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ROBUST RECOVERY OF MULTIPLE SUBSPACES BY
GEOMETRIC lp MINIMIZATION1

BY GILAD LERMAN AND TENG ZHANG

University of Minnesota

We assume i.i.d. data sampled from a mixture distribution with K com-
ponents along fixed d-dimensional linear subspaces and an additional out-
lier component. For p > 0, we study the simultaneous recovery of the K

fixed subspaces by minimizing the lp-averaged distances of the sampled
data points from any K subspaces. Under some conditions, we show that
if 0 < p ≤ 1, then all underlying subspaces can be precisely recovered by lp
minimization with overwhelming probability. On the other hand, if K > 1
and p > 1, then the underlying subspaces cannot be recovered or even nearly
recovered by lp minimization. The results of this paper partially explain the
successes and failures of the basic approach of lp energy minimization for
modeling data by multiple subspaces.

1. Introduction. In the last decade, many algorithms have been developed
to model data by multiple subspaces. Such hybrid linear modeling (HLM) was
motivated by concrete problems in computer vision as well as by nonlinear di-
mensionality reduction. HLM is the simplest geometric framework for nonlinear
dimensionality reduction. Nevertheless, very little theory has been developed to
justify the performance of existing methods. Here we give a rigorous analysis of
the recovery of multiple subspaces via an energy minimization.

One can model a data set X with K subspaces obtained by minimizing the
following energy over the subspaces L1, . . . ,LK :

elp (X ,L1, . . . ,LK) = ∑
x∈X

distp
(

x,

K⋃
i=1

Li

)
,(1)

where dist(·, ·) denotes the Euclidean distance and p > 0 is a fixed parameter. For
simplicity, we assume that L1, . . . ,LK are linear subspaces of the same dimen-
sion d , and we refer to them as d-subspaces (generalizations are discussed in Sec-
tions 5.6 and 5.7). We also assume that the data set X contains i.i.d. samples from
a mixture distribution μ with K components along fixed d-subspaces and an addi-
tional outlier component. The recovery problem asks whether with overwhelming
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probability the minimization of (1) recovers the underlying subspaces of μ. We
show here that when p ≤ 1 the answer to this problem is positive, whereas when
p > 1 it is negative.

Recovery problems are common in statistics, for example, recovering a sin-
gle subspace in least squares type problems or recovering multiple centers as in
K-means. However, our recent setting requires novel developments. One issue is
the strong geometric nature of our problem, resulting from an optimization on a
product space of Grassmannians. The other is the difficulty of approximating the
problem by convex optimization (as we clarify in Section 5.1). Thus, even though
it is an elementary problem in statistical learning, it requires the development of
techniques which are currently not widely common in statistics.

1.1. Background and related work. Many algorithms have been developed for
HLM (see, e.g., [1, 5, 8–11, 13, 14, 20–26]), and they find diverse applications
in several areas, such as motion segmentation in computer vision, hybrid linear
representation of images, classification of face images and temporal segmentation
of video sequences (see, e.g., [14, 23, 26]). HLM is the simplest nonlinear data
modeling and fits within the broader frameworks of modeling data by mixture of
manifolds [3] and by Whitney’s stratified space [4].

The K-subspaces algorithm [5, 10, 22] is the most basic heuristic for HLM,
and it suggests an iterative procedure attempting to minimize the energy (1) with
p = 2. It generalizes the K-means algorithm, which models data by K centers, that
is, 0-dimensional affine subspaces. Numerical experiments by Zhang et al. [25]
have shown that the K-subspaces algorithm is in general not robust to outliers,
whereas a different method aiming to minimize (1) with p = 1 seems to be robust
to outliers.

There has been little investigation into performance guarantees of the various
HLM algorithms. Nevertheless, the accuracy of segmentation under some sam-
pling assumptions was analyzed for two spectral-type HLM algorithms in [7]
and [3], where [3] also quantified the tolerance to outliers ([3] considers only the
asymptotic case, though applies to modeling by multiple manifolds). For the K-
means algorithm (which only applies to 0-dimensional affine subspaces), Pollard
has established strong consistency [16] and a central limit theorem [17].

In [12], we analyzed the lp-recovery of the “most significant” subspace among
multiple subspaces and outliers with spherically symmetric underlying distribu-
tions. We assume here a similar (though weaker) underlying model and rely on
some of the estimates already developed there.

1.2. Basic conventions and notation. We denote by G(D,d) the Grassman-
nian, that is, the manifold of d-subspaces of R

D . We measure distances between F
and G in G(D,d) by the metric

distG(F,G) =
√√√√ d∑

i=1

θ2
i ,(2)
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where {θi}di=1 are the principal angles between F and G. We use this distance since
there is a simple formula for the geodesic lines on the Grassmannian equipped
with this distance (see, e.g., [12], equation 12), which is applied in this paper. We
distinguish elements in the K-fold product space G(D,d)K by the l∞ norm, that
is,

distGK ((L1, . . . ,LK), (L̂1, . . . , L̂K)) = max
i=1,...,K

(distG(Li , L̂i)).(3)

Following [15], Section 3.9, we denote by γD,d the “uniform” distribution on
G(D,d).

We denote by a ∨ b and a ∧ b the maximum and minimum of a and b, re-
spectively. We designate the support of a distribution μ by supp(μ). By saying
“with overwhelming probability” or, in short, “w.o.p.,” we mean that the underly-
ing probability is at least 1 − Ce−N/C , where C is a constant independent of N .

1.3. Setting of this paper. We assume an i.i.d. data set X ⊆ R
D of size N

sampled from a mixture distribution representing a hybrid linear model around
distinct d-subspaces, {L∗

i }Ki=1. We in fact consider two different types of models,
but both of them have the same basic structure.

We assume K distributions, μi , each supported on a corresponding and distinct
d-subspace, L∗

i , a noise level ε ≥ 0, and an outlier distribution, denoted by μ0.
Furthermore, for each 1 ≤ i ≤ K we have a distinct noise distribution νi,ε with
bounded support in the orthogonal complement L∗

i . We assume that the pth mo-
ments of {‖νi,ε‖}Ki=1 are smaller than εp for all 0 < p ≤ 1 (p < 1 is only needed
when we consider lp minimization with p < 1). Moreover, if ε = 0, then {νi,0}Ki=1
are the Dirac δ distributions supported on the origin within the corresponding sub-
spaces orthogonal to {L∗

i }Ki=1.
We assume that the underlying distributions, {μi}Ki=0, have bounded supports

(or possibly sub-Gaussian as explained in Section 5.3). In order to simplify our
estimates, we further assume that supp(μi) ⊆ B(0,1) for 0 ≤ i ≤ K .

From these pieces we construct the mixture distribution με ,

με = α0μ0 +
K∑

i=1

αiμi × νi,ε,(4)

where α0 ≥ 0, αi > 0 ∀1 ≤ i ≤ K and
∑K

i=0 αi = 1. If ε = 0, then for convenience
we replace the notation με by μ, that is,

μ = α0μ0 +
K∑

i=1

αiμi.(5)

Within this basic framework, we analyze two different models. For ε ≥ 0 and με

as in (4), we say that με is a weakly spherically symmetric HLM distribution with
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noise level ε if the {μi}Ki=1 are generated by rotations (in R
D) of a single distribu-

tion μ̂, such that μ̂({0}) < 1, supp(μ̂) ⊆ B(0,1) ∩ L̂ for some d-subspace L̂ ⊂ R
D

and μ̂ is spherically symmetric within L̂ (i.e., invariant to rotations within L̂).
Our second model has weaker assumptions on the distributions of inliers and a

slightly stronger assumption on the distribution of outliers. For ε ≥ 0 and με as
in (4), we say that με is a weak HLM distribution with noise level ε if μi({0}) < 1
∀1 ≤ i ≤ K , supp(με) ⊆ B(0,1) and for some r > 0 the uniform distribution on
B(0, r) is absolutely continuous w.r.t. the restriction of μ0 to B(0, r).

Our theory uses the constant τ0 ≡ τ0(d,p, {μi}Ki=1). We delay its definition to
the proofs [see (11)], but use it in the formulation of Theorems 1.1 and 1.2.

1.4. Statistical problems of this paper. We address here two statistical prob-
lems. The simpler one is implicit in this introduction, though clear from the proofs.
It asks whether the underlying subspaces {L∗

i }Ki=1 can be recovered when ε = 0
by minimizing Eμ(distp(x,

⋃K
i=1 Li )) over {Li}Ki=1 ⊂ G(D,d). The main prob-

lem can be formulated using the empirical distribution μN of i.i.d. sample of
size N from μ. It asks whether {L∗

i }Ki=1 can be recovered (w.o.p.) by minimiz-
ing EμN

(distp(x,
⋃K

i=1 Li)), which is equivalent to minimizing (1). In the noisy
case, we extend these problems to near recovery. When K > 1 and d ≥ 1, these
problems are nontrivial and require complicated geometric estimates.

1.5. Main theory. We first formulate the exact recovery of {L∗
i }Ki=1 as the

unique global minimizer of the lp energy (1) when 0 < p ≤ 1.

THEOREM 1.1. Assume that μ is a weakly spherically symmetric HLM distri-
bution on R

D without noise (ε = 0) and with underlying subspaces {L∗
i }Ki=1 ⊆ R

D

and mixture coefficients {αi}Ki=0. Let X be an i.i.d. data set sampled from μ. If
0 < p ≤ 1 and

α0 < τ0 · min
i=1,...,K

αi ·
(
1 ∧ min

1≤i,j≤K
distG(L∗

i ,L∗
j )

p/2p
)
,(6)

then w.o.p. the set {L∗
1, . . . ,L∗

K} is the unique global minimizer of the energy (1)
among all d-subspaces in R

D .

Theorem 1.1 extends to the noisy case by allowing near-recovery as follows
(a counterexample for asymptotic exact recovery is shown in Section 3.2).

THEOREM 1.2. Assume that ε > 0 and με is a weakly spherically symmetric
HLM distribution of noise level ε on R

D with K d-subspaces {L∗
i }Ki=1 ⊆ R

D and
mixture coefficients {αi}Ki=0. Let X be an i.i.d. data sampled from με . If 0 < p ≤ 1
and

ε < 3−1/p
(
τ0 · min

i=1,...,K
αi ·

(
1 ∧ min

1≤i,j≤K
distG(L∗

i ,L∗
j )

p/2p
)

− α0

)1/p
,(7)
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then any minimizer of (1) in G(D,d)K has a distance smaller than

f ≡ f (ε,K,d,p, {αi}Ki=1) = 31/p ·
(
τ0 min

1≤j≤K
αj − α0

)−1/p · ε(8)

from one of the permutations of (L∗
1, . . . ,L∗

K) with overwhelming probability.

At last, we formulate the impossibility to recover {L∗
i }Ki=1 by lp minimization

when p > 1 (the constants δ0 and κ0 in our formulation are estimated in Sec-
tion 4.5.5).

THEOREM 1.3. Assume an i.i.d. sample of K d-subspaces {L∗
i }Ki=1 ⊂ G(D,d)

from the “uniform” distribution on G(D,d), γD,d . For ε ≥ 0 and the sample
{L∗

i }Ki=1, let με be a weak HLM distribution with noise level ε and let X be an
i.i.d. data set of size N sampled from με . If p > 1 and K > 1, then for almost ev-
ery {L∗

i }Ki=1 (w.r.t. γ K
D,d ) there exist positive constants δ0 and κ0, independent of N ,

such that for any ε < δ0 the minimizer of (1), L̂1, . . . , L̂K , satisfies w.o.p.:

distGK ((L̂1, . . . , L̂K), (L∗
1, . . . ,L∗

K)) > κ0.(9)

The above theorems have direct implications for HLM with spherically sym-
metric sampling along the subspaces. Theorems 1.1 and 1.2 clarify to some extent
the robustness of two recent algorithms for HLM, which use the l1 energy (1):
Median K-Flats (MKF) [25] and Local Best-fit Flats (LBF) [27]. Theorem 1.3 ex-
plains why common HLM strategies that use the l2 energy (1) (e.g., K-subspaces)
are generally not robust to outliers.

1.6. Structure of the paper. Theorems 1.1, 1.2 and 1.3 are proved in Sections
2, 3 and 4, respectively. Section 5 discusses possible extensions as well as limita-
tions of our theory and suggests some open directions.

2. Proof of Theorem 1.1.

2.1. Preliminaries. We view the energy elp (X ,L1, . . . ,LK) as a function de-
fined on G(D,d)K while being conditioned on the fixed data set X . Therefore, the
minimizer of elp (X ,L1, . . . ,LK) is an element (L′

1, . . . ,L′
K) in G(D,d)K . Since

any permutation of its K coordinates in G(D,d) results in another minimizer, we
sometimes say that the set {L′

1, . . . ,L′
K} is a minimizer [instead of (L′

1, . . . ,L′
K)].

We denote elp (x,L1, . . . ,LK) := elp ({x},L1, . . . ,LK) and view it as a function
on R

D × G(D,d)K .
We denote the set of all permutations of (1,2, . . . ,K) by PK . We designate an

open ball in G(D,d) by BG(L, r) as opposed to the Euclidean open ball in R
D ,

B(x, r).
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We partition X into the subsets {Xi}Ki=0 with {Ni}Ki=0 points sampled according
to the distributions {μi}Ki=0.

We define

ψμ1(t) = μ1(x ∈ R
D :−t < |xT v| < t),(10)

where v is an arbitrarily fixed unit vector in L∗
1 [due to the spherical symmetry

of μ1 within L∗
1, (10) is independent of v]. We note that since {μi}Ki=1 are gen-

erated by a single distribution, ψμ1(t) = ψμi
(t) ∀2 ≤ i ≤ K . The invertibility of

ψμ1 is established in [12], Appendix A.2, and an estimate of ψμ1 for a uniform
distribution on a d-dimensional ball appears in [12], Appendix A.1.

Theorem 1.1 uses the constant τ0, which we can now define as follows:

τ0 := (1 − μ1({0})) · 2p−1 · ψ−1
μ1

((1 + (2K − 1)μ1({0}))/(2K))p

(π
√

d)p
.(11)

In the special case where μ1 is the uniform distribution on B(0
¯
,1) ∩ L1, then

the estimate of ψμ in [12], Section A.1, implies the following lower bound for τ0:

τ0 >
1

2p+1 · Kp · d3p/2 .

Consequently, Theorem 1.1 holds in this case if τ0 in (6) is replaced by 1/(2p+1 ·
Kp · d3p/2). Furthermore, it follows from basic scaling arguments that if μ1 is the
uniform distribution on B(0

¯
, r1) ∩ L1 and supp(μ0) ⊆ B(0

¯
, r2), where r1 and r2

are any positive numbers, then

τ0 >
r
p
1

2p+1 · Kp · d3p/2 · rp
2

.

2.2. Auxiliary lemmata. The following lemmata are used throughout this
proof (Lemma 2.1 is proved in the Appendix and Lemma 2.2 in [12], Ap-
pendix A.2).

LEMMA 2.1. Suppose that L1, L̂1, . . . , L̂K ∈ G(D,d), p > 0 and μ1 is a
spherically symmetric distribution in B(0,1)∩ L1. If min1≤j≤K distG(L1, L̂j ) > ε,
then

Eμ1(elp (x, L̂1, . . . , L̂K)) > τ0ε
p.

LEMMA 2.2. For any x ∈ R
D and L1,L2 ∈ G(D,d),

|dist(x,L1) − dist(x,L2)| ≤ ‖x‖distG(L1,L2).
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2.3. Proof in expectation. We verify Theorem 1.1 “in expectation,” whereas
later sections extend the proof to hold w.o.p. We use the following notation w.r.t.
the fixed d-subspaces L∗

1, L∗
2, . . . ,L∗

K , L̂1, L̂2, . . . , L̂K ∈ G(D,d):

I (i) = arg min
1≤j≤K

distG(L∗
i , L̂j ) ∀1 ≤ i ≤ K(12)

and

d0 = min
i1,i2,...,iK∈PK

distGK ((L∗
i1
, . . . ,L∗

iK
), (L̂1, . . . , L̂K)).(13)

The “expected version” of Theorem 1.1 is formulated and proved as follows.

PROPOSITION 2.1. Suppose that L̂1, . . . , L̂K are arbitrary subspaces in
G(D,d), 0 < p ≤ 1, and I is defined w.r.t. {L̂i}Ki=1 and the underlying subspaces
{L∗

i }Ki=1. If (I (1), . . . , I (K)) is a permutation of (1, . . . ,K), then

Eμelp(x, L̂1, . . . , L̂K) − Eμelp(x,L∗
1, . . . ,L∗

K)
(14)

≥
(
τ0 min

1≤j≤K
αj − α0

)
d

p
0 .

On the other hand, if (I (1), . . . , I (K)) is not a permutation of (1, . . . ,K), then

Eμelp (x, L̂1, . . . , L̂K) − Eμelp(x,L∗
1, . . . ,L∗

K)
(15)

≥ τ0

(
min

1≤j≤K
αj

)(
min

1≤i,j≤K
distpG(L∗

i ,L∗
j )/2

)
− α0.

PROOF. We define

M = arg max
1≤i≤K

distG
(
L∗

i , L̂I (i)

)
.

Assume first that (I (1), . . . , I (K)) is a permutation of (1, . . . ,K). Using the defi-
nition of I , we have

min
1≤j≤K

distG(L∗
M, L̂j ) = distG

(
L∗

M, L̂I (M)

)
= distGK

(
(L∗

1, . . . ,L∗
K),

(
L̂I (1), . . . , L̂I (K)

))
(16)

= d0.

Combining (16) with Lemma 2.1, we obtain that

EμM
elp(x, L̂1, . . . , L̂K) − EμM

elp(x,L∗
1, . . . ,L∗

K)
(17)

= EμM
elp(x, L̂1, . . . , L̂K) > τ0d

p
0 .
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For any x ∈ X0, let m(x) = arg min1≤i≤K dist(x,L∗
i ), m̂(x) = arg min1≤i≤K dist(x,

L̂i ) and note that

elp (x, L̂1, . . . , L̂K) − elp (x,L∗
1, . . . ,L∗

K)

= dist
(
x, L̂m̂(x)

)p − dist
(
x,L∗

m(x)

)p
≥ dist

(
x, L̂m̂(x)

)p − dist
(
x,L∗

I−1(m̂(x))

)p(18)

≥ −‖x‖p distG
(
L̂m̂(x),L∗

I−1(m̂(x))

)p
≥ −‖x‖pd

p
0 ≥ −d

p
0 ,

where the second inequality in (18) uses Lemma 2.2. Therefore,

Eμ0elp (x, L̂1, . . . , L̂K) − Eμ0elp (x,L∗
1, . . . ,L∗

K) > −d
p
0 .(19)

At last, we observe that

Eμelp(x, L̂1, . . . , L̂K) − Eμelp(x,L∗
1, . . . ,L∗

K)

≥ αM

(
EμM

elp (x, L̂1, . . . , L̂K) − EμM
elp(x,L∗

1, . . . ,L∗
K)

)
(20)

+ α0
(
Eμ0elp (x, L̂1, . . . , L̂K) − Eμ0elp (x,L∗

1, . . . ,L∗
K)

)
.

The proposition in this case thus follows from (17), (19) and (20).
Next, we assume that I (1), . . . , I (K) is not a permutation of 1,2, . . . ,K . In this

case, there exist 1 ≤ n1, n2 ≤ K such that I (n1) = I (n2) and, consequently,

2 min
1≤j≤K

distG(L∗
M, L̂j ) = 2 distG

(
L∗

M, L̂I (M)

)
≥ distG

(
L∗

n1
, L̂I (n1)

) + distG
(
L∗

n2
, L̂I (n2)

)
(21)

≥ distG(L∗
n1

,L∗
n2

)

≥ min
1≤i,j≤K

distG(L∗
i ,L∗

j ).

Combining (21) and Lemma 2.1 [applied with ε = min1≤i,j≤K distG(L∗
i ,L∗

j )/2],
we obtain that

EμM
elp(x, L̂1, . . . , L̂K) − EμM

elp(x,L∗
1, . . . ,L∗

K)
(22)

> τ0

(
min

1≤i,j≤K
distG(L∗

i ,L∗
j )/2

)p
.

Finally, since the support of μ0 is contained in B(0,1), we note that

Eμ0elp (x, L̂1, . . . , L̂K) − Eμ0elp (x,L∗
1, . . . ,L∗

K) ≥ −1.(23)

The proposition is thus concluded from (20), (22) and (23). �
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2.4. Proof in a local ball by calculus on the Grassmannian. We cannot di-
rectly extend (14) to an estimate w.o.p., since its lower bound is a multiplication
of d

p
0 , which approaches zero as the set {Li}Ki=1 approaches {L∗

i }Ki=1. We will need
to exclude a ball in G(D,d)K around {L∗

i }Ki=1 before such an extension. We thus
prove here that {L∗

i }Ki=1 is a unique global minimizer w.o.p. in a local ball. In
Section 2.5 we extend Proposition 2.1 to an estimate w.o.p. outside this ball and
conclude the theorem.

We show that there exists a sufficiently small number γ1 such that {L∗
i }Ki=1 is

the unique global minimizer w.o.p. of elp in BG((L∗
i1
, . . . ,L∗

iK
), γ1). Since elp is

permutation invariant, it is also the unique global minimizer in⋃
i1,i2,...,iK∈PK

BG((L∗
i1
, . . . ,L∗

iK
), γ1).

In order to simplify notation in this part of the proof, we will adopt WLOG the
convention that the RHS of (3) occurs at i = 1, that is,

distG(L∗
1, L̂1) = max

i=1,...,K
(distG(L∗

i , L̂i)).(24)

Following this convention and the fact that elp (
∑K

i=2 Xi ,L∗
1, . . . ,L∗

K) = 0, it
is enough to prove that (L∗

1, . . . ,L∗
K) is the unique global minimizer w.o.p. of

elp (X0 ∪ X1,L1, . . . ,LK) in BG((L∗
1, . . . ,L∗

K), γ1), for sufficiently small γ1.

Let t0 := distG(L∗
1, L̂1). For each 1 ≤ i ≤ K , we parametrize according to arc

length the geodesic lines from L∗
i to L̂i by functions Li (t), 1 ≤ i ≤ K , on the

interval [0, t0] such that

Li (0) = L∗
i and Li(t0) = L̂i .(25)

We will prove that for sufficiently small γ1 > 0,

d

dtp

(
elp

(
X0 ∪ X1,L1(t), . . . ,LK(t)

))
> 0 for all 0 ≤ t ≤ γ1 w.o.p.(26)

This will clearly imply our desired result.
Our proof of (26) is based on the following estimate:

d

dtp
(elp (x,L1(t), . . . ,LK(t)))

∣∣∣∣
t=0

≥ −‖x‖.(27)

In order to establish (27), we denote j = arg min1≤i≤K dist(x,L∗
i ) and apply

Lemma 2.2 to obtain that

d

dtp
(elp (x,L1(t), . . . ,LK(t)))

∣∣∣∣
t=0

= lim
t→0

dist(x,Lj (t))
p − dist(x,Lj (0))p

tp
(28)

≥ −‖x‖ lim
t→0

distG(Lj (t),Lj (0))p

tp
.
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We also note that for all 0 ≤ t ≤ t0,

distG(Lj (t),Lj (0))p

tp
≤ distG(L1(t),L1(0))p

tp
= 1.(29)

Indeed, if t = t0, the inequality in (29) follows from (24) and the equality follows
from (25). Moreover, both of them extend to 0 ≤ t < t0 by the underlying property
of arc length parametrization. Equation (27) thus follows from (28) and (29).

Combining (27) with Hoeffding’s inequality, we obtain that

d

dtp
(elp (X0,L1(t), . . . ,LK(t)))

∣∣∣∣
t=0

≥ − ∑
x∈X0

‖x‖ ≥ −α0N w.o.p.(30)

We similarly derive an equation analogous to (30) when replacing X0 with X1
by applying some arguments of the proof of Lemma 2.1 and Hoeffding’s inequality
as follows:

d

dtp
(elp (X1,L1(t), . . . ,LK(t)))

∣∣∣∣
t=0

= d

dt
(el1(X1,L1(t)))

∣∣∣∣
t=0

(31)
≥ τ0α1N w.o.p.

At last, combining (30), (31) and (6), we obtain that there exists γ ′
1 ≡ γ ′

1(D,

d,K,p,α0, α1) such that w.o.p.

d

dtp

(
elp

(
X0 ∪ X1,L1(t), . . . ,LK(t)

))∣∣∣∣
t=0

≥ (τ0α1 − α0)N > γ ′
1N.

Using the arguments of the proof of [12], equation (35), we conclude that there
exists a constant γ1 ≡ γ1(D,d,K,p,α0, α1,min2≤i≤K dist(L∗

1,L∗
i ),μ0,μ1) > 0

such that (26) holds.

2.5. Conclusion of Theorem 1.1. In order to conclude the theorem, it is
enough to prove that {L∗

1, . . . ,L∗
K} is the unique global minimizer w.o.p. of

elp (X0 ∪ X1,L1, . . . ,LK) in the set

GP(D,d, γ1) := G(D,d)K
∖ ⋃

i1,i2,...,iK∈PK

BG((L∗
i1
, . . . ,L∗

iK
), γ1).(32)

Combining Proposition 2.1, the fact that d0 > γ1 [which follows from the def-
inition of d0 in (13)], Hoeffding’s inequality and (6), we obtain that there exists
γ2 ≡ γ2(D,d,K,p,α0,min1≤i≤K αi,min1≤i �=j≤K dist(L∗

i ,L∗
j ),μ0,μ1) > 0 such

that for any fixed (L̂1, . . . , L̂K) ∈ GP(D,d, γ1),

elp (X , L̂1, . . . , L̂K) − elp (X ,L∗
1, . . . ,L∗

K) > γ2N w.o.p.(33)

Following the proof of [12], Theorem 1.1 [i.e., covering GP(D,d, γ1) by balls],
we easily extend (33) w.o.p. for all K subspaces in the set GP(D,d, γ1) (instead
of fixed ones) and thus conclude the theorem.
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3. Proof of Theorem 1.2 and a counterexample to asymptotic recovery.

3.1. Proof of Theorem 1.2. Following the argument of [12], Section 3.5.1, we
reduce the verification of Theorem 1.2 to proving that there exists a constant γ3 > 0
such that if for all permutations i1, . . . , iK ∈ PK , L̂1, . . . , L̂K ∈ G(D,d) satisfy
that distGK ((L∗

i1
, . . . ,L∗

iK
), (L̂1, . . . , L̂K)) > f , then

Eμ(elp (x, L̂1, . . . , L̂K)) > Eμ(elp (x,L∗
1, . . . ,L∗

K)) + γ3 + 2εp.(34)

In view of Proposition 2.1, in order to conclude (34), it is sufficient to verify
that (

τ0 min
1≤j≤K

αj − α0

)
f p > γ3 + 2εp(35)

and

τ0 min
1≤j≤K

αj min
1≤i,j≤K

distpG(L∗
i ,L∗

j )/2p − α0 > γ3 + 2εp.(36)

Setting γ3 = εp/2, (35) follows from (8) and (36) follows from (7).

3.1.1. Remark on the size of ε. If

ε > π
√

d3−1/p
(
τ0 min

1≤j≤K
αj − α0

)1/p
/2,(37)

then f > π
√

d/2, so that there is no restriction on the minimizer of (1) in
G(D,d)K . It thus makes sense to further restrict ε to be at least lower than the
right-hand side of (37).

3.2. A counterexample to exact asymptotic recovery with noise. One may ask
if it is possible in the noisy setting (ε > 0) to recover the underlying subspaces as
the number of sampled points, N , approaches infinity. The answer to this ques-
tion is positive when K = 1 (see, e.g., [2], Section 11.6, [18]) or d = 0 (see [17]).
However, it is often negative when d > 1 and K > 1, as we demonstrate in Fig-
ure 1(a) and explain below. In this example, D = 2, K = 2, d = 1, α0 = 0 and the
two underlying distributions μ1 and μ2 (corresponding to the two underlying lines
L∗

1 and L∗
2) are uniformly distributed in the two gray regions demonstrated in this

figure (the region around L∗
1 is a rectangle and the region around L∗

2 is a union of
two disjoint rectangles).

In order to verify that this is indeed a counterexample, we use a Voronoi-type
region, which allows us to reduce approximation by multiple subspaces to approx-
imation by a single subspace on it. Such regions {Yi}Ki=1, which are frequently
used in Section 4, are obtained by a Voronoi diagram (restricted to the unit ball) of
given d-subspaces {Li}Ki=1 ⊆ G(D,d) as follows:

Yi(L1, . . . ,LK)
(38)

= {x ∈ B(0,1) : dist(x,Li) < dist(x,Lj ) ∀j : 1 ≤ j �= i ≤ K}.
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(a) (b)

FIG. 1. A counterexample showing that exact recovery with noise is impossible even asymptotically.
(a) Gray regions of uniform distributions around the two underlying lines. (b) The gray region is the
intersection of Y1 with the uniform distribution region around L∗

1. The best lp line in Y1 is L̃1.

These regions are useful to us due to the following elementary proposition, whose
trivial proof is described in the Appendix.

PROPOSITION 3.1. If L′
1, . . . ,L′

K ∈ G(D,d), ν is a probability measure on
R

D and

(L′
1, . . . ,L′

K) = arg min
(L1,...,LK)∈G(D,d)K

Eν(elp (x,L1, . . . ,LK)),

then

L′
1 = arg min

L1∈G(D,d)

Eν

(
elp (x,L1)I

(
x ∈ Y1(L

′
1,L′

2, . . . ,L′
K)

))
.(39)

We claim that for any fixed p > 0, the distance between {L∗
1,L∗

2} and the global
minimizer of (1) in the setting of this example is bounded from below w.o.p. by
a positive constant independent of the sample size, N , for sufficiently large N .
Equivalently, we claim that the distance between {L∗

1,L∗
2} and the global mini-

mizer of Eμε(distp(x,
⋃K

i=1 Li)) is positive, where με is the underlying mixture
distribution for this example. In view of Proposition 3.1, we only need to show a
positive distance between L∗

1 and the minimizer of Eμε(elp (x,L)I (x ∈ Y1)), where
Y1 = Y1(L∗

1,L∗
2). We refer to this minimizer as the best lp line for Y1 and denote

it by L̃1 (while arbitrarily fixing p). We note that for any p > 0, the integral of
lp distances of points in the part of Y1 above L∗

1 from the line L∗
1 is smaller than

the similar integral in the bottom part. Therefore, L̃1 is different than L∗
1 and the

respective orientation of the two lines is demonstrated in Figure 1(b). The claim is
thus concluded.
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4. Proof of Theorem 1.3.

4.1. Preliminaries.

4.1.1. Notation. We designate the projection from R
D onto its subspace L by

PL and the corresponding orthogonal projection by P ⊥
L . We define

DL,x,p = PL(x)P ⊥
L (x)T dist(x,L)(p−2).(40)

We frequently use the Voronoi-type regions {Yi}Ki=1 defined in (38) with respect
to the subspaces {L∗

i }Ki=1 and possibly two additional arbitrary subspaces denoted
by L̂2 ∈ G(D,d) and L̃2 ∈ G(D,d). We will use the following short notation for
1 ≤ i ≤ K :

Ŷi = Yi (L
∗
1, L̂2,L∗

3, . . . ,L∗
K), Ỹi = Yi (L

∗
1, L̃2,L∗

3, . . . ,L∗
K)(41)

and

Yi = Yi(L
∗
1,L∗

2,L∗
3, . . . ,L∗

K).(42)

We denote by Ȳi the closure of Yi , that is,

Ȳi = {x ∈ B(0,1) : dist(x,L∗
i ) ≤ dist(x,L∗

j ) ∀j : 1 ≤ j �= i ≤ K}.(43)

Similarly, the closure of Ŷi is denoted by ¯̂Yi .
Let Lk denote the kth-dimensional Lebesgue measure. We denote d∗ = d ∧

(D − d) and let θd∗(L∗
i ,L∗

j ) be the d∗th largest principal angle between the d-
subspaces L∗

i and L∗
j . Our analysis uses the distribution μ ≡ α0μ0 + ∑K

i=1 αiμi ,
even though the underlying distribution of our model is με . For L, L∗ ∈ G(D,d),
we define the “orthogonal subtraction” � as follows:

L∗ � L = L∗ ∩ (L ∩ L∗)⊥.

4.1.2. Auxiliary lemmata. Using the notation above, we formulate two lem-
mata, which will be used throughout this proof. The proof of Lemma 4.1 is identi-
cal to that of [12], Proposition 2.2 (while replacing sums by expectations), whereas
Lemma 4.2 is proved in the Appendix.

LEMMA 4.1. For any L∗ ∈ G(D,d) and distribution μ, a necessary condition
for L∗ to be a local minimum of Eμ(lp(x,L)) is

Eμ(DL∗,x,p) = 0.(44)
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The next lemma quantifies the sensitivity of the region Yj , where 1 ≤ j ≤ K ,
to perturbations in the subspace Li , where 1 ≤ i �= j ≤ K . WLOG we formulate it
with j = 1 and i = 2 [note that we use the short notation of (41)].

LEMMA 4.2. If L̂2,L∗
1,L∗

2, . . . ,L∗
K are subspaces in G(D,d) such that L̂2 �=

L∗
2,

min
j �=2

(θd∗(L̂2,L∗
j )) > 0, min

1≤i �=j≤K
(θd∗(L∗

i ,L∗
j )) > 0(45)

and

θd∗(L̂2,L∗
1) ∨ θd∗(L∗

2,L∗
1) ≤ min

3≤i≤K
θd∗(L∗

i ,L∗
1),(46)

then

LD

(
(Ŷ1 \ Y1) ∪ (Y1 \ Ŷ1)

)
> 0.(47)

4.2. A special case. The proof of Theorem 1.3 is rather involved. In order to
develop a simple intuition, we provide an elementary proof of the very special case
where d = 1, p = 2 and K = 2. For simplicity we also assume that D = 2, though
our argument easily extends to D > 2. Figure 2 shows the two underlying lines L∗

1
and L∗

2 and their corresponding regions Y1 and Y2. We note that the best l2 lines
[in G(D,1)] for μ0 restricted to Y1 and Y2 are the central axes of those regions.
Since α0 > 0, the best l2 lines [in G(D,1)] for μ restricted to Y1 and Y2 (denoted
by L̃1 and L̃2, resp.) must reside between the best l2 lines for μ0 restricted to Y1
and Y2 and L∗

1 and L∗
2, respectively. In particular, they are different from L∗

1 and L∗
2

as demonstrated in the figure. Therefore, Eμ(el2(x,L∗
1,L∗

2)) > Eμ(el2(x, L̃1, L̃2)).
This implies that w.o.p. el2(X ,L∗

1,L∗
2) > el2(X , L̃1, L̃2).

FIG. 2. Illustrative proof of Theorem 1.3 in the special case where p = 2, d = 1, D = 2 and K = 2.
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4.3. Reduction of the statement of Theorem 1.3 to simpler formulations.

4.3.1. Reduction I: Using the Voronoi-type regions {Yi}Ki=1. We will show
here that the following equation implies Theorem 1.3:

γ K
D,d

({L∗
i }Ki=1 ⊂ G(D,d) : Eμ0

(
I (x ∈ Yj )DL∗

j ,x,p

) = 0 ∀1 ≤ j ≤ K
) = 0.(48)

First, we apply the argument of [12], Section 3.6.1 (which requires the assump-
tion specified in Section 1.3 that the first moments of {‖νi,ε‖}Ki=1 are smaller than ε)
to obtain that Theorem 1.3 follows by the equation

γ K
D,d

(
{L∗

i }Ki=1 ⊂ G(D,d) : (L∗
1, . . . ,L∗

K)

(49)
= arg min

(L1,...,LK)

Eμ(elp (x,L1, . . . ,LK))
)

= 0.

Next, applying Proposition 3.1, we conclude that (49) is a direct consequence
of the equation:

γ K
D,d

(
{L∗

i }Ki=1 ⊂ G(D,d) : L∗
j = arg min

L∈G(D,d)

Eμ

(
elp (x,L)I (x ∈ Yj )

)
(50)

∀1 ≤ j ≤ K
)

= 0.

Furthermore, applying Lemma 4.1 with μ = μ|Yj
, we obtain that (50) follows by

the equation

γ K
D,d

({L∗
i }Ki=1 ⊂ G(D,d) : Eμ

(
I (x ∈ Yj )DL∗

j ,x,p

) = 0 ∀1 ≤ j ≤ K
) = 0.(51)

At last we conclude the desired reduction by noting that (51) and (48) are equiv-
alent [indeed, the only relevant components of the distribution μ in (51) are μ0 and
μj and the corresponding expectation according to μj is zero].

4.3.2. Reduction II: From K subspaces to a single subspace. We reduce (48)
so that its underlying condition involves a single subspace as follows:

γD,d

(
L∗

2 ∈ G(D,d) : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0,

(52)
arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0
)

= 0.

We remark that some of the underlying technical conditions of (52) appear in (45)
and (46) and will be better understood later when applying Lemma 4.2.

We verify this reduction as follows. WLOG (52) can be formulated by replac-
ing L∗

2 with L∗
k , for some 3 ≤ k ≤ K , while letting arg min2≤i≤K θd∗(L∗

1,L∗
i ) = k.
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Combining this observation with elementary properties of distributions, we have
that

γ K
D,d

({L∗
i }Ki=1 ⊂ G(D,d) : Eμ0

(
I (x ∈ Yj )DL∗

j ,x,p

) = 0 ∀1 ≤ j ≤ K
)

≤
K∑

k=2

∫
G(D,d)K−1

γD,d

(
L∗

k : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0,

arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = k,

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0|{L∗
i }1≤i �=k≤K

)
d(γ K−1

D,d ({L∗
i }1≤i �=k≤K))

+ γ K
D,d

(
{L∗

i }Ki=1 ⊂ G(D,d) : min
1≤i,j≤K

θd∗(L∗
i ,L∗

j ) = 0
)

= 0.

4.4. Concluding the cases d = 1 and d = D − 1. We assume first that d = 1.
We conclude the theorem in this case by proving (52) and then extend the analysis
to the case d = D − 1.

4.4.1. Reduction of (52) using additional condition on the Grassmannian. We
fix v1 to be one of the two unit vectors spanning L∗

1 and denote by u1 the
unit vector spanning (L∗

1 + L∗
2) ∩ L∗⊥

1 having orientation such that for any point
x ∈ L∗

2 : (xT u1)(xT v1) ≥ 0. We will prove that (52) follows from the following
equation, which introduces a restriction on the Grassmannian:

γD,d

(
L∗

2 ∈ G(D,d) : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0,

arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,(53)

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0|(L∗
1 + L∗

2) ∩ L∗⊥
1 = Sp(u1)

)
= 0.

We define the following subset of the sphere SD−1 :�0 = {x ∈ SD−1 : x ⊥
v}, and a distribution ω on �0 such that for any A ⊆ �0 :ω(A) = γD,d(L∗

2 ∈
G(D,d) : (L∗

1 + L∗
2) ∩ L∗⊥

1 ∈ Sp(A)). Using this notation, (53) implies (52) as fol-
lows:

γD,d

(
L∗

2 ∈ G(D,d) : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0, arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0
)

=
∫
�0

γD,d

(
L∗

2 : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0, arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0|(L∗
1 + L∗

2) ∩ L∗⊥
1 = Sp(u1)

)
d(ω(u1))

= 0.
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4.4.2. Proof of (53). We will show that at most one element satisfies the un-
derlying condition of (53) (i.e., it is a member of the set for which γD,d is evalu-
ated). Assume, on the contrary, that there are two subspaces L̂2 and L̃2 satisfying
this condition with corresponding angles θ̂ = θd∗(L∗

1, L̂2) and θ̃ = θd∗(L∗
1, L̃2) in

[0, π/2], where WLOG θ̂ > θ̃ . Using the notation of (41), we have that

Eμ0

(
I (x ∈ Ỹ1 \ Ŷ1)DL∗

1,x,p

) − Eμ0

(
I (x ∈ Ŷ1 \ Ỹ1)DL∗

1,x,p

)
= 2 · (

Eμ0

(
I (x ∈ Ỹ1)DL∗

1,x,p

) − Eμ0

(
I (x ∈ Ŷ1)DL∗

1,x,p

))
(54)

= 0 − 0 = 0.

Consequently,

Eμ0

(
I (x ∈ Ỹ1 \ Ŷ1)vT

1 DL∗
1,x,pu1

) − Eμ0

(
I (x ∈ Ŷ1 \ Ỹ1)vT

1 DL∗
1,x,pu1

) = 0.(55)

Defining

θu1,v1(x) = arctan
u1 · x
v1 · x

and

Y1,2̂ =
{
x ∈ B(0,1) : dist(x,L∗

1) < min
3≤i≤K

dist(x,L∗
i )

}
,

we express the regions Ŷ1 and Ỹ1 as follows:

Ŷ1 = Y1,2̂ ∩ {x ∈ B(0,1) : θ̂/2 − π/2 < θu1,v1(x) < θ̂/2},(56)

Ỹ1 = Y1,2̂ ∩ {x ∈ B(0,1) : θ̃/2 − π/2 < θu1,v1(x) < θ̃/2}.(57)

Figure 3 clarifies (56) and (57) in the special case where d = 1 and K = 2.
Combining (56) and (57) with the definition of DL,x,p in (40), we obtain that

Ŷ1 \ Ỹ1 ⊂ {
x ∈ B(0,1) : vT

1 xxT u1 ≡ dist(x,L∗
1)

(2−p)vT
1 DL∗

1,x,pu1 > 0
}

(58)

and

Ỹ1 \ Ŷ1 ⊂ {
x ∈ B(0,1) : vT

1 xxT u1 ≡ dist(x,L∗
1)

(2−p)vT
1 DL∗

1,x,pu1 < 0
}
.(59)

It follows from Lemma 4.2 that LD((Ỹ1 \ Ŷ1) ∪ (Ŷ1 \ Ỹ1)) > 0 and, conse-
quently, for any r > 0, LD(B(0, r) ∩ ((Ỹ1 \ Ŷ1) ∪ (Ŷ1 \ Ỹ1))) > 0 (indeed, if
x ∈ Y1, then c · x ∈ Y1 for any 0 < c < 1/‖x‖; thus, the distribution in the latter
inequality is just a scaling by rD of the distribution in the former one). Since there
exists r > 0 such that the restriction of LD to B(0, r) is absolutely continuous with
respect to μ0, we also have that μ0(B(0, r) ∩ ((Ỹ1 \ Ŷ1) ∪ (Ŷ1 \ Ỹ1))) > 0. How-
ever, this contradicts (55), (58) and (59), that is, it proves (53) and therefore the
theorem in the current special case.
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FIG. 3. The regions Ŷ1 and Ỹ1 and the relation to θ̂ and θ̃ when d = 1 and K = 2.

4.4.3. The case d = D − 1. We note that the proof of the above case (d = 1)
can be adapted to the case where d = D − 1. This is done by letting v1 be one of
the two unit vectors spanning L∗

1 ∩ (L∗
1 ∩ L∗

2)
⊥ [note that dim(L∗

1) = D − 1 and
dim(L∗

1 ∩ L∗
2) = d − 2 so that dim(L∗

1 ∩ (L∗
1 ∩ L∗

2)
⊥) = 1] and u1 be the unit vector

of (L∗
1 + L∗

2) ∩ L⊥
1 with a similar orientation as in the case where d = 1.

4.5. Conclusion: The case where d �= 1 and d �= D − 1.

4.5.1. Reduction of (52) using additional condition on the Grassmannian.
The following reduction is analogous to the one of Section 4.4.1. Denoting by
B(RD,R

D) the space of linear operators from R
D to itself, we define

�1 = {(P1,P2) ∈ B(RD,R
D)2 :∃L ∈ G(D,d) not orthogonal to L∗

1,

s.t. dim(L∗
1 � L) > 1,P T

L∗
1
PLPL∗

1
= P1,P

⊥T
L∗

1
PLP ⊥

L∗
1
= P2}

and the distribution ω1 on �1 as follows: for any set A ⊆ �1,

ω1(A) = γD,d

(
L ∈ G(D,d) : (P T

L∗
1
PLPL∗

1
,P ⊥T

L∗
1

PLP ⊥
L∗

1
) ∈ A

)
.

Using this notation, we reduce (52) as follows:

γD,d

(
L∗

2 ∈ G(D,d) : L∗
1 �⊥ L∗

2,dim(L∗
1 ∩ L∗⊥

2 ) > 1,

min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0, arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,

(60)
Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0|
(P T

L∗
1
PL∗

2
PL∗

1
,P ⊥T

L∗
1

PL∗
2
P ⊥

L∗
1
) = (P1,P2) ∈ �1

)
= 0.
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Indeed,

γD,d

(
L∗

2 ∈ G(D,d) : min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0, arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0
)

≤
∫
�1

γD,d

(
L∗

2 : L∗
1 is not orthogonal to L∗

2,

dim(L∗
1 � L∗

2) > 1, min
1≤i �=j≤K

θd∗(L∗
i ,L∗

j ) > 0,

arg min
2≤i≤K

θd∗(L∗
1,L∗

i ) = 2,

Eμ0

(
I (x ∈ Y1)DL∗

1,x,p

) = 0|
(P T

L∗
1
PL∗

2
PL∗

1
,P ⊥T

L∗
1

PL∗
2
P ⊥

L∗
1
) = (P1,P2) ∈ �1

)
d(ω1(P1,P2))

+ γD,d

(
L∗

2 ∈ G(D,d) : dim(L∗
1 � L∗

2) ≤ 1, or L∗
2 ⊥ L∗

1
) = 0 + 0 = 0.

4.5.2. Bulk of the proof. We prove (60) by using the following two lemmata,
which are proved below (Sections 4.5.3 and 4.5.4).

LEMMA 4.3. If dim(L∗
1 � L∗

2) ≥ 2 and L∗
1 is not orthogonal to L∗

2, then the set

Z = {L ∈ G(D,d) :PL∗
1
(PL∗

2
− PL)PL∗

1
= 0,P ⊥

L∗
1
(PL∗

2
− PL)P ⊥

L∗
1
= 0}

is infinite.

LEMMA 4.4. If L̃2, L̂2 ∈ G(D,d) satisfy L̃2 �= L̂2, θd∗(L̂2,L∗
1)∨θd∗(L∗

2,L∗
1) ≤

min3≤i≤K θd∗(L∗
i ,L∗

1), PL∗
1
(PL̂2

− PL̃2
)PL∗

1
= 0 and P ⊥

L∗
1
(PL̂2

− PL̃2
)P ⊥

L∗
1
= 0, then

either L̂2 or L̃2 will not satisfy the condition in (60).

To conclude (60), we rewrite it as follows: γD,d(A|B) = 0, where A and B are
clear from the context. We note that Lemma 4.3 implies that there are infinitely
many subspaces L∗

2 in B . On the other hand, Lemma 4.4 implies that there is only
one subspace L∗

2 in A. These observations clearly prove (60). We remark that the
idea of this proof is somewhat similar to that of the previous case where d = 1
or d = D − 1. In this case, Lemma 4.3 is analogous to the fact that there is a
degree of freedom in choosing L∗

2 in (53) [since we can choose any θd∗(L∗
1,L∗

2) <

min3≤i≤K θd∗(L∗
1,L∗

i )]. Moreover, Lemma 4.4 is analogous to the fact that there
were not two subspaces L̂2 and L̃2 satisfying the underlying condition of (53).



ROBUST RECOVERY OF MULTIPLE SUBSPACES 2705

4.5.3. Proof of Lemma 4.3. We denote L̃1 = L∗
1 � (L∗

1 ∩ L∗
2) and L̃2 = L∗

2 �
(L∗

1 ∩ L∗
2). The idea of the proof is to construct a one-to-one function g :SD−1 ∩

L̃2 → Z. Then, using this function and the fact that dim(L̃2) = dim(L∗
1)−dim(L∗

2 ∩
L∗

1) ≥ 2, we conclude that Z, which contains g(SD−1 ∩ L̃2), is infinite.
For any u0 ∈ SD−1 ∩ L̃2, we arbitrarily fix v0 = v0(u0) as one of the two unit

vectors spanning L̃1 ∩ (L̃2 � Sp(u0))
⊥. The vector v0 exists since

dim
(
L̃1 ∩ (

L̃2 � Sp(u0)
)⊥) ≥ dim(L̃1) + dim

((
L̃2 � Sp(u0)

)⊥) − D

= d + (D − d + 1) − D = 1.

We define the function g as follows:

g(u0) = Sp
(
u0 − 2(vT

0 u0)v0,L∗
2 � Sp(u0)

)
.

We first claim that the image of g is contained in Z. Indeed, we note that

Pg(u0) − PL∗
2
= (

u0 − 2(vT
0 u0)v0

)T (
u0 − 2(vT

0 u0)v0
) − uT

0 u0
(61)

= −2(vT
0 u0)

(
vT

0
(
u0 − (vT

0 u0)v0
) + (

u0 − (vT
0 u0)v0

)T v0
)
.

Combining (61) with the following two facts: v0 ∈ L∗
1 and u0 − (vT

0 u0)v0 ∈ L∗⊥
1 ,

we obtain that g(u0) ∈ Z.
At last, we prove that g is one-to-one and thus conclude the proof. If, on the

contrary, there exist u1, u2 ∈ SD−1 ∩ L̃2 such that u1 �= u2 and g(u1) = g(u2),
then g(u1) = Sp(g(u1), g(u2)) ⊇ (L∗

2 � Sp(u1)) + (L∗
2 � Sp(u2)) ⊇ L∗

2. Since
dim(g(u1)) = dim(L∗

2), we conclude that g(u1) = L∗
2. On the other hand, we claim

that for any u0 ∈ SD−1 ∩ L̃2 :g(u0) �= L∗
2 and thus obtain a contradiction. Indeed,

since u0 ∈ L̃2, v0 ∈ L̃1 and L∗
1 is not orthogonal to L∗

2, we have that vT
0 u0 �= 0

and, consequently, u0 − (vT
0 u0)v0 �= u0. Applying the latter observation in (61),

we obtain that Pg(u0) �= PL∗
2

and, consequently, g(u0) �= L∗
2.

4.5.4. Proof of Lemma 4.4. We assume, on the contrary, that both L̂2 and L̃2
satisfy the underlying condition of (52) and conclude a contradiction.

We arbitrarily fix here x ∈ Ŷ1 \ Ỹ1 [using the notation of (41)]. We note that
dist(x,L∗

1) < dist(x, L̂2) and dist(x,L∗
1) < arg min3≤i≤K dist(x,L∗

i ). Since x /∈ Ỹ1,
we have that dist(x,L∗

1) > dist(x, L̃2) and, thus,

dist(x, L̃2) < dist(x,L∗
1) < dist(x, L̂2).(62)

Consequently,

xT (PL̂2
− PL̃2

)x = dist(x, L̃2)
2 − dist(x, L̂2)

2 < 0.(63)

We partition PL̂2
−PL̃2

into four parts: PL∗
1
(PL̂2

−PL̃2
)PL∗

1
, P ⊥

L∗
1
(PL̂2

−PL̃2
)P ⊥

L∗
1
,

PL∗
1
(PL̂2

− PL̃2
)P ⊥

L∗
1

and P ⊥
L∗

1
(PL̂2

− PL̃2
)PL∗

1
. The first two are zero, and the last

two are adjoint to each other; we thus only consider PL∗
1
(PL̂2

− PL̃2
)P ⊥

L∗
1
. Let its
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SVD be

PL∗
1
(PL̂2

− PL̃2
)P ⊥

L∗
1
= U�V =

d∑
i=1

σiuivT
i .(64)

We can express the SVD of PL̂2
−PL̃2

using (64) and the partition above as follows:

PL̂2
− PL̃2

=
d∑

i=1

σi(uivT
i + viuT

i ).(65)

Combining (63) and (65), we obtain that

n∑
i=1

σiuT
i xxT vi = xT

(
n∑

i=1

σi(uivT
i + viuT

i )

)
x/2 < 0.(66)

We define a function f : RD×D → R such that for any A ∈ R
D×D :f (A) =∑n

i=1 σiuT
i Avi . Using (66) and the fact that {ui}di=1 ∈ L∗

1 and {vi}di=1 ∈ L∗⊥
1 , we

deduce that

f (DL∗
1,x,p) = dist(x,L∗

1)
(p−2)f (PL∗

1
(x)P ⊥

L∗
1
(x)T )

= dist(x,L∗
1)

(p−2)
n∑

i=1

σiuT
i PL∗

1
(x)P ⊥

L∗
1
(x)T vi(67)

= dist(x,L∗
1)

(p−2)
n∑

i=1

σiuT
i xxT vi < 0.

Similarly, for any point x ∈ Ỹ1 \ Ŷ1,

f (DL∗
1,x,p) > 0.(68)

Combining (54), (67), (68), Lemma 4.2 and the linearity of f , we conclude the
following contradiction establishing the current lemma:

0 = f
(
Eμ0

(
I (x ∈ Ỹ1 \ Ŷ1)DL∗

1,x,p

) − Eμ0

(
I (x ∈ Ŷ1 \ Ỹ1)DL∗

1,x,p

))
= f

(
Eμ0

(
I (x ∈ Ỹ1 \ Ŷ1)DL∗

1,x,p

)) − f
(
Eμ0

(
I (x ∈ Ŷ1 \ Ỹ1)DL∗

1,x,p

))
(69)

> 0.

4.5.5. Remark on the sizes of δ0 and κ0. The constants δ0 and κ0 depend on
other parameters of the underlying weak HLM model, in particular, the underlying
subspaces {L∗

i }Ki=1. For example, one can bound both κ0 and δ0 from below by the
following number:

max
1≤i≤K

(
Eμ

(
elp (x,L∗

i )I (x ∈ Yi )
) − min

L∈G(D,d)
Eμ

(
elp (x,L)I (x ∈ Yi)

))/
(4p).
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If p ≥ 2, then a simpler lower bound on both κ0 and δ0 is

‖max1≤i≤K Eμ(DL∗
1,x,pI (x ∈ Yi ))‖2

2

pdD2p+5 .

5. Discussion. We studied the effectiveness of lp minimization for recover-
ing (or nearly recovering) all underlying K subspaces for i.i.d. samples from two
different types of HLM distributions. In particular, we demonstrated a phase tran-
sition phenomenon around p = 1.

We discuss here implications, extensions and limitations of this theory as well
as some open directions.

5.1. Obstacles for convex recovery of multiple subspaces. There are some re-
cent methods for robust single subspace recovery by convex optimization (see,
e.g., [6]). Such methods minimize a real-valued convex function h on a convex
set H (e.g., set of matrices), which can be mapped on G(D,d). However, such a
minimization cannot be done for multiple subspaces. Indeed, in that case one must
minimize a multivariate function h : HK → R for convex H. Clearly, the func-
tion h must be invariant to permutations of coordinates. Let g be a mapping of
H onto G(D,d). It follows from the assumption that the minimization of h leads
to the underlying subspaces {L∗

i }Ki=1 and the permutation-invariance of h that the
set of minimizers of h coincides with all permutations of x̂1, x̂2, . . . , x̂K , where
x̂i ∈ g−1(L∗

i ) for all 1 ≤ i ≤ K . Since h is convex, (
∑K

i=1 x̂i/K, . . . ,
∑K

i=1 x̂i/K)

is also a minimizer of h. Consequently,
∑K

i=1 x̂i/K ∈ g−1(L∗
j ) for all 1 ≤ j ≤ K ,

and, thus, g(
∑K

i=1 x̂i/K) = L∗
1 = · · · = L∗

K , which is a contradiction.
Furthermore, a minimization on G(D,d)K cannot even be geodesically convex.

Indeed, the maximum of a geodesically convex function on a compact, geodesi-
cally convex set is attained on the boundary. However, G(D,d)K is compact,
geodesically convex and has no boundary, so any function defined on G(D,d)K is
not geodesically convex.

5.2. Implications for a single subspace recovery. In [12], we discussed the re-
covery of a single subspace. Theorems 1.1 and 1.2 apply to this case when K = 1.
Unlike [12] which assumed that μ0 was spherically symmetric (while having pos-
sibly additional “outliers” along other subspaces, distributed according to {μi}Ki=2),
here we have a very weak requirement from μ0 (which represents all outliers).
However, here there is a strong restriction on the fraction of outliers, α0, whereas
in [12] there was no requirement, except for α0 < 1.

5.3. Extending our theory to more general distributions. In Theorems 1.1 and
1.2, the strict spherical symmetry of {μi}Ki=1 (within {Li}Ki=1, resp.) can be replaced
by approximate spherical symmetry of {μi}Ki=1. That is, for each 1 ≤ i ≤ K and Li
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and μi as before, we form a new distribution μ′
i , with the same support as μi such

that the derivative of μ′
i w.r.t. μi is bounded away from 0 and ∞. We then replace

μi with μ′
i . This new setting will require replacing {αi}Ki=1 in (6)–(8) by {δi αi}Ki=1,

where δi ≡ δi(μ
′
i ,μi) for 1 ≤ i ≤ K (δi is the lowest value of the derivative of μ′

i
w.r.t. μi).

Furthermore, the boundedness of the support of the distributions {μi}Ki=0 can be
weakened by assuming that these distributions are sub-Gaussian. Indeed, this will
mainly require changing Hoeffding’s inequality with [19], Proposition 2.1.9.

5.4. Distributions resulting in counterexamples for our theory. There are sev-
eral typical cases with settings different than above, where the underlying sub-
spaces cannot be recovered by minimizing the energy (1) for all p > 0.

The first typical example is when there is an outlier with sufficiently large
magnitude so that the minimizer of (1) contains a subspace passing through
this outlier, which is different than any of the underlying subspaces. Our set-
ting avoids such a counterexample by requiring (6). We briefly provide the idea
as follows: an arbitrarily large outlier in our setting of supports within B(0,1)

means, for example, that the outlier has magnitude one and the inliers are sup-
ported within B(0, ε), where ε is arbitrarily small. Therefore, ψ(ε) = 1, so that
ψ−1

μ1
((1 + (2K − 1)μ1({0}))/2K) < ψ−1

μ1
(1) = ε and, consequently, τ0 � εp . In

view of (6), we control the fraction of outliers as a function of εp . In particular,
for a fixed sample size and sufficiently small ε, no outliers are allowed by this
condition.

The second example is when the distribution of outliers lies on another sub-
space, L∗

0 ∈ G(D,d) and α0 > min1≤i≤K αi , so that L∗
0 is contained in the mini-

mizer of (1). Our setting avoids this counterexample by assuming an upper bound
on the percentage of outliers in terms of the minimal percentage of inliers [see (6)].

For the last example we assume for simplicity that D = 2, d = 1, K = 2 and
underlying uniform distributions (of outliers and along the two underlying lines)
restricted to the unit disk. We further assume that the two lines have angles ε and
−ε w.r.t. the x-axis. By choosing ε sufficiently small the x-axis and y-axis provide
a smaller value for the energy (1) than the underlying lines. We note that in this
case (6) does not hold [due to the small size of distG(L∗

i ,L∗
j )].

5.5. Another phase transition at p = 1: Many local minima for 0 < p < 1.
Our previous work [12], proof of Proposition 2.1, implies that if 0 < p < 1 and
there exist distinct subspaces {Li}Ki=1 ⊆ G(D,d) such that Sp(X ∩ Li ) = Li for
all 1 ≤ i ≤ K , then {Li}Ki=1 is a local minimizer of the energy (1). We note that
many subspaces satisfy this condition (in particular, w.o.p. d-subspaces spanned by
randomly sampled d vectors). Therefore, lp minimization for multiple subspaces
with 0 < p < 1 will often lead to plenty of local minima.

This wealth of local minima clearly does not occur when p = 1 (or p ≥ 1). It
will be interesting, though difficult, to carefully analyze the number and depth of
local minima for p ≥ 1.
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5.6. The case of affine subspaces. Our analysis was restricted to linear sub-
spaces, though we believe that it can be extended to affine subspaces. Indeed, we
can consider the affine Grassmannian [15], which distinguishes between subspaces
according to both their offsets with respect to the origin (i.e., distances to closest
linear subspaces of the same dimension) and their orientations (based on principal
angles of the shifted linear subspaces). By assuming only affine subspaces inter-
secting a fixed ball, we can have a compact space. We can also generalize (70)
(with a different function ψμ1 ) and the estimates on δ0 and κ0 in Section 4.5.5 to
the case of affine subspaces. We remark, though, that it is not obvious whether the
metric on the affine Grassmannian is relevant for our applications, since it mixes
two different quantities of different units (i.e., offset values and orientations) so
that one can arbitrarily weigh their contributions. Also, the common strategy of
using homogenous coordinates which transform d-dimensional affine subspaces
in R

D to (d + 1)-dimensional linear subspaces in R
D+1 is not useful to us since it

distorts the structure of both noise and outliers.
The minimization of the energy (1) over affine subspaces seems to result in more

local minima than in the linear case, which can partially explain why numerical
heuristics for minimizing (1) do not perform as well with affine subspaces as they
do with linear ones. We are interested in further explanation of this phenomenon.

5.7. The case of mixed dimensions. It will be interesting to try to extend
our analysis to linear subspaces of mixed dimensions d1, . . . , dK , known in ad-
vance. We believe that it is possible to extend Theorem 1.1 and its proof to this
case. For this purpose, we suggest using the same distance for subspaces of the
same dimension and defining the distance distG(L1,L2) between linear subspaces
L1 and L2 of different dimensions (with some abuse of notation) as follows: if
dim(L1) < dim(L2), then distG(L1,L2) = minL∈L2,dim(L)=dim(L1) distG(L1,L).

5.8. Further performance guarantees for lp-based HLM algorithms. We are
interested in extending our theory to analyze heuristics (like the K-subspaces)
which try to minimize the lp energy of (1) in practice.

5.9. Asymptotic rates of convergence and sample complexity. In Section 3.2
we demonstrated simple instances when noise is present and one cannot asymp-
totically recover the underlying subspaces by lp minimization for all p > 0. One
may still inquire about the existence of asymptotic limit different than the under-
lying subspaces and quantify the rate of convergence (depending on the mixture
model parameters) to that limit. That is, assume that {L̂1, L̂2} is the minimizer
of Eμ(lp(x,L1,L2)) and {L̂N

1 , L̂N
2 } is the minimizer of EμN

(lp(x,L1,L2)), where
μN is an empirical distribution of i.i.d. sample of N points from μ. We first ask
whether dist({L̂1, L̂2}, {L̂N

1 , L̂N
2 }) → 0 as N → ∞. If true, then we ask about the

asymptotic rates of convergence. This will then allow a definition of a sample
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complexity for multiple subspaces as the number of samples required to achieve a
prediction error within ε of the exact recovery of the K d-subspaces.

APPENDIX: SUPPLEMENTARY DETAILS

A.1. Proof of Lemma 2.1. We will use the following inequality for any 1 ≤
j ≤ K , which is proved in [12], Section A.1.1:

μ1
(
x ∈ B(0,1) ∩ L∗

1 : dist(x, L̂j ) < β distG(L∗
1, L̂j )

)
(70)

≤ ψμ1

(
π

√
d

2
β

)
∀β > 0.

We denote β1 = 2
π

√
d
ψ−1

μ1
(

1+(2K−1)μ1({0})
2K

) (the existence of ψ−1
μ1

(
1+(2K−1)μ1({0})

2K
)

follows the same proof as in [12], Section A.1.1) and combine (70) with the fact
that distG(L∗

1, L̂j ) ≥ ε for any 1 ≤ j ≤ K to obtain that

μ1
(
x ∈ B(0,1) ∩ L∗

1 \ {0} : dist(x, L̂1) < β1ε
)

= μ1
(
x ∈ B(0,1) ∩ L∗

1 \ {0} : dist(x, L̂1) < β1 distG(L∗
1, L̂1)

)
≤ 1 + (2K − 1)μ1({0})

2K
− μ({0})

= 1 − μ1({0})
2K

.

Consequently,

μ1

(
x ∈ B(0,1) ∩ L∗

1 : dist

(
x,

K⋃
j=1

L̂1

)
≥ β1ε

)

≥ 1 − μ({0}) −
K∑

i=1

μ1
(
x ∈ B(0,1) ∩ L∗

1 \ {0} : dist(x, L̂i) < β1ε
)

≥ (
1 − μ1({0}))/2,

and, thus, by Chebyshev’s inequality the lemma is concluded as follows:

Eμ1(elp (x, L̂1)) ≥ β
p
1 εp/2

= (1 − μ1({0}))2p−1ψ−1
μ1

((1 + (2K − 1)μ1({0}))/(2K))pεp

(π
√

d)p

= τ0ε
p.
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A.2. Proof of Proposition 3.1. The proof is an immediate consequence of
the following inequality, which uses an arbitrary L1 ∈ G(D,d) and the notation
Y′

i = Yi (L′
1, . . . ,L′

K), 1 ≤ i ≤ K :

0 ≤ Eν(elp (x,L1,L′
2, . . . ,L′

K)) − Eν(elp (x,L′
1, . . . ,L′

K))

≤ Eν

(
I (x ∈ Y′

1)elp (x,L1)
) + ∑

2≤i≤K

Eν

(
I (x ∈ Y′

i)elp (x,L′
i )

)

− ∑
1≤i≤K

Eν

(
I (x ∈ Y′

i)elp (x,L′
i)

)

= Eν

(
I (x ∈ Y′

1)elp (x,L1)
) − Eν

(
I (x ∈ Y′

1)elp (x,L′
1)

)
.

A.3. Proof of Lemma 4.2: Geometric sensitivity. We will first show that
there exists x0 ∈ B(0,1) such that

dist(x0,L∗
1) = dist(x0,L∗

2) < min
3≤i≤K

dist(x0,L∗
i ).(71)

We verify (71) in two cases: d∗ = d and d∗ = D − d . We will then prove that (71)
implies (47). Throughout the proof we denote the principal vectors of L∗

2 and L∗
1

by {v̂i}d∗
i=1 and {vi}d∗

i=1, respectively.

A.3.1. Part I: Proof of (71) when d∗ = d . We define

x0 = (v̂d∗ + vd∗)/‖v̂d∗ + vd∗‖
and arbitrarily fix i0 > 3 and v0 ∈ L∗

i0
. We will show that

ang(x0,v0) > θd∗(L∗
2,L∗

1)/2(72)

and consequently conclude (71) as follows:

dist(x0,L∗
i0
) ≥ sin(ang(x0,v0)) > sin

(
θd∗(L∗

2,L∗
1)/2

) = dist(x0,L∗
1)

= dist(x0,L∗
2).

We can easily verify a weaker version of (72) where the inequality is not nec-
essarily strict. Indeed, using elementary geometric estimates and the fact that the
intersections of the d-subspaces {L∗

i }Ki=1 are empty [which follows from (45)], we
obtain that

ang(x0,v0) ≥ ang(vd∗,v0) − ang(vd∗,x0) ≥ θd∗(L∗
i0
,L∗

1) − θd∗(L∗
2,L∗

1)/2
(73)

≥ θd∗(L∗
2,L∗

1) − θd∗(L∗
2,L∗

1)/2 = θd∗(L∗
2,L∗

1)/2.

At last, we show that (73) cannot be an equality. Indeed, if the first inequal-
ity in (73) is an equality, then v0, vd∗ and x0 are on a geodesic line within the
sphere SD−1. Combining this with the assumption that all other inequalities in
(73) are equalities, we obtain that ang(x0,v0) = θd∗(L∗

2,L∗
1)/2 = ang(x0,vd∗) =

ang(x0, v̂d∗). This implies that either v0 = v̂d∗ or v0 = vd∗ , which contradicts (45).
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A.3.2. Part II: Proof of (71) when d∗ = D − d . It follows from basic dimen-
sion equalities of subspaces and (45) that for all 2 ≤ i ≤ K : dim(L∗

1 ∪L∗
i ) = D and

dim(L∗
1 ∩ L∗

i ) = 2d − D. We denote by K0 the integer in {0, . . . ,K} such that for
any 3 ≤ i ≤ K0 : L∗

1 ∩ L∗
i = L∗

1 ∩ L∗
2 and for any i > K0 : L∗

1 ∩ L∗
i �= L∗

1 ∩ L∗
2 (the

existence of K0 may require reordering of the indices of the subspaces {L∗
i }Ki=3). In

order to define x0 in the current case, we let x1 = (v̂d∗ +vd∗)/‖v̂d∗ + vd∗‖, x2 be an
arbitrarily fixed unit vector in L∗

1 ∩ (L∗
2 \⋃

K0<i≤K L∗
i ), ε0 = dist(x2,

⋃
K0<i≤K L∗

i )

and

x0 = x2/2 + ε0x1/5.

We first claim that

dist(x0,L∗
1) = dist(x0,L∗

2) < min
3≤j≤K0

dist(x0,L∗
j ).(74)

Indeed, we can remove L∗
1 ∩ L∗

2 from the subspaces {L∗
i }K0

i=1 and obtain subspaces
of dimension D − d intersecting each other at the origin. We can then rewrite (74)
by replacing {L∗

i }K0
i=1 with their reduced version and x0 with x1. The argument of

Section A.3.1 thus proves this equation.
We conclude (71) by combining (74) with the following observation:

dist(x0,L∗
1) = ε0 dist(x1,L∗

1)/5 ≤ ε0/5 < dist
(

x2/2,
⋃

K0<j≤K

L∗
j

)
− ε0/5

(75)

≤ dist
(

x2/2 + ε0x1/5,
⋃

K0<j≤K

L∗
j

)
= min

K0<i≤K
dist(x0,L∗

i ).

A.3.3. Part III: Deriving (47) from (71) in a simple case. We note that (71)
implies that

x0 ∈ (
Y1 ∪ Y2 ∪ (Ȳ1 ∩ Ȳ2)

) ∩ (
Ŷ1 ∪ Ŷ2 ∪ (

¯̂Y1 ∩ ¯̂Y2)
)

(76)

and, consequently,

B(x0, ε) ⊂ (
Y1 ∪ Y2 ∪ (Ȳ1 ∩ Ȳ2)

) ∩ (
Ŷ1 ∪ Ŷ2 ∪ (

¯̂Y1 ∩ ¯̂Y2)
)
.(77)

We will deduce here (47) from (77) in the simpler case: ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε) �=
Ȳ1 ∩ Ȳ2 ∩ B(x0, ε).

Using (77) and the fact that LD(Ȳ1 ∩ Ȳ2) = 0, we may choose y ∈ (
¯̂Y1 ∩ ¯̂Y2 ∩

B(x0, ε)) ∩ (Y1 ∪ Y2); WLOG we assume instead of the latter condition that y ∈
(
¯̂Y1 ∩ ¯̂Y2 ∩B(x0, ε))∩Y1. By slightly perturbing y we can choose another point y0

such that y0 ∈ Ŷ2 and y0 ∈ Y1 \ Ŷ1. It follows from the continuity of the distance
function that there exists a small η > 0 such that (Ŷ1 \Y1)∪ (Y1 \ Ŷ1) ⊇ Y1 \ Ŷ1 ⊃
B(y0, η), which proves (47).
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A.3.4. Part IV: Deriving (47) from (71) in the complementary case. At last,

we assume that ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε) = Ȳ1 ∩ Ȳ2 ∩ B(x0, ε). We show here that it
leads to the contradiction: L̂2 = L∗

2.
We note that the sets of solutions in B(x0, ε) of the equations xT (PL∗

1
−PL∗

2
)x =

0 and xT (PL∗
1

− PL̂2
)x = 0 are ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε) and Ȳ1 ∩ Ȳ2 ∩ B(x0, ε),

respectively. In view of (77), these solution sets coincide. They are (D − 1)-
manifolds and, thus, their (D − 1)-dimensional tangent spaces at x0, that is,
xT

0 (PL∗
1

− PL∗
2
) = 0 and xT

0 (PL∗
1

− PL̂2
) = 0, also coincide. Consequently, we

have that xT
0 (PL∗

1
− PL∗

2
) = t0xT

0 (PL∗
1
− PL̂2

) for some t0 �= 0. Similarly, for any

x1 ∈ ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε), we have xT
1 (PL∗

1
− PL∗

2
) = t1xT

1 (PL∗
1
− PL̂2

) for some

t1 �= 0. We note that t1 = t0 by the following argument: t1xT
1 (PL∗

1
− PL̂2

)x0 =
xT

1 (PL∗
1
− PL∗

2
)x0 = t0xT

1 (PL∗
1
− PL̂2

)x0. Therefore, there exists t �= 0 such that for

any x1 ∈ ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε),

xT
1 (PL∗

1
− PL∗

2
) = txT

1 (PL∗
1
− PL̂2

).(78)

Since the tangent space of ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε) [or, equivalently, xT (PL∗
1

−
PL̂2

)x = 0] at x0 has dimension D − 1, the subspace L∗
0 = Sp(

¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε))

[i.e., the closure of all finite linear combinations of vectors in ¯̂Y1 ∩ ¯̂Y2 ∩ B(x0, ε)]
has dimension at least D − 1. In view of (78), L∗

0 satisfies

PL∗
0
(PL∗

1
− PL∗

2
) = tPL∗

0
(PL∗

1
− PL̂2

).(79)

Due to the symmetry of (PL∗
1

− PL̂2
) and (PL∗

1
− PL∗

2
), we have the following

equivalent formulation of (79):

(PL∗
1
− PL∗

2
)PL∗

0
= (PL∗

1
− PL̂2

)PL∗
0
.(80)

Furthermore, using the fact that (PL∗
1
− PL̂2

) and (PL∗
1
− PL∗

2
) have trace 0, we

obtain that

tr
(
PL∗⊥

1
(PL∗

1
− PL∗

2
)PL∗⊥

0

) = − tr
(
PL∗

0
(PL∗

1
− PL∗

2
)PL∗

0

)
= −t · tr

(
PL∗

0
(PL∗

1
− PL̂2

)PL∗
0

)
(81)

= t · tr
(
PL∗⊥

0
(PL∗

1
− PL̂2

)PL∗⊥
0

)
.

Since PL∗⊥
0

is at most one-dimensional, (81) can be rewritten as

PL∗⊥
0

(PL∗
1
− PL∗

2
)PL∗⊥

0
= t · (

PL∗⊥
0

(PL∗
1
− PL̂2

)PL∗⊥
0

)
.(82)

Combining (79), (80) and (82), we obtain that (PL∗
1
−PL̂2

) = t (PL∗
1
−PL∗

2
), equiv-

alently,

PL̂2
= (1 − t)PL∗

1
+ tPL∗

2
.(83)
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We conclude the desired contradiction in two different cases. Assume first that
t < 1 and let v0 be an arbitrary unit vector in L∗

2. We note that vT
0 PL̂2

v0 = 1 as

well as (1 − t)vT
0 PL∗

1
v0 = 1 − tvT

0 PL∗
2
v0 ≥ 1 − t . Consequently, vT

0 PL∗
1
v0 = 1, that

is, v0 ∈ L∗
1 and, thus, we obtain the following contradiction with (45): L∗

1 = L̂2

[in view of (83), this is equivalent with L̂2 = L∗
2]. Next, assume that t ≥ 1

and, as before, v0 is an arbitrary unit vector in L∗⊥
2 . In this case, vT

0 PL̂2
v0 =

(1 − t)vT
0 PL∗

1
v0 + tvT

0 PL∗
2
v0 ≤ 0 + 0 = 0. Therefore, v0 ∈ L̂⊥

2 and we obtain the

following contradiction with (45): L∗
2 = L̂2. Equation (47) is thus proved.
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