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OPTIMAL MODEL SELECTION FOR DENSITY ESTIMATION OF
STATIONARY DATA UNDER VARIOUS MIXING CONDITIONS

BY MATTHIEU LERASLE1

IMT (UMR 5219), INSA Toulouse

We propose a block-resampling penalization method for marginal den-
sity estimation with nonnecessary independent observations. When the data
are β or τ -mixing, the selected estimator satisfies oracle inequalities with
leading constant asymptotically equal to 1.

We also prove in this setting the slope heuristic, which is a data-driven
method to optimize the leading constant in the penalty.

1. Introduction. Model selection by penalization of an empirical loss is
a general method that includes several famous procedures as cross-validation
[Rudemo (1982)] or hard thresholding [Donoho et al. (1996)] as shown by Barron,
Birgé and Massart (1999). The difficulty is to calibrate the penalty so that the se-
lected estimator satisfies an oracle inequality. A good penalty has the shape of an
ideal one [see definition (2.4)] and depends in general on a leading constant that
should be chosen sufficiently large.

Resampling penalties provide a shape for the penalty term in a general statis-
tical learning framework; see Arlot (2009). The resulting estimator satisfies sharp
oracle inequalities in non-Gaussian heteroscedastic regression among histograms
[Arlot (2009)] and in density estimation among more general collections of mod-
els [Lerasle (2011a)]. The validity of these theorems relies on the independence of
the observations. In this paper, we study a generalization of these penalties, called
block-resampling penalties and we prove that the resulting estimator satisfies sharp
oracle inequalities when the data are only supposed to be β- or τ -mixing [the co-
efficient β has been defined by Volkonskiı̆ and Rozanov (1959), the coefficient τ

by Dedecker and Prieur (2005); see Section 2.4].
We use a coupling method to extend the results for independent data. It was in-

troduced in Baraud, Comte and Viennet (2001) in a regression problem and used in
Comte and Merlevède (2002) for density estimation with β-mixing observations.
β is a well known “strong” mixing coefficient. We refer to the books of Doukhan
(1994) and Bradley (2007) for examples of β-mixing processes. One of the most
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important is the following: a stationary, irreducible, aperiodic and positively re-
current Markov chain is β-mixing. “Strong” mixing coefficients cannot be used to
study a lot of simple processes. For example, the stationary solution of the equation

Xn = 1
2(Xn−1 + ξn),(1.1)

where (ξn)n∈Z are i.i.d. Bernoulli random variables B(1/2) is not β-mixing [see
Andrews (1984)]. This is why “weak” mixing coefficients such as τ have been
introduced. They are easier to compute and allow us to cover more examples, as
the process (1.1) [we refer to the papers of Dedecker and Prieur (2005), Comte,
Dedecker and Taupin (2008) or the book of Dedecker et al. (2007) for exam-
ples of weakly-mixing processes]. In Lerasle (2009), we used a coupling result
of Dedecker and Prieur (2005) to extend the coupling method to τ -mixing data.

In all these previous papers, the dimension of the models was used as a shape
of the penalties. The leading constant was built with the mixing coefficients and
could not in general be computed from the data. When it could, the theoretical
upper bounds obtained are probably too pessimistic to be used by the statistician.
We use in this paper block-resampling penalties as a shape of the penalty and a
data-driven leading constant. The first main result of the paper is that the resulting
estimator satisfies asymptotically optimal oracle inequalities. We propose also to
optimize the choice of the leading constant in penalties using the slope algorithm.
This procedure is based on the slope heuristic, introduced in Birgé and Massart
(2007) and proved in Birgé and Massart (2007) for Gaussian regression, in Arlot
and Massart (2009) for non-Gaussian heteroscedastic regression over histograms
and in Lerasle (2011a) for density estimation. The second main result of this paper
is a proof of the slope heuristic for the marginal density estimation problem with
β- or τ -mixing data.

Block-resampling penalties and the slope heuristic can be defined in a more gen-
eral statistical learning framework, including the problems of classification and re-
gression [see Arlot (2009); Arlot and Massart (2009)]. Our results are contributions
to the theoretical understanding of these generic methods. Up to our knowledge,
they are the first ones obtained in a mixing framework.

The paper is organized as follows. Section 2 introduces the density estimation
framework, the estimators, the penalties and the main assumptions. Sections 3
and 4 give the main results, respectively, for τ - and β-mixing processes. Section 5
gives the proofs of the main results. Some other proofs are available as Supple-
mentary Material [Lerasle (2011b)].

2. Preliminaries.

2.1. The density estimation framework. We observe n real valued, identically
distributed random variables X1, . . . ,Xn, defined on a probability space (�, A,P),
with common law P . We assume that P is absolutely continuous with respect to
the Lebesgue measure μ on R and we want to estimate the density s of P with
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respect to μ. L2(μ) denotes the Hilbert space of square integrable real valued
functions and ‖ · ‖ the associated L2-norm. We assume that s belongs to L2(μ).
The risk of an estimator ŝ of s is measured with the L2-loss, that is ‖s − ŝ‖2, which
is random when ŝ is.

Let p, q be two integers and assume that n = 2pq . For all i = 0, . . . , p − 1, let
Ii = (2iq + 1, . . . , (2i + 1)q), Ai = (Xl)l∈Ii

. For all functions t in L1(P ), for all
reals x1, . . . , xq , we define

Lqt (x1, . . . , xq) = 1

q

q∑
i=1

t (xi), P t =
∫

R

t (x)s(x) dμ(x),

PAt = 1

p

p−1∑
i=0

Lqt (Ai).

Given a linear space Sm of measurable, real valued functions, and an orthonormal
basis (ψλ)λ∈�m of Sm, we define the projection estimator ŝA,m of s onto Sm by

ŝA,m = ∑
λ∈�m

(PAψλ)ψλ ∈ arg min
t∈Sm

{‖t‖2 − 2PAt}.

Given a finite collection (Sm)m∈Mn of such linear spaces and a penalty function
pen : Mn → R+, the Penalized Projection Estimator, hereafter PPE, is defined by

s̃A = ŝA,m̂ where m̂ ∈ arg min
m∈Mn

{‖̂sA,m‖2 − 2PAŝA,m + pen(m)}.(2.1)

We will say that the PPE satisfies an oracle inequality when one of the two follow-
ing inequalities holds.

There exist constants κ > 0, γ > 1 and a positive sequence (Kn)n∈N∗ bounded
away from 0 such that

P

(
Kn‖s − s̃A‖2 ≤ inf

m∈Mn

‖s − ŝA,m‖2
)

≥ 1 − κ

nγ
.(2.2)

There exists a positive sequence (Kn)n∈N∗ bounded away from 0 such that

KnE(‖s − s̃A‖2) ≤ E

(
inf

m∈Mn

‖s − ŝA,m‖2
)
.(2.3)

The oracle inequality is said to be sharp when, moreover, the sequence Kn → 1
when n grows to infinity. Inequalities (2.2) are usually preferred to (2.3) since
they describe the typical behavior of the selected estimator and not only of its
expectation.

It is worth mentioning that we only use Card(
⋃p−1

i=0 Ii) = pq = n/2 data to build
the estimator s̃A. The consequences of this choice are discussed after Theorem 3.1
and in Section 4.3.
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2.2. Block-resampling penalties. We introduce block-resampling penalties as
natural generalizations of resampling penalties. The best estimator in the collection
(̂sA,m)m∈Mn minimizes among Mn the ideal criterion

‖s − ŝA,m‖2 − ‖s‖2 = ‖̂sA,m‖2 − 2PAŝA,m + penid(m).

In this decomposition, the ideal penalty penid(m) [Arlot (2009)] is equal to

penid(m) = 2(PA − P)(̂sA,m).(2.4)

To adapt the approach of Arlot (2009) to a dependent setting, we replace the
resampling step by a resampling procedure on the blocks (Ai)i=0,...,p−1. Let
(W0, . . . ,Wp−1) be a resampling scheme, that is, a vector of positive random vari-
ables, independent of (Xi)i=1,...,n and exchangeable, which means that, for all
permutations ξ of {0, . . . , p − 1},(

Wξ(0), . . . ,Wξ(p−1)

)
has the same law as (W0, . . . ,Wp−1).

Let W = p−1 ∑p−1
i=0 Wi , for all t in L1(P ), let P W

A be the block-resampling empir-
ical process defined by

P W
A t = 1

p

p−1∑
i=0

WiLqt (Ai).

For all integrable random variables F(X1, . . . ,Xn,W0, . . . ,Wp−1), let

EW [F(X1, . . . ,Xn,W0, . . . ,Wp−1)]
= E[F(X1, . . . ,Xn,W0, . . . ,Wp−1)|X1, . . . ,Xn].

Let ((ψλ)λ∈�m)m∈Mn be orthonormal bases of (Sm)m∈Mn and let (̂sW
A,m)m∈Mn be

the collection of resampling projection estimators

ŝW
A,m = ∑

λ∈�m

(P W
A ψλ)ψλ.

The block-resampling penalties are defined as block-resampling estimators of the
ideal penalty by

penW(m,C) = CEW

(
2(P W

A − WPA)(̂sW
A,m)

)
.(2.5)

The idea of resampling is to mimic the behavior of the empirical process PA

around P by the behavior of the resampling empirical process P W
A around WPA.

The resampling procedure is a plug-in method where the unknown functionals
F(P,Pn) are estimated by F(WPn,P

W
n ). Hence, ŝA,m in penid(m) is replaced by

ŝW
A,m in penW(m,C) and, instead of applying the process PA − P , we apply the

process P W
A − WPA. We take the expectation with respect to the distribution of

the resampling scheme to stabilize the procedure. Finally, we let a normalizing
constant C free for this general definition.
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We use a block-resampling scheme instead of a classical exchangeable resam-
pling scheme in order to preserve the dependence of the data inside the blocks.
This is a key point for the procedure to work. Examples of resampling schemes can
be found in Arlot (2009). The classical block-bootstrap [Künsch (1989); Liu and
Singh (1992)] is obtained when the distribution of (W0, . . . ,Wp−1) is the multino-
mial M(p,1/p, . . . ,1/p).

2.3. The slope algorithm. The “slope heuristic” has been introduced by Birgé
and Massart (2007) in order to calibrate the leading constant in a penalty term
[e.g., the constant C in (2.5)]. It is based on the behavior of the complexity of
the selected model [recall the definition (2.1)]. It states that there exist a family
(�m)m∈Mn and a constant Kmin satisfying the following properties:

(SH1) When pen(m) ≤ K�m, with K < Kmin, then �m̂ ≥ c1 maxm∈Mn �m.
(SH2) When pen(m) = K�m, with K > Kmin, then �m̂ is much smaller.
(SH3) When pen(m) = 2Kmin�m, then ŝA satisfies a sharp oracle inequality.

Based on this heuristic, Birgé and Massart (2007) introduced the following slope
algorithm. It can be used in practice when a family (�m)m∈Mn satisfying the slope
heuristic is known.

• For all K > 0, compute �m̂(K) where m̂(K) is defined as in (2.1) with pen(m) =
K�m.

• Find K̃ such that �m̂(K) is very large for K < K̃ and much smaller when K >

K̃ .
• Choose the final m̂ equal to m̂(2K̃).

The idea is that K̃ ∼ Kmin since we observe a jump of the complexity of the se-
lected model around K = K̃ [thanks to (SH1), (SH2)] and thus that the final es-
timator, selected by the penalty 2K̃�m ∼ 2Kmin�m, satisfies an optimal oracle
inequality [by (SH3)].

2.4. Some measures of dependence.

2.4.1. β-mixing data. Volkonskiı̆ and Rozanov (1959) defined the coeffi-
cient β as follows. Let Y be a random variable defined on a probability space
(�, A,P) and let M be a σ -algebra in A, let

β(M, σ (Y )) = E

(
sup
A∈B

|PY |M(A) − PY (A)|
)
.

For all stationary sequences of random variables (Xn)n∈Z defined on (�, A,P),
let

βk = β
(
σ(Xi, i ≤ 0), σ (Xi, i ≥ k)

)
.

The process (Xn)n∈Z is said to be β-mixing when βk → 0 as k → ∞.
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2.4.2. τ -mixing data. Dedecker and Prieur (2005) defined the coefficient τ as
follows. For all l in N

∗, for all x, y in R
l , let dl(x, y) = ∑l

i=1 |xi − yi |. For all l

in N
∗, for all functions t defined on R

l , the Lipschitz semi-norm of t is defined by

Lipl(t) = sup
x 
=y∈Rl

|t (x) − t (y)|
dl(x, y)

.

For all functions t defined on R, we will denote for short by Lip(t) = Lip1(t).
Let λ1 be the set of all functions t : Rl → R such that Lipl(t) ≤ 1. For all integrable,
R

l-valued, random variables Y defined on a probability space (�, A,P) and all σ -
algebra M in A, let

τ(M, Y ) = E

(
sup
t∈λ1

|PY |M(t) − PY (t)|
)
.

For all stationary sequences of integrable random variables (Xn)n∈Z defined on
(�, A,P), for all integers k, r , let

τk,r = max
1≤l≤r

1

l
sup

k≤i1<···<il

{
τ
(
σ(Xp,p ≤ 0), (Xi1, . . . ,Xil )

)}
, τk = sup

r∈N∗
τk,r .

The process (Xn)n∈Z is said to be τ -mixing when τk → 0 as k → ∞.

2.5. Main assumptions.

2.5.1. A specific collection for τ -mixing sequences. Wavelet spaces have been
widely used in density estimation since the oracle is adaptive over Besov spaces
[see Birgé and Massart (1997)].

Dyadic wavelet spaces: Let r be a real number, r ≥ 1. We work with an r-
regular orthonormal multiresolution analysis of L2(μ), associated with a com-
pactly supported scaling function φ and a compactly supported mother wavelet ψ .
Without loss of generality, we suppose that the support of the functions φ and ψ

is included in an interval [A1,A2) where A1 and A2 are integers such that
A2 − A1 = A ≥ 1. For all k in Z and j in N

∗, let ψ0,k :x → √
2φ(2x − k) and

ψj,k :x → 2j/2ψ(2j x − k). The family {(ψj,k)j≥0,k∈Z} is an orthonormal basis of
L2(μ). The collection of dyadic wavelet spaces is described as follows.

[W] dyadic wavelet generated spaces: let Jn = [log2(n)], for all Jm =
1, . . . , Jn, let

�m = {(j, k),0 ≤ j ≤ Jm, k ∈ Z}
and let Sm be the linear span of {ψλ}λ∈�m .
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2.5.2. General framework. We present in this section a set of assumptions
sufficient to prove the theorems. None of them is used to build the penalties.

(H1) There exists a constant κa such that, for all m, m′ in Mn, for all t in
Sm + Sm′ , with ‖t‖ ≤ 1, there exist tm in Sm and tm′ in Sm′ , with ‖tm‖∨ ‖tm′‖ ≤ κa

such that t = tm + tm′ .

(H1) is typically satisfied for nested collections as [W].

(H2) Nn = Card(Mn) is finite and there exist constants cM, αM such that
Nn ≤ cMnαM .

(H2) means that the collection is not too rich and thus that the model selection
problem is not too hard. It is satisfied by the collection [W].

Let us introduce some notation. For all m in Mn, for all orthonormal bases
(ψλ)λ∈�m of Sm, let

DA,m = q
∑

λ∈�m

Var(Lq(ψλ)(A0)), RA,m = n‖s − sm‖2 + 2DA,m,

Bm = {t ∈ Sm,‖t‖ ≤ 1}, bm = sup
t∈Bm

‖t‖∞.

DA,m, and thus RA,m, are well defined since we can check with Cauchy–Schwarz
inequality that

DA,m = qE

[(
sup
t∈Bm

Lqt (A0) − P t
)2]

.

Two quantities will play a fundamental role to discuss the results. The first one is
the risk of an oracle:

Rn = inf
m∈Mn

RA,m.

We are typically interested in non parametric problems where Rn/n ∼ n−γ for
some 0 < γ < 1. This situation occurs, for example, when s is a regular function,
in this case, we have Rn/n = κn−2α/(2α+1), for some α > 0, κ > 0. We will make
the following assumption:

(H3) There exists a constant κR > 0 such that Rn ≥ κR(lnn)8.

The constant 8 in (lnn)8 is technical, it yields the rate εn = (lnn)−1/2 in the
oracle inequalities. Arlot (2009) replaced this assumption by a lower bound on the
bias of the models. It implies that Rn ≥ κnγ , for some constants κ > 0, 1 > γ > 0
and therefore assumption (H3).

(H4) There exists a constant cD > 0 such that

∀m ∈ Mn P
(

sup
t∈Bm

t2
)

≥ cDb2
m.
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It is shown in the Appendix that some classical examples of collections
(Sm,m ∈ Mn) as regular histograms, Fourier spaces and [W] satisfy (H4).

The following assumptions will be used to prove the slope heuristic. We intro-
duce a second quantity, that will play a fundamental role. Let

D∗
n = max

m∈Mn

DA,m.

In classical collection of models, like [W], D∗
n ∼ cn. This is why we introduce the

following assumption:

(H5) D∗
n/Rn → ∞ when n grows to infinity.

We will prove that, when the data are mixing. DA,m � nE(‖sm − ŝA,m‖2) repre-
sents the variance term of the risk. It is a natural measure of the complexity of the
models. Hence, D∗

n represents the maximal complexity of the models. Moreover,
Rn is the risk of the oracle. It balances the complexity and the bias term and has
therefore the same order as the complexity of an oracle. Hence, assumption (H5)
means that the largest complexity in the collection (Sm)m∈Mn is much larger than
the one of an oracle, which is a natural condition for the slope heuristic to hold.
We need a final assumption.

(H6) For all m∗ such that DA,m∗ = D∗
n , we have

n‖s − sm∗‖2

D∗
n

→ 0 when n → ∞.

When D∗
n is of order n, (H6) simply means that the distance between s and

a complex model goes to 0. In general, it means that for these complex models,
the bias part of the risk is negligible compared to the variance part. We conclude
this section by the assumptions on the mixing coefficients. All mean that these
coefficients are sufficiently small. Let γ = β or τ .

[AR(θ)] arithmetical γ -mixing with rate θ : there exists C > 0 such that, for all
k in N, γk ≤ C(1 + k)−(1+θ).

S(β)
∑

l≥1(l + 1)βl ≤ cD/64, where cD is defined in (H4).
We prove in the Appendix that cD = 1 for regular histograms and Fourier

spaces.
S(τ,W)

∑
l≥1(s

2τl)
1/3 ≤ C(W), where C(W) depends only on φ, ψ .

The value of the constant C(W) is given in Lemma 5.2 of Lerasle (2011b).

3. Results for τ -mixing sequences.

3.1. Resampling penalties. The result of this section is that PPE selected by
block-resampling penalties satisfy sharp oracle inequalities.

THEOREM 3.1. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
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of regular wavelet spaces [W] satisfying (H3), (H4). Let p, q be two integers such
that 2pq = n and 1

2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Let C̃W = Var(W1 − W)−1, C > C̃W/2 and let s̃A be the PPE defined in (2.1)
with the penalty penW(m,C) defined in (2.5).

Assume that there exists θ > 5 such that X1, . . . ,Xn are arithmetically [AR(θ)]
τ -mixing and satisfy S(τ,W). Let εn = (lnn)−1/2, κ(C) = 2(CC̃−1

W − 1).

There exist constants κ1, κ2 such that we have

KnE(‖s − s̃A‖2) ≤ E

(
inf

m∈Mn

‖s − ŝA,m‖2
)

+ κ2

n
,(3.1)

with

Kn = (1 ∧ (1 + κ(C)) − κ1εn

(1 ∨ (1 + κ(C)) + κ1εn

.

Comments:

• The constant C has to be chosen asymptotically equal to C̃W . If we choose
C > C̃W , we still get an oracle inequality, with a leading constant less sharp.
On the other hand, if we choose C < C̃W we can have Kn ≤ 0 in (3.1). This
is a first reason why it is generally useful to over-penalize a little bit from a
nonasymptotic point of view.

3.2. Slope heuristic. Theorem 3.1 gives a totally data driven penalty which
satisfies a sharp oracle inequality, therefore, the heuristic is not necessary to obtain
asymptotically optimal results. However, C can be optimized for small samples.
Moreover, the slope algorithm is faster to compute than resampling penalties when
a deterministic quantity can be used in the slope heuristic. Theorem 3.2 hereafter
justifies property (SH1) of the heuristic. �m is the variance term DA,m/n and
Kmin = 2.

THEOREM 3.2. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
of regular wavelet spaces [W] satisfying (H3)–(H6). Let p, q be two integers such
that 2pq = n and 1

2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Assume that there exists a constant 0 < δ < 1 such that, for all m in Mn,

0 ≤ pen(m) ≤ (2 − δ)
DA,m

n
,(3.2)

and let s̃A be the PPE defined in (2.1).
Assume that there exists θ > 5 such that X1, . . . ,Xn are arithmetically [AR(θ)]

τ -mixing and satisfy S(τ,W). There exist constants κ1, κ2 such that

E(DA,m̂) ≥ 4δ

9
D∗

n − κ1.(3.3)
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E(‖s − s̃A‖2) ≥ δ

5

D∗
n

Rn

(
E

(
inf

m∈Mn

‖s − ŝA,m‖2
)

− κ2

n

)
.(3.4)

Comments:

• Inequality (3.3) states that DA,m̂ is as large as possible when the penalty term is
too small. This is exactly (SH1) with �m = DA,m.

• Inequality (3.4) states that the model selected by a too small penalty is never
an oracle. This is another reason why it is interesting to choose C > C̃W in
Theorem 3.1.

The following theorem justifies properties (SH2), (SH3) of the slope heuristic.

THEOREM 3.3. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
of regular wavelet spaces [W] satisfying (H3), (H4). Let p, q be two integers such
that 2pq = n and 1

2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Assume that there exist δ+ ≥ −δ− > −1, ε ≥ 0 and some constants κ1, κ2 sat-
isfying, for all m in Mn,

E

[
sup

m∈Mn

(
(2 − δ−)

2DA,m

n
− pen(m) − ε

RA,m

n

)
+

]
≤ κ1

n
,(3.5)

E

[
sup

m∈Mn

(
pen(m) − (2 + δ+)

DA,m

n
− ε

RA,m

n

)
+

]
≤ κ2

n
.(3.6)

Let s̃A be the PPE defined in (2.1) with pen(m) and let εn = (lnn)−1/2.
Assume that there exists θ > 5 such that X1, . . . ,Xn are arithmetically [AR(θ)]

τ -mixing and satisfy S(τ,W). There exist constants κ1, κ2, κ3, such that

KnE(‖s̃A − s‖2) ≤ E

(
inf

m∈Mn

‖s − ŝA,m‖2
)

+ κ2

n
,(3.7)

with

Kn = (1 ∧ (1 − δ−)) − κ1(εn + ε)

(1 ∨ (1 + δ+)) + κ1(εn + ε)
.

Moreover, we have

KnE(DA,m̂) ≤ Rn + κ3.(3.8)

Comments:

• When pen(m) becomes larger than 2DA,m/n, DA,m̂ jumps from D∗
n (3.3) to Rn

[(3.8) for δ+ and −δ− close to −1]. This justifies (SH2) since Rn � D∗
n .

• A model selected with a penalty 4DA,m/n satisfies an oracle inequality (Theo-
rem 3.3 for δ+ and δ− close to 0). This justifies (SH3).
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• DA,m is unknown and cannot be used in the slope algorithm. We show
[Lemma 5.2 in Lerasle (2011b)] that DA,m satisfies κ∗2Jm ≤ DA,m ≤ κ∗2Jm .
The slope heuristic might hold for �m = 2Jm/n, but a complete proof requires
moreover that κ∗ � κ∗. However, we obtain in the proof of Theorem 3.1 that
penW(m, C̃W ) satisfies (3.5) and (3.6) for δ+ = δ− = 0 and ε = κεn. Since (3.2)
can be modified to work with random penalties, we can apply the slope algo-
rithm with penW(m,1) instead of DA,m/n.

4. Results for β-mixing sequences. We show that block-resampling penal-
ties select oracles and that the slope heuristic holds in this case.

4.1. Resampling penalties.

THEOREM 4.1. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
of linear spaces satisfying (H1)–(H4). Let p, q be two integers such that 2pq = n

and 1
2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Let C̃W = Var(W1 − W)−1, C > C̃W/2 and let s̃A be the PPE defined in (2.1)
with the block-resampling penalty penW(m,C) defined in (2.5).

Assume that there exists θ > 2 such that X1, . . . ,Xn are arithmetically [AR(θ)]
β-mixing and satisfy S(β). Let εn = (lnn)−1/2, κ(C) = 2(CC̃−1

W − 1).

There exist constants κ1, κ2 such that

P
(
Kn‖s − s̃A‖2 ≤ inf

m∈Mn

‖s − ŝA,m‖2
)

≥ 1 − κ2

(
1

n2 ∨ (lnn)4+2θ

nθ/2

)
,(4.1)

with

Kn = (1 ∧ (1 + κ(C))) − κ1εn

(1 ∨ (1 + κ(C)) + κ1εn

.

Comments:

• The coupling lemma of Berbee (1979) for β-mixing processes is much stronger
than the one satisfied by τ -mixing data [Dedecker and Prieur (2005)]. This is
why Theorem 4.1 covers more collections of models than Theorem 3.1 and why
we prove oracle inequalities in probability.

4.2. Slope heuristic. The following theorems are adaptations to the β-mixing
case of Theorems 3.2 and 3.3.

THEOREM 4.2. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
of linear spaces satisfying (H1)–(H6). Let p, q be two integers such that 2pq = n

and 1
2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.
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Let s̃A be the PPE defined in (2.1) with a penalty pen(m) satisfying, for all m in
Mn, condition (3.2) of Theorem 3.2.

Assume that there exists θ > 2 such that X1, . . . ,Xn are arithmetically [AR(θ)]
β-mixing and satisfy S(β). There exists a constant κ and an event �n such that

P(�n) ≥ 1 − κ

(
1

n2 ∨ (lnn)4+2θ

nθ/2

)
,

and, on �n,

DA,m̂ ≥ 4δ

9
D∗

n, ‖s − s̃A‖2 ≥ δ

5

D∗
n

Rn

inf
m∈Mn

‖s − ŝA,m‖2.(4.2)

THEOREM 4.3. Let X1, . . . ,Xn be a strictly stationary sequence of real val-
ued random variables with common density s and let (Sm)m∈Mn be a collection
of linear spaces satisfying (H1)–(H4). Let p, q be two integers such that 2pq = n

and 1
2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Assume that there exist δ+ ≥ −δ− > −1, ε ≥ 0, 0 ≤ η < 1 and an event �pen,
with P(�pen) ≥ 1 − η such that, on �pen, for all m in Mn,

(2 − δ−)
2DA,m

n
− ε

RA,m

n
≤ pen(m) ≤ (2 + δ+)

2DA,m

n
+ ε

RA,m

n
.(4.3)

Let s̃A be the PPE defined in (2.1) with pen.
Assume that there exists θ > 2 such that X1, . . . ,Xn are arithmetically [AR(θ)]

β-mixing and satisfy S(β). There exist constants κ1, κ2 and an event �∗
n such that

P(�∗
n) ≥ 1 − η − κ2

(
1

n2 ∨ (lnn)4+2θ

nθ/2

)
,

and, on �∗
n,

Kn‖s̃A − s‖2 ≤ inf
m∈Mn

‖s − ŝA,m‖2,(4.4)

with

Kn = (1 ∧ (1 − δ−)) − κ1(εn + ε)

(1 ∨ (1 + δ+)) + κ1(εn + ε)
.

Moreover, �∗
n, 2KnDA,m̂ ≤ 3Rn.

Comments:

• We refer to the comments of Theorems 3.2 and 3.3 where we explain why The-
orems 4.2 and 4.3 imply the slope heuristic with �m = DA,m/n, Kmin = 2.

• As in Theorem 3.3, DA,m cannot be used to build a model selection procedure.
A deterministic shape of DA,m is unknown, although we prove in the Supple-
mentary Material that DA,m is bounded by b∗

m. However, penW(m,1) can be
used instead of DA,m.
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4.3. Discussion and perspectives. Block-resampling penalties yield data
driven procedures for the estimation of the marginal density in a mixing frame-
work. The selected estimators satisfy sharp oracle inequalities without remainder
term. This improves Theorems 3.1 and 4.1 in Lerasle (2009) and Theorem 3.1
in Comte and Merlevède (2002), where the leading constants was built with the
mixing coefficients of the process. Moreover, our results hold for possibly infinite
dimensional models.

Lacour (2008) gave also a model selection procedure to estimate the station-
ary density and the transition probability of a Markov Chain. She worked with a
stationary chain, irreducible, aperiodic and positively recurrent, which is therefore
β-mixing. Her density estimator is selected by a penalty equal to Kdm/n with a
constant K that “depends on the law of the chain” [see Remark 4 after Theorem 3
in Lacour (2008)]. She proposed to estimate K in the simulations by the slope al-
gorithm. We prove the slope heuristic, justifying that the slope algorithm can be
used to optimize the leading constant. It would be interesting to see if resampling
penalties may be used in her context to estimate the transition probabilities.

Gannaz and Wintenberger (2009) worked with other weak mixing coefficients
[namely λ and φ̃; see Dedecker et al. (2007) for a definition] and studied a wavelet
thresholded estimator. The main advantage is that the thresholded estimator is
adaptive over a larger class of Besov spaces than the oracle over the collection
[W] [for details about this important issue see Barron, Birgé and Massart (1999)].
The main drawback is that their threshold is built with the mixing coefficients.

Block-resampling penalties can be extended to the statistical learning frame-
work of Massart and Nédélec (2006), where the slope algorithm has already been
defined [Arlot and Massart (2009)]. We believe that these procedures perform well
in this context but the problem remains open.

The main drawback of our approach is that we use only n/2 data. Moreover,
the deterministic choice of the number p of blocks is not optimized. For example,
when the data are geometrically β-mixing, which means that, for some constants
θ > 0, C > 0, βk ≤ Ce−θk , choosing p of order n(lnn)−2 would improve the rates
of convergence of the leading constant. An interesting direction of research would
be to provide data-driven choices of p and q to improve these rates, and a data-
driven choice of blocks to use more data.

In practice, the computation time is also a very important issue. Actually, the
conditional expectation is a bit long to evaluate and some efforts have to be done
in this direction. Things can be improved if we obtain a deterministic shape of
the ideal penalty, as in the independent case, since the slope heuristic is faster to
compute with a deterministic �m. We obtain upper and lower bounds on penid,
but our inequalities are not sharp enough to justify completely the slope heuristic.
We can also think of the V -fold cross validation penalties defined in Arlot (2008).
These penalties are also faster to compute than the resampling penalties. They can
be viewed as resampling penalties defined with nonexchangeable weights. These
issues are far beyond the objectives of the present paper and will be addressed in
forthcoming works.
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5. Proofs.

5.1. Notation. Recall that p and q are integers such that 2pq = n, and
that

√
n(lnn)2/2 ≤ p ≤ √

n(lnn)2. For all k = 0, . . . , p − 1, let Ik = (2kq +
1, . . . , (2k + 1)q), Ak = (Xi)i∈Ik

and I = ⋃p−1
k=0 Ik . For all t in L2(μ) and all

x1, . . . , xq in R,

Lq(t)(x1, . . . , xq) = 1

q

q∑
i=1

t (xi), PAt = 1

p

p−1∑
k=0

Lq(t)(Ak) = 2

n

∑
i∈I

t (Xi),

νA(t) = (PA − P)(t).

For all m in Mn, we denote by (ψλ)λ∈�m an orthonormal basis of Sm. The esti-
mator ŝA,m associated to the model Sm, is defined as

ŝA,m = ∑
λ∈�m

(PAψλ)ψλ.

Classical computations show that, if sm denotes the orthogonal projection of s

onto Sm,

sm = ∑
λ∈�m

(Pψλ)ψλ, hence ‖̂sA,m − sm‖2 = ∑
λ∈�m

(νAψλ)
2.

The ideal penalty, 2νA(̂sA,m) satisfies

νA(̂sA,m − sm) + νA(sm) = ∑
λ∈�m

(νAψλ)
2 + νA(sm) = ‖̂sA,m − sm‖2 + νA(sm).

For all m, m′ in Mn, let

p(m) = ‖sm − ŝA,m‖2 = sup
t∈Bm

(νA(t))2 = ∑
λ∈�m

(νA(ψλ))
2,

δ(m,m′) = 2νA(sm − sm′).

Hereafter W0, . . . ,Wp−1 denotes a resampling scheme, W = p−1 ∑p−1
i=0 Wi , P W

A

denotes the resampling empirical process, defined for all measurable functions t

by

P W
A t = 1

p

p−1∑
i=0

WiLqt (Ai).

We introduce also νW
A = P W

A − WPA and C̃W = (Var(W1 − W))−1. For any or-
thonormal basis (ψλ)λ∈�m of Sm, let

pW(m) = C̃W

∑
λ∈�m

EW((νW
A (ψλ))

2).
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pW(m) is well defined since, from the Cauchy–Schwarz inequality,

pW(m) = C̃W EW

(
sup
t∈Bm

(νW
A t)2

)
.

Let εn = (lnn)−1/2 and let κ > 0. Let M denote one of the set Mn or M2
n. When

M = Mn, for all m in M let RA,m = RA,m and when M = M2
n, for all m =

(m,m′) in M, let RA,m = RA,m ∨ RA,m′ . For all m in M, let

f1(m,κ) = p(m) − 2DA,m

n
− κεn

RA,m

n
,(5.1)

f2(m,κ) = 2DA,m

n
− p(m) − κεn

RA,m

n
,(5.2)

f3(m,κ) = p(m) − pW(m) − κεn

RA,m

n
,(5.3)

f4(m,κ) = pW(m) − p(m) − κεn

RA,m

n
,(5.4)

f5(m,κ) = δ(m,m′) − κεn

RA,m ∨ RA,m′

n
.(5.5)

We will use the following fact.

FACT 0. The resampling penalty penW(m,C) defined in (2.5) satisfies

penW(m,C) = 2CC̃−1
W pW(m).

PROOF. Let (ψλ)λ∈�m be an orthonormal basis of Sm. Recall that ŝW
A,m =∑

λ∈�m
(P W

A ψλ)ψλ, so that

ŝW
A,m − WŝA,m = ∑

λ∈�m

(νW
A ψλ)ψλ.

Hence, νW
A (̂sW

A,m − WŝA,m) = ∑
λ∈�m

(νW
A ψλ)

2.

We conclude the proof showing that EW(νW
A (WŝA,m)) = 0, hence

pW(m)

C̃W

= EW

(
νW
A (̂sW

A,m − WŝA,m)
) = EW(νW

A (̂sW
A,m)) = penW(m,C)

2C
.

Since W0, . . . ,Wp−1 are independent of X1, . . . ,Xn,

EW(νW
A (WŝA,m)) = 1

p2

p−1∑
i,j=0

Lq(ψλ)(Ai)Lq(ψλ)(Aj )EW

(
WiW − (W)2)

.
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Then, by exchangeability of the weights,

EW

(
WiW − (W)2) = 1

p

(
E(W 2

i ) + ∑
j 
=i

E(WiWj)

)

− 1

p2

(∑
i

E(W 2
i ) + ∑

i 
=j

E(WiWj )

)
= 0.

�

5.2. Proof of Theorem 3.1. The proof is based on the following lemma, whose
proof is given in Lerasle (2011b).

LEMMA 5.1. Let X1, . . . ,Xn be a strictly stationary sequence of real valued
random variables with common density s and let (Sm)m∈Mn be a collection of
regular wavelet spaces [W] satisfying assumptions (H3), (H4). Let p, q be two
integers satisfying 2pq = n and 1

2

√
n(lnn)2 ≤ p ≤ √

n(lnn)2.

Assume that there exists θ > 5 such that X1, . . . ,Xn are arithmetically [AR(θ)]
τ -mixing and satisfy S(τ ,W). There exist constants κ1, κ2, such that, for all i =
1, . . . ,5, for all m in M,

E

(
sup

m∈M
(fi(m,κ1))+

)
≤ κ2

n
.(5.6)

It comes from Fact 0 and the equality 2CC̃W = κ(C) + 2 that, for all m in Mn,

penW(m,C) − (
2 + κ(C)

)
p(m) = 2CC̃−1

W

(
pW(m) − p(m)

)
.(5.7)

Hence, from (5.6) with i = 3,4, penW(m,C) satisfies conditions (3.6) and (3.5) of
Theorem 3.3 with δ+ = −δ− = κ(C) and ε = 2κ1CC̃−1

W εn. Theorem 3.1 follows
from (3.7).

5.3. Proof of Theorem 4.1. The proof is based on the following lemma whose
proof is given in additional material.

LEMMA 5.2. Let θ > 1 and let (Xn)n∈Z be an arithmetically [AR(θ)] β-
mixing process satisfying S(β). Let (Sm)m∈Mn be a collection of linear spaces
satisfying assumptions (H1)–(H4). Let p,q such that 2pq = n,

√
n(lnn)2/2 ≤

p ≤ √
n(lnn)2. There exist constants κ1, κ2 and an event �n satisfying

P(�n) ≥ 1 − κ2

(
(lnn)2(1+θ)

nθ/2 ∨ 1

n2

)
,

such that, on �n,

∀m ∈ M,∀i = 1, . . . ,5 fi(m) ≤ 0.(5.8)

Hence, from (5.6) with i = 3,4, penW(m,C) satisfies condition (4.3) of The-
orem 4.3 with δ+ = −δ− = κ(C) and ε = 2κ1CC̃−1

W εn. Theorem 4.1 follows
from (4.4).
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5.4. Proof of Theorems 3.2 and 4.2. It is sufficient to prove the results for
sufficiently large n since we can increase the constant κ2 if necessary. Let mo be
a model such that RA,mo = Rn. Now, by definition, m̂ minimizes among Mn the
following criterion:

Crit(m) = ‖̂sA,m‖2 − 2PAŝA,m + pen(m) + ‖s‖2 + 2νA(smo).

FACT 1. For all m in Mn,

Crit(m) = ‖sm − s‖2 + pen(m) − p(m) + 2νA(smo − sm).

PROOF. Recalling that ‖s − ŝA,m‖2 = ‖̂sA,m‖2 − 2P ŝA,m + ‖s‖2 and that
(PA − P)(̂sA,m − sm) = ‖̂sA,m − sm‖2 = p(m), we have,

Crit(m) = ‖s − ŝA,m‖2 − 2νA(̂sA,m − sm) + 2νA(smo − sm) + pen(m)

= (‖s − ŝA,m‖2 − ‖̂sA,m − sm‖2) − p(m) + pen(m) + 2νA(smo − sm).

We conclude the proof with the Pythagoras equality. �

FACT 2. For all m in Mn, for all constants κ1,

(1 + 2κ1εn)
2DA,m

n
≥ −Crit(m) + (1 − 2κ1εn)‖s − sm‖2

− sup
m∈Mn

(f1(m,κ1)) − sup
(m,m′)∈M2

n

(f5((m,m′), κ1)).

PROOF. From Fact 1, for all m in Mn, for all κ1, since pen(m) ≥ 0,

Crit(m) ≥ ‖sm − s‖2 − f1(m,κ1) − 2DA,m

n
− 2κ1εn

RA,m

n
− f5((mo,m), κ1).

We conclude the proof using that RA,m = n‖s − sm‖2 + 2DA,m. �

FACT 3. For all m in Mn, for all constants κ1,

(δ − 4κ1εn)
DA,m

n
≤ −Crit(m) + (1 + 2κ1εn)‖s − sm‖2

+ sup
m∈Mn

(f2(m,κ1)) + sup
(m,m′)∈M2

n

(f5((m,m′), κ1)).

PROOF. From Fact 1, for all m in Mn, for all κ1, since pen(m) ≤ (2 −
δ)DA,m/n,

Crit(m) ≤ ‖sm − s‖2 + f2(m,κ1) − δ
DA,m

n
+ 2κ1εn

RA,m

n
+ f5((m,mo), κ1).

We conclude the proof using that RA,m = n‖s − sm‖2 + 2DA,m. �
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From Fact 2, we have, for all κ1,

(1 + 2κ1εn)
2DA,m̂

n
≥ −Crit(m̂) + (1 − 2κ1εn)‖s − sm̂‖2

− sup
m∈Mn

(f1(m,κ1)) − sup
(m,m′)∈M2

n

(f5((m,m′), κ1)).

Let us now consider a model m∗ such that DA,m∗ = D∗
n . By definition of m̂, we

have Crit(m̂) ≤ Crit(m∗). Hence, from Fact 3, we deduce that

(1 + 2κ1εn)
2DA,m̂

n
≥ −Crit(m∗) + (1 − 2κ1εn)‖s − sm̂‖2

− sup
m∈Mn

(f1(m,κ1)) − sup
(m,m′)∈M2

n

(f5((m,m′), κ1)).

(5.9)

≥
(
δ − 4κ1εn − (1 + 2κ1εn)

‖s − sm∗‖2

D∗
n

)
DA,m∗

n

+ (1 − 2κ1εn)‖s − sm̂‖2 − 4 sup
i∈{1,2,5},m∈M

(fi(m,κ1)).

From Lemma 5.1, there exist κ1 and κ2 such that

E

(
4 sup

i∈{1,2,5},m∈M
(fi(m,κ1))+

)
≤ κ2

n
.

From Lemma 5.2, there exists κ1 such that, on �n,

4 sup
i∈{1,2,5},m∈M

(fi(m,κ1)) ≤ 0.

Now, assume that n is sufficiently large to ensure that

4κ1εn ≤ δ

4
≤ 1

4
,

n‖s − sm∗‖2

D∗
n

≤ 2δ

9
.

Then, taking the expectation in (5.9), we obtain that

9E(DA,m̂)

8n
≥ δ

2

D∗
n

n
− κ4

n
.

Hence, (3.3) is proved for n sufficiently large.
Moreover, on �n, we have

9DA,m̂

8n
≥ δ

2

D∗
n

n
.

Hence, the first inequality of (4.2) is proved for n sufficiently large. (3.4) and the
second inequality of (4.2) follow from the inequality

‖s − s̃A‖2 ≥ (1 − κ1εn)
RA,m̂

n
− f2(m̂, κ1).
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From Lemma 5.1, there exist constants κ1, κ2, such that E(f2(m̂, κ1)) ≤ κ2/n. We
choose n sufficiently large to ensure that κ1εn ≤ 1/2, we use (3.3) and we obtain
that there exists a constant κ such that

E(‖s − s̃A‖2) ≥ 2δ

9

D∗
n − κ

n
.

We conclude the proof of (3.4) with the following fact.

FACT 4.

Rn

n
≥ 16

17
E

(
inf

m∈Mn

‖s − ŝA,m‖2
)

− κ

n
,

thus

D∗
n

n
≥ 16D∗

n

17Rn

(
E

(
inf

m∈Mn

‖s − ŝA,m‖2
)

− κ

n

)
.

PROOF. Let κ1 be the constant previously defined,

inf
m∈Mn

‖s − ŝA,m‖2 ≤ (1 + κ1εn) inf
m∈Mn

{
RA,m

n

}
+ sup

m∈Mn

f1(m,κ1).

We conclude the proof with Lemma 5.1. �

We use the first inequality of (4.2) and we obtain that, on �n,

‖s − s̃A‖2 ≥ 2δ

9

D∗
n

n
.

We conclude the proof of Theorem 4.2, saying that, on �n, we have

Rn

n
= inf

m∈Mn

{
‖s − sm‖2 + 2DA,m

n

}
≥ (1 − κ1εn) inf

m∈Mn

{‖s − sm‖2 + p(m)}

= (1 − κ1εn) inf
m∈Mn

‖s − ŝA,m‖2 ≥ 15

16
inf

m∈Mn

‖s − ŝA,m‖2.

Thus,

‖s̃A − s‖2 ≥ 2δ

9

D∗
n

Rn

Rn

n
≥ δ

9

D∗
n

Rn

inf
m∈Mn

‖s − ŝA,m‖2.

5.5. Proofs of Theorems 3.3 and 4.3. As in the previous proof, it is sufficient to
obtain the results for sufficiently large n. Let us first prove the oracle inequalities.
Let κ1 be a constant to be chosen later. Let �n be the set defined on Lemma 5.2.
The key point to prove oracle inequalities is the following fact.
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FACT 5. For all m in Mn, for all real numbers δ−, δ+ and for all nonnegative
reals x, y,[(

1 ∧ (1 − δ−)
) − x − y

]‖s − s̃A‖2

≤ [(
1 ∨ (1 + δ+)

) + x + y
]‖s − ŝA,m‖2(5.10)

+ sup
m∈Mn

{pen(m) − (2 + δ+)‖̂sA,m − sm‖2 − x‖s − ŝA,m‖2}+

+ sup
m∈Mn

{(2 − δ−)‖̂sA,m − sm‖2 − pen(m) − x‖s − ŝA,m‖2}+(5.11)

+ 2 sup
(m,m′)∈M2

n

{νA(sm′ − sm) − y(‖s − ŝA,m‖2 + ‖s − ŝA,m′‖2)}+.(5.12)

PROOF. By definition of s̃A, for all m in Mn, we have

‖s̃A‖2 − 2PAs̃A + pen(m̂) + ‖s‖2 ≤ ‖̂sA,m‖2 − 2PAŝA,m + pen(m) + ‖s‖2.

Now, for all m in Mn, since ‖̂sA,m − s‖2 = ‖̂sA,m‖2 − 2P ŝA,m + ‖s‖2,

‖̂sA,m‖2 − 2PAŝA,m + ‖s‖2 = ‖̂sA,m − s‖2 − 2(PA − P )̂sA,m.

Thus, for all m in Mn,

‖s̃A − s‖2 − 2(PA − P)s̃A + pen(m̂) ≤ ‖̂sA,m − s‖2 − 2(PA − P )̂sA,m + pen(m).

For all m in Mn, since (PA − P)(̂sA,m − sm) = ‖̂sA,m − s‖2,

2(PA − P )̂sA,m = 2‖sm − ŝA,m‖2 + 2(PA − P)sm.

This yields

‖s − s̃A‖2 ≤ ‖s − ŝA,m‖2 + pen(m) − 2‖̂sA,m − sm‖2

+ 2‖̂sA,m̂ − sm̂‖2 − pen(m̂) + 2νA(sm̂ − sm).

We add −[(δ− ∨ 0) + (x + y)]‖s̃A − s‖2 to the left-hand side of the previous
inequality and −δ−‖s̃A − sm̂‖2 − (x + y)‖s̃A − s‖2 + [(δ+ ∨ 0) + x + y]‖s −
ŝA,m‖2 − δ+‖̂sA,m − sm‖2 − (x + y)‖s − ŝA,m‖2 to the right-hand side. This is
valid because, for all m in Mn, for all reals δ,

[(δ ∨ 0) + x + y]‖̂sA,m − s‖2 ≥ δ‖̂sA,m − sm‖2 + (x + y)‖̂sA,m − s‖2.

We obtain [(
1 ∧ (1 − δ−)

) − x − y
]‖s − s̃A‖2

≤ [(
1 ∨ (1 + δ+)

) + x + y
]‖s − ŝA,m‖2

+ pen(m) − (2 + δ+)‖̂sA,m − sm‖2 − x‖̂sA,m − s‖2

+ (2 − δ−)‖̂sA,m̂ − sm̂‖2 − pen(m̂) − x‖̂sA,m̂ − s‖2

+ 2νA(sm̂ − sm) − y‖̂sA,m − s‖2 − x‖̂sA,m̂ − s‖2. �
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We will also use the following fact.

FACT 6. For all reals κ such that κεn ≤ 1/2,

RA,m

n
≤ 2‖s − ŝA,m‖2 + 2{f2(m,κ)}+.

PROOF. We write
RA,m

n
= 1

1 − κεn

(
RA,m

n
− ‖s − ŝA,m‖2 − κεn

RA,m

n

)
+ 1

1 − κεn

‖s − ŝA,m‖2.

We use that κεn ≤ 1/2 and that RA,m = 2DA,m + ns − sm
2 to conclude the proof.

�

Control of (5.10). Assume that n is sufficiently large to ensure that κ1εn ≤ 1/2.
We have, from Fact 6,

pen(m) − (2 + δ+)p(m) − 2ε‖̂sA,m − s‖2

≤ pen(m) − (2 + δ+)p(m) − ε
RA,m

n
+ 2ε{f2(m,κ1)}+.

Applying Lemma 5.1, we obtain constants κ1 and κ2 such that

E

(
sup

m∈Mn

{f2(m,κ1)}+
)

≤ κ2

n
.

Applying Lemma 5.2, we obtain a constant κ1 such that, on �n,

sup
m∈Mn

{f2(m,κ1)}+ ≤ 0.

Moreover, (3.6) ensures that

E

(
sup

m∈Mn

{
pen(m) − (2 + δ+)p(m) − ε

RA,m

n

}
+

)
≤ κ

n
.

On �pen, we have

sup
m∈Mn

{
pen(m) − (2 + δ+)p(m) − ε

RA,m

n

}
+

≤ 0.

We choose x = 2ε. We obtain that, for Theorem 3.1, the expectation of (5.10) is
upper bounded by κn−1 and for Theorem 4.1, the term (5.10) is equal to 0 on
�n ∩ �pen.

Control of (5.11). Assume that n is sufficiently large to ensure that κ1εn < 1/2,
we deduce from Fact 6 that

(2 − δ−)p(m) − pen(m) − 2ε‖̂sA,m − s‖2

≤ (2 − δ−)p(m) − pen(m) − ε
RA,m

n
+ 2ε{f2(m,κ1)}+.
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Applying Lemma 5.1, we obtain constants κ1 and κ2 such that

E

(
sup

m∈Mn

{f2(m,κ1)}+
)

≤ κ2

n
.

Applying Lemma 5.2, we obtain a constant κ1 such that, on �n,

sup
m∈Mn

{f2(m,κ1)}+ ≤ 0.

Moreover, (3.5) ensures that

E

(
sup

m∈Mn

{
(2 − δ−)p(m) − pen(m) − ε

RA,m

n

}
+

)
≤ κ

n
.

On �pen, we have

sup
m∈Mn

{
(2 − δ−)p(m) − pen(m) − ε

RA,m

n

}
+

≤ 0.

We choose x = 2ε. We obtain that, for Theorem 3.1, the expectation of (5.11) is
upper bounded by κn−1 and for Theorem 4.1, the term (5.11) is equal to 0 on
�n ∩ �pen.

Control of (5.12). Let m,m′ in Mn and let ms be the index such that RA,ms =
RA,m ∨ RA,m′ and let κ1 be a constant to be chosen later. Assume that n is suffi-
ciently large to ensure that κ1εn ≤ 1/2. It comes from Fact 6 that

δ(m,m′) = f5((m,m′), κ1) + κ1εn

RA,ms

n

≤ f5((m,m′), κ1) + 2κ1εn‖̂sA,ms − s‖2 + 2κ1εn{f2(ms, κ1)}+.

We deduce from Lemma 5.1 that there exist κ1 and κ2 such that

E

(
sup

(m,m′)∈M2
n

{δ(m,m′) − 2κ1εn(‖̂sA,m − s‖2 + ‖̂sA,m′ − s‖2)}
)

≤ E

(
sup

(m,m′)∈M2
n

{f5((m,m′), κ1) + 2κ1εnf2(ms, κ1)}+
)

≤ κ2

n
.

Applying Lemma 5.2, we obtain a constant κ1 such that, on �n,

sup
(m,m′)∈M2

n

{δ(m,m′) − 2κ1εn(‖̂sA,m − s‖2 + ‖̂sA,m′ − s‖2)} ≤ 0.

Conclusion of the proofs. We use Fact 5 with x = 2ε and y = 2κ1εn. We take
the expectation for the proof of Theorem 3.1, we have obtained that the expecta-
tion of the remainder terms (5.10)–(5.12) are upper bounded by κn−1 for a suffi-
ciently large n. For the proof of Theorem 4.1, we have obtained that the remainder
terms (5.10)–(5.12) with x = 2ε and y = 2κ1εn are equal to 0 on �n ∩�pen when n
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is sufficiently large. As explained in the beginning of the proof, this is sufficient to
conclude the proof of (3.7) and (4.4).

Let us prove (3.8). Let κ1 < 1/(2εn), from Fact 6 and (3.7), we have

Kn

n
E(2DA,m̂) ≤ Kn

(
E(p(m̂)) + E(f2(m̂, κ1)) + κ1εnE

(
RA,m̂

n

))
≤ (1 + 2κ1εn)E((f2(m̂, κ1))+) + (1 + 2κ1εn)KnE(‖s − s̃A‖2)

≤ 2E((f2(m̂, κ1))+) + 2KnE(‖s − s̃A‖2)

≤ 2
(

E((f2(m̂, κ1))+) + κ

n

)
+ 2Rn.

We used that, by definition Kn ≤ 1. We conclude the proof with Lemma 5.1.
In order to get the bound on DA,m̂ in Theorem 4.3, we use that, on �n ∩ �pen,

(4.4) holds and there exists a constant κ1 such that, κ1εn < 1/2 satisfying

Kn

2DA,m̂

n
≤ Kn

1 − κ1εn

(‖s − sm̂‖2 + p∗(m̂)
) = Kn

1 − κ1εn

‖s − s̃A‖2

≤ 1

1 − κ1εn

inf
m∈Mn

‖s − ŝA,m‖2 ≤ 1 + κ1εn

1 − κ1εn

Rn

n
≤ 3

Rn

n
.

APPENDIX

We present in this section some classical collections of models and prove that
they satisfy (H4).

Regular histograms: Let d be an integer and let Sd be the space of func-
tions t constant on all the intervals ([k/d, (k + 1)/d))k∈Z. Sd is called the space
of regular histograms with size 1/d . The family (ψk)k∈Z, where, for all k in Z,
ψk = √

d1[k/d,(k+1)/d) is an orthonormal basis of Sd . Let Bd = {t ∈ Sd, t2 ≤ 1}.
From the Cauchy–Schwarz inequality, we have

sup
t∈Bd

t2 = ∑
k∈Z

ψ2
k = d1R.

Hence,

b2
m =

∥∥∥ sup
t∈Bd

t2
∥∥∥∞ = d, P

(
sup
t∈Bd

t2
)

= dP (1R) = d.

(H4) holds on all the spaces Sd with cD = 1, therefore, it holds on the collection
(Sd)d=1,...,n called the regular histograms collection.

Fourier spaces: Let k ≥ 1 be an integer and let, for all x in [0,1],
ψ1,k(x) = √

2 cos(2πkx), ψ2,k(x) = √
2 sin(2πkx), ψ0 = 1[0,1].

Let Mn = {1, . . . , n} and ∀m ∈ Mn, let �m = {0, (1, k), (2, k), k = 1, . . . ,m}.
The space Sm, spanned by the family (ψλ)λ∈�m is called the Fourier space with
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harmonic smaller than m and the collection (Sm,m ∈ Mn) is called the collection
of Fourier spaces. Let Bm = {t ∈ Sm, t2 ≤ 1}. From the Cauchy–Schwarz inequal-
ity, for all x in [0,1],

sup
t∈Bm

t2(x) = ∑
λ∈�m

ψ2
λ(x) = 1 + 2

m∑
k=1

(
cos2(2πkx) + sin2(2πkx)

) = 1 + 2m.

Hence, if P is supported in [0,1],
b2
m =

∥∥∥ sup
t∈Bm

t2
∥∥∥∞ = 1 + 2m,P

(
sup
t∈Bm

t2
)

= 1 + 2m.

(H4) holds with cD = 1 on the collection of Fourier spaces when P is supported
on [0,1].

Wavelet spaces: Assume that (Sm,m ∈ Mn) is a collection of wavelet spaces
[W]. Assume moreover that the scaling function φ and the mother wavelet ψ sat-
isfy the following relation. There exists a constant Ko > 0 such that, for all x in R,

1

Ko

≤ ∑
k∈Z

φ2(x − k) ≤ Ko,
1

Ko

≤ ∑
k∈Z

ψ2(x − k) ≤ Ko.

This condition is satisfied by the Haar basis, where φ = 1[0,1), ψ = 1[0,1/2) −
1[1/2,1), with Ko = 1. Then, for all j ≥ 0, we have

1

Ko

≤ ∑
k∈Z

φ2(2j x − k) ≤ Ko,
1

Ko

≤ ∑
k∈Z

ψ2(2j x − k) ≤ Ko.

Let Bm = {t ∈ Sm, t2 ≤ 1}. From the Cauchy–Schwarz inequality, we have

�m(x) = sup
t∈Bm

t2(x) = ∑
λ∈�m

ψ2
λ(x) = ∑

k∈Z

2φ2(2x − k) +
Jm∑
j=1

2j
∑
k∈Z

ψ2(2j x − k).

We deduce that

2Jm

Ko

≤ 1

Ko

(
2 +

Jm∑
j=1

2j

)
≤ �m(x) ≤ Ko

(
2 +

Jm∑
j=1

2j

)
≤ 2Ko2Jm.

Hence, b2
m = �m∞ ≤ 2Ko2Jm,P (�m) ≥ 2Jm/Ko.

(H4) holds wit cD = 1/(2K2
o ) on the collection [W].

Acknowledgments. The author is very grateful to Béatrice Laurent and Clé-
mentine Prieur for their precious advice. He would like also to thank the reviewers
and Associate Editors for their careful reading of the manuscript and helpful com-
ments which led to an improved presentation of the paper.



1876 M. LERASLE

SUPPLEMENTARY MATERIAL

Proofs of Lemmas 5.1 and 5.2 (DOI: 10.1214/11-AOS888SUPP; .pdf). In the
Supplementary Material, we give complete proofs of the concentrations Lem-
mas 5.1 and 5.2. We use coupling results, respectively, of Berbee (1979) and
Dedecker and Prieur (2005), to build sequences of independent random variables
(A∗

0, . . . ,A
∗
p−1) approximating the sequence of blocks (A0, . . . ,Ap−1), respec-

tively in the β and τ mixing case. We prove concentration lemmas equivalent to
Lemmas 5.1 and 5.2 for these approximating random variables. The main tools
here are the concentration inequalities of Bousquet (2002) and Klein and Rio
(2005) for the maximum of the empirical process. We prove finally some co-
variance inequalities to evaluate the expectation of p(m) and deduce the rates
εn = (lnn)−1/2.
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