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In this paper, we study the nonparametric maximum likelihood estimator
for an event time distribution function at a point in the current status model
with observation times supported on a grid of potentially unknown sparsity
and with multiple subjects sharing the same observation time. This is of in-
terest since observation time ties occur frequently with current status data.
The grid resolution is specified as cn™" with ¢ > 0 being a scaling con-
stant and y > 0 regulating the sparsity of the grid relative to n, the num-
ber of subjects. The asymptotic behavior falls into three cases depending on
y: regular Gaussian-type asymptotics obtain for y < 1/3, nonstandard cube-
root asymptotics prevail when y > 1/3 and y = 1/3 serves as a boundary at
which the transition happens. The limit distribution at the boundary is differ-
ent from either of the previous cases and converges weakly to those obtained
with y € (0,1/3) and y € (1/3, 00) as ¢ goes to co and 0, respectively. This
weak convergence allows us to develop an adaptive procedure to construct
confidence intervals for the value of the event time distribution at a point of
interest without needing to know or estimate y, which is of enormous advan-
tage from the perspective of inference. A simulation study of the adaptive
procedure is presented.

1. Introduction. The current status model is one of the most well-studied
survival models in statistics. An individual at risk for an event of interest is mon-
itored at a random observation time, and an indicator of whether the event has
occurred is recorded. An interesting feature of this kind of data is that the under-
lying event time distribution, F', can be estimated by its nonparametric maximum
likelihood estimator (NPMLE) at only n'/3 rate when the observation time is a
continuous random variable. Under mild conditions on F', the limiting distribution
of the NPMLE in this setting is the non-Gaussian Chernoff distribution: the dis-
tribution of the unique minimizer of {W(¢) + t?:t € R}, where W (¢) is standard
two-sided Brownian motion. This is in contrast to data with right-censored event
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times where F can be estimated nonparametrically at rate \/n and is “pathwise
norm-differentiable” in the sense of van der Vaart (1991), admitting regular esti-
mators and normal limits. Interestingly, when the observation time distribution has
finite support, the NPMLE for F at a point asymptotically simplifies to a bino-
mial random variable and is also +/n estimable and regular, with a normal limiting
distribution.

An extensive amount of work has been done for inference in the current status
model under the assumption of a continuous distribution for the observation time:
the classical model considers n subjects whose survival times 71, T», ..., T, are
ii.d. F and whose inspection times X1, X», ..., X, are i.i.d. with some continu-
ous distribution, say G; furthermore, in the absence of covariates, the X;’s and 7;’s
are considered mutually independent. The observed data are {A;, X;}?_,, where
A; = I{T; < X;}, and one is interested in estimating F as n goes to infinity. More
specifically, for inference on the value of F at a pre-fixed point of interest under a
continuous observation time, see, for example, Groeneboom and Wellner (1992),
who establish the convergence of the normalized NPMLE to Chernoff’s distri-
bution; Keiding et al. (1996); Wellner and Zhang (2000), who develop pseudo-
likelihood estimates of the mean function of a counting process with panel count
data, current status data being a special case; Banerjee and Wellner (2001) and
Banerjee and Wellner (2005), who develop an asymptotically pivotal likelihood ra-
tio based method; Sen and Banerjee (2007), who extend the results of Wellner and
Zhang (2000) to asymptotically pivotal inference for F' with mixed-case interval-
censoring; and Groeneboom, Jongbloed and Witte (2010) for smoothed isotonic
estimation, to name a few.

However, somewhat surprisingly, the problem of making inference on F when
the observation times lie on a grid with multiple subjects sharing the same observa-
tion time has never been satisfactorily addressed in this rather large literature. This
important scenario, which transpires when the inspection times for individuals at
risk are evenly spaced, and multiple subjects can be inspected at any inspection
time, is completely precluded by the assumption of a continuous G, as this does
not allow ties among observation times. Consider, for example, a tumorigenicity
study where a large number of mice are exposed to some carcinogen at a partic-
ular time, and interest centers on the time to development of a tumor. A typical
procedure here would be to randomize the mice to be sacrificed over a number
of days following exposure; so, one can envisage a protocol of sacrificing a fixed
number m of mice at 24 hrs post-exposure, another m mice at 48 hours and so on.
The sacrificed mice are then dissected and examined for tumors, thereby leading
to current status data on a grid. A pertinent question in this setting is: what is the
probability that a mouse develops a tumor by an M-day period after exposure?
This involves estimating F(24M), where F is the distribution function of the time
to tumor-development. Similar grid-based data can occur with human subjects in
clinical settings.
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In this paper we provide a clean solution to this problem based on the NPMLE
of F which, as is well known, is obtained through isotonic regression [see, e.g.,
Robertson, Wright and Dykstra (1988)]. The NPMLE of F in the current status
model (and more generally in nonparametric monotone function models) has a
long history and has been studied extensively. In addition to the attractive feature
that it can be computed without specifying a bandwidth, the NPMLE of F (xg)
(where xq is a fixed point) attains the best possible convergence rate, namely n'/3,
in the “classical” current status model with continuous observation times, under
the rather mild assumption that F is continuously differentiable in a neighborhood
of xo and has a nonvanishing derivative at xo. This rate cannot be bettered by
a smooth estimate under the assumption of a single derivative. As demonstrated
in Groeneboom, Jongbloed and Witte (2010), smoothed monotone estimates of
F can achieve a faster n?/3 rate under a twice-differentiability assumption on F;
hence, the faster rate requires additional smoothness. However, as we wish to ap-
proach our problem under minimal smoothness assumptions, the isotonic NPMLE
is the more natural choice. (Smoothing the NPMLE would introduce an exoge-
nous tuning parameter without providing any benefit from the point of view of the
convergence rate.)

The key step, then, is to determine the best asymptotic approximation to use
for the NPMLE in the grid-based setting discussed above. If, for example, the
number of observation times, K, is far smaller than n, the number of subjects, the
problem is essentially a parametric one, and it is reasonable to expect that normal
approximations to the MLE will work well. On the other hand, if K = n, that
is, we have a very fine grid with each subject having their own inspection time,
the scenario is similar to the current status model with continuous observation
times where no two inspection times coincide, and one may expect a Chernoff
approximation to be adequate. However, there is an entire spectrum of situations
in between these extremes depending on the size of the grid, K, relative to n,
and if n is “neither too large, nor too small relative to K,” neither of these two
approximations would be reliable.

Some work on the current status model or closely related variants under discrete
observation time settings should be noted in this context. Yu et al. (1998) have
studied the asymptotic properties of the NPMLE of F' in the current status model
with discrete observation times, and more recently Maathuis and Hudgens (2011)
have considered nonparametric inference for (finitely many) competing risks cur-
rent status data under discrete or grouped observation times. However, these pa-
pers consider situations where the observation times are i.i.d. copies from a fixed
discrete distribution (but not necessarily finitely supported) on the time-domain
and are therefore not geared toward studying the effect of the trade-off between
n and K, that is, the effect of the relative sparsity of the number of distinct ob-
servation times to the size of the cohort of individuals on inference for F. In both
these papers, the pointwise estimates of F are </n consistent and asymptotically
normal; but as Maathuis and Hudgens (2011) demonstrate in Section 5.1 of their
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paper, when the number of distinct observation times is large relative to the sample
size, the normal approximations are suspect.

Our approach is to couch the problem in an asymptotic framework where K
is allowed to increase with n at rate n” for some 0 < y < 1 and study the be-
havior of the NPMLE at a grid-point. This is achieved by considering the current
status model on a regular grid over a compact time interval, say [a, b], with unit
spacing § = 6, = cn~7, c being a scale parameter. It will be seen that the limit
behavior of the NPMLE depends heavily on the “sparsity parameter” y, with the
Gaussian approximation prevailing for y < 1/3 and the Chernoff approximation
for y > 1/3. When y = 1/3, one obtains a discrete analog of the Chernoff distribu-
tion which depends on c. Thus, there is an entire family of what we call boundary
distributions, indexed by c, say {F,:c > 0}, by manipulating which, one can ap-
proach either the Gaussian or the Chernoff. As ¢ approaches 0, F, approximates
the Chernoff while, as ¢ approaches oo, it approaches the Gaussian. This prop-
erty allows us to develop an adaptive procedure for setting confidence intervals
for the value of F at a grid-point that obviates the need to know or estimate y,
the critical parameter in this entire business as it completely dictates the ensuing
asymptotics. The adaptive procedure involves pretending that the true unknown
underlying unknown y is at the boundary value 1/3, computing a surrogate c,
say ¢, by equating (b — a)/K, the spacing of the grid (which is computable from
the data), to én~!/3 and using F;, to approximate the distribution of the appropri-
ately normalized NPLME. The details are given in Section 4. It is seen that this
procedure provides asymptotically correct confidence intervals regardless of the
true value of y. Our procedure does involve estimating some nuisance parameters,
but this is readily achieved via standard methods.

The rest of the paper is organized as follows. In Section 2, we present the math-
ematical formulation of the problem and introduce some key notions and charac-
terizations. Section 3 presents the main asymptotic results and their connections
to existing work. Section 4 addresses the important question of adaptive inference
in the current status model: given a time-domain and current status data observed
at times on a regular grid of an unknown level of sparsity over the domain, how
do we make inference on F'? Section 5 discusses the implementation of the proce-
dure and presents results from simulation studies, and Section 6 concludes with a
discussion of the findings of this paper and their implications for monotone regres-
sion models in general, as well as more complex forms of interval censoring and
interval censoring with competing risks. The Appendix contains some technical
details.

2. Formulation of the problem. Let {7; ,}!_, be i.i.d. survival times follow-
ing some unknown distribution F with Lebesgue density f concentrated on the
time-domain [a’, '] with 0 < a’ < b’ < 0o (or supported on [a’, 00) if no such
b exists) and {X; ,} be i.i.d. observation times drawn from a discrete probabil-
ity measure H, supported on a regular grid on [a, b] with @’ <a <b < b’. Also,
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T; , and X, , are assumed to be independent for each i. However, {T; ,} are not
observed; rather, we observe {Y;, = 1{T;, < X; ,}}. This puts us in the setting
of a binary regression model with Y; ,|X; , ~ Bernoulli(F(X; ,)). We denote the
support of H, by {t,-,n}l.K: | wWhere the ith grid point #; , = a + i8, the unit spac-
ing § = §(n) = cn~7 (also referred to as the grid resolution) with y € (0, 1] and
¢ > 0, and the number of grid points K = K(n) = (b — a)/§]. On this grid, the
distribution H, is viewed as a discretization of an absolutely continuous distri-
bution G, whose support contains [a, b] and whose Lebesgue density is denoted
as g. More specifically, H,{t; n} = G(t;n) — G(ti—1n), for i =2,3,..., K — 1,
Hp{t1,} = G(t1,,) and Hy{tk n} =1 — G(tx—1.,). For simplicity, these discrete
probabilities are denoted as p; , = H,{t; »} for each i. In what follows, we refer
to the pair (X; ,,Y; ) as (X;, Y;), suppressing the dependence on n, but the ri-
angular array nature of our observed data should be kept in mind. Similarly, the
subscript n is suppressed elsewhere when no confusion will be caused.

Our interest lies in estimating F at a grid-point. Since we allow the grid to
change with n, this will be accomplished by specifying a grid-point with respect
to a fixed time xg € (a, b) which does not depend on n and can be viewed as
an “anchor-point.” Define #; = 1; , to be the largest grid-point less than or equal
to xo. We devote our interest to F (7). More specifically, we are interested in the
limit distribution of F (t;)) — F(#;) under appropriate normalization? To this end,
we start with the characterization of the NPMLE in this model. While this is well
known from the current status literature, we include a description tailored for the
setting of this paper.

The likelihood function of the data {(X;, Y;)} is given by

n K
Ly(F) =[] FXpYi(1 = FX))' ™ ppix,mny = [ FF (1 = F)Ni=Zip),
j=I i=1
where py;: x;=r;) denotes the probability that X ; equals a genetic grid point #;, F;
is an abbreviation for F(¢t;), N; = Z§:1{Xj = t;} is the number of observations
att;, Z; = ;?:1 Y;i{X; = t;} is the sum of the responses at #;, {-} stands for both
a set and its indicator function with the meaning depending on the context and F
is generically understood as either a distribution or the vector (Fi, F», ..., Fk),
which sometimes is also written as {F,-}iK: |- Then, the log-likelihood function is
given by
K K _

I(F) =log(L,(F)) =Y _Nilogpi + Y {[Zilog F; + (1 — Z;)log(1 — F})IN;},

i=1 i=1

where Z; = Z; /N; is the average of the responses at ;.
Denote the basic shape-restricted maximizer as

{Fi*}iKzl = argmax [, (F).
Fi<--<Fg
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From the theory of isotonic regression [see, e.g., Robertson, Wright and Dykstra
(1988)], we have
K

argmax [,(F) = argmin Z[(Z — Fi)zNi].

Fi<--<Fg Fi<-<Fg;—q
Thus, {E*}iK: | is the weighted isotonic regression of {Zi}l-K: | with weights {Nl-}iK: 1
and exists uniquely. We conventionally define the shape-restricted NPMLE of F
on [a, b] as the following right-continuous step function:

0, ift €la, t);
2.1) F(t)=1 F/, iftelt, tiy1),i=1,...,K—1;
Fg, if t € [tg, b].

Next, we provide a characterization of F as the slope of the greatest convex mino-
rant (GCM) of a random processes, which proves useful for deriving the asymp-
totics for y € [1/3, 1]. Define, for ¢ € [a, b],

(2.2) G,(t)=P,{x <t}, Vn(t):Pny{xft},

where [P, is the empirical probability measure based on the data {(X;, Y¥;)}. Then,
we have, for each x € [a, b],

(2.3) F(x) =LS[GCM{(G, (1), Va (1)), t € [a, B}](Gn(x)).

In the above display, GCM means the greatest convex minorant of a set of points
in R?. For any finite collection of points in R?, its GCM is a continuous piecewise
linear convex function, and LS[-] denotes the left slope or derivative function of a
convex function. The term GCM will also be used to refer to the greatest convex
minorant of a real-valued function defined on a sub-interval of the real line.

Finally, we introduce a number of random processes that will appear in the
asymptotic descriptions of F'.

For constants k1 > 0 and « > 0, denote

2.4) Xiyioo(h) =61 W (h) + kah? for h € R,
where W is a two-sided Brownian motion with W(0) = 0. Let G, , be the GCM
of Xy, ,«,. Define, for h € R,

(25) glq,KQ(h) :LS[GKl,Kz](h)-

The process gy, ., Will characterize the asymptotic behavior of a localized NPMLE
process in the vicinity of #; for y > 1/3, from which the large sample distribution
of F(t;) can be deduced.

We also define a three parameter family of processes in discrete time which
serve as discrete versions of the continuous-time processes above. For c, k1, k7 >
0, let

PL‘,K[,/Q (k) = (Pl,c,/q,/(g (k), 732,6,/(1,/{2 (k))

(2.6)
= {ck, K1 W (ck) + k2c*k (1 + k) ez
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Define
2.7 Xe k1,100 (i) =LS[GCM{ Py i, .1, (k) 1k € Z}](ci).

This slope process will characterize the asymptotic behavior of the NPMLE in the
case y = 1/3.

3. Asymptotic results. In this section, we state and discuss results on the
asymptotic behavior of F(#;) for y varying in (0O, 1]. In all that follows, we make
the blanket assumption that F is once continuously differentiable in a neighbor-
hood of xg.

3.1. The case y < 1/3. We start with some technical assumptions:

(A1.1) F has a bounded density f on [a, b], and there exists f; > 0 such that
f(x) > f; forevery x € [a, b].

(A1.2) G has a bounded density g on [a, b], and there exists g; > 0 such that
g(x) > g; for every x € [a, b].

(A1.3) a’ <aand F(a) > 0.

The above assumptions are referred to collectively as (Al). Letting ¢, denote the
first grid-point to the right of #;, we have the following theorem.

THEOREM 3.1. Ify € (0, 1/3) and (A1) holds,
(WNI(E@) — F@). VN (F(6) = F(1)) > JF(xo)(1 = F(x0))N(O, 1),

where I is the 2 x 2 identity matrix.

The proof of this theorem is provided in the supplement to this paper [Tang,
Banerjee and Kosorok (2011)]. However, a number of remarks in connection with
the above theorem are in order.

REMARK 3.2. From Theorem 3.1, the quantities F (t1) and F () with proper
centering and scaling are asymptotically uncorrelated and independent. In fact,
they are essentially the averages of the responses at the two grid points #; and ¢,
and are therefore based on responses corresponding to different sets of individuals.
Consequently, there is no dependence between them in the long run. Intuitively
speaking, y € (0, 1/3) corresponds to very sparse grids with successive grid points
far enough so that the responses at different grid points fail to influence each other.

It can be shown that for y € (0, 1/3), N;/(np;) converges to 1 in probability
and that np;/cg(xo)n'~" converges to 1. Then the result of Theorem 3.1 can be
rewritten as follows:

G0 (nR(E@) — F)), n (B @) — F(1,))) > ac 2N, L),

where a = /F(x0)(1 — F(xg))/g(xo). This formulation will be used later, and the
parameter « will be seen to play a critical role in the asymptotic behavior of F(#;)
when y € [1/3, 1] as well.
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REMARK 3.3. The proof of the above theorem relies heavily on the below
proposmon which deals with the vector of average responses at the the grid-points:
{Z; }l |- Since Z; is not defined when N; = 0, to avoid ambiguity we set Z; = 0
whenever this happens. This can be done without affecting the asymptotic results,
since it can be shown that the probability of the event {N; > 0,i =1,2,..., K}
goes to 1.

PROPOSITION 3.4. Ify €(0,1/3) and (A1) holds, we have
P(Zy<Zy<---<Zg)— L

This proposition is established in the supplement, Tang, Banerjee and Kosorok
(2011). It says that with probability going to 1, the vector {Z; } _ 1s ordered, and
therefore the isotonization algorithm involved in finding the NPMLE of F yields
{F *}l | = ={Z; } -, with probability going to 1. In other words, asymptotically,
isotonization has no effect, and the naive estimates obtained by averaging the re-
sponses at each grid point produce the NPMLE. This lemma is really at the heart of
the asymptotic derivations for y < 1/3 because it effectively reduces the problem
of studying the F}*’s, which are obtained through a complex nonlinear algorithm,
to the study of the asymptotics of the Z;, which are linear statistics and can be
handled readily using standard central limit theory. A phenomenon, similar to the
one in the above proposition, was observed by Kiefer and Wolfowitz (1976) in
connection with estimating the magnitude of the difference between the empiri-
cal distribution function and its least concave majorant for an i.i.d. sample from
a concave distribution function. See Theorem 1 of their paper and the preced-
ing Lemma 4, which establish the concavity of a piecewise linear estimate of the
true distribution obtained by linearly interpolating the restriction of the empirical
distribution to a grid with spacings of order slightly larger than n~!/3, n being
the sample size. A similar result was obtained in Lemma 3.1 of Zhang, Kim and
Woodroofe (2001) in connection with isotonic estimation of a decreasing density
when the exact observations are not available; rather, the numbers of data-points
that fall into equi-spaced bins are observed.

3.2. The case y € (1/3,1]. Our treatment will be condensed since the asymp-
totics for this case follow the same patterns as when the observation times possess
a Lebesgue density. That this ought to be the case is suggested, for example, by
Theorem 1 in Wright (1981); see, in particular, the condition on the rate of conver-
gence of the empirical distribution function of the regressors to the true distribution
function in the case that @ = 1 in that theorem, which corresponds to the setting
y > 1/3 in our problem. Note that the « in the previous sentence refers to notation
in Wright (1981) and should not be confused with the o defined in this paper.

In order to study the asymptotics of the isotonic regression estimator F (1), the
following localized process will be of interest: for u € I, = [(a — mn'3, (b —
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tl)n'/3], define
(3.2) Xn(u) =n'"B(F @ +un™3) — F(1y)).
Next, define the following normalized processes on I,;:
(33) Gy =gk 'n'P(Gut +hn7'P) = G, (1)),
) Vir(h) = g(x0) " 'n*P[ Vit + hn™ ') = V(1)
oy — F(t) (Gt + hn~ ') — G, (1))].

After some straightforward algebra, from (2.3) and (3.2), we have the following
technically useful characterization of X,,: foru € I,,,

3.5) X, (u) = LS[GCM(G; (h), Vi (h)), h € [,1(G},(u)).

Let o be defined as Remark 3.2 and 8 = f(xo)/2. We have the following theorem
on the distributional convergence of X,,.

THEOREM 3.5 (Weak convergence of X,,). Suppose F and G are continu-
ously differentiable in a neighborhood of xo with derivatives [ and g. Assume that
f(x0) >0, g(xo0) > 0 and that g is Lipschitz continuous in a neighborhood of x.
Then, the finite-dimensional marginals of the process X, converge weakly to those
of the process gq. g.

REMARK 3.6. Note that X, (0) = n'/3(F(;) — F(1;)). By Theorem 3.5, it
converges in distribution to g4 4(0). By the Brownian scaling results on page 1724
of Banerjee and Wellner (2001), for 4 € R,

ap(h) L (@2B) g1 1((B/)* ).

Then, by noting that g; 1(0) Loz , we have the following result:

4 f (x0) F (x0) (1 — F(Xo)))1/3 =

(3.6) n'B(F@) — F(1)) 4 ( 200

Thus, the limit distribution of F (1) 1s exactly the same as one would encounter
in the current status model with survival distribution F and the observation times
drawn from a Lebesgue density function g. The proof of this theorem is omitted
as it can be established via arguments similar to those in Banerjee (2007) using
continuous mapping theorems for slopes of greatest convex minorants.
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3.3. The case y =1/3. Now, we consider the most interesting boundary case
y = 1/3. Let the localized process X, («) be defined exactly as in the previous
subsection. The order of the grid-spacing & is now exactly n~!/3, which is the
order of localization around #; used to define the process X,,, and it follows that X,
has potential jumps only at ci for i € Z,, = (I,/c) N Z, and it suffices to consider
X,, on those ci’s. Fori € 7,,,

(3.7) X (ci) =n'P(F(t +cin™13) — F(1))
(3.8) = LS[GCM{(G?(ck), V¥ (ck)), k € T,}I(G%(ci)).

For simplicity of notation, in the remainder of this section, we will often write an
integer interval as a usual interval with two integer endpoints. This will, however,
not cause confusion since the interpretation of the interval will be immediate from
the context.

The following theorem gives the limit behavior of X,,.

THEOREM 3.7 (Weak convergence of X,,). Under the same assumptions as in
Theorem 3.5, for each nonnegative integer N, we have

{X,(ci),i €e[-N,N]} —d> {Xe¢a,p(ci), i €e[—N, N1J.
It follows that n1/3(13(t1) — F()) —d> Xe,a,5(0).

REMARK 3.8. It is interesting to note the change in the limiting behavior of
the NPMLE with varying y. As noted previously, for y € (0, 1/3), the grid is
sparse enough so that the naive average responses at each inspection time, which
provide empirical estimates of F at those corresponding inspection times, are au-
tomatically ordered (and therefore the solution to the isotonic regression problem)
and there is no “strength borrowed” from nearby inspection times. Consequently,
a Gaussian limit is obtained. For y > 1/3, the grid points are “close enough,” so
that the naive pointwise averages are no longer the best estimates of F. In fact,
owing to the closeness of successive grid-points, the naive averages are no longer
ordered, and the PAV pool adjacent violators algorithm (PAVA) leads to a non-
trivial solution for the NPMLE which is a highly nonlinear functional of the data,
putting us in the setting of nonregular asymptotics. It turns out that for y > 1/3, the
order of the local neighborhoods of #; that determine the value of a (1) is n=1/3.
When y = 1/3, the resolution of the grid matches the order of the local neighbor-
hoods, leading in the limit to a process in discrete-time that depends on c. When
y > 1/3, the number of grid-points in an n~!/3 neighborhood of #; goes to infinity.
This eventually washes out the dependence on ¢ and also produces, in the limit,
a process in continuous time.

For the rest of this section, we refer to the process X 4 g simply as X and the
process Pe o, p as Pe.
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PROOF-SKETCH OF THEOREM 3.7. The key steps of the proof are as follows.
Take an integer M > N. Then, the following two claims hold.

CLAIM 1. There exist (integer-valued) random variables L, < —M and U, >
M which are Op(1) and satisfy
GCM{(G (ck), V¥ (ck)), k € [L,, Upnl}
= GCM{(G (ck), V5 (ck)), k € Z}|[G} (cLy), G (cUp)].
CLAIM 2. There also exist (integer-valued) random variables L < —M and
U > M such that L, U are Op(1) and that
GCM{P.(k),k € [L,U]} = GCM{P.(k),k € Z}|[cL, cU].

For the proofs of these claims, see Tang, Banerjee and Kosorok (2011). We next
need a key approximation lemma, which is a simple extension of Lemma 4.2 in
Prakasa Rao (1969).

LEMMA 3.9. Suppose that for each ¢ > 0, {Wy.}, {W,} and {W,} are se-
quences of random vectors, W is a random vector and that:

(D limseomneooP(Wns # W) =0,
(2) limg, o P(We # W) =0,

3) W, —d> We, as n — oo for each € > 0.

Then W, —d> W, asn— oo.
From Claims 1 and 2, for every (small) ¢ > 0, there exists an integer M, large
enough such that
P(M; > max{|L,|, Uy, |L|,U}) >1—c¢.

Denote, fori € [—N, N],

X% (ci) = LS[GCM{(G} (ck), V5 (ck)), k € [EM (G} (ci)),

XMe (ci) = LS[GCM(P.(k), k € [£M,1}](ci).
Denote [£xN]=[—N, N] and

An ={{XNe (ci), i € [£NT} # (X (ci), i € [£N1}},
A= {{XMe(ci), i € [£N]} # (X(ci), i € [£N1}}.

Then, the following three facts hold:

FACT 1. limy_olim,—P(4,) = 0.
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FACT 2. lim,_oP(A) =0.

FacT 3. {X,{ys(ci),i € [£N]} 4 {XMe(ci),i € [£N]}, as n — oo for each
e>0.

Facts 1 and 2 follow since A, and A are subsets of {M, < max{|L,|, Uy, |L|,
U}}, whose probability is less than ¢, Facts 1 and 2 hold. Fact 3 is proved in Tang,
Banerjee and Kosorok (2011). A direct application of Lemma 3.9 then leads to the
weak convergence that we sought to prove. [

REMARK 3.10. The proofs of Claims 1 and 2 consist of technically important
localization arguments. Claim 1 ensures that eventually, with arbitrarily high pre-
specified probability, the restriction of the greatest convex minorant of the process
(G, V) (which is involved in the construction of X,,) to a bounded domain can
be made equal to the greatest convex minorant of the restriction of (G}, V,©) to that
domain, provided the domain is chosen appropriately large, depending on the pre-
specified probability. It can be proved by using techniques similar to those in Sec-
tion 6 of Kim and Pollard (1990). Claim 2 ensures that an analogous phenomenon
holds for the greatest convex minorant of the process P., which is involved in
the construction of X. These equalities then translate to the left-derivatives of the
GCMs involved, and the proof is completed by invoking a continuous mapping
theorem for the GCMs of the restriction of (G};, V,¥) to bounded domains, along
with Claims 1 and 2, which enable the use of the approximation lemma adapted
from Prakasa Rao (1969).

The basic strategy of the above proof has been invoked time and again in the lit-
erature on monotone function estimation. Prakasa Rao (1969) employed this tech-
nique to determine the limit distribution of the Grenander estimator at a point,
and Brunk (1970) for studying monotone regression. Leurgans (1982) extended
these techniques to more general settings which cover weakly dependent data
while Anevski and Hossjer (2006) provided a comprehensive and unified treat-
ment of asymptotic inference under order restrictions, applicable to independent
as well as short and long range dependent data. This technique was also used in
Banerjee (2007) to study the asymptotic distributions of a very general class of
monotone response models. It ought to be possible to bring the general techniques
of Anevski and Hossjer (2006) to bear upon the boundary case, but we have not
investigated that option; our proof-strategy is most closely aligned with the proof
of Theorem 2.1 in Banerjee (2007).

3.4. A brief discussion of the boundary phenomenon. We refer to the behavior
of the NPMLE for y = 1/3 as the boundary phenomenon. As indicated in the
Introduction, the asymptotic distribution for y = 1/3 is different from both the
Gaussian (which comes into play for y < 1/3) and the Chernoff (which arises for
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y > 1/3). This boundary distribution, which depends on the scale parameter, ¢, can
be viewed as an intermediate between the Gaussian and Chernoff, and its degree
of proximity to one or the other is dictated by ¢ as we demonstrate in the following
section. More importantly, this transition from one distribution to another via the
boundary one, has important ramifications for inference in our grid-based problem
as also demonstrated in the next section.

The closest result to our boundary phenomenon in the literature appears in the
work of Zhang, Kim and Woodroofe (2001) who study the asymptotics of isotonic
estimation of a decreasing density with histogram-type data. Thus, the domain of
the density is split into a number of pre-specified bins, and the statistician knows
the number of i.i.d. observations from the density that fall into each bin (with
a total of n such observations). The rate at which the number of bins increases
relative to n then drives the asymptotics of the NPMLE of the density within the
class of decreasing piecewise linear densities, with a distribution similar to X(0)
appearing when this number increases at rate n'/3. However, unlike us, Zhang,
Kim and Woodroofe (2001) do not establish any connections among the different
limiting regimes; neither do they offer a prescription for inference when the rate
of growth of the bins is unknown as is usually the case in practice.

It is worthwhile contrasting our boundary phenomenon with those observed by
some other authors. Anevski and Hossjer (2006) discover a “boundary effect” in
their Theorems 5 and 6.1 when dealing with an isotonized version of a kernel esti-
mate (see Section 3.3 of their paper). In the setting of i.i.d. data, when the smooth-
ing bandwidth is chosen to be of order n~!/3, the asymptotics of the isotonized
kernel estimator are given by the minimizer of a Gaussian process (depending
on the kernel) with continuous sample paths plus a quadratic drift, whereas for
bandwidths of larger orders than n~!/3 normal distributions obtain. A similar phe-
nomenon, in the setting of monotone density estimation, was observed by van der
Vaart and van der Laan (2003) in their Theorem 2.2 for an isotonized kernel esti-
mate of a decreasing density while using an n~!/3 order bandwidth. Note that these
boundary effects are quite different from our boundary phenomenon. In Anevski
and Hossjer’s setting, for example, the underlying regression model is observed
on the grid {i/n}, with one response per grid-point. Kernel estimation with an
n~!/3 bandwidth smooths the responses over time-neighborhoods of order n~!/3
producing a continuous estimator which is then subjected to isotonization. This
leads to a limit that is characterized in terms of a process in continuous time. In
our setting, our data are not necessarily observed on an {i/n} grid; our grids can
be much sparser and for the case y = 1/3, multiple responses are available at each
grid-point. The NPMLE isotonizes the Z;’s; thus, isotonization is preceded by av-
eraging the multiple responses at each time cross-section, but there is no averaging
of responses across time, in sharp contrast to Anevski and Hossjer’s setting. This,
in conjunction with the already noted fact at the beginning of this subsection that
the grid-resolution when y = 1/3 has the same order as the localization involved
in constructing the process X,,, leads in our case to a limit distribution for the
NPMLE that is characterized as a functional of a process in discrete time.
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4. Adaptive inference for F at a point. In this section, we develop a pro-
cedure for constructing asymptotic confidence intervals for F(#;) which does not
require knowing or estimating the underlying grid resolution controlled by the
parameters y and c. This provides massive advantage from an inferential perspec-
tive because the parameter y critically drives the limit distribution of the NPMLE
and mis-specification of y may result in asymptotically incorrect confidence sets,
either due to the use of the wrong limit distribution or due to an incorrect conver-
gence rate, or both.

To this end, we first investigate the relationships among the three different
asymptotic limits for F(#7) that were derived in the previous section, for different
values of y. In what follows, we denote X, o g(0) by S, suppressing the depen-
dence on «, B for notational convenience. The use of the letter S is to emphasize
the characterization of this random variable as the slope of a stochastic process.

Our first result relates the distribution of S, to the Gaussian.

THEOREM 4.1. As ¢ — 00, 4/cS; i aZ, where Z follows the standard nor-
mal distribution.

Our next result investigates the case where ¢ goes to 0.

THEOREM 4.2. Asc— 0, S, LY 8a,8(0) 4 2?p)132.

REMARK 4.3. Theorem 4.2 is somewhat easier to visualize heuristically,
compared to Theorem 4.1. Recall that S, is the left-slope of the GCM of the pro-
cess P, at the point 0, the process itself being defined on the grid cZ. As ¢ goes
to 0, the grid becomes finer, and the process P, is eventually substituted by its
limiting version, namely X, g. Thus, in the limit, S; becomes gy 5(0), the left-
slope of the GCM of X, g at 0. The representation of this limit in terms of Z was
established in Remark 3.6 following Theorem 3.5.

The results of Theorems 4.1 and 4.2 are illustrated next. Suppose the time in-
terval [a, b] is [0,2], xo = 1 and that F and G are both the uniform distribution
on [0, 2]. Under these settings, the values of o and 8 are V2/4 and 1/4, respec-
tively. We generate i.i.d. random samples of S, with ¢ being 1, 2, 3, 5 and 10
and the common sample size being 5000. The left panel of Figure 1 compares
the empirical cumulative distribution functions (CDF) of ,/cS./a and the stan-
dard Gaussian distribution N (0, 1). It shows clearly that the empirical CDFs move
closer to the Gaussian distribution with increasing ¢ and that the empirical CDF of
/¢S /a with ¢ equal to 3 has already provided a decent approximation to N (0, 1).
On the other hand, the right panel of Figure 1 compares the empirical CDFs of
(1/2)(«?B)~1/3S, and the standard Chernoff distribution Z. Again, the empirical
CDFs approach that of Z with diminishing ¢, with ¢ = 1 providing a close approx-
imation for Z. Note that, while the convergence in this setting is relatively quick
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S converge to the standard Gaussian and Chernoff distributions, respectively. In the left panel, the
empirical CDFs with ¢ > 3 almost coincide with the standard Gaussian distribution.

in the sense that the limiting phenomena manifest themselves at moderate values
of ¢ (i.e., neither too large, nor too small), this may not necessarily be the case for
other combinations of (¢, 8), and more extreme values may be required for good
enough approximations.

The adaptive inference scheme: We are now in a position to propose our infer-
ence scheme. We focus on the so-called “Wald-type” intervals for F'(#), that is,
intervals of the form F(#;) plus and minus terms depending on the sample size
and the large sample distribution of the estimator. Let ¢y and yy denote the true
unknown values of ¢ and y in the current status model. With K = K, being the
number of grid-points, we have the relation

Kn=[(b—a)/(con™")].
Now pretend that the true y is exactly equal to 1/3. Calculate a surrogate c, say ¢,
via the relation
L0 —a)/@en~' 7)) = Ky
Some algebra shows that
é=28 =cn'30 L om0y = en!BT(1 4 O ().

Thus, the calculated parameter ¢ actually depends on n, and goes to oo and 0 for
yo € (0,1/3) and yg € (1/3, 1], respectively.

We propose to use the distribution of S; as an approximation to the distribution
of nt/ 3(ﬁ (1) — F(7)). Thus, an adaptive approximate 1 — n confidence interval
for F(#) is given by

(4.1) [F(t) —n='3q(Sa, 1 —n/2), E@) —n~3q(Ss, n/2)],
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where n > 0 and ¢ (X, p) stands for the lower pth quantile of a random variable X
with p € (0, 1).

Asymptotic validity of the proposed inference scheme: The above adaptive con-
fidence interval provides the correct asymptotic calibration, irrespective of the true
value of y. If yo happens to be 1/3, then, of course, the adaptive confidence in-
terval is constructed with the correct asymptotic result. If not, consider first the
case that yg € (1/3, 1]. If we knew that yy € (1/3, 1], then, by result (3.6) and the
symmetry of g4 (0), the true confidence interval would be

4.2) [F (1) £n73q(g0,50), (1 —n/2))].

Now recall that ¢ goes to 0 since yp € (1/3, 1]. Thus, by Theorem 4.2, the quantile
sequence ¢ (Sz, p) converges to g(gq,s(0), p), owing to the fact that g, g(0) is a
continuous random variable. So, the adaptive confidence interval (4.1) converges
to the true one (4.2) obtained when yg is in (1/3, 1].

That the adaptive procedure also works when y € (0, 1/3) will be shown by
using Theorem 4.1. Again, suppose we know the value of yg. Then, from result
(3.1) and the symmetry of the standard normal random variable Z, the confidence
interval is given by

(4.3) [F(1) £ n= 070 2qc712g(Z, (1 = n/2))].

To show that the adaptive procedure is, again, asymptotically correct, it suffices to
show that for every p € (0, 1), as n — oo,

n=13q(Sz, p) n=1B3c2 0 E2q(S;, p)

n=1=072qc=12¢(Z, p) ~ n=U=/2¢1/2  qq(Z, p)

Recall that ¢ goes to oo since yg € (0, 1/3). By Theorem 4.1, we have IT — 1 as
n — 00. On the other hand, we can see [ simplifies to (1 + O(n=7))"1/2 and
therefore goes to 1. Thus, the adaptive confidence interval (4.1) also converges to
the true one (4.3) obtained when y; is known to be in (0, 1/3).

Thus, our procedure adjusts automatically to the inherent rate of growth of the
number of distinct observation times and that is an extremely desirable property.

We next articulate some practical issues with the adaptive procedure. First, note
that §; = Xz 4 (0), and in practice o and B are unknown, and therefore need to
be estimated consistently. We provide simple methods for consistent estimation of
these two parameters in the next section. Second, the random variable X; , 5(0)
does not appear to admit a natural scaling in terms of some canonical random vari-
able: in other words, it cannot be represented as C(c, o, 8)J where C is an explicit
function of ¢, , B and J is some fixed well-characterized random variable. Thus,
the quantiles of Xca A (where & and ,3 are consistent estimates for the correspond-

ing parameters) need to be calculated by generating many sample paths from the
parent process P; » F; and computing the left slope of the convex minorant of each
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such path at 0. This is, however, not a terribly major issue in these days of fast
computing, and, in our opinion, the mileage obtained in terms of adaptivity more
than compensates for the lack of scaling. Finally, one may wonder if resampling
the NPMLE would allow adaptation with respect to . The problem, however, lies
in the fact that while the usual n out of n bootstrap works for the NPMLE when
y € (0, 1/3), it fails under the nonstandard asymptotic regimes that operate for
y € [1/3, 1], as is clear from the work of Abrevaya and Huang (2005), Kosorok
(2008) and Sen, Banerjee and Woodroofe (2010). Since y is unknown, it is impos-
sible to decide whether to use the standard n out of n bootstrap. One could argue
that the m out of n bootstrap or subsampling will work irrespective of the value
of y, but the problem that arises here is that these procedures require knowledge
of the convergence rate and this is unknown as it depends on the true value of y.

5. A practical procedure and simulations. In this section, we provide a
practical version of the adaptive procedure introduced in Section 4 to construct
Wald-type confidence intervals for F(#;) and assess their performance through
simulation studies. The true values of ¢ and y are denoted by co and yp. The
process Pc o, g is again abbreviated to Pe.

Recall that in the adaptive procedure, we always specify y = 1/3 and compute
a surrogate for ¢, namely ¢, as a solution of the equation K = | (b —a)/én~'/3],
where K is the number of grid points. To construct a level 1 — 2n confidence
interval for F(#;) for a small positive 71, quantiles of Sp are needed. Since S, =
LS[GCM{P,(k), k € Z}](0) (c is genetically used), we approximate S, with

Xe k,(0) =LS[GCM{P.(k), k € [-K, — 1, K41}](0)
for some large K, € N. Further, since
Xe¢,k,(0) = LS[GCM{(Py o (k) /¢, Pa,c(k) /c), k € [-Kq — 1, K41}](0),

where Pi(k)/c =k and P (k)/c = aW(ck)/c + Bck(1l + k), we get that
X¢,k, (0) is the isotonic regression at k = 0 of the data

{(k, PZ,C(k)/C - PZ,c(k - 1)/0), k e [_Ka» Ka]}
= {(k7 aZk/\/E+ 2,36k)» kel[—Ka, Ka]},

where {Zk}f;_Ka are i.i.d. from N(0, 1), a = /F(x0)(1 — F(x0))/g(xo) and
B = f(x0)/2. To make this adaptive procedure practical, we next consider the
estimation of @ and 8, or equivalently, the estimation of F(xg), g(xp) and f(xo).

First, we consider the estimation of F(xg) and g(xp). Although F(xo) can
be consistently estimated by F (f;), in our simulations we estimate F(xg) by
oF (1) + (1 — p)F(t,) with p = (xo — 1) /(t, — ;) € [0, 1). To estimate g (xp), we
use the following estimating equation: (N;—js41+---+N,1j*)/n = g(x0) (t, 4 j* —
fi—j+), where j* is defined below in the estimation of f(xp). Since the design
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density g is assumed to be continuous in a neighborhood of x¢, and the inter-
val [f;_j=, ;4 j+] is shrinking to xq, it is reasonable to approximate g over the
interval [#;_j«, t,4;+] with a constant function. Thus, from the above estimat-
ing equation, one simple but consistent estimator of g(xg) is given by g(xp) =
(Ni—jrg1+ -+ Negjo) /[0ty jx — 11— )]

Next, we consider the estimation of f (xg). To this end, we estimate f(#;) using
a local linear approximation: identify a small interval around #;, and then approx-
imate F over this interval by a line, whose slope gives the estimator of f(#).
We determine the interval by the following several requirements. First, the sam-
ple proportion p,, in the interval should be larger than the sample proportion at
each grid point, which is of order n~" for y € (0, 1]. For example, setting p,
be of order 1/logn theoretically ensures a sufficiently large interval. Second, for
simplicity, we make the interval symmetric around #;. Third, in order to obtain
a positive estimate [since f(#;) is positive], we symmetrically enlarge the inter-
val satisfying the above two requirements until the values of F at the two ends
of the interval become different. Thus, we first find j*, the smallest integer such

that Zfi{: j« Ni/n = 1/logn. Next, we find i *, the smallest integer larger than j*
such that F (f—jx) < Ia (t;+i) and employ a linear approximation over [#;_;=, #/4+i+].
More specifically, we compute

I1+i*
(Bo. p1) = argmax | > (ﬁ(m—ﬁo—ﬂlri)zzvi}

(Bo,B1)ER? =] —i*

and estimate f(77) [and f(xg)] by ,31. Once these nuisance parameters have been
estimated, the practical adaptive procedure can be implemented.

The above procedures provide consistent estimates of g(xg) and f(xp) under
the assumption of a single derivative for F' and G in a neighborhood of xg, irre-
spective of the value of y [since the estimates are obtained by local polynomial
fitting over a neighborhood of logarithmic order (in n) around x¢ and such neigh-
borhoods are guaranteed to be asymptotically wider than n™" forany 0 < y < 1].
Two points need to be noted. First, the 1/logn threshold used to determine j*
in the previous paragraph may need to be changed to a multiple of 1/logn, de-
pending on the sample size and the length of the time interval. Second, the locally
constant estimate of g(xg) discussed above could be replaced by a local linear (or
quadratic) estimate of g, if the data strongly indicate that G is changing sharply in
a neighborhood of x.

To evaluate the finite sample performance of the practical adaptive procedure,
we also provide simulated confidence intervals of an idealized (theoretical) adap-
tive procedure where the true values of the parameters F(xg), g(xo) and f(xg) are
used, but y is still practically assumed to be 1/3, and c is taken as the previous ¢.
These confidence intervals can be considered as the best Wald-type confidence
intervals based on the adaptive procedure.



ASYMPTOTICS FOR CURRENT STATUS DATA 63

The simulation settings are as follows: The sampling interval [a, b] is [0, 1]. The
design density g is uniform on [a, b]. The distribution of T is the uniform distri-
bution over [a, b] or the exponential distribution with A = 1 or 2. The anchor-point
xo is 0.5. The pair of grid-parameters (y, c¢) takes values (1/6,1/6), (1/4,1/4),
(1/3,1/2), (1/2,1), (2/3,2) and (3/4, 3). The sample size n ranges from 100 to
1000 by 100. When generating the quantiles of Xz(0), K, is set to be 300 and
the corresponding iteration number 3000. We are interested in constructing 95%
confidence intervals for F (7). The iteration number for each simulation is 3000.

Denote the simulated coverage rates and average lengths for the practical pro-
cedure as CR(P) and AL(P) and those for the theoretical procedure as CR(T) and
AL(T). Figure 2 contains the plots of CR(P), CR(T), AL(P) and AL(T), and Ta-
ble 1 contains the corresponding numerical values for n = 100, 300, 500. The first
panel of Figure 2 shows that both CR(T) and CR(P) are usually close to the nomi-
nal level 95% from below and that CR(T) is generally about 1% better than CR(P).
This reflects the price of not knowing the true values of the parameters F(xp),
g(xp) and f(xp) in the practical procedure. On the other hand, the second panel of
Figure 2 shows that the AL(P)s are usually slightly shorter than AL(T)s. This in-
dicates that the practical procedure is slightly more aggressive. As the sample size
increases, the coverage rates usually approach the nominal level, and the average
lengths also become shorter, as expected.

The patterns noted above show up in more extensive simulation studies, not
shown here owing to constraints of space. Also, the adaptive procedure is seen
to compete well with the asymptotic approximations that one would use for con-
structing Cls were y known.

We end this section by pointing out that while, for the simulations, we knew the
anchor-point xg (#; being the largest grid-point to the left of or equal to xg), and that
we did make use of its value for estimating F (x¢) in our simulations, knowledge of
Xp is not essential to the inference procedure. We could have ju§t estimated F'(xq)
by F (#7) [rather than by a convex combination of F (t7) and F(¢,) that depends
upon xg] consistently. This is a critical observation, since in a real-life situation
what we are provided is current status data on a grid with particular grid points
of interest. There is no specification of xg. To make inference on the value of F
at such a grid-point, one can, conceptually, view xg as being any point strictly in
between the given point and the grid-point immediately after, but its value is not
required to construct a confidence interval by the adaptive method. To reiterate,
the “anchor-point,” xg was introduced for developing our theoretical results, but
its value can be ignored for the implementation of our method in practice.

6. Concluding discussion. In this paper, we considered maximum likelihood
estimation for the event time distribution function, F, at a grid point in the current
status model with i.i.d. data and observation times lying on a regular grid. The
spacing of the grid § was specified as cn~" for constants ¢ >0 and 0 <y <1 in
order to incorporate situations where there are systematic ties in observation times,
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TABLE 1
A comparison of the coverage rates and average lengths of the practical procedure with those of the
theoretical procedure, where U0, 1] and exp(L) stand for the uniform distribution over [0, 1], and
the exponential distributions with the parameter A, and n,n, and n3 are 100, 300 and 500,
respectively
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Coverage rates

CR(P) Ulo,1] exp(1) exp(2)

(02%9) ny ny n3 nj ny n3 ny ny n3
(1/6,1/6) 0.924 0.941 0.943 0.929 0.939 0.939 0.924 0.944 0.934
(1/4,1/4) 0914 0.937 0.943 0.923 0.934 0.935 0.923 0.943 0.941
(1/3,1/2) 0.933 0.930 0.938 0.934 0.940 0.938 0.934 0.936 0.942
1/2,1) 0.920 0.941 0.947 0.924 0.935 0.935 0.928 0.939 0.947
(2/3,2) 0.925 0.943 0.936 0.921 0.931 0.931 0.932 0.941 0.936
3/4,3) 0.928 0.940 0.941 0.921 0.922 0.931 0.930 0.940 0.940
CR(T) Ulo,1] exp(1) exp(2)
(1/6,1/6) 0.940 0.947 0.953 0.940 0.949 0.946 0.931 0.941 0.946
(1/4,1/4) 0.929 0.947 0.949 0.938 0.945 0.946 0.932 0.949 0.943
(1/3,1/2) 0.943 0.940 0.948 0.941 0.951 0.946 0.928 0.939 0.936
1/2,1) 0.940 0.949 0.946 0.941 0.944 0.950 0.939 0.945 0.950
(2/3,2) 0.946 0.950 0.941 0.941 0.951 0.947 0.935 0.957 0.943
(3/4,3) 0.939 0.953 0.947 0.945 0.948 0.944 0.930 0.950 0.946

Average lengths

AL(P) Ulo, 1] exp(1) exp(2)

(02%2) ny ny n3 nj ny n3 ny ny n3
(1/6,1/6) 0.417 0.286 0.239 0.358 0.246 0.206 0.380 0.261 0.216
(1/4,1/4) 0.415 0.287 0.240 0.356 0.242 0.204 0.376 0.258 0.218
(1/3,1/2) 0.409 0.281 0.236 0.359 0.243 0.207 0.381 0.258 0.219
(1/2,1) 0411 0.287 0.241 0.350 0.243 0.201 0.370 0.258 0.215
(2/3,2) 0.411 0.286 0.241 0.354 0.239 0.202 0.379 0.253 0.216
(3/4,3) 0.414 0.287 0.241 0.352 0.239 0.202 0.376 0.250 0.214
AL(T) Ulo,1] exp(1) exp(2)
(1/6,1/6) 0.426 0.294 0.247 0.357 0.247 0.208 0.377 0.260 0.219
(1/4,1/4) 0.426 0.295 0.248 0.357 0.247 0.208 0.377 0.261 0.220
(1/3,1/2) 0.422 0.292 0.246 0.355 0.246 0.208 0.374 0.260 0.219
1/2,1) 0.424 0.295 0.249 0.356 0.247 0.209 0.375 0.261 0.220
(2/3,2) 0.424 0.297 0.251 0.356 0.248 0.209 0.375 0.262 0.221
3/4,3) 0.424 0.297 0.251 0.356 0.248 0.209 0.375 0.262 0.221
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and the number of distinct observation times can increase with the sample size. The
asymptotic properties of the NPMLE were shown to depend on the order of the
grid resolution y and an adaptive procedure, which circumvents the estimation of
the unknown y and ¢, was proposed for the construction of asymptotically correct
confidence intervals for the value of F at a grid-point of interest. We conclude with
a description of alternative methods for inference in this problem and potential
directions for future research.

Likelihood ratio based inference: An alternative to the Wald-type adaptive confi-
dence intervals proposed in this paper would be to use those obtained via likelihood
ratio inversion. More specifically, one could consider testing the null hypothe-
sis Hp that F(#;) = 6; versus its complement using the likelihood ratio statistics
(LRS). When the null hypothesis is true, the LRS converges weakly to X12 in
the limit for y < 1/3, to D, the parameter-free limit discovered by Banerjee and
Wellner (2001) for y > 1/3 and a discrete analog of D depending on c, «, 8, say
Me.a,, that can be written in terms of slopes of unconstrained and appropriately
constrained convex minorants of the process Pc o, g for y = 1/3. Thus, one obtains
a boundary distribution for the likelihood ratio statistic as well, and a phenomenon
similar to that observed in Section 4 transpires, with the boundary distribution con-
verging to X12 as ¢ — oo and to that of D as ¢ — 0. An adaptive procedure, which
performs an inversion by calibrating the likelihood ratio statistics for testing a fam-
ily of null hypotheses of the form F(#;) = 6 for varying 6, using the quantiles of
M., oa.p0 can also be developed but is computationally more burdensome than the
Wald-type intervals. See Tang, Banerjee and Kosorok (2010) for the details.

Smoothed estimators: We recall that all our results have been developed under
minimal smoothness assumptions on F': throughout the paper, we assume F to
be once continuously differentiable with a nonvanishing derivative around xo. We
used the NPMLE to make inference on F since it can be computed without speci-
fying bandwidths; furthermore, under our minimal assumptions, its pointwise rate
of convergence when y > 1/3 or when the observation times arise from a con-
tinuous distribution cannot be bettered by a smoothed estimator. However, if one
makes the assumption of a second derivative at xg, the kernel-smoothed NPMLE
(and related variants) can achieve a convergence rate of n2/> (which is faster than
the rate of the NPMLE) using a bandwidth of order n~!/. See Groeneboom, Jong-
bloed and Witte (2010) where these results are developed and also an earlier paper
due to Mammen (1991) dealing with monotone regression. In such a situation,
one could envisage using a smoothed version of the NPMLE in this problem with
a bandwidth larger than the resolution of the grid, and it is conceivable that an
adaptive procedure could be developed along these lines. While this is certainly an
interesting and important topic for further exploration, it is outside the scope of this
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work, not least owing to the fact that the assumptions underlying such a procedure
are different (two derivatives as opposed to one) than those in this paper.

Further possibilities: The results in this paper reveal some new directions for
future research. As touched upon in the Introduction, some recent related work by
Maathuis and Hudgens (2011) deals with the estimation of competing risks cur-
rent status data under finitely many risks with finitely many discrete (or grouped)
observation times. A natural question of interest, then, is what happens if the obser-
vation times in their paper are supported on grids of increasing size as considered
in this paper for simple current status data. We suspect that a similar adaptive pro-
cedure relying on a boundary phenomenon at y = 1/3 can also be developed in
this case. Furthermore, one could consider the problem of grouped current sta-
tus data (with and without the element of competing risks), where the observation
times are not exactly known but grouped into bins. Based on communications with
us and preliminary versions of this paper, Maathuis and Hudgens (2011) conjec-
ture that for grouped current status data without competing risks, one may expect
findings similar to those in this paper, depending on whether the number of groups
increases at rate n'/3 or at a faster/slower rate and it would not be unreasonable to
expect a similar thing to happen for grouped current status data with finitely many
competing risks. In fact, an adaptive inference procedure very similar to that in
this paper should also work for the problem treated in Zhang, Kim and Woodroofe
(2001) and allow inference for the decreasing density of interest without needing
to know the rate of growth of the bins.

It is also fairly clear that the adaptive inference scheme proposed in this paper
will apply to monotone regression models with discrete covariates in general. In
particular, the very general conditionally parametric response models studied in
Banerjee (2007) under the assumption of a continuous covariate can be handled
for the discrete covariate case as well by adapting the methods of this paper. Fur-
thermore, similar adaptive inference in more complex forms of interval censoring,
like Case-2 censoring or mixed-case censoring [see, e.g., Sen and Banerjee (2007)
and Schick and Yu (2000)], should also be possible in situations where the multi-
ple observation times are discrete-valued. Finally, we conjecture that phenomena
similar to those revealed in this paper will appear in nonparametric regression
problems with grid-supported covariates under more complex shape constraints
(like convexity, e.g.), though the boundary value of y as well as the nature of the
nonstandard limits will be different and will depend on the “order” of the shape
constraint. This will also be a topic of future research.

APPENDIX: PROOFS

PROOF OF THEOREM 4.1. For k € Z, let

h(k) = a/eW (ck) + B’ k(1 + k),  h(k) =acW (k) + B> *k(1 + k).
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Then, we have {i(k), k € Z) % {h(k), k € Z}. Thus,

VeS. L 1S o GCM{(ck, h(k)), k € Z)(0).
Define S, = \/cS.. Denote

A= h(k)<h(k+1),k=1, ,...},
ck ck+1)

B, — h(—(k—l))<h(—k)’k=2’3“ }
ctk—1) ck

C.— h(1)>—h(—1)}'
c c

Then, for w € A:.B.C,, it is easy to see S’c = —aW(—1). We will show in Lem-
maA.l, AcB.Ce 5 1. Thus, S; = SeAcBeCo+So(1 — ABoCo) % —aW(—1) £
aZ, with Z ~ N(0, 1). Therefore, /¢S, 4wz, O

LEMMA A.1. Each of A., B; and C. in the proof of Theorem 4.1 converges
to 1 in probability.

PROOF. Itis easy to show C, converges to 1 in probability. The argument that
A, converges to one in probability is similar to that for B., and only the former is
established here. In order to show P(A.) — 1, it suffices to show P(A¢) — 0. We
have, for each k € Z,

P(h(k) - h(k + 1))
ck —ck+1)
aW (k)
(5

aWk+1)
k+1

P(a[W(k) B Wk + 1)] Zﬁc3/2>
k k+1

=P(N@©,1) > a8 Vk(k + 1))
<27 lexp{—2"'a2B%k(k + 1)}

using the fact that W (k)/k — W(k 4+ 1)/(k + 1) ~ N (O, (k(k + 1))~") and the
inequality P(N(0,1) > x) < 21 exp{(—2_1x2)} for x > 0 [see, e.g., (2) on pa-
ge 317 of Pollard (2002)]. Then, we have

o R KDY &
P(A")S;;P< - zc(k+1))§k§2 expl—2"'a 2232

P + Bk +1) > +,3c3/2(k+2)>

o
<27! / exp{—2"la 2B dx = (V21 /)72 = 0
0



ASYMPTOTICS FOR CURRENT STATUS DATA 69

as ¢ — oo. Thus, P(A.) — 1, which completes the proof. []

PROOF OF THEOREM 4.2. We want to show that S, —d> 8a,8(0), as ¢ — 0,
where g4 5(0) = LS o GCM{X, }(0) = LSo GCM{X, (1) :t € R}(0) and S, =
LS o GCM{P.}(0) = LS o GCM{P, (k) :k € Z}(0). Since S, = S, + Bc, where
S! =LSoGCM(P.:k € Z}(0) and P. = {(ck,aW(ck) + B(ck)?):k € Z}, it is
sufficient to show S.. —d> 8a,p(0) as ¢ — 0. To make the notation simple and with-
out causing confusion, in the following we still use P, and S, to denote P, and S...
Also, it will be useful to think of P, as a continuous process on R formed by lin-
early interpolating the points {ck, P2 .(ck) :k € Z}, where P> .(ck) = aW (ck) +
B(ck)? = X, p(ck). Note that viewing P, in this way keeps the GCM unaltered,
that is, the GCM of this continuous linear interpolated version is the same as that
of the set of points {ck, P> .(ck):k € Z}, and the slope-changing points of this
piece-wise linear GCM are still grid-points of the form ck.

Let L and U be the largest negative and smallest nonnegative x-axis coordinates
of the slope changing points of the GCM of X g. Similarly, let L. and U, be the
largest negative and smallest nonnegative x-axis coordinates of the slope changing
points of the GCM of P,. For K > 0, define gé(’ﬂ(O) =LSoGCM{Xy 4(1):1 €
[—K, K1}(0) and SX = LS o GCM{P.(¢) :t € [-K, K1}(0).

We will show that, given ¢ > 0, there exist M, > 0 and c(¢) such that (a) for
all 0 < ¢ < c(e), P(S™ #S.) <& and (b) P(gh'5(0) # ga,p(0)) < &. These
immediately imply that both Fact 1: lim,_olimsup,_ o P(SM # S.) = 0 and
Fact 2: lim, P(gg’l ;, (0) # ga,5(0)) = 0 hold. We then show that Fact 3: for each

>0, Séw € —d> gg[% (0) holds as well. Then, by Lemma 3.9, we have the conclusion

Se 4 8a,p(0). Figure 3 illustrates the following argument.

Let 7_» < 7_1 < 11 < 12 be four consecutive slope changing points of Gy g =
GCM{Xq,p} with T_1 denoting the first slope changing point to the left of 0 and
71 the first slope changing point to the right. Since t_» and 72 are Op(1), given

Gwﬁ(t)

Vo | I H X-axis

>

|
|
|
|
|
i ! : R
t Lc ) T <‘; T(]:O TIUC th T

F1G. 3. An illustration for showing {L.} is O p(1) in the proof of Theorem 4.2.
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& > 0, there exists M, > 0 such that P(—M, <13 < 1p < M) > 1 —¢/4. Note
that the event {g}'5(0) = gu5(0)} C {—M; < 7_5 < 7» < M.}, and it follows that

P(golzlf8 (0) # 84,5(0)) < &/4 < &. Thus, (b) holds.

Next, consider the chord C;(¢) joining (0, G,(0)) and (t—2, G4 g(T—2)). By
the convexity of G4, over [T_2,0] and 7_; € (t_2,0) being a slope changing
point, Xy g(t-1) = Gg,g(1—1) < C(r—1). But C1(0) = G4,4(0) < X4,4(0), and
it follows by the intermediate value theorem that § = inf; | o;-o{r: X (1) =
C1(¢t)} is well defined (since the set in question is nonempty), 7—; < & < 0,
Ci(§) = Xu,p(5) and on [t_1,§), Xo () < Ci(t). Let V=& — 7_4. Since V
is a continuous and positive random variable, there exists d(¢) > 0 such that
P(V > 6(e)) > 1 — ¢/4. Then, the event E; ={V > 5(e)} N {—M, < t_»} has
probability larger than 1 — ¢/2. For any ¢ < c(¢) =: §(¢), we claim that L, > t_»
on the event E,, and the argument for this follows below.

If L. < 7—3, consider the chord C>(¢) connecting two points (L., P2 (L.))
and (U¢, P2,c(U.)). This chord must lie strictly above the chord {C;(¢):7-1 <
t < 0} since it can be viewed as a restriction of a chord connecting two points
(t1, G, p(t1)) and (12, Gy, p(12)) withty < L. < 7_1 <0 < U, < 1. It then follows
that all points of the form {ck, P; .(ck) = Xy g(ck) :ck € [L., U.]} must lie above
C>(1). But there is at least one ck* with 7_1 < ck* < & and such that X, g(ck*) <
Ci(ck*) < Cp(ck™), which furnishes a contradiction.

We conclude that for any ¢ < c(¢), P(—M; < L;) > 1 —¢/2. A similar argu-
ment to the right-hand side of 0 shows that for the same c¢’s (by the symmetry
of two-sided Brownian motion about the origin), P(U. < M;) > 1 — ¢/2. Hence
P(—M; < L. <U; < M) >1—¢.On this event, clearly Sé”g = &,, and it fol-
lows that for all ¢ < c(¢), P(Séw ¢ #£S8.) < e. Thus, (a) also holds and Facts 1 and 2
are established.

It remains to establish Fact 3. This follows easily. For almost every w, Xy g (1)
is uniformly continuous on [£2M.]. It follows by elementary analysis that (for
almost every w) on [£M,.], the process P,, being the linear interpolant of the
points {ck, Xq g(ck): —Me < ck < Mg} U {(=M¢, Poc(—M¢)), (M, P2,c(Me))},
converges uniformly to Xy g as ¢ — 0. Thus, the left slope of the GCM of
{P.(t):t € [£M,]}, which is precisely Sﬁw ¢, converges to ggl% (0) since the GCM
of the restriction of Xy g to [££M,] is almost surely differentiable at O; see, for
example, the Lemma on page 330 of Robertson, Wright and Dykstra (1988) for a
justification of this convergence. [J
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SUPPLEMENTARY MATERIAL

More proofs for the current paper “Likelihood based inference for current
status data on a grid: A boundary phenomenon and an adaptive inference
procedure” (DOI: 10.1214/11-A0S942SUPP; .pdf). The supplementary material
contains the details of the proofs of several theorems and lemmas in Sections 3.1
and 3.3 of this paper.
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