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The multiplicative censoring model introduced in Vardi [Biometrika 76
(1989) 751–761] is an incomplete data problem whereby two independent
samples from the lifetime distribution G, Xm = (X1, . . . ,Xm) and Zn =
(Z1, . . . ,Zn), are observed subject to a form of coarsening. Specifically, sam-
ple Xm is fully observed while Yn = (Y1, . . . , Yn) is observed instead of Zn,
where Yi = UiZi and (U1, . . . ,Un) is an independent sample from the stan-
dard uniform distribution. Vardi [Biometrika 76 (1989) 751–761] showed that
this model unifies several important statistical problems, such as the deconvo-
lution of an exponential random variable, estimation under a decreasing den-
sity constraint and an estimation problem in renewal processes. In this paper,
we establish the large-sample properties of kernel density estimators under
the multiplicative censoring model. We first construct a strong approximation
for the process

√
k(Ĝ−G), where Ĝ is a solution of the nonparametric score

equation based on (Xm, Yn), and k = m + n is the total sample size. Using
this strong approximation and a result on the global modulus of continuity,
we establish conditions for the strong uniform consistency of kernel density
estimators. We also make use of this strong approximation to study the weak
convergence and integrated squared error properties of these estimators. We
conclude by extending our results to the setting of length-biased sampling.

1. Introduction. Vardi [50] introduced an incomplete data problem unifying
several statistical models. The problem consisted of inferring the lifetime distribu-
tion of interest G through a random sample X1,X2, . . . ,Xm drawn directly from
G and a random sample Y1, Y2, . . . , Yn drawn from the distribution F with density
function

f (y) =
∫
y≤z

z−1 dG(z), y > 0.(1.1)

Since f is a decreasing density function, Y may be expressed as the product of
two independent random variables: a nonnegative variate Z and a standard uni-
form variate U . From the form of (1.1), it is easy to see that in this case Z must
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be distributed according to G. This representation suggests that only a random
fraction of Z may be observed, motivating the nomenclature multiplicative cen-
soring used to describe this incomplete data scheme. The likelihood based on the
k = m + n observations X1 = x1, . . . ,Xm = xm and Y1 = y1, . . . , Yn = yn is

L(G) =
m∏

i=1

G(dxi)

n∏
j=1

∫
yj≤z

z−1 dG(z).(1.2)

As discussed by Vardi [50], the multiplicative censoring model arises from the
deconvolution of an exponential random variable, estimation under a decreasing
density constraint and an estimation problem in renewal processes. The literature
on these and related problems is vast. Estimation under a decreasing density con-
straint dates back to the seminal work of Grenander [22], with key contributions
by Groeneboom [23] and Huang and Wellner [26]. The estimation problem in re-
newal processes discussed in [50] is closely tied to important applications in cross-
sectional sampling and prevalent cohort studies in epidemiology (length-biased
sampling) and in labor force studies in economics (stock sampling). The multi-
plicative censoring model and its variants have been studied by [6, 8, 25, 45, 50]
and [51], among others. Vardi [51] studied the asymptotic behavior of solutions of
the nonparametric score equation under the multiplicative censoring model.

As will be discussed later, multiplicative censoring and left-truncated right-
censored data are intricately tied. The latter have been extensively studied in the
statistical literature. Their importance stems mainly, although not exclusively, from
the widespread use of prevalent cohort study designs to estimate survival from on-
set of a disease. In such studies, patients with prevalent disease are identified at
some instant in calendar time, often through a cross-sectional survey. These pa-
tients are then followed forward in time until death or loss to follow-up. If no
temporal change in the incidence of disease has occurred during the period cov-
ering observed onsets, a stationary Poisson process may adequately describe the
incidence pattern of the disease; see [2–4] and [53]. In this case, the left-truncation
variable is uniformly distributed, and the failure time data are said to be length-
biased. The likelihood for the observed data is then given by (1.2), where

G(t) = μ−1
U

∫ t

0
udFU(u),

μU = ∫ ∞
0 udFU(u) and FU , the unbiased distribution, is the underlying distribu-

tion function about which we would like to infer; see Section 6 and [3]. Because
we require μU < ∞ in the above, we restrict our attention to distribution functions
G such that

∫
z−1 dG(z) < ∞.

The connection between the multiplicative censoring model and prevalent co-
hort studies under the stationarity assumption has revived interest in the former.
Nonetheless, there appears to be no result in the literature on density estimation un-
der the multiplicative censoring model, despite its importance in applied sciences.
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A recent application described by Kvam [28] concerns nanoscience and the mea-
surement of carbon nanotubes. As discussed by Silverman [43], density estimation
can be useful for purposes of data exploration and presentation. It is effective in
the investigation of modes (determination of multimodality and identification of
modes) and tail behavior (rate of tail decay). These features are especially im-
portant in length-biased sampling and survival analysis, where skewness is often
pervasive and differential subgroup characteristics may lead to multimodality. An
additional motivation for the study of density estimation under multiplicative cen-
soring stems from the fact that nonparametric regression of right-censored length-
biased data has not been addressed in the literature. In view of the intricate link
between density estimation and nonparametric regression (see [35]), a study of
density estimation under multiplicative censoring provides foundations for study-
ing nonparametric regression of right-censored length-biased data.

Among the various methods of density estimation, kernel smoothing is partic-
ularly appealing for both its simplicity and its interpretability (e.g., as a limiting
pointwise average of shifted histograms). It provides a unifying framework in that,
as discussed in [40], each of finite difference density estimation, smoothing by
convolution, orthogonal series approximations and other smoothing methods his-
torically used in the various applied sciences can be seen as instances of kernel
smoothing. This article studies the large-sample properties of kernel density esti-
mators in the setting of multiplicative censoring. Pioneered by Silverman [42], the
approach adopted consists of constructing strong approximations of the empirical
density process.

Although under the multiplicative censoring model we may avoid complexities
altogether by performing estimation using the uncensored observations alone, use
of the full data is motivated by at least two reasons. First, although discarding
the censored cases under the canonical multiplicative censoring scheme does not
compromise consistency, the same cannot be said under the related length-biased
sampling scheme, even though these schemes lead to the same likelihood. This
occurs because, under length-bias sampling, the uncensored cases do not emanate
directly from the (length-biased version of the) distribution of interest. Systematic
exclusion of the censored cases would therefore lead to inconsistency. This fact
motivates the study of both censored and uncensored cases under multiplicative
censoring. Second, due to the informativeness of the censoring mechanism, ignor-
ing the censored observations may lead to a substantial loss of efficiency. Because
the asymptotic covariance function of the nonparametric maximum likelihood esti-
mator of G does not have an explicit form, this phenomenon is difficult to quantify
in the nonparametric setting (see the discussion on page 1024 of [51]); however,
a parametric example may be illustrative. Suppose that the uncensored observa-
tions emanate from a Gamma distribution, say with mean 2θ and variance 2θ2,
then the censored observations are exponentially distributed with mean θ . The
asymptotic relative efficiency of the full-sample MLE relative to the uncensored-
sample MLE is 1 + υ/2, where υ > 0 is the asymptotic relative frequency of cen-
sored observations to uncensored observations. If, for example, υ = 1, indicating
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that uncensored and censored cases arise in equal numbers asymptotically, use of
the full sample provides a fifty percent gain in efficiency.

Following [27], hereafter referred to as KMT, and [15], we first construct a
strong approximation for the process

√
k(Ĝ − G), where Ĝ is a solution of the

nonparametric score equation based on (Xm, Yn). The literature on strong approx-
imations is vast. Recent reviews on empirical processes, strong approximations
and the KMT construction include [17] and [30]. Using this strong approximation
and a result on the global modulus of continuity, we obtain the strong uniform
consistency of the kernel density estimators of the density function g associated
to G and find a sequence of Gaussian processes strongly uniformly approximating
the empirical kernel density process. Using these results, we study the integrated
squared error properties of the kernel density estimators.

The layout of the paper is as follows. In Section 2, we introduce our notation and
present some preliminaries. In Section 3, we find a sequence of Gaussian processes
that strongly uniformly approximates the empirical process

√
k(Ĝ−G) and study

its global modulus of continuity. We use these results to study the asymptotic be-
havior of the kernel density estimators in Section 4. It is shown, in particular, that
the kernel density estimators are strongly consistent and asymptotically Gaussian.
Section 5 is devoted to the integrated squared error properties of the kernel den-
sity estimators and includes results from a preliminary small-sample simulation
study. We show how our results can be extended to length-biased sampling with
right-censoring in Section 6 and present concluding remarks in Section 7. The
claim and theorems are proved in the Appendix while lemmas are proved in the
supplementary material [1].

2. Preliminaries. We consider the random multiplicative censoring model in-
troduced in [50], whereby two independent random samples Xm = (X1, . . . ,Xm)

and Zn = (Z1, . . . ,Zn) are drawn from the lifetime distribution G and a third in-
dependent sample Un = (U1, . . . ,Un), from the standard uniform distribution. Let
Yi = ZiUi , i = 1, . . . , n, and write Yn = (Y1, . . . , Yn). Then Yn is a random sam-
ple from the absolutely continuous distribution F with density given by (1.1). The
observed data consist of (Xm, Yn) while (Zn, Un) is unobserved.

We begin with the score equation derived from the likelihood L(G) given
by (1.2). Let Gm and Fn be, respectively, the empirical distribution functions based
on the uncensored observations x1, . . . , xm and the censored cases y1, . . . , yn, and
write p̂ = m/k, where k = m + n. For simplicity, assume all observations are dis-
tinct, and denote by t1 < · · · < tk the values taken by x1, . . . , xm and y1, . . . , yn.
The distribution function Ĝ satisfies the nonparametric score equation if, for all
t ≥ 0,

dĜ(t) = p̂ dGm(t) + (1 − p̂)

[∫
0<y≤t

dFn(y)∫
y≤z z−1 dĜ(z)

]
t−1 dĜ(t),(2.1)
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while
∑k

j=1 dĜ(tj ) = 1 and dĜ(tj ) ≥ 0, j = 1, . . . , k; see [51], page 1025. Inte-
grating both sides of (2.1), we obtain

Ĝ(t) = p̂Gm(t) + (1 − p̂)

∫
0<x≤t

[∫
0<y≤x

dFn(y)∫
y≤z z−1dĜ(z)

]
x−1 dĜ(x),

where the final integrand is defined to be 0 for x > tk . We say that a sequence of
real numbers γm,n satisfies assumption (A0) if∑

m,n

G(γm,n) < ∞,

where the summation is understood to range over subsample sizes m and n, jointly
taken to infinity, so that p̂ → p ∈ (0,1]. To circumvent problems related to a sin-
gularity at the origin, we select a sequence of positive real numbers γm,n satisfying
(A0) and consider solutions Ĝ of (2.1) assigning zero mass below γm,n. All re-
sults derived in this article apply to any solution of (2.1) with this property. The
existence of such solutions is an important fact.

CLAIM 1. Suppose that (A0) holds. Then, for each m and n sufficiently large,
(2.1) has a solution Ĝ such that Ĝ(u) = 0 for each u < γm,n.

If there exists some γ0 > 0 such that G(γ0) = 0, assumption (A0) is not re-
quired. We may simply choose γm,n = γ0, and because any solution of (2.1) will
have zero mass below γm,n, the proposition follows directly from [50].

Define Um,n = √
k(Ĝ − G), WX,m = √

m(Gm − G), WY,n = √
n(Fn − F),

f̂ (t) = ∫
t≤z z−1 dĜ(z) and

Wm,n(t) =
√

p̂WX,m(t) +
√

1 − p̂f̂ (t)

∫
0<y≤t

WY,n(y) d

[
1

f̂ (y)

]
.(2.2)

We observe, in particular, that

|Wm,n(t)| ≤
√

p̂|WX,m(t)| +
√

1 − p̂ sup
0<y≤t

|WY,n(y)|(2.3)

for each t > 0. As in [51], we have that

Wm,n(t) = p̂Um,n(t) + (1 − p̂)f̂ (t)

∫
0<y≤t

y

(∫
y≤z

Um,n(z)

z2 dz

)
d

[
1

f̂ (y)

]
.

The process Wm,n can therefore be expressed as the image of a linear oper-
ator applied on Um,n. To see this, we define the operator Gm,n pointwise as
Gm,n(u)(t) = f̂ (t)Am,n(u)(t), where

Am,n(u)(t) =
∫

0<y≤t
y

(∫
y≤z

u(z)

z2 dz

)
d

[
1

f̂ (y)

]
.
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Then, we may write Fm,n = p̂I + (1 − p̂)Gm,n, with I(u) = u the identity map,
and observe that

Wm,n = Fm,n(Um,n).(2.4)

Denoting by D0[0,∞] the space of cadlag functions vanishing at 0 and ∞ en-
dowed with the uniform topology (the topology induced by the supremum norm
over [0,∞), ‖u‖∞ = sup0≤t<∞|u(t)|), it is not difficult to see that I , Gm,n and
Fm,n are bounded linear operators on D0[0,∞], and, in view of Lemma 3 of [51],
that Fm,n has a bounded inverse satisfying ‖F −1

m,n‖ ≤ 2/p̂2. As in [51], it holds
that if p̂ → p ∈ (0,1] as m,n → ∞, then, for each u ∈ D0[0,∞], we have that

‖Fm,n(u) − F (u)‖∞
a.s.−→ 0,

where the limit operators are F = pI + (1 − p)G , G(u)(t) = f (t)A(u)(t) and

A(u)(t) =
∫

0<y≤t
y

(∫
y≤z

u(z)

z2 dz

)
d

[
1

f (y)

]
.

We may then conclude that G and F are also bounded linear operators on D0[0,∞]
and that F has a bounded inverse satisfying ‖F −1‖ ≤ 2/p2. Vardi [51] proved the
uniform strong consistency of Ĝ using (2.4). Instead, we obtain it as a corollary of
Lemma 1 below.

Of importance will be the fact, proved in [51], that the inverse operator F −1 has
the following pointwise representation:

F −1(u)(t) = p−1u(t) +
∫ ∞

0
�(t, x)u(x) dx(2.5)

with kernel � satisfying, for each t and x, the constraints

p2�(t, x) + (1 − p)A0(t, x) + p(1 − p)

∫ ∞
0

�(t, z)A0(z, x) dz = 0(2.6)

and ∫ ∞
0

�(t, z)A0(z, x) dz =
∫ ∞

0
A0(t, z)�(z, x) dz,(2.7)

where we have defined A0(t, x) = f (t)x−2 ∫
0<y≤t∧x y d[1/f (y)].

As in [51], we have that Wm,n � W in D0[0,∞], where W is the Gaussian
process

W(t) = √
pBX(G(t)) +

√
1 − pf (t)

∫
0<y≤t

BY (F (y)) d

[
1

f (y)

]

with BX and BY independent Brownian bridges, and that Um,n � U = F −1(W)

in D0[0,∞]. Here, the symbol � refers to weak convergence. This last step can
be established using the convergence of Fm,n to F in operator norm topology,
Lemma 3 of [51] and the continuous mapping theorem. A consistent estimator
ψ̂U (s, t) of ψU(s, t) = E[U(s)U(t)] is provided in [51], though in practice the use
of resampling methods may yield an estimator of ψ(s, t) more expediently.
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3. Approximation of the empirical process Um,n.

3.1. Strong approximation. Let αn denote the empirical process of n indepen-
dent standard uniform random variables. The KMT construction implies that there
exists a probability space (�, F ,P ) with a sequence of independent standard uni-
form random variables and a sequence of Brownian bridges Bn such that

‖αn − Bn‖[0,1] = O
(

logn√
n

)
a.s.

Equation (2.4) is key to the strong approximation of Um,n. Since WX,m and WY,n

are independent empirical processes associated, respectively, with Xm and Yn, in
view of the KMT construction, there exist versions of WX,m and WY,n along with
two independent sequences of Brownian bridge processes BX,m and BY,n such
that BX,m ◦ G and BY,n ◦ F approximate WX,m and WY,n at the optimal rate of
log s/

√
s (here, s is the sample size). Using (2.4), we extend this approximation to

Wm,n and use properties of F to find a sequence of Gaussian processes strongly
uniformly approximating Um,n. The main theorem of this section, Theorem 1, is
proved through a sequence of lemmas.

Denote the upper limit of the support of G by τ = sup{t :G(t) < 1}. Given
any set B , denote by IB and ‖ · ‖B the indicator function and the supremum norm
over B , respectively. Write ‖ · ‖∞ for the case B = [0,∞). We introduce the fol-
lowing assumptions:

(A1)
√

k(p̂ − p) = O(
√

log log k) for some p ∈ (0,1].
(A2) G is continuous and has bounded support (τ < ∞).
(A3) There exists α0 > 2 such that limx↓0 G(x)/xα0 < ∞.
(A4) There exists β > 0 such that limx↓0[1 − G(τ − x)]/xβ ∈ (0,∞).

We begin by obtaining rates for the difference between Ĝ and G as well as
between f̂ and f in the supremum norm.

LEMMA 1. Suppose (A0) holds. Then, for any sequence of nonnegative real
numbers am,n, as k → ∞:

(a) ‖Ĝ − G‖∞ = O
(√

log log k

k

)
a.s.,

(b) ‖f̂ − f ‖[am,n,∞)

= O
(
γ −1
m,n

√
log log k

k
+ [FU(γm,n) − FU(am,n)]I[0,γm,n)(am,n)

)
a.s.
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The above indicates, for example, that in addition to satisfying (A0), γm,n

should be such that

γ −1
m,n

√
log logk

k
→ 0.

If (A3) holds, the sequence γ ′
m,n = k−1/(2α) may be considered, with the choice

α ∈ (1, α0/2) ensuring that the two requirements above are satisfied. In this case,
choosing α as close as possible to α0/2 would yield the fastest rate, modulo loga-
rithmic terms, in part (b) of Lemma 1. We now provide a result on the growth rate
of maxima of Wiener processes.

LEMMA 2. Let Wn be a sequence of standard Wiener processes. Then, as
n → ∞,

‖Wn‖[0,1] = O
(√

logn
)

a.s.

The next result considers the asymptotic behavior of the sequence of inverse
operators F −1

m,n. First, we note that the space D0[0, τ ] endowed with the uniform
topology is a Banach space. As such, A = L(D0[0, τ ],D0[0, τ ]), the space of
bounded linear operators on D0[0, τ ] endowed with the operator norm topology,
is a Banach algebra. We recall additionally that cadlag functions have countably
many jumps (see [36]) and are therefore Riemann integrable on bounded intervals.

Fixing ε > 0, set Iε(u)(t) = u(t)I[0,τ−ε](t) and define Fm,n,ε and Fε :D0[0,
τ ] → D0[0, τ ] as

Fm,n,ε = p̂I + (1 − p̂)Gm,n,ε and Fε = pI + (1 − p)Gε,

respectively, where for any t ∈ [0, τ ],
Gm,n,ε(u)(t) = f̂ (t)(Am,n ◦ Iε)(u)(t) and Gε(u)(t) = f (t)(A ◦ Iε)(u)(t).

Define ε0 = τp2/(p2 − 2p + 2).

LEMMA 3. Suppose that (A0)–(A2) hold and that ε is in (0, ε0). Then, consid-
ering the operator norm over the space C0[0, τ ] of continuous functions on [0, τ ]
vanishing at the endpoints, as k → ∞,

‖F −1
m,n,ε − F −1

ε ‖

= O
([

log(1/γm,n)

f (τ − ε)
+ FU(γm,n)

f (γm,n)

]
γ −1
m,n

√
log log k

k
+ FU(γm,n)

)
a.s.

With the choice γm,n = γ ′
m,n, the order above may be simplified to

‖F −1
m,n,ε − F −1

ε ‖ = O
(

k−(α−1)/(2α) logk
√

log log k

f (τ − ε)

)
a.s.
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We now consider a random integral useful in determining the rate of the strong
approximation we will construct for Um,n.

LEMMA 4. Suppose that (A0)–(A2) hold and that ε is in (0, ε0). Then, as
k → ∞,

sup
0≤s≤τ−ε

f̂ (s)

∣∣∣∣
∫ s

0
BY,n(F (y)) d

[
1

f̂ (y)
− 1

f (y)

]∣∣∣∣
= O

(
k−1/4√log k(log log k)1/4

f (τ − ε)

)
a.s.

REMARK 1. The above bound also holds for ε = εm,n ↓ 0 provided εm,nk/√
log logk → ∞.

Henceforth, we set γm,n = γ ′
m,n for each m and n. The next lemma establishes

the existence of a sequence of Gaussian processes approximating Wm,n. Define the
sequence of processes

W 0
m,n(s) = √

pBX,m(G(s)) +
√

1 − pf (s)

∫
0<y≤s

BY,n(F (y)) d

[
1

f (y)

]
.(3.1)

LEMMA 5. Suppose that (A1)–(A3) hold and that ε is in (0, ε0). Then, setting
there exists a probability space on which Wm,n and W 0

m,n are defined such that, as
k → ∞,

‖Wm,n − W 0
m,n‖[0,τ−ε] = O

(
k−r(α)

√
logk(log log k)1/4

f (τ − ε)

)
a.s.,

where r(α) = min(1
4 , α−1

2α
).

The next lemma extends the result on the growth rate of Wiener processes in
Lemma 2 to the sequence of approximating processes (3.1).

LEMMA 6. Suppose that (A2) holds and that p ∈ (0,1]. Then, as k → ∞,

‖W 0
m,n‖∞ = O

(√
log k

)
a.s.

Having established the existence of a sequence W 0
m,n of Gaussian processes

approximating Wm,n and studied the behavior of F −1
m,n, we may provide a sequence

of Gaussian processes approximating Um,n. Define U0
m,n = F −1(W 0

m,n) for each m

and n. Since F −1 is a bounded linear operator, U0
m,n forms a sequence of Gaussian

processes.
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THEOREM 1. Suppose that (A1)–(A4) hold. Then, on the probability space
on which Wm,n and W 0

m,n are defined, we have that, as k → ∞,

‖Um,n − U0
m,n‖[0,τ−εm,n] = O

(
εm,n(log k)3/2

√
log log k

)
a.s.,

where εm,n = k−r(α)/(β+1) and r(α) = min(1
4 , α−1

2α
).

Theorem 1 will be crucial in our study of the asymptotic properties of kernel
density estimators of g, the density associated to G, in Sections 4 and 5. Other
applications of Theorem 1 include oscillation moduli and laws of the iterated log-
arithm; see [16].

3.2. Global modulus of continuity. In order to describe the asymptotic prop-
erties of the kernel density estimators of g via the above strong approximation,
we must establish the global modulus of continuity of the approximating pro-
cess U0

m,n.
In the sequel, we say that the distribution G satisfies assumption (A5) if its den-

sity g is differentiable, and that a sequence of bandwidths hm,n satisfies assumption
(B1) if:

(1) mhm,n → ∞ and loghm,n/ log logm → −∞ as m,n → ∞;
(2)

√
lognhm,n → 0 and

√
logmhm,n → 0 as m,n → ∞.

THEOREM 2. Suppose that (A1)–(A5) hold, and that the sequence hm,n sat-
isfies (B1). Then, for any η in (0, τ ), we have that, as k → ∞,

sup
0≤t≤τ−η

sup
0≤s≤hm,n

|U0
m,n(t + s) − U0

m,n(t)| = O
(√

hm,n log(1/hm,n)
)

a.s.

4. Asymptotic behavior of kernel density estimators. Consider the kernel
density estimator ĝm of a univariate density g introduced by [38],

ĝm(t) = 1

hm

∫ ∞
0

K

(
t − s

hm

)
dĜm(s),(4.1)

where X1, . . . ,Xm are independent observations from g, K is some kernel func-
tion, hm some bandwidth and Ĝm the empirical distribution function. The weak
and strong uniform consistency of ĝm was addressed in [33, 39] and [47],
among others. To ensure strong uniform consistency, these authors required that∑

m exp(−cmhm
2) < ∞ for each c > 0. Silverman [42] established the strong uni-

form consistency of ĝm under weaker assumptions using the KMT strong approx-
imation technique. When the observations are subject to random right-censoring,
Blum and Susarla [9] proposed estimating g by the estimator in (4.1), replacing
Ĝm by the Kaplan–Meier estimator of G. The properties of the resulting estimator
were examined in [9, 19] and [32], among others.
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To estimate the density function g under multiplicative censoring, we consider
a sequence of kernel density estimators ĝm,n, defined as

ĝm,n(t) = 1

hm,n

∫ ∞
0

K

(
t − s

hm,n

)
dĜ(s),(4.2)

where Ĝ is, as before, a solution of the nonparametric score equation based on
(Xm, Yn).

We introduce an additional set of assumptions to be used in the sequel. The
sequence of bandwidths hm,n is said to satisfy assumption (B2) if

lim
k→∞

εm,n(log k)3/2√log log k√
khm,n

= 0.

We say that a kernel function K satisfies assumption (K1) if:

(1) K has total variation VK < ∞;
(2) K is supported on (−1,1);
(3) K is continuous;
(4)

∫
K(u)du = 1.

Further, we say that it satisfies assumption (K2) if
∫

uK(u)du = 0.

4.1. Strong uniform consistency. Denote by gm,n the kernel smoothing of g

based on G; that is, write

gm,n(t) = 1

hm,n

∫ ∞
0

K

(
t − s

hm,n

)
dG(s).

LEMMA 7. Suppose that (A1)–(A5) hold, and that hm,n is a sequence of pos-
itive bandwidths tending to 0 as k → ∞ and satisfying (B1) and (B2). Suppose
also that the kernel function K satisfies (K1). Then, for any η in (0, τ ), we have
that

lim
k→∞‖ĝm,n − gm,n‖[0,τ−η] = 0 a.s.

THEOREM 3. Suppose that (A1)–(A5) hold, and that hm,n is a sequence of
positive bandwidths tending to 0 as k → ∞ and satisfying (B1) and (B2). Suppose
also that the kernel function K satisfies (K1). Then, for any η in (0, τ ), we have
that

lim
k→∞‖ĝm,n − g‖[0,τ−η] = 0 a.s.
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4.2. Strong uniform approximation of the empirical density process. By The-
orems 1 and 3, we can find a sequence of Gaussian processes that strongly and
uniformly approximates the empirical density process. Let K be an arbitrary den-
sity function, and define

ϕm,n(t, s) = 1

hm,n

K

(
t − s

hm,n

)
.

Denoting by vs[ϕm,n(t, s)] the total variation of ϕm,n(t, ·) for fixed t , we refer to
the uniform total variation supt vs[ϕm,n(t, s)] by Vm,n.

THEOREM 4. Suppose that (A1)–(A5) hold, and that hm,n is a sequence of
positive bandwidths tending to 0 as k → ∞ and satisfying (B1) and (B2). Suppose
also that the kernel function K satisfies (K1) and (K2), and that g has a bounded
second derivative. Then, for any η in (0, τ ), we have that∥∥√k(ĝm,n − g) − �m,n

∥∥[0,τ−η]

= O
(

εm,n(log k)3/2√log log k

hm,n

+ √
kh2

m,n

)
a.s.,

where we have defined �m,n(t) = ∫ ∞
0 U0

m,n(s)ϕm,n(t, ds).

REMARK 2. Theorem 4 suggests that the optimal rate for the above approxi-
mation is obtained by choosing hm,n ∼ (εm,n

√
log log k/k)1/3√log k.

Theorem 4 implies distributional results. The linearization ψU(s−uh, t −vh)−
ψU(s, t) ∼ h is useful here. This result is not difficult to show for p > 1/2 using
representations of ψU provided on page 1033 of [51], linearization techniques and
the modulus of continuity of process U . The case p ≤ 1/2 (i.e., heavy censoring) is
more challenging, but can be dealt with using (2.6), (2.7) and an argument similar
to that found in the proof of Theorem 2. Using Theorem 4 and the above lineariza-
tion, we may show that

√
khm,n(ĝm,n − g) is asymptotically Gaussian with mean

zero and covariance function σg estimated consistently by

σ̂g(s, t) = h−1
m,n

∫ ∫
ψ̂U (s − uhm,n, t − vhm,n) dK(u)dK(v).

5. Integrated squared error of kernel density estimators. A common mea-
sure of the global performance of an estimator ĝm of a density g is its integrated
square error (ISE), defined as

Em =
∫ ∞
−∞

[ĝm(s) − g(s)]2 ds.

Use of the ISE is particularly pervasive in simulation studies aiming to compare
the performance of various density estimators. Minimization of the mean inte-
grated square error (MISE) E[Em] = ∫ ∞

−∞ E[gm(s) − g(s)]2 ds is often a guiding
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principle in the construction of kernel density estimators. Steele [44] identified
the need to determine the relationship between various measures of accuracy in
density estimation. One such measure, the order of Em − E(Em), is particularly
important in statistics. Hall [24] first began addressing the issues raised in [44] by
computing the exact order of convergence of Em − E(Em) to zero using the strong
approximation technique developed by Komlós, Major and Tusnády [27] for the
standard empirical process. Zhang [56] studied the case of random right-censoring
using the strong approximation technique of [10] and [11]. In this section, we con-
sider the ISE Em,n of the kernel estimator ĝm,n under multiplicative censoring and
derive its asymptotic expansion.

5.1. Asymptotic expansion of the integrated squared error. In the remainder
of the paper, we make use of the following assumptions. We say that the kernel
function K satisfies assumption (K3) if it has finite second moment σ 2 > 0 and
is differentiable. Further, we say that the density g satisfies assumption (A6) if it
is twice continuously differentiable. Of course, assumption (A6) implies assump-
tion (A5). Finally, we say that the sequence of bandwidths hm,n satisfies assump-
tion (B3) if

lim
k→∞

√
log k(log logk)1/6

hm,nk1/(δ(β))
= 0,

where δ(β) = 4 + 4β/(2β + 3). In the sequel, we write ν for
√∫ 1

−1 K2(u) du.
The ISE of ĝm,n on the interval [u1, u2] is defined as

Em,n(u1, u2) =
∫ u2

u1

[ĝm,n(s) − g(s)]2 ds.

Theorem 5 presents an asymptotic expansion for Em,n(0, τ −η) for any η in (0, τ ).

THEOREM 5. Suppose that (A1)–(A4) and (A6) hold with α0 > 4 in (A3)
and that α is chosen in [2, α0/2). Suppose that hm,n is a sequence of positive
bandwidths satisfying (B1) and (B3), and that the kernel function K satisfies (K1)–
(K3). Then, for any η in (0, τ ), we have that

Em,n(0, τ − η) = h4
m,nσ

4

4

∫ τ−η

0
[g′′(s)]2 ds + ν2

hm,nkp
+ op

(
1

khm,n

+ h4
m,n

)
.

Theorem 5 suggests that hm,n should shrink at the rate k−1/(ζ(β)) modulo loga-
rithmic terms, where ζ(β) = max(5, δ(β)). We note that δ(β) < 5 when β < 3/2.
Then, writing ‖g′′‖2

2,[0,τ−η] = ∫ τ−η
0 [g′′(s)]2 ds, Theorem 5 suggests that the band-

width

h�
m,n =

(
ν2

kpσ 4‖g′′‖2
2,[0,τ−η]

)1/5
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minimizes the order of the integrated squared error, a direct generalization of the
reference rule for uncensored data alone, which we recover for p = 1 and k = m.
Of course, in practice, this bandwidth is unknown; instead, we may substitute g′′
by some estimate ĝ′′, and p by p̂ = m/k. For example, a reference rule based on
a Gamma approximation to G is given by

ĥ�
m,n = 2β̂

(
ν2

mσ 4

)1/5

,(5.1)

where β̂ = ∑m
i=1 Xi/(4m) is the MLE of β based on Xm and the model G = Gβ ,

with gβ(x) = x3 exp(−x/β)/(6β4) the density associated to Gβ . This distribu-
tion satisfies (A3) with α0 = 4 but is a limiting case with respect to the stronger
assumption made in Theorem 5. It was selected because it has the least smooth
density in the family of densities {gα,β(x) = xα−1 exp(−x/β)/[�(α)βα] :α ≥ 4}
with respect to the L2-norm of the second derivative of gα,β . Alternatively, we
may consider kernel smoothing of the uncensored observations alone to obtain a
nonparametric pilot estimate ĝ′′ of g′′. More robust but computationally intensive
cross-validation approaches, as in [29], may also be used for bandwidth selection.

5.2. Small-sample simulation results: Implementation and efficiency. To pro-
vide some illustration of the behavior of the methods proposed, we present be-
low results from a preliminary small-sample simulation study. The objective was
to graphically evaluate the general adequacy of the estimators as well as to elu-
cidate the potential contribution of censored observations to overall estimation
efficiency, both in small samples. For this purpose, we considered data emanat-
ing from the multiplicative censoring model, with underlying Gamma density
function gα(x) = �(α)−1xα−1 exp(−x)I(0,∞)(x), various sample sizes and dif-
fering values of parameter α. We found the kernel density estimators proposed to
perform generally well. Figure 1 presents 100 sample paths, shown in grey, for
various sample sizes and parameter value α = 5. Plots in the first column were
obtained by discarding all censored observations and performing kernel density
estimation using the uncensored observations alone; all observations were used
in generating plots in the second column. The pointwise average of the sample
plots is shown in solid black, while the true density is the dotted black curve de-
picted. The first, second and third rows were generated from datasets of 100, 200
and 400 total observations, respectively, with censored and uncensored observa-
tions equally represented. In all cases, bandwidth values were automatically se-
lected using the �(4, β) parametric reference rule (5.1). The Epanechnikov kernel
K(x) = 3

4(1−x2)I(−1,1)(x) was used throughout. From these plots, we notice that
use of the full sample leads to a decrease in variability throughout the support.
Our empirical findings suggest that this cumulates to a substantial decrease in in-
tegrated squared error. Table 1 reports estimates and associated 95% confidence
intervals for the mean relative difference in ISE, defined as (ISE0 − ISE1)/ISE1,
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FIG. 1. Overlayed sample paths.

obtained from a simulation of 500 datasets, where ISE0 and ISE1 are the integrated
squared errors associated with the use of the uncensored subsample and of the full
sample, respectively. These values describe the mean percent increase in ISE from
discarding the censored subsample, for various sample sizes and parameter values.

TABLE 1
Average percent increase in ISE and 95% CIs using �(4, β) parametric reference rule

Sample size α = 3 α = 4 α = 5 α = 6

50 + 50 15.217.119.0 11.313.415.6 16.418.420.4 13.916.318.7
100 + 100 16.818.520.2 14.115.817.5 13.615.317.0 9.911.613.2
200 + 200 13.214.716.1 11.613.114.7 14.417.821.2 18.422.626.7
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TABLE 2
Average percent increase in ISE and 95% CIs using optimal bandwidth selection rule

Sample size α = 3 α = 4 α = 5 α = 6

50 + 50 9.614.319.0 10.915.720.5 9.814.819.9 17.332.547.7
100 + 100 12.716.320.0 12.917.321.6 11.115.820.5 12.426.941.3
200 + 200 10.013.817.6 12.117.222.4 14.321.027.7 16.934.652.3

The relative performance of the estimators was found to be rather insensitive
to the proximity of the underlying distribution to the parametric model specified
in the reference rule used, with an average increase in ISE of around 10–25%,
subsequent to discarding censored observations, regardless of sample size and pa-
rameter value. Since the performance of kernel density estimators hinges upon
the performance of the underlying estimator of the distribution function as well
as the adequacy of the bandwidth selection rule, gauging the contribution of cen-
sored observations to overall estimation efficiency is complicated by the layer of
uncertainty associated to bandwidth selection. As such, we have also conducted a
simulation study, whereby, for each simulated dataset, the bandwidth selected was
that minimizing the observed ISE; we refer to this rule as the optimal bandwidth
selection rule. Of course, such a rule can only be adopted in simulation settings,
where the true density function is known, and the ISE can be computed directly.
This approach provides, nonetheless, a clearer view of the gains resulting from
the inclusion of censored observations in the estimation procedure. Table 2 reports
estimates of the mean relative increase in ISE resulting from discarding all cen-
sored observations along with associated 95% confidence intervals. These results
seem to suggest that for small and moderate sample sizes, when equal numbers of
censored and uncensored observations are available, ignoring censored observa-
tions leads to an increase in ISE of roughly 10–35%, results consistent with those
reported in Table 1.

The above provides a glimpse of the contribution of the censored observations
in small and moderate samples. It suggests that these observations provide non-
negligible information regarding the estimand of interest. We may, however, also
resort to asymptotic arguments to motivate use of the full sample for the sake of
efficiency. For any given distribution function H , denote the integrated squared
error by

ISE(H,h;g) =
∫ [

1

h

∫
K

(
x − y

h

)
dH(y) − g(y)

]2

dy

and define the optimal bandwidth λ(H ;g) as the minimizer of the ISE with respect
to the true density g, that is, λ(H ;g) = arg minh>0 ISE(H,h;g). Let Gm,n be any
consistent estimator of G based on (Xm, Yn). The optimal kernel density estimator
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of g based on Gm,n is then g�
m,n = ω(Gm,n), where ω is the operator defined

pointwise as

ω(H)(x) = 1

λ(H ;g)

∫
K

(
x − u

λ(H ;g)

)
dH(u).

Since any solution Ĝ of the nonparametric score equation is asymptotically effi-
cient for G (see [51]), it is possible to show, along the lines of Theorem 25.47
of [46], that ĝ�

m,n = ω(Ĝ) is asymptotically efficient for g = ω(G). In particu-
lar, the kernel density estimator using the empirical distribution function based
on uncensored observations alone cannot be expected to be asymptotically effi-
cient, given that the latter is itself not efficient for G. It is thus clear that, barring
additional complications linked to bandwidth selection, use of the full sample is
preferable to that of the uncensored subsample alone.

6. Length-biased sampling with right-censoring. As discussed in the Intro-
duction, the likelihood of length-biased right-censored data is a particular case of
that exhibited in (1.2). The literature on length-biased sampling can be traced as
far back as [52], with important contributions by Fisher [18], Neyman [34] and
Zelen [55] in medical applications, and by Cox [13] in industrial applications. The
rigorous treatment of biased sampling was initiated in the 1980s by Vardi [48, 49],
and furthered by Gill, Vardi and Wellner [21], Vardi and Zhang [51], Bickel and
Ritov [7], Gilbert [20] and, more recently, by Asgharian, M’Lan and Wolfson [2],
Asgharian and Wolfson [3] and Bergeron, Asgharian and Wolfson [5]. The impor-
tance of biased sampling in medical applications and prevalent cohort studies was
re-emphasized by Cox and Oakes [14].

The lifetime data typically collected on a prevalent cohort consist of triples
(A,R ∧ D,�), where A,R and D are, respectively, the current-age, the resid-
ual lifetime and the residual censoring time, while � = I{R≤D} is the censoring
indicator. Suppose that D and (A,R) are independent. In one scenario considered
in [3], all analyses are carried out conditionally upon the proportion of uncensored
individuals, assumed fixed. As such, the observations are comprised of

(Ai,Ri)
i.i.d.∼ fA,R|�=1, i = 1, . . . ,m,

and

(Aj ,Dj )
i.i.d.∼ fA,D|�=0, j = 1, . . . , n,

where fA,R(a, r) = fU(a + r)/μU and fU is the probability density function as-
sociated to

FU(t) =
∫ t

0
s−1 dG(s)

/∫ ∞
0

s−1 dG(s).(6.1)
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The conditional density functions above are explicitly given by

fA,R|�=1(a, r) = 1 − FD(r)

p(a + r)
dG(a + r)

and

fA,D|�=0(a, d) = fD(d)

(1 − p)

∫
a+d≤z

z−1 dG(z)

for the uncensored and censored subjects, respectively. Here, fD and FD are, re-
spectively, the density and distribution functions associated to the residual cen-
soring random variable D, and p = pr(� = 1) is the proportion of uncensored
individuals. The full likelihood of m uncensored and n censored length-biased ob-
servations is thus

L =
m∏

i=1

[
1 − FD(ri)

pxi

dG(xi)

] n∏
j=1

[
fD(dj )

1 − p

∫
yj≤z

z−1 dG(z)

]

∝
m∏

i=1

dG(xi)

n∏
j=1

∫
yj≤z

z−1 dG(z).

Denoting G∗(t) = P(A + R ≤ t | � = 1) and F∗(t) = P(A + D ≤ t | � = 0)

with associated density functions g∗(t) and f∗(t), we may verify that

g∗(t) = g(t)

pt

∫ t

0
[1 − FD(r)]dr and f∗(t) = f (t)FD(t)

1 − p
,

where f (t) is given by (1.1). Defining the operators

H(u)(t) =
∫

0<x≤t

g∗(x)

g(x)
du(x),

Km,n(u)(t) =
∫

0<y≤t
y

(∫
y≤z

u(z)

z2 dz

)
d

[(
f̂ (t)

f̂ (y)
− 1

)
f∗(y)

f (y)

]

and �m,n = p̂H + (1 − p̂)Km,n, Asgharian and Wolfson [3] have derived, un-
der this scenario, the equation �m,n(Um,n) = Wm,n, where Wm,n is obtained from
(2.2) by replacing WX,m and WY,n by the empirical processes

√
m(Gm − G∗) and√

n(Fn − F∗), respectively. Defining the limiting operators

K(u)(t) =
∫

0<y≤t
y

(∫
y≤z

u(z)

z2 dz

)
d

[(
f (t)

f (y)
− 1

)
f∗(y)

f (y)

]

and � = pH + (1 − p)K, one can show that �m,n converges almost surely to �

in operator norm topology, and that � is bounded, linear and has bounded inverse
�−1 if p > 0.59; see [3].

As discussed in the Introduction, when the observation mechanism generates
length-biased samples, it is often of prime interest to make inference about FU and
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its density function fU . Substitution of G by Ĝ in (6.1) yields F̂U , an asymptoti-
cally efficient estimator of FU . The asymptotic properties of Zm,n = √

k(F̂U −FU)

may be studied via its relation to Um,n. Indeed, defining Lt(x) = x−1[I[0,t](x) −
FU(t)], we may write

F̂U (s) − FU(s) =
∫ ∞

0 Ls(x) d[Ĝ(x) − G(x)]∫ ∞
0 x−1 dĜ(x)

,

from which we have that Zm,n = ∫ ∞
0 Ls(x) dUm,n(x)/

∫ ∞
0 x−1 dĜ(x). Defining

the operator L (g)(t) = μ−1
U

∫ ∞
0 Lt(x) dg(x), we note that if there exists some

γ0 > 0 such that G(γ0) = 0 (in which case G is said to satisfy assumption γ ), the
operator L is bounded. Consequently, Theorems 1–5 hold when making inference
about FU and its density function fU .

Under the additional assumption that the residual censoring distribution does
not have a point-mass at zero, it is possible to provide an explicit distributional
result for the empirical density process arising from kernel density estimation.
Specifically, we have that the empirical density process

√
khm,n(f̂U − fU) is

asymptotically Gaussian with mean zero and covariance function σfU
estimated

consistently by

σ̂fU
(s, t) = h−1

m,n

∫ ∫
ψ̂Z(s − uhm,n, t − vhm,n) dK(u)dK(v),

where ψ̂Z is a consistent estimator of the asymptotic covariance function ψZ as-
sociated to the sequence of processes Zm,n. For example, we may take

ψ̂Z(s, t) = μ̂−2
U

∫ ∫
ψ̂U (x, y) dL̂s(x) dL̂t (y),

where μ̂U = ∫ ∞
0 z−1 dĜ(z), L̂u(z) = z−1[I[0,u](z)− F̂U (z)] and ψ̂U is a consistent

estimator of the covariance function ψU of process U . Since for s ≤ t we may write
ψU(s, t) as

p

{∫ s

0
[β(x)]2 dG∗(x) −

[∫ s

0
β(x) dG∗(x)

∫ t

0
β(x) dG∗(x)

]}

+ (1 − p)

∫ t

0

∫ s

0
f (x)f (y)

{
e(x ∧ y)

+ h(x ∧ y)

[
1

f (x ∨ y)
− 1

f (x ∧ y)

]

− h(x)h(y)

}
dζ(x) dζ(y),

where we have defined ζ(x) = g(x)[pg∗(x)]−1, h(x) = ∫ x
0 F∗(y) d[1/f (y)] and

e(x) = 2
∫ x

0 h(y) d[1/f (y)], consistent estimation of ψU is possible by substitution
of appropriate empirical counterparts into the above.
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Assumption γ imposed on G may seem restrictive, but nonetheless holds in
many industrial and medical applications. The case of survival with dementia,
studied in [2] and [53], is an example of such. It is possible to relax this require-
ment by imposing that G and FD vanish at zero at a super-polynomial rate, that
is, by assuming that G(t) and FD(t) are o(tr ) as t → 0 for each r > 0. While pre-
serving all results pertaining to G, this relaxation does not directly preserve those
pertaining to FU . The unboundedness of L is problematic, although an applica-
tion of Tikhonov’s regularization method may help in circumventing this problem.
This has been explored by Carroll, Rooij and Ruymgaart [12], although not from
the perspective of strong approximations.

7. Closing remarks. (1) For distributions with a lighter left tail (α0 > 2) and
heavier right tail (small β), the rate obtained for the strong approximation of Um,n

is close to k−1/4 modulo logarithmic terms. It is unclear whether it is possible
to achieve better rates; if so, different techniques would necessarily be needed to
control the rate of I5 in Lemma 4, as the best achievable rate for I5 using ap-
proximations by Bernstein polynomials is k−1/4. As for assumption (B2) on the
bandwidth required to establish Theorem 3, the k−1/4 rate in the strong approx-
imation roughly translates into the bandwidth condition (logk)2/(k3/4hm,n) → 0
when we further replace the iterated logarithmic term by a logarithmic term. This
is in contrast to log k/(khm,n) → 0 obtained in [42], in the case of uncensored ob-
servations alone. Likewise, the rate given in Remark 2, after Theorem 4, is roughly
hm,n ∼ (logk)2/3/k1/4.

(2) The theory presented in this paper requires that p̂ → p ∈ (0,1]. The case
p = 0 may itself be of interest. On one hand, if p̂ = 0 for each k, then all obser-
vations are multiplicatively censored; this has been studied by Groeneboom [23],
among others. On the other hand, if p̂ > 0 for each k, the methods developed in
this paper may be adapted as long as p̂ does not vanish too rapidly. Specifically,
we may redefine Fm,n = p̂I + (1 − p̂)G and

W 0
m,n(s) =

√
p̂BX,m(G(s)) +

√
1 − p̂f (s)

∫
0<y≤s

BY,n(F (y)) d

[
1

f (y)

]
.

Suppose that p̂−2 is O(υk) for some sequence of positive real numbers υk tending
to infinity. Then the strong approximation holds, with U0

m,n redefined as the Gaus-
sian process F −1

m,n(W
0
m,n) and the rates being multiplied by O(υ2

k ). Further, the rate
of the global modulus of continuity of U0

m,n is multiplied by O(υk). This allows
one to study the case p = 0. This extension provides insight into the leap between
the square-root asymptotics in the canonical multiplicative censoring setting and
the cube-root asymptotics for the Grenander estimator when only censored obser-
vations are available.
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APPENDIX: PROOFS OF MAIN RESULTS

PROOF OF CLAIM 1. If the condition
∑

m,n G(γm,n) < ∞ is satisfied,
it is an immediate consequence of Theorem 1 of Section 10.1 of [41] that
pr(min(X1, . . . ,Xm) ≤ γm,n i.o.) = 0. Hence, almost surely, we may find m0
and n0 ∈ N such that, for each m ≥ m0 and n ≥ n0, all uncensored observa-
tions x1, . . . , xm are no smaller than γm,n. We restrict our attention here to such
sufficiently large m and n. Define δi = I{x1,...,xm}(ti) for i = 1, . . . , k, and write
r0 = min{i : ti ≥ γm,n}. By construction, we must have that δ1 = · · · = δr0−1 = 0.
Define the set

D =
{
(ar0, ar0+1, . . . , ak) : 0 ≤ ar0, ar0+1, . . . , ak ≤ 1,

k∑
i=r0

ai = 1, ak ≥ 1

k

}
,

a bounded, closed and convex subset of R
k−r0+1. For i = r0, . . . , k, define

φi(ar0, . . . , ak) = δi

(
p̂

m

)
+ ai

ti

(
1 − p̂

n

) i∑
j=1

1 − δj∑k
q=max(j,r0)

aq/tq

= 1

k

(
δi + ai

ti

i∑
j=1

1 − δj∑k
q=max(j,r0)

aq/tq

)

and φ = (φr0, . . . , φk). We note that φ is continuous on D . We want to show that
φ(D) ⊆ D . The fact that the image of D under φi is contained in [0,1] for i =
r0, . . . , k is clear. That it is contained in [1/k,1] for i = k is obvious if δk = 1.
We assume instead that δk = 0. Then, defining λj = ∑k−1

q=max(j,r0)
aq/tq ≥ 0 for

j = 1, . . . , k − 1 and λk = ak/tk ≥ 0, we observe that

ak

tk

k∑
j=1

1 − δj∑k
q=max(j,r0)

aq/tq
= λk

(
k−1∑
j=1

1 − δj

λj + λk

+ 1

λk

)
≥ 1,

from which it follows that the image of D under φk is contained in [1/k,1] if
δk = 0 as well. Finally, we require the equality

∑k
i=r0

φi(ar0, . . . , ak) = 1 to hold
for any (ar0, . . . , ak) ∈ D . This can be verified using that

k∑
i=r0

i∑
j=1

bij =
r0−1∑
j=1

k∑
i=r0

bij +
k∑

j=r0

k∑
i=j

bij

for any array bij , where under the first sum on the right-hand side, it holds that
max(j, r0) = r0, while under the second sum, max(j, r0) = j . We may thus use
the Brouwer fixed point theorem (see, e.g., Proposition 2.6 on page 52 and Prob-
lem 6.7e on page 254 of [54]) to obtain that there exists some a∗ = (a∗

r0
, . . . , a∗

k ) ∈
D such that φ(a∗) = a∗. The distribution function

Ĝ∗(t) =
k∑

i=r0

a∗
i I[0,t](ti)
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is a solution to equation (2.1) with zero mass below γm,n. �

PROOF OF THEOREM 1. Using Lemma 1 and the boundedness of F −1
m,n, we

have for each t ∈ [0, τ − ε] that

Um,n(t) = F −1
m,n,ε(Wm,n)(t) + O

(
ε
√

log log k
)

a.s.

Similarly, using the definition of U0
m,n, W 0

m,n, Lemma 6 and the boundedness
of F −1, we have for each t ∈ [0, τ − ε] that

U0
m,n(t) = F −1

ε (W 0
m,n)(t) + O

(
ε
√

log k
)

a.s.

The result follows from Lemmas 3, 5 and 6 and the inequality

‖Um,n − U0
m,n‖[0,τ−ε] = ‖F −1

m,n(Wm,n) − F −1(W 0
m,n)‖[0,τ−ε]

≤ ‖F −1
m,n,ε‖‖Wm,n − W 0

m,n‖[0,τ−ε]

+ ‖F −1
m,n,ε − F −1

ε ‖‖W 0
m,n‖[0,τ−ε]

+ O
(
ε
√

log k
)

a.s.

We therefore find that

‖Um,n − U0
m,n‖[0,τ−ε] ≤ O

(
k−r(α)

√
logk(log logk)1/4

f (τ − ε)

)

+ O
(

k−(α−1)/(2α) logk
√

log log k

f (τ − ε)

)
O

(√
log k

)

+ O
(
ε
√

log k
)

a.s.

The use of Lemma 3 was justified by the fact that W 0
m,n is almost surely continuous.

Since (A4) implies that f (τ −u) ∼ uβ for u small, the above bound has least order,
modulo logarithmic terms, for ε = εm,n. �

PROOF OF THEOREM 2. Let t ∈ [0, τ − η] and s ∈ [0, hm,n]. By defini-
tion (3.1), linearity of F −1 and the triangle inequality, we have that

|U0
m,n(t + s) − U0

m,n(t)| ≤ Im(s, t) + Jn(s, t),(A.1)

where we define

Im(s, t) = |F −1(BX,m ◦ G)(t + s) − F −1(BX,m ◦ G)(t)|,
Jn(s, t) = |F −1(Hn)(t + s) − F −1(Hn)(t)|

and

Hn(t) = f (t)

∫
0<y≤t

BY,n(F (y)) d

[
1

f (y)

]
.
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We first study Im(s, t). Writing ς(u)(·) = ∫ ∞
0 K(·, x)u(x) dx and noting that∫ ∞

0 A0(·, x)u(x) dx = G(u)(·) for each u, equations (2.6) and (2.7) imply that
ς(u) ≡ −(1−p)G(u+pς(u))/p2. It follows from (A5) that M1 = ‖f ′‖[0,τ ] < ∞.
We find that

|G(w)(t + s) − G(w)(s)|
≤ |f (t + s) − f (t)|

∣∣∣∣
∫

0<y≤t
y

(∫
y≤z

w(z)

z2 dz

)
d

[
1

f (y)

]∣∣∣∣
+ |f (t)|

∣∣∣∣
∫
t<y≤t+s

y

(∫
y≤z

w(z)

z2 dz

)
d

[
1

f (y)

]∣∣∣∣
≤ |f (t + s) − f (t)|

[
1

f (t)
− 1

f (0)

]
‖w‖[0,τ ]

+ |f (t + s)|
[

1

f (t + s)
− 1

f (t)

]
‖w‖[0,τ ]

= |f (t + s) − f (t)|
[
f (0) − f (t)

f (0)f (t)
+ 1

f (t)

]
‖w‖[0,τ ]

≤ 2

f (τ − η)
‖w‖[0,τ ]|f (t + s) − f (t)|

≤ 2M1s

f (τ − η)
‖w‖[0,τ ]

from which it follows, using (2.5), that

|ς(u)(t + s) − ς(u)(t)| ≤ 2(1 − p)M1s

p2f (τ − η)
‖u + pς(u)‖[0,τ ]

(A.2)

≤ 2(1 − p)M1s

p2f (τ − η)
(2 + p‖F −1‖)‖u‖[0,τ ].

Using (2.5) once more, we then have that

sup
0≤t≤τ−η

sup
0≤s≤hm,n

Im(s, t)

≤ p−1 sup
0≤t≤τ−η

sup
0≤s≤hm,n

∣∣BX,m

(
G(t + s)

) − BX,m(G(t))
∣∣

+ sup
0≤t≤τ−η

sup
0≤s≤hm,n

|ς(BX,m ◦ G)(t + s) − ς(BX,m ◦ G)(t)|.

Using (A5), we may show, as in [31] and [41], that

sup
0≤x≤aτ

sup
0≤y≤M0hm,n

|WX,m(x + y) − WX,m(x)| = O
(√

hm,n log(1/hm,n)
)
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almost surely, where aτ = G(τ − η), M0 = ‖g‖[0,τ ], and WX,m is the Wiener
process associated with BX,m; see Lemma 1.4.1 of [15]. Hence, by an application
of the MVT, BX,m ◦ G has modulus of continuity

O
(√

hm,n log(1/hm,n)
)

as well. In view of (A.2) and the fact that ‖BX,m ◦ G‖[0,τ ] is O(
√

logm) almost
surely, we have that

sup
0≤t≤τ−η

sup
0≤s≤hm,n

|ς(BX,m ◦ G)(t + s) − ς(BX,m ◦ G)(t)| = O
(√

logmhm,n

)

almost surely. It follows from the discussion above then that

sup
0≤t≤τ−η

sup
0≤s≤hm,n

Im(s, t) = O
(√

hm,n log(1/hm,n)
)

a.s.(A.3)

We now turn to Jn(s, t). Defining

J ′
n(s, t) = |f (t + s) − f (t)|

∫
0<y≤t

|BY,n(F (y))|d
[

1

f (y)

]

and

J ′′
n (s, t) = |f (t + s)|

∫
t<y≤t+s

|BY,n(F (y))|d
[

1

f (y)

]
,

we notice that |Hn(t + s)− Hn(t)| ≤ J ′
n(s, t)+ J ′′

n (s, t). Using the MVT, we have
that

J ′
n(s, t) ≤ M1s

f (τ − η)
sup

0≤y≤1
|BY,n(y)|

and

J ′′
n (s, t) ≤ f (t) − f (t + s)

f (t)
sup

0≤y≤1
|BY,n(y)| ≤ M1s

f (t)
sup

0≤y≤1
|BY,n(y)|,

so that sup0≤t≤τ−η sup0≤s≤hm,n
J ′

n(s, t), sup0≤t≤τ−η sup0≤s≤hm,n
J ′′

n (s, t) and con-
sequently sup0≤t≤τ−η sup0≤s≤hm,n

|Hn(t + s) − Hn(t)| are O(
√

lognhm,n) almost
surely. Further, using (A.2), we have that

sup
0≤t≤τ−η

sup
0≤s≤hm,n

|ς(Hn)(t + s) − ς(Hn)(t)|

≤ 2(1 − p)M1

p2f (τ − η)
(2 + p · ‖F −1‖)‖Hn‖[0,τ ]hm,n = O

(√
lognhm,n

)
a.s.

so that sup0≤t≤τ−η sup0≤s≤hm,n
Jn(s, t) = O(

√
lognhm,n) almost surely using

(2.5). The theorem follows in view of this last result, (A.1) and (A.3). �
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PROOF OF THEOREM 3. By the continuity (and hence uniform continuity) of
g on [0, τ ], the dominated convergence theorem may be used to show that

lim
k→∞ sup

0≤s≤τ−η

|gm,n(s) − g(s)| = 0.(A.4)

The theorem follows immediately from Lemma 7 and the triangle inequality. �

PROOF OF THEOREM 4. By Theorem 1 and integration by parts, for any t ∈
[0, τ − η], we may write that

ĝm,n(t) − g(t) = [ĝm,n(t) − gm,n(t)] + [gm,n(t) − g(t)]
= 1√

k

∫ ∞
0

U0
m,n(s) dψm,n(t, s)

+ O
(

Vm,nεm,n(log k)3/2√log log k√
k

+ δm,n

)
a.s.,

where δm,n = sup0≤t≤τ−η |gm,n(t) − g(t)|. The result follows from [37], which
shows that δm,n = O(h2

m,n) and Vm,n = O(1/hm,n). �

PROOF OF THEOREM 5. Since g is twice continuously differentiable on
[0, τ −η], we may write that gm,n(s)−g(s) = h2

m,nσ
2g′′(s)/2+o(h2

m,n) uniformly
in s ∈ [0, τ − η]. Combining this expansion with (S.1) in the proof of Lemma 7
(see supplementary material [1]) yields

ĝm,n(s) − g(s) =
(

h2
m,nσ

2

2

)
g′′(s) + ϒm,n(s, hm,n)√

khm,n

+ O
(

εm,n(log k)3/2√log logk√
khm,n

)
+ o(h2

m,n) a.s.

uniformly in s ∈ [0, τ − η], where ϒm,n(s, h) = ∫ 1
−1 U0

m,n(s − uh)dK(u). In view
of (2.5) and the proof of Theorem 2, we find that

ϒm,n(s, hm,n) = p−1/2
∫ 1

−1
BX,m

(
G(s − uhm,n)

)
dK(u)+ O

(√
log khm,n

)
a.s.

Further, using (B3) we may show, for α ≥ 2, that

εm,n(log k)3/2√log log k√
khm,n

= o(h2
m,n)

and therefore that

ĝm,n(s) − g(s) =
(

h2
m,nσ

2

2

)
g′′(s) +

∫ 1
−1 BX,m(G(s − uh)) dK(u)√

pkhm,n

+ o(h2
m,n)



184 M. ASGHARIAN, M. CARONE AND V. FAKOOR

almost surely. It then follows that Em,n(0, τ − η) may be written as

h4
m,nσ

4

4

∫ τ−η

0
{g′′(s)}2 ds + ηPm,n(hm,n)

pkh2
m,n

+ σ 2hm,nηQm,n(hm,n)√
pk

+ o(h2
m,n)

{
o(h2

m,n) + h2
m,nσ

2
∫ τ−η

0
g′′(s) ds + 2ηRm,n(hm,n)√

pkhm,n

}
a.s.,

where we have defined

ηPm,n(h) =
∫ τ−η

0

[∫ 1

−1
BX,m

(
G(s − uh)

)
dK(u)

]2

ds,

ηQm,n(h) =
∫ τ−η

0
g′′(s)

[∫ 1

−1
BX,m

(
G(s − uh)

)
dK(u)

]
ds

and

ηRm,n(h) =
∫ τ−η

0

[∫ 1

−1
BX,m

(
G(s − uh)

)
dK(u)

]
ds.

It follows from [24] that ηPm,n(h) = hm,nν
2 + op(hm,n), while ηQm,n(h) and

ηRm,n(h) are both op(
√

hm,n). We therefore obtain that Em,n(0, τ − η) may be
expressed as

h4
m,nσ

4

4

∫ τ−η

0
[g′′(s)]2 ds + ν2

pkhm,n

+ op

(
1

khm,n

+ hm,n

√
hm,n

k
+ h4

m,n

)
.

The result follows upon noticing that a term of order op(h
3/2
m,n/

√
k) is dominated

by any term of order op(h4
m,n). �
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Additional technical details: Proof of lemmas (DOI: 10.1214/11-
AOS954SUPP; .pdf). The proof of each lemma in the paper is provided in the
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