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PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS
INDEX FOR MODEL SELECTION1

BY WEI LIU AND YUHONG YANG

University of Minnesota

In model selection literature, two classes of criteria perform well asymp-
totically in different situations: Bayesian information criterion (BIC) (as a
representative) is consistent in selection when the true model is finite dimen-
sional (parametric scenario); Akaike’s information criterion (AIC) performs
well in an asymptotic efficiency when the true model is infinite dimensional
(nonparametric scenario). But there is little work that addresses if it is pos-
sible and how to detect the situation that a specific model selection prob-
lem is in. In this work, we differentiate the two scenarios theoretically under
some conditions. We develop a measure, parametricness index (PI), to assess
whether a model selected by a potentially consistent procedure can be prac-
tically treated as the true model, which also hints on AIC or BIC is better
suited for the data for the goal of estimating the regression function. A con-
sequence is that by switching between AIC and BIC based on the PI, the
resulting regression estimator is simultaneously asymptotically efficient for
both parametric and nonparametric scenarios. In addition, we systematically
investigate the behaviors of PI in simulation and real data and show its use-
fulness.

1. Introduction. When considering parametric models for data analysis,
model selection methods have been commonly used for various purposes. If one
candidate model describes the data really well (e.g., a physical law), it is obviously
desirable to identify it. Consistent model selection rules such as BIC [53] are pro-
posed for this purpose. In contrast, when the candidate models are constructed to
progressively approximate an infinite-dimensional truth with a decreasing approx-
imation error, the main interest is usually on estimation and one hopes that the
selected model performs optimally in terms of a risk of estimating a target func-
tion (e.g., the regression function). AIC [2] has been shown to be the right criterion
from an asymptotic efficiency and also a minimax-rate optimality views (see [66]
for references).

The question if we can statistically distinguish between parametric and non-
parametric scenarios motivated our research. In this paper, for regression based on
finite-dimensional models, we develop a simple parametricness index (PI) that has
the following properties.

Received March 2010; revised January 2011.
1Supported by NSF Grant DMS-07-06850.
MSC2010 subject classifications. Primary 62J05, 62F12; secondary 62J20.
Key words and phrases. Model selection, parametricness index (PI), model selection diagnostics.

2074

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/11-AOS899
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


A PARAMETRICNESS INDEX 2075

(1) With probability going to 1, PI separates typical parametric and nonpara-
metric scenarios.

(2) It advises on whether identifying the true or best candidate model is feasible
at the given sample size or not by assessing if one of the models stands out as a
stable parametric description of the data.

(3) It informs us if interpretation and statistical inference based on the selected
model are questionable due to model selection uncertainty.

(4) It tells us whether AIC is likely better than BIC for the data for the purpose
of estimating the regression function.

(5) It can be used to approximately achieve the better estimation performance
of AIC and BIC for both parametric and nonparametric scenarios.

In the rest of the Introduction, we provide a relevant background of model se-
lection and present views on some fundamental issues.

1.1. Model selection criteria and their possibly conflicting properties. To as-
sess performance of model selection criteria, pointwise asymptotic results (e.g.,
[17, 27, 39, 43, 46, 48–51, 54, 57, 61, 63, 67, 71, 74, 75]) have been established
mostly in terms of either selection consistency or an asymptotic optimality. It is
well known that AIC [2], Cp [47] and FPE [1, 58] have an asymptotic optimality
property which says the accuracy of the estimator based on the selected model is
asymptotically the same as the best candidate model when the true model is infinite
dimensional. In contrast, BIC and the like are consistent when the true model is
finite dimensional and is among the candidate models (see [54, 66] for references).

Another direction of model selection theory focuses on oracle risk bounds (also
called index of resolvability bounds). When the candidate models are constructed
to work well for target function classes, this approach yields minimax-rate or near
minimax-rate optimality results. Publications of work in this direction include [3–
6, 10, 13, 15, 22–24, 42, 69], to name a few. In particular, AIC type of model
selection methods are minimax-rate optimal for both parametric and nonparamet-
ric scenarios under square error loss for estimating the regression function (see
[5, 66]). A remarkable feature of the works inspired by [6] is that with a com-
plexity penalty (other than one in terms of model dimension) added to deal with
a large number of (e.g., exponentially many) models, the resulting risk or loss of
the selected model automatically achieves the best trade-off between approxima-
tion error, estimation error and the model complexity, which provides tremendous
theoretical flexibility to deal with a fixed countable list of models (e.g., for series
expansion based modeling) or a list of models chosen to depend on the sample size
(see, e.g., [5, 64, 69]).

While pointwise asymptotic results are certainly of interest, it is not surprising
that the limiting behaviors can be very different from the finite-sample reality,
especially when model selection is involved. (see, e.g., [21, 40, 44]).

The general forms of AIC and BIC make it very clear that they and similar crite-
ria (such as GIC in [52]) cannot simultaneously enjoy the properties of consistency
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in a parametric scenario and asymptotic optimality in a nonparametric scenario.
Efforts have been put on using penalties that are data-dependent and adaptive (see,
e.g., [7, 31, 34, 38, 55, 56, 68]). Yang [68] showed that the asymptotic optimality
of BIC for a parametric scenario (which follows directly from consistency of BIC)
and asymptotic optimality of AIC for a nonparametric scenario can be shared by
an adaptive model selection criterion. A similar two-stage adaptive model selec-
tion rule for time series autoregression has been proposed by Ing [38]. However,
Yang [66, 68] proved that no model selection procedure can be both consistent (or
pointwise adaptive) and minimax-rate optimal at the same time. As will be seen,
if we can properly distinguish between parametric and nonparametric scenarios,
a consequent data-driven choice of AIC or BIC simultaneously achieves asymp-
totic efficiency for both parametric and nonparametric situations.

1.2. Model selection: A gap between theory and practice. It is well known that
for a typical regression problem with a number of predictors, AIC and BIC tend
to choose models of significantly different sizes, which may have serious practical
consequences. Therefore, it is important to decide which criterion to apply for a
data set at hand. Indeed, the conflict between AIC and BIC has received a lot of
attention not only in the statistics literature but also in fields such as psychology
and biology (see, e.g., [8, 14, 16, 30, 59, 73]). There has been a lot of debate from
not only statistical but also philosophical perspectives, especially about the exis-
tence of a true model and the ultimate goal of statistical modeling. Unfortunately,
the current theories on model selection have little to offer to address this issue.
Consequently, it is rather common that statisticians/statistical users resort to the
“faith” that the true model certainly cannot be finite dimensional for the choice of
AIC, or to the strong preference of parsimony or the goal of model identification
to defend his/her use of BIC.

To us, this disconnectedness between theory and practice of model selection
needs not to continue. From various angles, the question whether or not AIC is
more appropriate than BIC for the data at hand should and can be addressed statis-
tically rather than based on one’s preferred assumption. This is the major motiva-
tion for us to try to go beyond presenting a few theorems in this work.

We would like to quote a leading statistician here:
“It does not seem helpful just to say that all models are wrong. The very word

model implies simplification and idealization. The idea that complex physical, bi-
ological and sociological systems can be exactly described by a few formulae is
patently absurd. The construction of idealized representations that capture impor-
tant stable aspects of such systems is, however, a vital part of general scientific
analysis and statistical models, especially substantive ones (Cox, 1990), do not
seem essentially different from other kinds of model” (Cox [20]).

Fisher in his pathbreaking 1922 paper [29], provided thoughts on the founda-
tions of statistics, including model specification. He stated: “More or less elaborate
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forms will be suitable according to the volume of the data.” Cook [19] discussed
Fisher’s insights in details.

We certainly agree with the statements by Fisher and Cox. What we are inter-
ested in this and future work on model selection is to address the general question
that in what ways and to what degrees a selected model is useful.

Finding a stable finite-dimensional model to describe the nature of the data as
well as to predict the future is very appealing. Following up in the spirit of Cox
mentioned above, if a model stably stands out among the competitors, whether it
is the true model or not, from a practical perspective, why should not we extend
the essence of consistency to mean the ability to find it? In our view, if we are
to accept any statistical model (say infinite dimensional) as a useful vehicle to
analyze data, it is difficult to philosophically reject the more restrictive assumption
of a finite-dimensional model, because both are convenient and certainly simplified
descriptions of the reality, their difference being that between 50 paces and 100
paces as in the 2,000 year old Chinese idiom One who retreats fifty paces mocks
one who retreats a hundred.

The above considerations lead to the question: Can we construct a practical
measure that gives us a proper indication on whether the selected model deserves
to be crowned as the best model at the time being? We emphasize at the time being
to make it clear that we are not going after the best limiting model (no matter how
that is defined), but instead we seek a model that stands out for sample sizes around
what we have now.

While there are many different performance measures that we can use to assess
if one model stands out, following our results on distinguishing between paramet-
ric and nonparametric scenarios, we focus on an estimation accuracy measure. We
call it parametricness index (PI), which is relative to the list of candidate mod-
els and the sample size. Our theoretical results show that this index converges to
infinity for a parametric scenario and converges to 1 for a typical nonparametric
scenario. Our suggestion is that when the index is significantly larger than 1, we
can treat the selected model as a stably standing out model from the estimation
perspective. Otherwise, the selected model is just among a few or more equally
well-performing candidates. We call the former case practically parametric and
the latter practically nonparametric.

As will be demonstrated in our simulation work, PI can be close to 1 for a truly
parametric scenario and large for a nonparametric scenario. In our view, this is
not a problem. For instance, for a truly parametric scenario with many small co-
efficients of various magnitudes, for a small or moderate sample size, the selected
model will most likely be different from the true model and it is also among mul-
tiple models that perform similarly in estimation of the regression function. We
would view this as “practically nonparametric” in the sense that with the informa-
tion available we are not able to find a single standing-out model and the model
selected provides a good trade-off between approximation capability and model
dimension. In contrast, even if the true model is infinite dimensional, at a given
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sample size, it is quite possible that a number of terms are significant and others
are too small to be relevant at the given sample size. Then we are willing to call
it “practically parametric” in the sense that as long as the sample size is not sub-
stantially increased, the same model is expected to perform better than the other
candidates. For example, in properly designed experimental studies, when a work-
ing model clearly stands out and is very stable, then it is desirable to treat it as
a parametric scenario even though we know surely it is an approximating model.
This is often the case in physical sciences when a law-like relationship is evident
under controlled experimental conditions. Note that given an infinite-dimensional
true model and a list of candidate models, we may declare the selected models to be
practically parametric for some sample sizes and to be practically nonparametric
for others.

The rest of the paper is organized as follows. In Section 2, we set up the regres-
sion framework and give some notation. We then in Section 3 develop the measure
PI and show that theoretically it differentiates a parametric scenario from a non-
parametric one under some conditions for both known and unknown σ 2, respec-
tively. Consequently, the pointwise asymptotic efficiency properties of AIC and
BIC can be combined for parametric and nonparametric scenarios. In Section 4,
we propose a proper use of PI for applications. Simulation studies and real data
examples are reported in Sections 5 and 6, respectively. Concluding remarks are
given in Section 7 and the proofs are in the Appendix.

2. Setup of the regression problem. Consider the regression model

Yi = f (xi) + εi, i = 1,2, . . . , n,

where xi = (xi1, . . . , xip) is the value of a p-dimensional fixed design variable
at the ith observation, Yi is the response, f is the true regression function, and
the random errors εi are assumed to be independent and normally distributed with
mean zero and variance σ 2 > 0.

To estimate the regression function, a list of linear models are being considered,
from which one is to be selected:

Y = fk(x, θk) + ε′,

where, for each k, Fk = {fk(x, θk), θk ∈ �k} is a family of regression functions
linear in the parameter θk of finite dimension mk . Let � be the collection of the
model indices k. � can be fixed or change with the sample size.

The above framework includes the usual subset-selection and order-selection
problems in linear regression. It also includes nonparametric regression based on
series expansion, where the true function is approximated by linear combinations
of appropriate basis functions, such as polynomials, splines or wavelets.

Parametric modeling typically intends to capture the essence of the data by a
finite-dimensional model, and nonparametric modeling tries to achieve the best
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trade-off between approximation error and estimation error for a target infinite-
dimensional function. See, for example, [70] for the general relationship between
rate of convergence for function estimation and full or sparse approximation based
on a linear approximating system.

Theoretically speaking, the essential difference between parametric and non-
parametric scenarios in our context is that the best model has no approximation
error for the former and all the candidate models have nonzero approximation er-
rors for the latter.

In this paper, we consider the least squares estimators when defining the para-
metricness index, although the model being examined can be based any consistent
model selection method that may or may not involve least squares estimation.

Notation and definitions. Let Yn = (Y1, . . . , Yn)
T be the response vector

and Mk be the projection matrix for model k. Denote Ŷk = MkYn. Let fn =
(f (x1), . . . , f (xn))

T , en = (ε1, . . . , εn)
T , and In be the identity matrix. Let ‖ · ‖

denote the Euclidean distance in the Rn space, and let TSE(k) = ‖fn − Ŷk‖2 be
the total square error of the LS estimator from model k.

Let the rank of Mk be rk . In this work, we do not assume that all the candidate
models have the rank of the design matrix equal the model dimension mk , which
may not hold when a large number of models are considered. Let Nj denote the
number of models with rk = j for k ∈ �. For a given model k, let S1(k) be the set
of all sub-models k′ of k in � such that rk′ = rk − 1. Throughout the paper, for
technical convenience, we assume S1(k) is not empty for all k with rk > 1.

For a sequence λn ≥ (logn)−1 and a constant d ≥ 0, let

ICλn,d(k) = ‖Yn − Ŷk‖2 + λn log(n)rkσ
2 − nσ 2 + dn1/2 log(n)σ 2,

when σ is known, and

ICλn,d(k, σ̂ 2) = ‖Yn − Ŷk‖2 + λn log(n)rkσ̂
2 − nσ̂ 2 + dn1/2 log(n)σ̂ 2,

when σ is estimated by σ̂ . A discussion on choice of λn and d will be given later
in Section 3.5. We emphasize that our use of ICλn,d(k) or ICλn,d(k, σ̂ 2) is for
defining the parametricness index as below and it may not be the one used for
model selection.

3. Main theorems. Consider a potentially consistent model selection method
(i.e., it will select the true model with probability going to 1 as n → ∞ if the true
model is among the candidates). Let k̂n be the selected model at sample size n. We
define the parametricness index (PI) as follows:

(1) When σ is known,

PIn =
⎧⎪⎨
⎪⎩

inf
k∈S1(k̂n)

ICλn,d(k)

ICλn,d(k̂n)
, if r

k̂n
> 1,

n, if r
k̂n

= 1.
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(2) When σ is estimated by σ̂ ,

PIn =
⎧⎪⎨
⎪⎩

inf
k∈S1(k̂n)

ICλn,d(k, σ̂ 2)

ICλn,d(k̂n, σ̂ 2)
, if r

k̂n
> 1,

n, if r
k̂n

= 1.

The reason behind the definition is that a correctly specified parametric model must
be very different from any sub-model (bias of a sub-model is dominatingly large
asymptotically speaking), but for a nonparametric scenario, the model selected is
only slightly affected in terms of estimation accuracy when one or a few least
important terms are dropped. When r

k̂n
= 1, the value of PI is arbitrarily defined

as long as it goes to infinity as n increases.

3.1. Parametric scenarios. Now consider a parametric scenario: the true
model at sample size n is in � and denoted by k∗

n with rk∗
n

assumed to be larger
than 1. Let An = infk∈S1(k

∗
n) ‖(In − Mk)fn‖2/σ 2. Note that An/n is the best ap-

proximation error (squared bias) of models in S1(k
∗
n).

Conditions:

(P1) There exists 0 < τ ≤ 1
2 such that An is of order n1/2+τ or higher.

(P2) The dimension of the true model does not grow too fast with sample size
n in the sense that rk∗

n
λn log(n) = o(n1/2+τ ).

(P3) The selection procedure is consistent: P(k̂n = k∗
n) → 1 as n → ∞.

THEOREM 1. Assume conditions (P1)–(P3) are satisfied for the parametric
scenario.

(i) With σ 2 known, we have

PIn
p−→ ∞ as n → ∞.

(ii) When σ is unknown, let σ̂ 2
n = ‖Yn−Ŷ

k̂n
‖2

n−r
k̂n

. We also have

PIn
p−→ ∞ as n → ∞.

Remarks: (1) The conditions (P1) basically eliminates the case that the true
model and a sub-model with one fewer term are not distinguishable with the infor-
mation available in the sample.

(2) In our formulation, we considered comparison of two immediately nested
models. One can consider comparing two nested models with size difference m

(m > 1) and similar results hold.
(3) The case λn = 1 corresponds to using BIC in defining the PI. And λn =

2/ log(n) corresponds to using AIC.
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3.2. Nonparametric scenarios. Now the true model at each sample size n is
not in the list � and may change with sample size, which we call a nonparametric
scenario. For j < n, denote

Bj,n = inf
k∈�

{(
λn log(n) − 1

)
j + ‖(In − Mk)fn‖2/σ 2 + dn1/2 log(n) : rk = j

}
,

where the infimum is taken over all the candidate models with rk = j . For
1 < j < n, let Lj = maxk∈�{card(S1(k)) : rk = j}. Let Pk(s),k = Mk − Mk(s) be
the difference between the projection matrices of the two nested models. Clearly,
Pk(s),k is the projection matrix onto the orthogonal complement of the column
space of model k(s) with respect to that of the larger model k.

Conditions: There exist two sequences of integers 1 ≤ an < bn < n (not neces-
sarily known) with an → ∞ such that the following holds:

(N1) P(an ≤ r
k̂n

≤ bn) → 1 and supan≤j≤bn

Bj,n

n−j
→ 0 as n → ∞.

(N2) There exist a positive sequence ζn → 0 and constants c0 > 0 such that for
an ≤ j ≤ bn,

Nj · Lj ≤ c0e
ζnBj,n, Nj ≤ c0e

B2
j,n/(10(n−j))

and

lim sup
n→∞

bn∑
j=an

e
−B2

j,n/(10(n−j)) = 0.

(N3) lim supn→∞[sup{k : an≤rk≤bn}
inf

k(s)∈S1(k)
‖P

k(s),k
fn‖2

(λn log(n)−1)rk+‖(In−Mk)fn‖2/σ 2+dn1/2 log(n)
] =

0.

THEOREM 2. Assuming conditions (N1)–(N3) are satisfied for a nonparamet-
ric scenario and σ 2 is known, then we have

PIn
p−→ 1 as n → ∞.

Remarks: (1) For nonparametric regression, for familiar model selection meth-
ods, the order of r

k̂n
can be identified (e.g., [38, 70]), sometimes loosing a loga-

rithmic factor, and (N1) is satisfied in a typical nonparametric situation.
(2) Condition (N2) basically ensures that the number of subset models of each

dimension does not grow too fast relative to Bj,n. When the best model has a
slower rate of convergence in estimating f , more candidate models can be allowed
without detrimental selection bias.

(3) Roughly speaking, condition (N3) says that when the model dimension is in
a range that contains the selected model with probability approaching 1, the least
significant term in the regression function projection is negligible compared to the
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sum of approximation error, the dimension of the model times λn log(n), and the
term dn1/2 log(n). This condition is mild.

(4) A choice of d > 0 can handle situations where the approximation error
decays fast, for example, exponentially fast (see Section 3.4), in which case the
stochastic fluctuation of ICλn,d with d = 0 is relatively too large for PI to con-
verge to 1 in probability. In applications, for separating reasonably distinct para-
metric and nonparametric scenarios, we recommend the choice of d = 0.

When σ 2 is unknown but estimated from the selected model, PIn is correspond-
ingly defined. For j < n, let Ej,n denote

inf
k∈�,rk=j

{[(
λn log(n) − 1

)
j + dn1/2 log(n)

][
1 + ‖(In − Mk)fn‖2/

(
(n − j)σ 2)]}

.

Conditions: There exist two sequences of integers 1 ≤ an < bn < n with an →
∞ such that the following holds.

(N2′) There exist a positive sequence ρn → 0 and a constant c0 > 0 such that
for an ≤ j ≤ bn, Nj · Lj ≤ c0e

ρnEj,n , and lim supn→∞
∑bn

j=an
e−ρnEj,n = 0.

(N3′) lim supn→∞[sup{k : an≤rk≤bn}((infk(s) ‖Pk(s),kfn‖2)([(λn log(n) − 1)rk +
dn1/2 log(n)][1 + ‖(In − Mk)fn‖2/(σ 2(n − rk))])−1)] = 0.

THEOREM 3. Assuming conditions (N1), (N2′) and (N3′) hold for a nonpara-
metric scenario, then we have

PIn
p−→ 1 as n → ∞.

3.3. PI separates parametric and nonparametric scenarios. The results in
Sections 3.1 and 3.2 imply that starting with a potentially consistent model se-
lection procedure (i.e., it will be consistent if one of the candidate models holds),
the PI goes to ∞ and 1 in probability in parametric and nonparametric scenarios,
respectively.

COROLLARY 1. Consider a model selection setting where �n includes models
of sizes approaching ∞ as n → ∞. Assume the true model is either parametric or
nonparametric satisfying (P1) and (P2) or (N1)–(N3), respectively. Then PIn has
distinct limits in probability for the two scenarios.

3.4. Examples. We now take a closer look at the conditions (P1)–(P3) and
(N1)–(N3) for two settings: all subset selection and order selection (i.e., the candi-
date models are nested).

(1) All subset selection.
Let pn be the number of terms to be considered.

(i) Parametric with true model k∗
n fixed.

In this case, An is typically of order n for a reasonable design and then condition
(P1) is met. Condition (P2) is obviously satisfied when λn = o(n1/2).
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(ii) Parametric with k∗
n changing: rk∗

n
increases with n.

In this case, both rk∗
n

and pn go to infinity with n. Since there are more and more
terms in the true model, in order for An not to be too small, the terms should not be
too highly correlated. An extreme case is that one term in the true model is almost
linearly dependent on the others. Then An ≈ 0. To understand condition (P1) in
terms of the coefficients in the true model, under an orthonormal design, condi-
tion (P1) is more or less equivalent to the square of the smallest coefficient in the
true model is of order nτ−1/2 or higher. Since τ can be arbitrarily close to 0, the
smallest coefficient should basically be larger than n−1/4.

(iii) Nonparametric.
Condition (N1) holds for any model selection method that yields a consistent re-

gression estimator of f . The condition Nj ≤ c0e
B2

j,n/(10(n−j)) is roughly equivalent
to j log(pn/j) ≤ [dn1/2 log(n) + λn log(n)j + ‖(In − Mk)fn‖2/σ 2]2/10(n − j)

for an ≤ j ≤ bn. A sufficient condition is pn ≤ bne
B2

j,n/(10(n−j)bn) for an ≤ j ≤ bn.
As to the condition Nj · Lj ≤ c0e

ζ ′
nBj,n , as long as supan≤j≤bn

Bj,n

n−j
→ 0, then it

is implied by the above one. For the condition
∑bn

j=an
e
−B2

j,n/(10(n−j)) → 0, it is
automatically satisfied for any d > 0 and also satisfied for d = 0 when the approx-
imation error does not decay too fast.

(2) Order selection in series expansion.
We only need to discuss the nonparametric scenario. (The parametric scenarios

are similar to the above.)
In this setting, there is only one model of each dimension. So condition (N2)

reduces to:
∑bn

j=an
e
−B2

j,n/(10(n−j)) → 0. Note that
∑bn

j=an
e
−B2

j,n/(10(n−j))
< (bn −

an) · e−(log(n))2/10 < n · e−(log(n))2/10 → 0.
To check condition (N3), for a demonstration, consider orthogonal designs. Let

� = {φ1(x), . . . , φk(x), . . .} be a collection of orthonormal basis functions and
the true regression function is f (x) = ∑∞

i=1 βiφi(x). For model k, the model
with the first k terms, infk(s)∈S1(k) ‖Pk(s),kfn‖2 is roughly β2

k‖φk(X)‖2 and ‖(In −
Mk)fn‖2 is roughly

∑∞
i=k+1 β2

i ‖φi(X)‖2, where φi(X) = (φi(x1), . . . , φi(xn))
T .

Since ‖φi(X)‖2 is of order n, condition (N3) is roughly equivalent to the follow-
ing:

lim sup
n→∞

[
sup

an≤k≤bn

nβ2
k

(λn log(n) − 1)k + n
∑∞

i=k+1 β2
i /σ 2 + dn1/2 log(n)

]
= 0.

Then a sufficient condition for condition (N3) is that d = 0 and

lim
k→∞

β2
k∑∞

i=k+1 β2
i

= 0,

which is true if βk = k−δ for some δ > 0 but not true if βk = e−ck for some

c > 0. When βk decays faster so that
β2

k∑∞
i=k+1 β2

i

is bounded away from zero and
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supan≤k≤bn
|βk| = o(

√
log(n)

n1/4 ), any choice of d > 0 makes condition (N3) satisfied.

An example is the exponential-decay case, that is, βk = e−ck for some c > 0. Ac-
cording to [38], when k̂n is selected by BIC for order selection, we have that r

k̂n

basically falls within a constant from 1
2c

log(n/ log(n)) in probability. In this case,

βk ≈
√

log(n)

n1/2 for k ≈ 1
2c

log(n/ log(n)). Thus, condition (N3) is satisfied.

3.5. On the choice of λn and d . A natural choice of (λn, d) is λn = 1 and
d = 0, which is expected to work well to distinguish parametric and nonparamet-
ric scenarios that are not too close to each other for order selection or all subset
selection with pn increasing not fast in n. Other choices can handle more diffi-
cult situations, mostly entailing the satisfaction of (N2) and (N3). With a larger λn

or d , PI tends to be closer to 1 for a nonparametric case, but at the same time, it
makes a parametric case less obvious. When there are many models being consid-
ered, λn should not be too small so as to avoid severe selection bias. The choice of
d > 0 handles fast decay of the approximation error in nonparametric scenarios, as
mentioned already.

3.6. Combining strengths of AIC and BIC. From above, for any given cutoff
point bigger than 1, the PI in a parametric scenario will eventually exceed it while
the PI in a nonparametric scenario will eventually drops below it when the sample
size gets large enough.

It is well known that AIC is asymptotically loss (or risk) efficient for nonpara-
metric scenarios and BIC is consistent when there are fixed finite-dimensional cor-
rect models, which implies that BIC is asymptotically loss efficient [54].

COROLLARY 2. For a given number c > 1, let δ be the model selection pro-
cedure that chooses either the model selected by AIC or BIC as follows:

δ =
{

AIC, if PI < c,
BIC, if PI ≥ c.

Under conditions (P1)–(P3)/(N1)–(N3), δ is asymptotically loss efficient in both
parametric and nonparametric scenarios as long as AIC and BIC are loss efficient
for the respective scenarios.

Remarks: (1) Previous work on sharing the strengths of AIC and BIC utilized
minimum description length criterion in an adaptive fashion [7, 34], or flexible pri-
ors in a Bayesian framework [26, 31]. Ing [38] and Yang [68] established (indepen-
dently) simultaneous asymptotic efficiency for both parametric and nonparametric
scenarios.

(2) Recently, Erven, Grünwald and de Rooij [26] found that if a cumulative risk
(i.e., the sum of risks from the sample size 1 to n) is considered instead of the
usual risk at sample size n, then the conflict between consistency in selection and
minimax-rate optimality shown in [66] can be resolved by a Bayesian strategy that
allows switching between models.
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4. PI as a model selection diagnostic measure, that is, Practical Identifia-
bility of the best model. Based on the theory presented in the previous section,
it is natural to use the simple rule for answering the question if we are in a para-
metric or nonparametric scenario: call it parametric if PI is larger than c for some
c > 1 and otherwise nonparametric. Theoretically speaking, we will be right with
probability going to one.

Keeping in mind that the concepts such as parametric, nonparametric, consis-
tency and asymptotic efficiency are all mathematical abstractions that hopefully
characterize the nature of the data and the behaviors of estimators at the given
sample size, our intended use of PI is not a rigid one so as to be practically rele-
vant and informative, as we explain below.

Both parametric and nonparametric methods have been widely used in statistical
applications. One specific approach to nonparametric estimation is to use paramet-
ric models as approximations to an infinite-dimensional function, which is backed
up by approximation theories. However, it is in this case that the boundary between
parametric and nonparametric estimations becomes blurred, and our work tries to
address the issue.

From a theoretical perspective, the difference between parametric and non-
parametric modeling is quite clear in this context. Indeed, when one is willing
to assume that the data come from a member in a parametric family, the fo-
cus is then naturally on the estimation of the parameters, and finite-sample and
large sample properties (such as UMVUE, BLUE, minimax, Bayes and asymp-
totic efficiency) are well understood. For nonparametric estimation, given infinite-
dimensional smooth function classes, various approximation systems (such as
polynomial, trigonometric and wavelets) have been shown to lead to minimax-
rate optimal estimators via various statistical methods (e.g., [9, 23, 37, 60]). In
addition, given a function class defined in terms of approximation error decay be-
havior by an approximating system, rates of convergence of minimax risks have
been established (see, e.g., [70]). As is expected, the optimal model size (in rate)
based on linear approximation depends on the sample size (and other things) for
a nonparametric scenario. In particular, for full and sparse approximation sets of
functions, the minimax theory shows that for a typical nonparametric scenario, the
optimal model size makes the approximation error (squared bias) roughly equal to
estimation error (model dimension over the sample size) [70]. Furthermore, adap-
tive estimators that are simultaneously optimal for multiple function classes can
be obtained by model selection or model combining (see, e.g., [5, 65] for many
references).

From a practical perspective, unfortunately, things are much less clear. Con-
sider, for example, the simple case of polynomial regression. In linear regression
textbooks, one often finds data that show obvious linear or quadratic behavior, in
which case perhaps most statisticians would be unequivocally happy with a linear
or quadratic model (think of Hooke’s law for describing elasticity). When the un-
derlying regression function is much more complicated so as to require 4th or 5th
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power, it becomes difficult to classify the situation as parametric or nonparametric.
While few (if any) statisticians would challenge the notion that in both cases, the
model is only an approximation to reality, what makes the difference in calling
one case parametric quite comfortably but not the other? Perhaps simplicity and
stability of the model play key roles as mentioned in Cox [20]. Roughly speaking,
when a model is simple and fits the data excellently (e.g., with R2 close to 1) so
that there is little room to significantly improve the fit, the model obviously stands
out. In contrast, if we have to use a 10th order polynomial to be able to fit the data
with 100 observations, perhaps few would call it a parametric scenario. Most of
the situations may be in between.

Differently from the order selection problem, the case of subset selection in re-
gression is substantially more complicated due to the much increased complexity
of the list of models. It seems to us that when all subset regression is performed,
it is usually automatically treated as a parametric problem in the literature. While
this is not surprising, our view is different. When the number of variables is not
very small relative to the sample size and the error variance, the issue of model
selection does not seem to be too different from order selection for polynomial
regression where a high polynomial power is needed. In our view, when analyzing
data (in contrast to asymptotic analysis), if one explores over a number of para-
metric models, it is not necessarily proper to treat the situation as a parametric
one (i.e., report standard errors and confidence intervals for parameters and make
interpretations based on the selected model without assessing its reliability).

Closely related to the above discussion is the issue of model selection uncer-
tainty (see, e.g., [11, 16]). It is an important issue to know when we are in a situa-
tion where a relatively simple and reliable model stands out in a proper sense and
thus can be used as the “true” model for practical purposes, and when a selected
model is just one out of multiple or even many possibilities among the candidates
at the given sample size. In the first case, we would be willing to call it parametric
(or more formally, practically parametric) and the latter (practically) nonparamet-
ric.

We should emphasize that in our review, our goal is not exactly finding out
whether the underlying model is finite dimensional (relative to the list of candi-
date models) or not. Indeed, we will not be unhappy to declare a truly parametric
scenario nonparametric when around the current sample size no model selection
criterion can possibly identify it with confidence and then take advantage of it, in
which case, it seems better to view the models as approximations to the true one
and we are just making a tradeoff between the approximation error and estima-
tion error. In contrast, we will not be shy to continue calling a truly nonparametric
model parametric should we be given that knowledge by an oracle if one model
stands out at the current sample size and the contribution of the ignored features is
so small that it is clearly better to be ignored at the time being. When the sample
size is much increased, the enhanced information allows discovery of the rele-
vance of some additional features and then we may be in a practical nonparametric
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scenario. As the sample size further increases, it may well be that a parametric
model stands out until reaching a larger sample size where we enter a practical
nonparametric scenario again, and so on.

Based on hypothesis testing theories, obviously, at a given sample size, for any
true parametric distribution in one of the candidate families from which the data
are generated, one has a nonparametric distribution (i.e., not in any of the can-
didate families) that cannot be distinguished from the true distribution. From this
perspective, pursuing a rigid finite-sample distinction between parametric and non-
parametric scenarios is improper.

PI is relative to the list of candidate models and the sample size. So it is per-
fectly possible (and fine) that for one list of models, we declare the situation to be
parametric, but for a different choice of candidate list, we declare nonparametri-
ness.

5. Simulation results. In this section, we consider single-predictor and
multiple-predictor cases, aiming at a serious understanding of the practical util-
ity of PI. In all the numerical examples in this paper, we choose λn = 1 and d = 0.

5.1. Single predictor.

EXAMPLE 1. Compare two different situations:
Case 1: Y = 3 sin(2πx) + σ1ε.
Case 2: Y = 3 − 5x + 2x2 + 1.5x3 + 0.8x4 + σ2ε, where ε ∼ N(0,1) and x ∼

N(0,1).
BIC is used to select the order of polynomial regression between 1 and 30. The

estimated σ from the selected model is used to calculate the PI.
Quantiles for the PIs in both scenarios based on 300 replications are presented

in Table 1.

EXAMPLE 2. Compare the following two situations:
Case 1: Y = 1 − 2x + 1.6x2 + 0.5x3 + 3 sin(2πx) + σε.

TABLE 1
Percentiles of PI for Example 1

Case 1 Case 2

Percentile Order selected PI σ̂ Order selected PI σ̂

10% 1 0.47 2.78 4 1.14 6.53
20% 13 1.02 2.89 4 1.35 6.67
50% 15 1.12 3.03 4 1.89 6.96
80% 16 1.34 3.21 4 3.15 7.31
90% 17 1.54 3.52 4 4.21 7.49
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TABLE 2
Percentiles of PI for Example 2

Case 1 Case 2

Percentile Order selected PI σ̂ Order selected PI σ̂

10% 15 1.01 1.87 3 1.75 1.99
20% 15 1.05 1.92 3 2.25 2.03
50% 16 1.14 2.00 3 3.51 2.12
80% 17 1.4 2.11 3 5.33 2.22
90% 18 1.63 2.17 3 6.62 2.26

Case 2: Y = 1 − 2x + 1.6x2 + 0.5x3 + sin(2πx) + σε.
The two mean functions are the same except the coefficient of the sin(2πx)

term. As we can see from Table 2, although both cases are of a nonparametric
nature, they have different behaviors in terms of model selection uncertainty and
PI values. Case 2 can be called “practically” parametric and the large PI values
provide information in this regard.

We have investigated the effects of sample size and magnitude of the coef-
ficients on PI. The results show that (i) given the regression function and the
noise level, the value of PI indicates whether the problem is “practically” para-
metric/nonparametric at the current sample size; (2) given the noise level and the
sample size, when the nonparametric part is very weak, PI has a large value, which
properly indicates that the nonparametric part is negligible; but as the nonparamet-
ric part gets strong enough, PI will drop close to 1, indicating a clear nonparametric
scenario. For a parametric scenario, the stronger the signal, the larger PI as is ex-
pected. See [45] for details.

5.2. Multiple predictors. In the multiple-predictor examples, we are going to
do all subset selection. We generate data from a linear model (except Example 7):
Y = βT x + σε, where x is generated from a multivariate normal distribution with
mean 0, variance 1, and correlation structure given in each example. For each
generated data set, we apply the Branch and Bound algorithm [33] to do all subset
selection by BIC and then calculate the PI value (part of our code is modified from
the aster package of Geyer [32]). Unless otherwise stated, in these examples, the
sample size is 200 and we replicate 300 times. The first two examples were used
in [62].

EXAMPLE 3. β = (3,1.5,0,0,2,0,0,0)T . The correlation between xi and xj

is ρ|i−j | with ρ = 0.5. We set σ = 5.

EXAMPLE 4. Differences from Example 3: βj = 0.85,∀j and σ = 3.
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TABLE 3
Proportion of selecting true model

Example True model Proportion

3 125 0.82
4 12345678 0.12
5 12589 0.43
6 125 0.51
7 1259ABCEG* 0.21

EXAMPLE 5. β = (0.9,0.9,0,0,2,0,0,1.6,2.2,0,0,0,0)T . There are 13
predictors and the correlation between xi and xj is ρ = 0.6 and σ = 3.

EXAMPLE 6. This example is the same as Example 5 except that β = (0.85,
0.85,0,0,2,0,0,0,0,0,0,0,0)T and ρ = 0.5.

EXAMPLE 7. This example is the same as Example 3 except that we add a
nonlinear component in the mean function and σ = 3, that is, Y = βT x + φ(u) +
σε, where u ∼ uniform(−4,4) and φ(u) = 3(1 − 0.5u + 2u2)e−u2/4. All subset
selection is carried out with predictors x1, . . . , x8, u, . . . , u8 which are coded as
1–8 and A–G in Table 3.

The selection behaviors and PI values are reported in Tables 3 and 4, respec-
tively. From those results, we see that the PIs are large for Example 3 and small for
Example 4. Note that in Example 3 we have 82% chance selecting the true model,
while in Example 4 the chance is only 12%. Although both Examples 3 and 4 are
of parametric nature, we would call Example 4 “practically nonparametric” in the
sense that at the given sample size many models are equally likely and the issue
is to balance the approximation error and estimation error. For Examples 5 and
6, the PI values are in-between, so are the chances of selecting the true models.
Note that the median PI values in Examples 5 and 6 are around 1.2. These ex-
amples together show that the values of PI provide sensible information on how

TABLE 4
Quartiles of PIs

Example Q1 Q2 Q3

3 1.26 1.51 1.81
4 1.02 1.05 1.10
5 1.05 1.15 1.35
6 1.09 1.23 1.56
7 1.02 1.07 1.16
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strong the parametric message is and that information is consistent with stability
in selection.

Example 7 is quite interesting. Previously, without the φ(u) component, even at
σ = 5, large values of PI are seen. Now with the nonparametric component present,
the PI values are close to 1. [The asterisk (*) in Table 3 indicates the model is the
most frequently selected one instead of being the true model.]

More simulation results are given in [45]. First, an illuminating example shows
that with specially chosen coefficients, PI switches positions several times, as they
should, in declaring practical parametricness or nonparametricness as more and
more information is available. Second, it is shown that PI is informative on relia-
bility of inference after model selection. When PI is large (Example 3), confidence
intervals based on the selected model are quite trustworthy, but when PI is small
(Example 4), the actual coverage probability intended at 95% is typically around
65%. While it is now well known that model selection has an impact on subsequent
statistical inferences (see, e.g., [28, 36, 41, 72]), the value of PI can provide valu-
able information on the parametricness of the underlying regression function and
hence on how confident we are on the accuracy of subsequent inferences. Third,
it is shown that an adaptive choice between AIC and BIC based on the PI value
(choose BIC when PI is larger than 1.2) indeed leads to nearly the better perfor-
mance of AIC and BIC and thus beats both AIC and BIC in an overall sense. So PI
provides helpful information regarding whether AIC or BIC works better (or they
have similar performances) in risks of estimation. Therefore, PI can be viewed as
a Performance Indicator of AIC versus BIC.

Based on our numerical investigations, in nested model problems (like order
selection for series expansion), a cutoff point of c = 1.6 seems proper. In subset
selection problems, since the infimum in computing PI is taken over many models,
the cutoff point is expected to be smaller, and 1.2 seems to be quite good.

6. Real data examples. In this section, we study three data sets: the Ozone
data with 10 predictors and n = 330 (e.g., [12]), the Boston housing data with 13
predictors and n = 506 (e.g., [35]), and the Diabetes data with 10 predictors and
n = 442 (e.g., [25]).

In these examples, we conduct all subset selection by BIC using the Branch and
Bound algorithm. Besides finding the PI values for the full data, we also do the
same with sub-samples from the original data at different sample sizes. In addition,
we carry out a parametric bootstrap from the model selected by BIC based on the
original data to assess the stability of model selection.

Based on sub-sampling at the sample size 400, we found that the PIs for the
ozone data are mostly larger than 1.2, while those for the Boston housing data are
smaller than 1.2. Moreover, the parametric bootstrap suggests that for the Ozone
data, the model selected from the full data still reasonably stands out even when
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the sample size is reduced to about 200 and noises are added. Similar to the sim-
ulation results in Section 5, by parametric bootstrap at the original sample size
from the selected model, combining AIC and BIC based on PI shows good overall
performance in estimating the regression function. The combined procedure has a
statistical risk close to the better one of AIC and BIC in each case. Details can be
found in [45].

7. Conclusions. Parametric models have been commonly used to estimate a
finite-dimensional or infinite-dimensional function. While there have been serious
debates on which model selection criterion to use to choose a candidate model
and there has been some work on combining the strengths of very distinct model
selection methods, there is a major lack of understanding on statistically distin-
guishing between scenarios that favor one method (say AIC) and those that favor
another (say BIC). To address this issue, we have derived a parametricness index
(PI) that has the desired theoretical property: PI converges in probability to infinity
for parametric scenarios and to 1 for nonparametric ones. The use of a potentially
consistent model selection rule (i.e., it will be consistent if one of the candidate
models is true) in constructing PI effectively prevents overfitting when we are in
a parametric scenario. The comparison of the selected model with a subset model
separates parametric and nonparametric scenarios through the distinct behaviors
of the approximation errors of these models in the two different situations.

One interesting consequence of the property of PI is that a choice between AIC
and BIC based on its value ensures that the resulting regression estimator of f

is automatically asymptotically efficient for both parametric and nonparametric
scenarios, which clearly cannot be achieved by any deterministic choice of the
penalty parameter λn in the criteria of the form − log -likelihood+λnmk , where mk

is the number of parameters in the model k. Thus, an adaptive regression estimation
to simultaneously suit parametric and nonparametric scenarios is realized through
the information provided by PI.

When working with parametric candidate models, we advocate a practical view
on parametricness/nonparametricness. In our view, a parametric scenario is one
where a relatively parsimonious model reasonably stands out. Otherwise, the se-
lected model is most likely a tentative compromise between goodness of fit and
model complexity, and the recommended model is most likely to change when the
sample size is slightly increased.

Our numerical results seem to be very encouraging. PI is informative, giving
the statistical user an idea on how much one can trust the selected model as the
“true” one. When PI does not support the selected model as the “right” parametric
model for the data, we have demonstrated that estimation standard errors reported
from the selected model are often too small compared to the real ones, that the
coverage of the resulting confidence intervals are much smaller than the nominal
levels, and that mode selection uncertainty is high. In contrast, when PI strongly
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endorses the selected model, model selection uncertainty is much less a concern
and the resulting estimates and interpretation are trustworthy to a large extent.

Identifying a stable and strong message in data as is expressed by a meaning-
ful parametric model, if existing, is obviously important. In biological and social
sciences, especially observational studies, a strikingly reliable parametric model
is often too much to ask for. Thus, to us, separating scenarios where one model
is reasonably standing out and is expected to shine over other models for sam-
ple sizes not too much larger than the current one from those where the selected
model is simply the lucky one to be chosen among multiple equally performing
candidates is an important step beyond simply choosing a model based on one’s
favorite selection rule or, in the opposite direction, not trusting any post model
selection interpretation due to existence of model selection uncertainty.

For the other goal of regression function estimation, in application, one typi-
cally applies a model selection method, or considers estimates from two (or more)
model selection methods to see if they agree with each other. In light of PI (or simi-
lar model selection diagnostic measures), the situation can be much improved: one
adaptively applies the better model selection criterion to improve performance in
estimating the regression function. We have focused on the competition between
AIC and BIC, but similar measures may be constructed for comparing other model
selection methods that are derived from different principles or under different as-
sumptions. For instance, the focused information criterion (FIC) [17, 18] empha-
sizes performance at a given estimand, and it seems interesting to understand when
FIC improves over AIC and how to take advantages of both in an implementable
fashion.

For the purpose of estimating the regression function, it has been suggested that
AIC performs better for a nonparametric scenario and BIC better for a parametric
one (see [68] for a study on the issue in a simple setting). This is asymptotically
justified but certainly not quite true in reality. Our numerical results have demon-
strated that for some parametric regression functions, AIC is much better. On the
other hand, for an infinite-dimensional regression function, BIC can give a much
more accurate estimate. Our numerical results tend to suggest that when PI is high
and thus we are in a practical parametric scenario (whether the true regression
function is finite-dimensional or not), BIC tends to be better for regression estima-
tion; when PI is close to 1 and thus we are in a practical nonparametric scenario,
AIC tends to be better.

Finally, we point out some limitations of our work. First, our results address
only linear models under Gaussian errors. Second, more understanding on the
choices of λn, d , and the best cutoff value c for PI is needed. Although the choices
recommended in this paper worked very well for the numerical examples we have
studied, different values may be proper for other situations (e.g., when the pre-
dictors are highly correlated and/or the number of predictors is comparable to the
sample size).
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APPENDIX

The following fact will be used in our proofs (see [64]).
Fact. If Zm ∼ χ2

m, then

P(Zm − m ≥ κm) ≤ e−m(κ−ln(1+κ))/2 ∀κ > 0,

P (Zm − m ≤ −κm) ≤ e−m(−κ−ln(1−κ))/2 ∀0 < κ < 1.

For ease of notation, we denote Pk(s),k = Mk − Mk(s) by P , rem1(k) = eT
n (fn −

Mkfn) and rem2(k) = ‖(In − Mk)en‖2/σ 2 − n in the proofs. Then
∥∥(

In − Mk(s)

)
en

∥∥2 = ‖(In − Mk)en‖2 + ‖Pen‖2,(A.1)
∥∥(

In − Mk(s)

)
fn

∥∥2 = ‖(In − Mk)fn‖2 + ‖Pfn‖2,(A.2)

rem1
(
k(s)) = rem1(k) + eT

n Pfn.(A.3)

For the proofs of the theorems in the case of σ known, without loss of generality,
we assume σ 2 = 1. In all the proofs, we denote ICλn,d(k) by IC(k).

PROOF OF THEOREM 1 (parametric, σ known). Under the assumption that
P(k̂n = k∗

n) → 1, we have ∀ε > 0, ∃n1 such that P(k̂n = k∗
n) > 1 − ε for n > n1.

Since ‖Yn − Ŷk‖2 = ‖(In − Mk)fn‖2 + ‖(In − Mk)en‖2 + 2 rem1(k), for any

k
∗(s)
n being a sub-model of k∗

n with r
k
∗(s)
n

= rk∗
n
− 1, we know that IC(k

∗(s)
n )

IC(k∗
n)

is equal
to

‖Yn − Ŷ
k
∗(s)
n

‖2 + λn log(n)r
k
∗(s)
n

− n + dn1/2 log(n)

‖Yn − Ŷk∗
n
‖2 + λn log(n)rk∗

n
− n + dn1/2 log(n)

= (∥∥(
In − M

k
∗(s)
n

)
fn

∥∥2 + rem2
(
k∗(s)
n

) + 2 rem1
(
k∗(s)
n

)

+ λn log(n)(rk∗
n
− 1) + dn1/2 log(n)

)

× (
rem2(k

∗
n) + λn log(n)rk∗

n
+ dn1/2 log(n)

)−1
.

By the fact on χ2 distribution,

P
(‖(In − Mk∗

n
)en‖2 − (n − rk∗

n
) ≥ κ(n − rk∗

n
)
)

≤ e
−(n−rk∗

n
)(κ−ln(1+κ))/2 for κ > 0,

P
(‖(In − Mk∗

n
)en‖2 − (n − rk∗

n
) ≤ −κ(n − rk∗

n
)
)

≤ e
−(n−rk∗

n
)(−κ−ln(1−κ))/2 for 0 < κ < 1.

For the given τ > 0, let κ = n1/2+τ hn

n−rk∗
n

for some hn → 0. Note that when n is large

enough, say n > n2 > n1, we have 0 < κ = n1/2+τ hn

n−rk∗
n

< 1. Since x − log(1 + x) ≥
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1
4x2 and −x − log(1 − x) ≥ 1

4x2 for 0 < x < 1, we have

P
(∣∣‖(In − Mk∗

n
)en‖2 − (n − rk∗

n
)
∣∣ ≥ hnn

1/2+τ ) ≤ 2e
−(n−rk∗

n
)κ2/8 ≤ 2e−n2τ h2

n/8.

Since for Z ∼ N(0,1), ∀t > 0, P(|Z| ≥ t) ≤ e−t2/2, we know that ∀c > 0,

P
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with probability higher than 1 − 2e−n2τ h2
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n)

| is lower bounded by

(1 − 2c)An − hnn
1/2+τ + (rk∗

n
− 1)(λn log(n) − 1) + dn1/2 log(n)

hnn1/2+τ + rk∗
n
λn log(n) + dn1/2 log(n)

with probability higher than 1 − 2e−n2τ h2
n/8 − rk∗

n
· (e−n2τ h2

n/8 + e−c2An/2).
According to conditions (P1) and (P2), rk∗

n
= o(n1/2+τ )/(λn log(n)) and An

is of order n1/2+τ or higher, we can choose hn such that 2e−n2τ h2
n/8 + rk∗

n
·

(e−n2τ h2
n/8 + e−c2An/2) → 0.
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For example, taking hn = n−τ/3, then

inf
k
∗(s)
n

∣∣∣∣IC(k
∗(s)
n )

IC(k∗
n)

∣∣∣∣ ≥ (1 − 2c)An − n1/2+2τ/3 + (rk∗
n
− 1)λn log(n) + dn1/2 log(n)

n1/2+2τ/3 + rk∗
n
λn log(n) + dn1/2 log(n)

:= boundn

with probability higher than 1 − 2e−n4τ/3/8 − rk∗
n
(e−n4τ/3/8 + e−c2An/2) := 1 − qn.

With c < 1/2, An of order n1/2+τ or higher, and rk∗
n
λn log(n) = o(An), we

have that ∀M > 0,∃n4 > n3 such that boundn ≥ M and qn ≤ ε for n > n4. Thus

PIn
p−→ ∞. �

PROOF OF THEOREM 2 (nonparametric, σ known). Similar to the proof of

Theorem 1, consider IC(k̂
(s)
n )

IC(k̂n)
for any k̂

(s)
n being a sub-model of k̂n with one fewer

term, and we have

IC(k̂
(s)
n )

IC(k̂n)
= 1 + (‖Pfn‖2 + ‖Pen‖2 + eT

n Pfn − λn log(n)
)

× (‖(In − M
k̂n

)fn‖2 + rem2(k̂n)

+ 2 rem1(k̂n) + λn log(n)r
k̂n

+ dn1/2 log(n)
)−1

.

Next, consider the terms in the above equation for any model kn. For ease of no-
tation, we write Brkn ,n = Brkn

, where rkn is the rank of the projection matrix of
model kn.

As in the proof of Theorem 1, ∀c1 > 0,

P

( |rem1(kn)|
(λn log(n) − 1)rkn + ‖(In − Mkn)fn‖2 + dn1/2 log(n)

≥ c1

)

≤ e−c2
1((λn log(n)−1)rkn+‖(In−Mkn)fn‖2+dn1/2 log(n))/2 ≤ e

−c2
1Brkn

/2
.

Similarly, ∀c2 > 0,

P

( |eT
n Pfn|
Brkn

≥ c2

)
≤ e

−c2
2B2

rkn
/(2‖Pfn‖2)

(A.4)
≤ e

−c2
2Brkn

/2
(if ‖Pfn‖2 ≤ Brkn

),

P

( |eT
n Pfn|

‖Pfn‖2 ≥ c2

)
≤ e−c2

2‖Pfn‖2/2

(A.5)
≤ e

−c2
2Brkn

/2
(if ‖Pfn‖2 > Brkn

).

Also,

P
(‖(In − Mkn)en‖2 − (n − rkn) ≤ −κ(n − rkn)

) ≤ e−(n−rkn )(−κ−log(1−κ))/2.
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We can choose κ such that κ(n − rkn) = γBrkn
for some 0 < γ < 1. Note that

−x − log(1 − x) > x2/2 for 0 < x < 1. Then

P
(‖(In − Mkn)en‖2 − (n − rkn) ≤ −γnBrkn

) ≤ e
−γ 2B2

rkn
/(4(n−rkn ))

.(A.6)

For a sequence Dn > 0 (to be chosen), we have

P(‖Pen‖2 − 1 ≥ Dn) ≤ e−(Dn−log(1+Dn)).

For x > 1, x − log(1 + x) > x/2. So P(‖Pen‖2 − 1 ≥ Dn) ≤ e−Dn/2 for Dn > 1.
Since k̂n is random, we apply union bounds on the exception probabilities. Ac-

cording to condition (N1), for any ε > 0, there exists n1 such that P(an ≤ r
k̂n

≤
bn) ≥ 1 − ε for n > n1. As will be seen, when n is large enough, the following
quantities can be arbitrarily small for appropriate choice of γ , Dn, c1 and c2:

bn∑
j=an

Nj · e−γ 2B2
j,n/(4(n−j))

,

bn∑
j=an

Nj · Lj · e−Dn/2,

bn∑
j=an

Nj · e−c2
1Bj,n/2,

bn∑
j=an

Nj · Lj · e−c2
2Bj,n/2.

More precisely, we claim that there exists n2 > n1 such that for n ≥ n2,

bn∑
j=an

{
Nj · (

e
−γ 2B2

j,n/(4(n−j)) + e−c2
1Bj,n/2)

(A.7)
+ Nj · Lj · (e−Dn/2 + e−c2

2Bj,n/2)
} ≤ ε.

Then for n > n2 with probability higher than 1 − 2ε,

an ≤ r
k̂n

≤ bn,

‖(In − M
k̂n

)en‖2 − (n − r
k̂n

) ≥ −γBr
k̂n

,

∥∥P
k̂
(s)
n ,k̂n

en

∥∥2 ≤ 1 + Dn,

|rem1(k̂n)| ≤ c1
((

λn log(n) − 1
)
r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n)
)
,

∣∣eT
n P

k̂
(s)
n ,k̂n

fn

∣∣ ≤ c2Br
k̂n

or
∣∣eT

n P
k̂
(s)
n ,k̂n

fn

∣∣ ≤ c2
∥∥P

k̂
(s)
n ,k̂n

fn

∥∥2
.

Note that

PIn = 1 + inf
k̂
(s)
n

((‖Pfn‖2 + ‖Pen‖2 + eT
n Pfn − λn log(n)

)

× (‖(In − M
k̂n

)fn‖2 + rem2(k̂n)(A.8)

+ 2 rem1(k̂n) + λn log(n)r
k̂n

+ dn1/2 log(n)
)−1)

.
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Also with probability higher than 1−2ε, the denominator in (A.8) is bigger than
(1 − 2c1)[‖(In − M

k̂n
)fn‖2 + (λn log(n) − 1)r

k̂n
+ dn1/2 log(n)] − γBr

k̂n
. Thus,

when 2c1 + γ < 1, the denominator in (A.8) is positive.
Then for n > n2, with probability at 1 − 2ε we have

PIn = 1 +
(

inf
k̂
(s)
n

(‖Pfn‖2 + ‖Pen‖2 + eT
n Pfn − λn log(n)

))

× (‖(In − M
k̂n

)fn‖2 + rem2(k̂n)

+ 2 rem1(k̂n) + λn log(n)r
k̂n

+ dn1/2 log(n)
)−1

.

For n > n2 with probability higher than 1 − 2ε, if ‖Pfn‖2 ≤ Br
k̂n

, then

PIn − 1 ≤
inf

k̂
(s)
n

‖Pfn‖2 + 1 + Dn + c2Br
k̂n

+ λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))

and

PIn − 1 ≥
inf

k̂
(s)
n

‖Pfn‖2 − 1 − Dn − c2Br
k̂n

− λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))
,

otherwise,

PIn − 1 ≤
inf

k̂
(s)
n

‖Pfn‖2 + 1 + Dn + c2‖Pfn‖2 + λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))

and

PIn − 1 ≥
inf

k̂
(s)
n

‖Pfn‖2 − 1 − Dn − c2‖Pfn‖2 − λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))
.

Next, we focus on the case ‖Pfn‖2 ≤ Br
k̂n

. The case of ‖Pfn‖2 > Br
k̂n

can be

similarly handled. Note that supan≤j≤bn

Bj,n

n−j
:= ζ ′

n → 0. Let ζ ′′
n = ζn + ζ ′

n. Taking

γ = √
4/5,Dn = 4ζ ′′

n Brkn
, c2 = 2

√
ζ ′′
n ,0 < c1 <

1−γ
2 , then

PIn − 1

≤
inf

k̂
(s)
n

‖Pfn‖2 + 1 + 4ζ ′′
n Br

k̂n
+ 2

√
ζ ′′
n Br

k̂n
+ λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))

≤ sup
an≤rkn≤bn

((
inf
k
(s)
n

‖Pfn‖2 + 1 + 4ζ ′′
n Brkn

+ 2
√

ζ ′′
n Brkn

+ λn log(n)
)

× (
(1 − 2c1 − γ )

((
λn log(n) − 1

)
rkn

+ ‖(In − Mkn)fn‖2 + dn1/2 log(n)
))−1

)
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:= Upperboundn

→ 0 according to (N3) and the fact that ζ ′′
n → 0 as n → ∞.

Similarly,

PIn − 1

≥ − 1 + 4ζ ′′
n Brkn

+ 2
√

ζ ′′
n Brkn

+ λn log(n)

(1 − 2c1 − γ )((λn log(n) − 1)r
k̂n

+ ‖(In − M
k̂n

)fn‖2 + dn1/2 log(n))

≥ − sup
an≤rkn≤bn

((
1 + 4ζ ′′

n Brkn
+ 2

√
ζ ′′
n Brkn

+ λn log(n)
)

× (
(1 − 2c1 − γ )

((
λn log(n) − 1

)
rkn

+ ‖(In − Mkn)fn‖2 + dn1/2 log(n)
))−1)

:= Lowerboundn

→ 0 according to (N3) and the fact that ζ ′′
n → 0.

Therefore, ∀δ > 0,∃n3 such that Upperboundn ≤ δ and Lowerboundn ≥ −δ for
n > n3. Thus, ∀ε > 0, δ > 0,∃N = max(n2, n3) such that P(|PIn − 1| ≤ δ) ≥ 1 −
2ε for n > N . That is, PIn

p→ 1.

To complete the proof, we just need to check the claim of (A.7). By condition

(N2), ∀ε > 0,∃nε such that for n ≥ nε ,
∑bn

j=an
c0 · e−B2

j,n/(10(n−j))
< ε/4. Then for

n > nε ,

bn∑
j=an

Nj · e−(γ 2B2
j,n)/(4(n−j)) ≤

bn∑
j=an

c0 · eB2
j,n/(10(n−j)) · e−γ 2B2

j,n/(4(n−j))

≤
bn∑

j=an

c0 · e−B2
j,n/(10(n−j))

< ε/4,

bn∑
j=an

Nj · Lj · e−Dn/2 =
bn∑

j=an

Nj · Lj · e−2ζ ′′
n Bj,n

≤
bn∑

j=an

c0 · e−ζ ′′
n Bj,n <

ε

4
.

Similarly,

bn∑
j=an

Nj · e−c2
1Bj,n/2 <

ε

4
,

bn∑
j=an

Nj · Lj · e−c2
2Bj,n/2 <

ε

4
.

Thus, claim (A.7) holds and this completes the proof. �
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The proofs of the cases with unknown σ in Theorems 1 and 3 are almost the
same as those when σ is known. Due to space limitation, we omit the details.
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SUPPLEMENTARY MATERIAL

Details and more numerical examples (DOI: 10.1214/11-AOS899SUPP;
.zip). We provide complete descriptions and more results of our numerical work.
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