularly in the proofs
of the presented results, we use the notation σ̂ 2 = σ̂ 2(dn). Note that we can rewrite
the equation defining the AR(dn) process as

Y = X�dn + Z,(4.3)

TABLE 9
Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6, θ2 = −0.1, θ4 = 0.05,

θ7 = 0.15, θ8 = −0.27, θ10 = 0.1, θ12 = −0.2, θ15 = −0.25, θ18 = 0.05, θ20 = 0.1, θ21 = −0.3,
θ24 = 0.17, ε ∼ N (0,1), 1000 repetitions, dn ∈ {29,34}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <23 972 970 1000 996 1000 996 992 990 996 989
23 12 12 0 1 0 1 5 5 1 2
24 3 3 0 1 0 1 1 1 1 6
25 10 10 0 0 0 0 2 2 0 1

>25 3 5 0 2 0 2 0 2 2 2

250 <23 518 516 995 923 872 840 727 717 924 845
23 120 120 2 13 48 50 77 78 12 25
24 185 186 3 57 67 90 135 138 57 98
25 89 89 0 1 7 8 38 38 1 10

>25 88 89 0 6 6 12 23 29 6 22
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TABLE 10
Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6, θ2 = −0.1, θ4 = 0.05,

θ7 = 0.15, θ8 = −0.27, θ10 = 0.1, θ12 = −0.2, θ15 = −0.25, θ18 = 0.05, θ20 = 0.1, θ21 = −0.3,
θ24 = 0.17, ε ∼ N (0,1), 1000 repetitions, dn ∈ {38,42}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <23 63 62 716 545 302 288 210 205 589 430
23 38 38 55 60 87 87 85 85 58 71
24 513 512 208 357 490 500 525 526 326 437
25 192 192 18 28 93 93 129 129 19 27

>25 194 196 3 10 28 32 51 55 8 35

1000 <23 0 0 81 30 6 5 3 3 42 18
23 0 0 34 31 8 7 6 6 48 35
24 562 552 835 857 796 775 761 741 868 842
25 197 195 48 45 140 137 160 156 7 24

>25 241 253 2 37 50 76 70 94 35 81

where Y = (X1, . . . ,Xn)
T , Z = (ε1, . . . , εn)

T , and the n × dn design matrix X is
given as

X =

⎛⎜⎜⎝
X0 X−1 · · · X1−dn

X1 X0 · · · X2−dn· · · · · ·
Xn−1 Xn−2 · · · Xn−dn

⎞⎟⎟⎠ .

TABLE 11
Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6, θ2 = −0.1, θ4 = 0.05,

θ10 = 0.1, θ12 = −0.2, θ24 = 0.17, ε ∼ N (0,1), 1000 repetitions, dn ∈ {29,34}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

125 <23 1000 991 1000 991 1000 991 1000 991 991 969
23 0 2 0 2 0 2 0 2 2 6
24 0 6 0 6 0 6 0 6 6 20
25 0 1 0 1 0 1 0 1 1 1

>25 0 0 0 0 0 0 0 0 0 4

250 <23 857 768 1000 817 998 817 986 815 817 702
23 1 15 0 27 0 26 0 25 27 39
24 99 166 0 142 2 143 13 145 142 225
25 20 22 0 3 0 3 0 3 3 5

>25 23 29 0 11 0 11 1 12 11 29
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TABLE 12
Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6, θ2 = −0.1, θ4 = 0.05,

θ10 = 0.1, θ12 = −0.2, θ24 = 0.17, ε ∼ N (0,1), 1000 repetitions, dn ∈ {38,42}

n q̂ AIC AIC* BIC BIC* HQC HQC* MIC MIC* q̂
(5)
yn

q̂
(5)
xn

500 <23 351 270 1000 383 952 380 854 379 383 256
23 2 8 0 51 0 48 0 41 51 61
24 451 522 0 547 45 550 130 545 547 637
25 74 73 0 0 3 3 13 13 0 2

>25 122 127 0 19 0 19 3 22 19 44

1000 <23 10 6 986 15 440 15 280 15 15 3
23 0 0 0 14 0 13 0 11 14 12
24 718 715 14 941 522 908 659 887 941 905
25 121 118 0 3 32 31 46 45 3 8

>25 151 161 0 27 6 33 15 42 27 72

We have

�−1XT Z = �−1
n∑

k=1

Vk =
n∑

k=1

Uk,

where Vk = (V
(1)
k , . . . , V

(dn)
k )T , Uk = (U

(1)
k , . . . ,U

(dn)
k )T . The following results

are key ingredients.

LEMMA 4.1. Let {Xk}k∈Z be an AR(dn) process, such that Assumption 2.1 is
valid. Then

P
(‖�−1

dn
− �̂

−1
dn

‖∞ > (logn)−χ1
)= O

(
(dn(logn)χ1)p

np/2

)
, χ1 ≥ 0.

LEMMA 4.2. Assume that the assumptions of Theorem 2.2 are valid. Then we
have

P

(∥∥∥∥∥n1/2(�̂dn − �dn) − n−1/2
n∑

k=1

Uk

∥∥∥∥∥∞
≥ (logn)−χ1

)
= O(1),

where 1 < χ1.

LEMMA 4.3. Assume that the assumptions of Theorem 2.2 are valid. Then:

(i) lim
n→∞P

(
max

1≤h≤dn

σ−1

∣∣∣∣∣(nγ ∗
h,h)

−1/2
n∑

k=1

U
(h)
k

∣∣∣∣∣≤ un

)
= exp(−exp(−x)),

(ii)
√

n‖�̂dn − �dn‖∞ = OP

(√
logdn

)
,

where un = anz + bn, an, bn, z are as in Theorem 2.2.



CONFIDENCE BANDS AND ORDER SELECTION 511

The proofs of Lemmas 4.1, 4.2 and 4.3 are given in Section 5. Based on the
above results, one readily derives the following weak version of Theorem 2.2.

COROLLARY 4.4. Assume that the assumptions of Theorem 2.2 are valid.
Then for z ∈ R

P
(
a−1
n

(√
n max

1≤h≤dn

|(γ ∗
h,hσ

2)−1/2(θ̂i − θi)| − bn

)
≤ z

)
→ exp(−e−z),

where an and bn are as in Theorem 2.2.

COROLLARY 4.5. Under the same conditions as in Theorem 2.2, we have

|σ̂ 2 − σ 2| = OP (n−1/2 logn).

Throughout the proofs, the following inequality will be frequently used. For
random variables X1, . . . ,Xq , and ε > 0, the inequality between the geometric
and arithmetic mean implies

P

( q∏
i=1

|Xi | ≥ ε

)
≤

q∑
i=1

P(|Xi | ≥ ε1/q).(4.4)

PROOF OF COROLLARY 4.4. It holds that

max
1≤h≤dn

σ−1

∣∣∣∣∣(nγ ∗
h,h)

−1/2

(
n(θ̂h − θh) −

n∑
k=1

U
(h)
k

)∣∣∣∣∣
≤
√(

nσ 2 inf
h

γ ∗
h,h

)−1
max

1≤h≤dn

∣∣∣∣∣
(
n(θ̂h − θh) −

n∑
k=1

U
(h)
k

)∣∣∣∣∣.
Since infh γ ∗

h,h > 0 and choosing χ1 > 1, the claim follows from Lemmas 4.2
and 4.3. �

PROOF OF COROLLARY 4.5. Trivially, it holds that

σ̂ 2 − σ 2 = φ̂0 − φ0 + �̂
T
dn

�̂dn − �T
dn

�dn

= φ̂0 − φ0 + (�̂
T
dn

− �T
dn

)(�̂dn − �dn)

+ (�̂
T
dn

− �T
dn

)�dn + �T
dn

(�̂dn − �dn).

By Corollary 4.4 and Lemma 4.3 we have

‖(�̂T
dn

− �T
dn

)(�̂dn − �dn)‖∞ ≤ dn‖�̂T
dn

− �T
dn

‖∞‖�̂dn − �dn‖∞

= OP (n−1/2 logn).
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Similarly, we obtain from Lemmas 4.3, 5.2 and Assumption 2.1

‖(�̂T
dn

− �T
dn

)�dn‖∞ = OP (n−1/2 logn),

‖�T
dn

(�̂dn − �dn)‖∞ = OP (n−1/2 logn).

Moreover, from the above one readily deduces |φ̂0 −φ0| = OP (n−1/2 logn). Piec-
ing everything together, the claim follows. �

PROOF OF THEOREM 2.2. Due to Corollary 4.4, it suffices to show that the
error difference

max
1≤i≤dn

�i = max
1≤i≤dn

√
n|(γ̂ ∗

i,i σ̂
2)−1/2(θ̂i − θi) − (γ ∗

i,iσ
2)−1/2(θ̂i − θi)|

(4.5)
= OP ((logn)−χ1)

for some χ1 > 1. Note that per assumption we have that (logn)χ2pn−p/2d
p
n = O(1)

for some χ2 > 1. Moreover,

max
0≤i≤dn

�i ≤ max
0≤i≤dn

∣∣((γ̂ ∗
i,i σ̂

2)1/2 − (γ ∗
i,iσ

2)1/2)(γ̂ ∗
i,i σ̂

2)−1/2∣∣
× √

n max
0≤i≤dn

|(θ̂i − θi)(γ
∗
i,iσ

2)−1/2|.

Corollary 4.4 gives us
√

nmax0≤i≤dn |(θ̂i − θi)(γ
∗
i,iσ

2)−1/2| = OP (logn), hence
we need to study |(γ̂ ∗

i,i σ̂
2)1/2 − (γ ∗

i,iσ
2)1/2|(γ̂ ∗

i,i σ̂
2)−1/2. Since∣∣∣∣(γ̂ ∗

i,i σ̂
2)1/2 − (γ ∗

i,iσ
2)1/2

(γ̂ ∗
i,i σ̂

2)1/2

∣∣∣∣= ∣∣∣∣ γ̂ ∗
i,i σ̂

2 − γ ∗
i,iσ

2

(γ̂ ∗
i,i σ̂

2)1/2 + (γ ∗
i,iσ

2)1/2

1

(γ̂ ∗
i,i σ̂

2)1/2

∣∣∣∣
≤
∣∣∣∣(γ̂ ∗

i,i σ̂
2 − γ ∗

i,iσ
2)

γ̂ ∗
i,i σ̂

2

∣∣∣∣,
it suffices to treat (γ̂ ∗

i,i σ̂
2 − γ ∗

i,iσ
2)(γ̂ ∗

i,i σ̂
2)−1. For ε = logn−χ2 we have

{|σ 2γ ∗
i,i − σ̂ 2γ̂ ∗

i,i | ≥ εγ̂ ∗
i,i σ̂

2}
⊆ {|σ 2γ ∗

i,i − σ̂ 2γ̂ ∗
i,i |(1 + ε) ≥ εγ ∗

i,iσ
2}

⊆ {|σ 2γ ∗
i,i − σ̂ 2γ̂ ∗

i,i | ≥ εγ ∗
i,iσ

2/2}
⊆ {|σ 2γ̂ ∗

i,i − σ̂ 2γ̂ ∗
i,i | + |σ 2γ ∗

i,i − σ 2γ̂ ∗
i,i | ≥ εγ ∗

i,iσ
2/2}.

Since σ 2, γ ∗
i,i ≥ C > 0, we have from Lemma 4.1 that for 1 < χ1 < χ2

P
(

max
0≤i≤dn

|σ 2γ ∗
i,i − σ 2γ̂ ∗

i,i | ≥ logn−χ1 min
1≤i≤dn

γ ∗
i,i

)
= O(lognχ2pn−p/2dp

n ).
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In order to treat |σ 2γ̂ ∗
i,i − σ̂ 2γ̂ ∗

i,i |, note that

max
0≤i≤dn

|σ 2γ̂ ∗
i,i − γ̂ ∗

i,i σ̂
2| ≤ max

0≤i≤dn

(|σ 2 − σ̂ 2||γ ∗
i,i − γ̂ ∗

i,i | + γ ∗
i,i |σ 2 − σ̂ 2|),

which by virtue of Corollary 4.5 and Lemma 4.1 is of the magnitude OP (n−1/2 ×
logn). We thus obtain that

P
(

max
0≤i≤dn

�i ≥ logn−χ1
)

= O(1)

for some χ1 > 1, which completes the proof. �

PROOF OF COROLLARY 2.5. First note that both conditions (i) and (ii) imply
that |αi | = O(ρ−i ), 0 < ρ < 1 (cf. [17]). Hence Remark 2.3 yields that we may
choose dn = O(nδ), 0 < δ < 1/2. Now assume that (i) holds. Then relation (4.1)
implies

σ 2 inf
h

γ ∗
h,h ≥ 1 −

dn∑
i=1

|θi |2 ≥ 1 −
dn∑
i=1

|θi | > 0,

whence the claim. If (ii) holds, then for large enough n we obtain similarly

σ 2 inf
h

γ ∗
h,h ≥

α∑
i=0

θ2
i −

dn∑
i=β

θ2
i ≥

α∑
i=0

θ2
i ≥ 1,

where α, β are as in (4.1). �

We are now ready to prove Theorem 2.8.

PROOF OF THEOREM 2.8. Let q0 = q be the true order of the AR(q)-process
{Xk}k∈Z, put

θi,n = a−1
n

(√
n|(γ̂ ∗

i,i σ̂
2)−1/2(θ̂i − θi)| − bn

)
and assume first that k ∈ N, k > 0. Note that θi = 0 for i > q . Then we have that

P(q̂zn = k + q) = P
(
{θq+k,n > zn} ∩

{
max

k+q+1≤i≤dn

θ i,n ≤ zn

})
= P

(
max

k+q≤i≤dn

θ i,n ≤ zn

)
− P

(
max

k+q+1≤i≤dn

θ i,n ≤ zn

)
.

Due to Theorem 6.1, we can approximate the sequence {θi,n}1≤i≤dn by
a suitably transformed corresponding sequence of mean-zero Gaussian ran-
dom variables ξdn

= (ξn,1, . . . , ξn,dn)
T with covariance matrix �∗

ξdn
. Let ηdn

=
(ηn,1, . . . , ηn,dn)

T be another sequence of i.i.d. mean-zero Gaussian random vari-
ables with unit variance. Following Deo [18], we obtain from max|�∗

ξdn
− �∗

dn
| =
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O(d−1
n ) that for fixed l ∈ N∣∣∣P ( max

q+l≤i≤dn

a−1
n (|ξn,i | − bn) ≤ zn

)
− P

(
max

q+l≤i≤dn

a−1
n (|ηn,i | − bn) ≤ zn

)∣∣∣
≤ C

∑
1≤i<j≤dn

|ρi,j |(d−2z2
n/(1+|ρi,j |)

n

)
.

Imitating the technique in Berman [9], we obtain that the above quantity is of the

magnitude O(d
(−z2

n+1)/2
n ). This yields

P(q̂zn = k + q)

= P
(

max
q+k+1≤i≤dn

a−1
n (|ηn,i | − bn) ≤ zn

)
− P

(
max

q+k≤i≤dn

a−1
n (|ηn,i | − bn) ≤ zn

)
+ O

(
n−ν + d

(−z2
n+1)/2

n

)
= P

(
a−1
n (|ηn,1| − bn) ≤ zn

)dn−k−q(1 − P
(
a−1
n (|ηn,1| − bn) ≤ zn

))
+ O

(
n−ν + d

(−z2
n+1)/2

n

)
.

From the definition of an, bn, and since zn → ∞, we obtain that (Deo [18])

lim
n

P
(
a−1
n (|ηn,1| − bn) ≤ zn

)dn−k−q → 1,(4.6)

P
(
a−1
n (|ηn,1| − bn) > zn

)= e−zn

dn

+ O
(

e−zn

dn

)
.(4.7)

This yields

P(q̂zn = k + q) = e−zn

dn

+ O
(

e−zn

dn

+ d
(−z2

n+1)/2
n

)
(4.8)

and in particular

P(q̂zn > q) =
dn∑

k=1

P(q̂zn = k + q) = e−zn + O(e−zn + d
−z2

n+2
n ),(4.9)

and per assumption the right-hand side goes to zero as n increases. We now con-
sider the case P(q̂zn < q). To this end, let k ∈ N, k > 0. Then we have

P(q̂zn = q − k) ≤ P(θq−k,n ≤ zn)

= P
(
a−1
n

(∣∣ξn,q−k + √
nθq−k

∣∣− bn

)≤ zn

)
+ O(n−ν).

Since |θq−k| > 0, one readily verifies by known properties of the Gaussian c.d.f.
that P(a−1

n (|ξn,q−k + √
nθq−k| − bn) ≤ zn) = O(n−ν), and hence

P(q̂zn = q − k) = O(n−ν)(4.10)
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and in particular

P(q̂zn < q) = O(dnn
−ν) → 0(4.11)

as n increases. This together with (4.9) establishes consistency. �

PROOF OF THEOREM 2.12. Let q0 = q be the true order of the AR(q)-process
{Xk}k∈Z. The proof then consists of two parts. It is first shown that P(q̂∗

n < q) → 0,
whereas in the second part the claim P(q̂∗

n > q) → 0 is established.
First note that Lemma 5.2 and the Cauchy interlacing theorem yield that ‖�k‖∞,

‖�−1
k ‖∞ ≤ C < ∞, uniformly for 1 ≤ k ≤ dn. Hence, using that �̂

−1
k �̂k = �̂k ,

Lemma 4.3 and a slight adaption of Lemma 4.1 imply that

|σ̂ 2(k) − σ 2(k)| = OP (1) uniformly for 1 ≤ k ≤ q .

Since infh |1 − θ2
h | > 0, we conclude that infk σ 2(k) > 0 and hence

|log(σ̂ 2(k)) − log(σ 2(k))| = Op(1).(4.12)

By Hannan [23], Chapter VI, it holds that for k ∈ N

log(σ̂ 2(k)) = log φ̂n,0 +
k∑

j=1

log
(
1 − θ̂2

j (k)
)
.(4.13)

Then, arguing as in Hannan and Quinn [25], we have due to Cn = O(n) that for
large enough n

fn(k) = log(σ̂ 2(k)) + n−1Cnk

is a decreasing function in k for 0 ≤ k < q , and strictly decreasing for q − 1 ≤ k ≤
q (since θ2

q > 0) with probability approaching one. This implies that eventually
q̂∗
n ≥ q , hence it suffices to establish that the probability of overestimating the

order goes to zero as n increases, that is,

lim
n

P
(
arg min
q≤k≤dn

(
log(σ̂ 2(k)) + n−1Cnk

)≥ q + 1
)

= 0.(4.14)

Using the same arguments as in [3], it follows that it suffices to establish

lim
n

P

(
max

1≤k≤dn−q

( k+q∑
j=1+q

− log
(
1 − θ̂2

j (k)
)− n−1Cnk

)
≥ 0

)
= 0.(4.15)

By Theorem 2.2, we have that

‖�̂2
k‖∞ = OP (n−1 logdn) for q0 < k ≤ dn.(4.16)

This implies that for some increasing χn → ∞, we obtain that

−
k+q∑

j=1+q

log
(
1 − θ̂2

j (k)
)≤ kχnn

−1 logdn,(4.17)

with probability approaching one. Since logdn = O(Cn) per assumption, (4.15) fol-
lows, which completes the proof. �
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5. Proofs of the auxiliary results of Section 4. The following result is re-
quired for the proofs.

LEMMA 5.1. Let {Xk}k∈Z be an AR(q) process such that Assumption 2.1 is
satisfied. Then:

(i)
∑∞

h=0|Cov(Xk,Xk+h)| < ∞,
(ii)

√
n‖φ̂n,h − φh‖p = O(1), p ≥ 1.

PROOF. Both properties (i), (ii) follow from Assumption 2.1 via straightfor-
ward computations (cf. [17, 23]). �

Recall the notation �m = (γi,j )1≤i,j≤m and �−1
m = (γ ∗

i,j )1≤i,j≤m for the covari-
ance matrix and its inverse.

LEMMA 5.2. Assume that Assumption 2.1 holds. Then for dn ≤ m we have
‖�m‖∞, ‖�−1

m ‖∞ ≤ C < ∞, uniformly in m.

PROOF. Using relation (4.1) and the corresponding notation, one obtains

‖�−1
m ‖∞ = σ−2 max

1≤j≤m

m∑
i=1

|σ 2γ ∗
i,j |

≤ 2σ−2 max
1≤j≤m

∣∣∣∣∣
α∑

r=0

θrθr+j−i −
dn+i−j∑

r=β

θrθr+j−i

∣∣∣∣∣
≤ 4σ−2

∑
|h|≤m

m∑
r=0

∣∣θrθ|r+h|
∣∣≤ 8σ−2

( ∞∑
r=0

|θr |
)2

,

where θh = 0 for h < 0. Due to Assumption 2.1, the above expression is finite,
hence the first claim follows. In order to establish the result for �m, note that

‖�m‖∞ = max
1≤j≤m

m∑
i=1

|γi,j | ≤ 2
∞∑

h=0

|φh| < ∞

by Lemma 5.1(i), which yields the claim. �

We can now prove Lemma 4.3, which we reformulate below for the sake of
readability.

LEMMA 5.3. Suppose that infh |γ ∗
h,h| > 0 and Assumption 2.1 holds. Then:

(i) lim
n→∞P

(
max

0≤h≤dn

σ−1

∣∣∣∣∣(nγ ∗
h,h)

−1/2
n∑

k=1

U
(h)
k

∣∣∣∣∣≤ un

)
= exp(−exp(−x)),

(ii)
√

n‖�̂dn − �dn‖∞ = OP

(√
logdn

)
.
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PROOF. We will first show (i). Using the notation established in Section 4, we
have

U
(h)
k = εk

(
dn∑

j=1

γ
(∗)
h,j

∞∑
i=0

αiεk−j−i

)
:= εk

∞∑
r=1

α∗
r,hεk−r ,

where α∗
r,h =∑

{i≥0,j≥0,i+j=r} γ ∗
h,jαi . Let 0 < δ < δ∗, and put mn = �nδ∗�. Then

it follows from Lemma 5.2 that

sup
h

∞∑
r=mn

|α∗
r,h| ≤ C

∞∑
i=mn−dn

|αi | = O
(
(mn − dn)

−ϑ )= O(m−ϑ
n ).

Due to Assumption 2.1, one may thus repeat the (quite lengthy) proof of Theorem 1
(see also Remark 2) in [48] to obtain the result. In fact, the present case is easier
to handle, since {U(h)

k }k∈N is a martingale sequence.
Assertion (ii) follows directly from Theorem 1 in [48]. �

We can now proof Lemma 4.1, which we restate for the sake of readability.

LEMMA 5.4. If Assumption 2.1 holds, we have for χ1 > 0

P
(‖�̂−1

dn
− �−1

dn
‖∞ ≥ (logn)−χ1

)= O
(

(dn(logn)χ1)p

np/2

)
.

PROOF. We introduce the following abbreviations. Put

E = ‖�−1
dn

‖∞, F = ‖�̂−1
dn

− �−1
dn

‖∞, G = ‖�̂dn − �dn‖∞.

Due to the stationarity of {Xk}k∈Z it follows that

G = ‖�̂dn − �dn‖∞ ≤ 2
∑
h≤dn

∣∣φ̂n,|h| − φ|h|
∣∣,(5.1)

and thus an application of the Hölder and Minikowski inequalities yields

E(|G|) ≤ 2
∑
h≤dn

∥∥φ̂n,|h| − φ|h|
∥∥
p.(5.2)

Due to Lemma 5.1(ii) we have
√

n‖φ̂n,|i−j |−φ|i−j |‖p ≤ Cp for some finite con-
stant Cp , thus the Markov inequality in connection with Minikowski’s inequality
implies

P
(‖�̂dn − �dn‖∞ ≥ (logn)−χ1

)= O
(

(dn(logn)χ1)p

np/2

)
.(5.3)

Due to the sub-multiplicativity of the matrix norm ‖ · ‖∞, proceeding as in Lem-
ma 3 in [7] one obtains

F ≤ (E + F)GE,
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and in particular if EG < 1

F ≤ E2G/(1 − EG).

Since we have E < ∞ due to Lemma 5.2, we deduce that for sufficiently large n

P (F ≥ ε) ≤ P
(
G ≥ (logn)−1)+ P(G ≥ E2/2ε).

Choosing ε = (logn)−χ1 , the claim follows. �

We are now in the position to show Lemma 4.1. Recall that we have

Y = X�d + Z,(5.4)

where Y = (X1, . . . ,Xn)
T , Z = (ε1, . . . , εn)

T , and X is the n × dn design matrix.
We introduce the estimator �̃ = (θ̃1, . . . , θ̃d)T via

�̃ = (XT X)−1XT Y.(5.5)

REMARK 5.5. It is evident from the proof that Lemma 5.4 remains valid if
one replaces �̂dn with n(XT X)−1, which in fact is the better estimator.

PROPOSITION 5.6. Let {Xk}k∈Z be an AR(dn) process, such that the assump-
tions of Theorem 2.2 are satisfied. Then

P
(∥∥√n(�̂ − �̃)

∥∥∞ ≥ (logn)−χ1
)= O((logn)χ1p/2n−p/4dp/4+1

n ) + O(1).

PROOF. Following the proof of [17], Theorem 8.10.1, we have the following
decomposition:

√
n(�̂ − �̃) = √

n�̂
−1
dn

(�̂dn − n−1XT Y) + n1/2(�̂−1
dn

− n(XT X)−1)n−1XT Y.

For the ith component of
√

n(�̂dn − n−1XT Y), which we denote with ϒi , we
have

n−1/2
0∑

k=1−i

XkXk+i + √
nXn

(
(1 − n−1i)Xn − n−1

n−i∑
k=1

(Xk + Xk+i)

)
.

Using the Minikowski and the Cauchy–Schwarz inequalities we get∥∥∥∥∥n−1/2
0∑

k=1−i

XkXk+i + √
nXn

(
(1 − n−1i)Xn − n−1

n−i∑
k=1

(Xk + Xk+i)

)∥∥∥∥∥
p/2

≤
√

|1 − i|
n

∥∥∥∥∥|1 − i|−1/2
0∑

k=1−i

(XkXk+i − φi)

∥∥∥∥∥
p/2

+ n−1/2
0∑

k=1−i

|φi |

+ ‖√nXn‖p

(
‖Xn‖p + n−1/2

∥∥∥∥∥n−1/2
n−i∑
k=1

(Xk + Xk+i)

∥∥∥∥∥
p

)
:= An.
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Since 0 ≤ i ≤ dn, we obtain from Lemma 5.1 that An = O(n−1/2d
1/2
n ), and hence

by the Markov inequality

P
(∥∥√n(�̂dn − n−1XT Y)

∥∥∞ ≥ ε
)

(5.6)

≤
dn∑
i=1

P(|ϒi | ≥ ε) = O(ε−p/2n−p/4dp/4+1
n ).

Put Bn = �̂dn − n−1XT Y. Then by adding and subtracting �−1
dn

we obtain

P
(√

n‖�̂−1
dn

Bn‖∞ ≥ ε
)≤ P

(√
n‖(�̂−1

dn
− �−1

dn
)Bn‖∞ ≥ ε/2

)
(5.7)

+ P
(√

n‖�−1
dn

Bn‖∞ ≥ ε/2
)
.

In order to control the first expression, note that

P
(√

n‖(�̂−1
dn

− �−1
dn

)Bn‖∞ ≥ ε/2
)≤ P(‖�̂−1

dn
− �−1

dn
‖∞ε ≥ ε/2)

+ P(‖Bn‖∞ ≥ ε),

which by Lemma 5.4 and (5.6) is of the magnitude O(ε−p/2n−p/4d
p/4+1
n ). More-

over, since ‖�−1
dn

‖∞ < ∞ by Lemma 5.2, the bound in (5.6) implies that for some
C > 0

P
(√

n‖�−1
dn

Bn‖∞ ≥ ε/2
)≤ P

(√
n‖Bn‖∞ ≥ εC−1)= O(ε−p/2n−p/4dp/4+1

n ),

hence we conclude that

P
(∥∥√n�̂

−1
dn

(�̂dn − n−1XT Y)
∥∥∞ ≥ ε

)= O(ε−p/2n−p/4dp/4+1
n ).(5.8)

We will now treat the second part, which we rewrite as

n1/2(�̂−1
dn

− n(XT X)−1)(n−1XT Y − n−1E(XT Y)
)

+ n1/2(�̂−1
dn

− n(XT X)−1)n−1E(XT Y)

=: Cn + Dn.

Due to Lemma 5.3 (requires an easy adaption), we have

‖n−1/2XT Y − n−1/2E(XT Y)‖∞ = OP (logn).(5.9)

Moreover, it holds that
√

n
(
�̂

−1
dn

− n(XT X)−1)= �̂
−1
dn

√
n
(
n−1(XT X) − �̂dn

)
n(XT X)−1,

and thus the sub-multiplicativity of the matrix norm ‖ · ‖∞ implies

‖Cn‖∞ ≤ ‖�̂−1
dn

‖∞
∥∥√n

(
n−1(XT X) − �̂dn

)∥∥∞‖n(XT X)−1‖∞

× ‖n−1/2XT Y − n−1/2E(XT Y)‖∞.
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Using (5.9) we thus obtain

P(‖Cn‖∞ ≥ ε)

≤ O(1) + P
(‖�̂−1

dn
‖∞

∥∥√n
(
n−1(XT X) − �̂dn

)∥∥∞
× ‖n(XT X)−1‖∞ logn ≥ ε

)
.

Put �n = n−1(XT X) − �̂dn . By adding and subtracting �−1
dn

and using Lem-
ma 5.4 (see Remark 5.5) and Lemma 5.2 we obtain

P
(‖�̂−1

dn
‖∞‖�n‖∞‖n(XT X)−1‖∞ logn ≥ ε

)
≤ 2P(‖�n‖∞ logn ≥ 1) + P(‖�−1

dn
− �̂

−1
dn

‖∞ ≥ ε)

+ P
(‖�−1

dn
− n−1(XT X)‖∞ ≥ ε

)
.

Choosing ε = (logn)−χ1 , Lemma 5.4 and (5.6) thus yield the bound

P
(‖�̂−1

dn
‖∞‖�n‖∞ logn ≥ (logn)−χ1

)= O((logn)χ1pn−p/2dp/2
n ).(5.10)

Piecing everything together, the claim follows. �

We are now in the position to proof Lemma 4.2.

PROOF OF LEMMA 4.2. We have that

P
(‖n1/2(�̂ − �) − n−1/2�−1XT Z‖∞ ≥ 2ε

)
≤ P

(‖n1/2(�̂ − �̃)‖∞ ≥ ε
)+ P

(‖n1/2(�̃ − �) − n−1/2�−1XT Z‖∞ ≥ ε
)
.

Setting ε = logn−χ1 , χ1 > 2, Proposition 5.6 implies that

‖n1/2(�̂ − �̃)‖∞ = OP (logn−χ1).

Moreover, the proof of Proposition 5.6 gives us

n1/2(�̃ − �) − n−1/2�−1XT Z = (
n(XT X)−1 − �−1)n−1/2XT Z,(5.11)

and hence Remark 5.5 and Lemma 5.3 imply that

‖n1/2(�̃ − �) − n−1/2�−1XT Z‖∞
≤ ‖n(XT X)−1 − �−1‖∞‖n−1/2XT Z‖∞(5.12)

= OP (logn−χ1+1),

which completes the proof. �
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6. Gaussian approximation. In this section we obtain, under suitable as-
sumptions, a normal approximation for the quantity n−1/2�−1XT Z, where we use
the notation introduced in Section 4. This entitles us to obtain a quantitative ver-
sion of Theorem 2.2 under stronger conditions. Let Vk = (Xk−1, . . . ,Xk−dn)

T εk ,
k ∈ N. We have

n−1/2�−1XT Z = n−1/2�−1
n∑

k=1

Vk = n−1/2
n∑

k=1

Uk,

where Vk = (V
(1)
k , . . . , V

(dn)
k )T , Uk = (U

(1)
k , . . . ,U

(dn)
k )T . Note that Vk and Uk

are both martingale sequences. In particular, it holds that E(Vk) = E(Uk) = 0 and

E(VkVT
k+h) =

{
σ 2�dn, if h = 0,
0dn×dn, if h 
= 0,

(6.1)

since εk is independent of {Xk−i}i≥1. Throughout this section, we will always
assume that dn = O(n).

The main theorem is formulated below.

THEOREM 6.1. Suppose that Assumption 2.7 holds. If dn = O(nδ) with δ <

1/7, then on a possible larger probability space, there exists a dn-dimensional
Gaussian random vector Z with covariance matrix �Z , such that

P

(∥∥∥∥∥Z −
n∑

k=1

Uk

∥∥∥∥∥∞
≥ vn

)
= O(n−ν),

where vn = √
n(logn)−χ3 , for arbitrary ν,χ3 ≥ 0, and max‖n−1�Z − σ 2�dn‖ =

O(d−1
n ).

REMARK 6.2. If one succeeds in establishing a quantitative version of Lem-
ma 21 in [48] with an appropriate error bound, corresponding results to Theo-
rem 6.1 with 0 < δ < 1 should be possible. This, however, is beyond the scope of
the present paper.

The proof of Theorem 6.1 partially follows [8], Theorem 4.1, and is based on
a series of lemmas. To this end, we require some preliminary notation. For a d-
dimensional vector x = (x1, . . . , xd), we denote with |x|d = (

∑n
i=1(xi)

2)1/2 the
usual Euclidean norm. The following coupling inequality is due to Berthet and
Mason [10].

LEMMA 6.3 (Coupling inequality). Let X1, . . . ,XN be independent, mean-
zero random vectors in Rn, n ≥ 1, such that for some B > 0, |Xi |n ≤ B , i =
1, . . . ,N . If the probability space is rich enough, then for each δ > 0, one can de-
fine independent normally distributed mean-zero random vectors ξ1, . . . , ξN with
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ξi and Xi having the same variance/covariance matrix for i = 1, . . . ,N , such that
for universal constants C1 > 0 and C2 > 0,

P

{∣∣∣∣∣
N∑

i=1

(Xi − ξi)

∣∣∣∣∣
n

> δ

}
≤ C1n

2 exp
(
− C2δ

Bn2

)
.

The proof of Theorem 6.1 is based on a blocking argument, which in turn re-
quires carefully truncated random variables. Put

n−1/2�−1XT Z = n−1/2�−1
n∑

k=1

Vk = n−1/2
n∑

k=1

Uk,

where Uk = (U
(1)
k , . . . ,U

(dn)
k )T . Note that Vk and Uk are both martingale se-

quences.

LEMMA 6.4. Suppose that Assumption 2.7 holds. Then for q ≥ 3:

(i) P

(∥∥∥∥∥n−1/2
n∑

k=1

Uk

∥∥∥∥∥∞
≥
√

q logn

)
= O(n−ν),

(ii) P
(√

n‖�̂dn − �dn‖∞ ≥
√

q logn
)= O(n−ν)

for arbitrary ν ≥ 0.

PROOF. We first show (i). By Lemma 1 in [47] we have

P

(∥∥∥∥∥n−1/2
n∑

k=1

Uk

∥∥∥∥∥∞
≥
√

q logn

)
≤

dn∑
h=1

P

(∣∣∣∣∣n−1/2
n∑

k=1

U
(h)
k

∣∣∣∣∣≥√
q logn

)

= O(dnn
−ν)

for arbitrary ν ≥ 0, hence the claim. Part (ii) can be shown in the same way, using
Theorem 3 in [47] instead of Lemma 1. �

LEMMA 6.5. If Assumption 2.7 is valid, then there exists a sequence of ran-
dom vectors U∗

k = (U
(1,∗)
k , . . . ,U

(dn,∗)
k )T with E(U∗

k) = 0 and the same covariance

structure as Uk , such that U∗
k is a dn-dependent sequence, max1≤k≤n|U(h,∗)

k | =
O(b2

n), 1 ≤ h ≤ dn, and

P

(
n−1/2

∥∥∥∥∥
n∑

k=1

Uk −
n∑

k=1

U∗
k

∥∥∥∥∥∞
≥ vn

)
= O(n−ν),

where vn = √
n(logn)−χ3 for arbitrary ν,χ3 ≥ 0.
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PROOF. Put

εk,bn = εk1|εk |≤bn − E
(
εk1|εk |≤bn

)
(6.2)

and let

U
(h)
k,bn

= U
(h)
k 1max|l|≤n|εl |≤bn − E

(
U

(h)
k 1max|l|≤n|εl |≤bn

)
= εk,bn

(
dn∑

j=1

γ
(∗)
h,j

∞∑
i=0

αiεk−j−i,bn

)
.

Denote with Uk,bn = (U
(1)
k,bn

, . . . ,U
(dn)
k,bn

)T ; then

P

(∥∥∥∥∥
n∑

k=1

Uk −
n∑

k=1

Uk,bn

∥∥∥∥∥∞
≥ vn

)

≤ P
(
max|l|≤n

|εl| > bn

)
+ P

(∣∣√nE
(
U(h)

k,bn

)∣∣≥ (logn)−χ3
)
.

Since E(U(h)
k ) = 0, an application of the Cauchy–Schwarz inequality yields

∣∣√nE
(
U(h)

k,bn

)∣∣≤ √
n
∥∥U(h)

k,bn

∥∥
2

∥∥1max|l|≤n|εl |>bn

∥∥
2 = C

√
nP

(
max|l|≤n

|εl| > bn

)
,

which by Assumption 2.7 is of the magnitude O(n−ν), for arbitrary ν ≥ 0. Hence
we conclude

P

(∥∥∥∥∥
n∑

k=1

Uk −
n∑

k=1

Uk,bn

∥∥∥∥∥∞
≥ vn

)
= O(n−ν).(6.3)

Put U(dn)
k,bn

= (U
(1,dn)
k,bn

, . . . ,U
(dn,dn)
k,bn

)T . Then

U(dn)
k,bn

= εk,bn

(
dn∑

j=1

γ
(∗)
h,j

dn∑
i=0

αiεk−j−i,bn

)
.

By Lemma 6.4 (remains valid) we have that

P

(∥∥∥∥∥
n∑

k=1

Uk,bn − U(dn)
k,bn

∥∥∥∥∥∞
≥ vn

)

≤
dn∑

h=0

P

(
�(dn)

−1/2

∣∣∣∣∣n−1/2
n∑

k=1

U
(h)
k,bn

− U
(h,dn)
k,bn

∣∣∣∣∣≥ �(dn)
−1/2(logn)−χ3

)

= O(n−ν)
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for arbitrary ν ≥ 0. Let {ε(h,∗)
k }k∈Z, 1 ≤ h ≤ d, be an array of mutually independent

random variables, where ε
(h,∗)
k is an independent copy of εk,bn for each h. Then

we can define the random vectors

U
(h,∗)
k = U

(h,dn,∗)
k,bn

= εk,bn

(
dn∑

j=1

γ
(∗)
h,j

[
dn∑
i=0

αiεk−j−i,bn +
∞∑

i=dn+1

αiε
(h,∗)
k−j−i

])
.

Note that due to the structure of U
(h,dn,∗)
k,bn

it is clear that one may repeat all the
previous arguments to derive the bound

n−1/2

∥∥∥∥∥
n∑

k=1

Uk −
n∑

k=1

U
(h,dn,∗)
k,bn

∥∥∥∥∥∞
= OP (n−ν).(6.4)

Let σ ∗
n = Var(εk,bn). Since σ ∗

n > 0 for large enough n, the Cauchy–Schwarz in-
equality and Assumption 2.1 imply∣∣√σ ∗

n −
√

σ 2
∣∣
1 ≤ C|σ ∗

n − σ 2|1 = C
∥∥ε2

k1|εk |≥bn

∥∥
1

≤ C‖ε2
k‖2

√
P(|εk| ≥ bn) = O(n−ν).

Then we obtain from the above and Lemma 6.4 (remains valid)

n−1/2

∥∥∥∥∥(1 − σ 2/σ ∗
n )

n∑
k=1

U
(h,dn,∗)
k,bn

∥∥∥∥∥∞
= OP (n−ν).(6.5)

Put U∗
k = (U

(1,∗)
k , . . . ,U

(dn,∗)
k )T . Then it is clear that max1≤k≤n|U(h,∗)

k |d = O(b2
n),

1 ≤ h ≤ dn, and piecing everything together, the claim follows. �

We will now construct an approximation for the random vector U∗
k . To this

end, we first divide the set of integers {1,2, . . .} into consecutive blocks H1, J1,
H2, J2, . . . . The blocks are defined by recursion. Fix δ∗ > δ > 0, and put mn =
�nδ∗�. If the largest element of Ji−1 is ki−1, then Hi = {ki−1 + 1, . . . , ki−1 + mn}
and Ji = {ki−1 +mn + 1, . . . , dn}. Let | · | denote the cardinality of a set. It follows
from the definition of Hi , Ji that |Hi | = mn and |Ji | = dn. Note that the total num-
ber of blocks is approximately n/mm = n1−δ∗

. Let I ⊂ {0,1, . . . , dn} be a subset
with |I| = d, with d = O(nλ), λ > 0, and denote with σ 2�I the sub-covariance
matrix of U∗

k restricted to the subset I .

LEMMA 6.6. If Assumption 2.7 is valid and 5λ + 2δ∗ < 1, then on a possible
larger probability space there exists a d-dimensional Gaussian random vector Z
with covariance matrix n�Z,I , such that

P

(
max
h∈I

∣∣∣∣∣Z −
n∑

k=1

U∗
k

∣∣∣∣∣≥ vn

)
= O(exp(−nε)), ε > 0,
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where vn = √
n(logn)−χ3 , for arbitrary χ3 ≥ 0, and max‖�Z,I − σ 2�I ‖ =

O(m−1
n ).

PROOF. For h ∈ I , let

ξ
(h)
k = ∑

i∈Hk

U
(h,∗)
i and η

(h)
k = ∑

i∈Jk

U
(h,∗)
i

and define the vectors

ξ k = (
. . . , ξ

(h)
k , . . .

)T
, h ∈ I , and ηk = (

. . . , η
(h)
k , . . .

)T
, h ∈ I.

Note that per construction, we have that {ξ k}k∈N is a sequence of independent ran-
dom vectors with |ξ k|d = O(

√
dmnb

2
n). By Lemma 6.3, we can define a sequence

of independent normal random vectors ξ∗
k = (. . . , ξ

(h,∗)
k , . . .)T , h ∈ I , such that for

x > 0

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

(
ξ

(h)
j − ξ

(h,∗)
j

)∣∣∣∣∣≥ x

)
≤

d∑
h=1

P

(∣∣∣∣∣
n/mn∑
j=1

(
ξ

(h)
j − ξ

(h,∗)
j

)∣∣∣∣∣≥ x

)

≤
d∑

h=1

P

(∣∣∣∣∣
n/mn∑
j=1

(ξ j − ξ∗
j )

∣∣∣∣∣
d

≥ x

)

≤ Cd2 exp
(
− x

d5/2mnb2
n

)
.

We thus obtain

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

(
ξ

(h)
j − ξ

(h,∗)
j

)∣∣∣∣∣≥ vn

)
= O(exp(−nε)),(6.6)

and similar arguments show that there exists a sequence of independent normal
random vectors η∗

k = (. . . , η
(h,∗)
k , . . .)T , such that

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

(
η

(h)
j − η

(h,∗)
j

)∣∣∣∣∣≥ vn

)
= O(exp(−nε)).

Lemma 6.5 yields that Var(η(h,∗)
j ) = O(dn) for all j ≤ mn, 1 ≤ h ≤ d. Hence by

known properties of the tails of a normal c.d.f., we obtain that

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

η
(h),∗
j

∣∣∣∣∣≥ vn

)
≤

d∑
h=1

P

(∣∣∣∣∣
n/mn∑
j=1

η
(h),∗
j

∣∣∣∣∣≥ vn

)

≤ dP
(|Z| ≥ C

√
dn/mn(logn)−χ3

)
(6.7)

= O(exp(−nε))
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for some ε > 0. This yields

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

(
η

(h)
j + ξ

(h)
j − ξ

(h,∗)
j

)∣∣∣∣∣≥ vn

)
= O(exp(−nε)).(6.8)

Let η∗∗
k = (. . . , η

(h,∗∗)
k , . . .)T h ∈ I be a copy of η∗

k such that η∗∗
i and ξ∗

j are in-
dependent for i 
= j . By the very construction of ξ k,ηk , it is not hard to show
that

max
i,j∈I

∣∣∣∣∣Cov

(n/mn∑
k=1

η
(i)
k + ξ

(i)
k ,

n/mn∑
k=1

η
(j)
k + ξ

(j)
k

)

− Cov

(n/mn∑
k=1

ξ
(i,∗)
k + η

(i,∗∗)
k ,

n/mn∑
k=1

ξ
(j,∗)
k + η

(j,∗∗)
k

)∣∣∣∣∣
= O(n/mn),

which clearly implies max‖�Z,I − σ 2�I ‖ = O(m−1
n ). Hence, by enlarging the

probability space if necessary and arguing similarly as in (6.7), we have that

P

(
max

1≤h≤d

∣∣∣∣∣
n/mn∑
j=1

(
ξ

(h)
j + η

(h)
j − ξ

(h,∗)
j − η

(h,∗∗)
j

)∣∣∣∣∣≥ vn

)
= O(exp(−nε)).

Finally, we obtain from the above

P

(
max
h∈I

∣∣∣∣∣
n∑

k=1

U∗
k −

n/mn∑
j=1

(ξ∗
j − η∗∗

j )

∣∣∣∣∣≥ vn

)
= O(exp(−nε)),

which completes the proof. �

PROOF OF THEOREM 6.1. By Lemma 6.5 it suffices to establish the claim for
{U∗

k}1≤k≤n. This, however, is provided by Lemma 6.6. �
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