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A MAJORIZATION–MINIMIZATION APPROACH TO VARIABLE
SELECTION USING SPIKE AND SLAB PRIORS

BY TSO-JUNG YEN1

Academia Sinica

We develop a method to carry out MAP estimation for a class of Bayesian
regression models in which coefficients are assigned with Gaussian-based
spike and slab priors. The objective function in the corresponding optimiza-
tion problem has a Lagrangian form in that regression coefficients are regu-
larized by a mixture of squared l2 and l0 norms. A tight approximation to the
l0 norm using majorization–minimization techniques is derived, and a coor-
dinate descent algorithm in conjunction with a soft-thresholding scheme is
used in searching for the optimizer of the approximate objective. Simulation
studies show that the proposed method can lead to more accurate variable
selection than other benchmark methods. Theoretical results show that un-
der regular conditions, sign consistency can be established, even when the
Irrepresentable Condition is violated. Results on posterior model consistency
and estimation consistency, and an extension to parameter estimation in the
generalized linear models are provided.

1. Introduction. Consider the following regression model:

Yi = xi1β1 + xi2β2 + · · · + xipβp + εi,(1.1)

where Yi is the response variable for the ith subject, xij is the j th covariate for
the ith subject, βj is the corresponding regression coefficient and εi is the error
term following some specified distribution. Variable selection in regression prob-
lems has long been considered as one of the most important issues in modern
statistics. It involves choosing an appropriate subset Ŝ of indices {1,2, . . . , p} so
that for j ∈ Ŝ, the covariates xij ’s and estimated coefficients β̂j ’s are scientifically
meaningful in interpretation, and estimates ŷi′ = ∑

j∈Ŝ xi′j β̂j have relative good
properties in prediction.

In this paper, we develop a method to carrying out maximum a posteriori (MAP)
estimation for a class of Bayesian models in tackling variable selection problems.
The use of MAP estimation in variable selection problems had previously been
studied by Genkin et al. [11] on logistic regression models with Laplace priors.
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The difference between our model and Genkin et al.’s is that our model assigns a
Gaussian-based spike and slab prior weighted by Bernoulli variables on each re-
gression coefficient. Traditionally, parameter estimation for this model and other
Bayesian variable selection settings relies on Markov chain Monte Carlo for pos-
terior simulation [13, 14, 16, 17, 23, 32] and empirical Bayes methods [4, 12, 21].
A major advantage of MCMC-based inference procedures is that they provide a
practical way to assessing posterior probabilities, and inference tasks such as point
estimation can be carried out straightforwardly based on posterior probability cal-
culation. However, convergence of MCMC-based sampling algorithms is not often
guaranteed and they may become time-consuming as the number of covariates p

becomes quite large. A different inference procedure on models with spike and
slab priors is recently provided by Ishwaran and Rao [19, 20], in that regression
coefficients are estimated via OLS-based shrinkage methods.

Our estimation method is different from the above approaches in several aspects.
In our MAP estimation, an augmented version of the posterior joint density is de-
rived. From frequentists’ point of view, the MAP estimation is equivalent to the
regularization estimation with a mixture penalty of squared l2 and l0 norms on re-
gression coefficients. In practice, we apply a majorization–minimization technique
to modify the penalty function so that convexity of the objective function can be
achieved. We then construct a coordinate descent algorithm based on a specified
iteration scheme to obtain the MAP estimate. The algorithm involves iteratively ap-
plying shrinkage-thresholding steps to obtain estimates that have sparse features,
that is, some of them have exact zero values. In this sense, parameter estimation
and variable selection can be achieved simultaneously. In addition, the algorithm
can be implemented practically in a situation in which the number of covariates p

is much larger than the number of samples n. It is different from the OLS-based
methods in that p ≤ n is required to avoid singularity in matrix operation. The al-
gorithm can also be fast when p is large but the number of covariates with nonzero
coefficients is small. Simulation studies show that the MAP estimate can lead to
better performances in variable selection than those based on other benchmark
methods in various circumstances.

Recent frequentists’ approaches to variable selection focus on applying the idea
of regularization estimation in the situation in which the number of variables is
much larger than the number of samples [2, 7, 10, 27, 28, 36, 38, 40–43]. All these
approaches can either been seen as alternatives or as extensions of the lasso esti-
mation [33]. For theoretical properties of the lasso estimation, Knight and Fu [22]
pointed out that with regular conditions on the order magnitude of the tuning pa-
rameter, the lasso is consistent in parameter estimation. However, as shown by
Meinshausen and Bühlmann [29] and Zou [40], for the lasso estimation, consis-
tency in parameter estimation does not imply consistency in variable selection.
Further conditions on the design matrix and tuning parameter should be imposed
to ensure consistency in variable selection for the lasso estimation. In this aspect,
Zhao and Yu [39] established the Irrepresentable Condition and showed that the
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lasso can be asymptotically consistent in both variable selection and parameter
estimation if the Irrepresentable Condition holds and some regular conditions on
the tuning parameter are satisfied. The same condition was also established by
Zou [40] and Yuan and Lin [37]. Later we will show that the MAP estimator pro-
posed in this paper is asymptotically consistent in variable selection even when
frequentists’ Irrepresentable Condition is violated.

The paper is organized as follows. Section 3 focuses methodological aspects of
the proposed method. Section 4 provides two simulation studies on performances
of the proposed method. Section 5 develops relevant asymptotic analysis for the
method. Section 6 extends the method to parameter estimation in the generalized
linear models. Real data examples are provided in Section 7. Some concluding
remarks are given in Section 8.

2. Notation. Let X be an n×p design matrix. Let xi denote the ith row of X

and xij denote the ij th entry of X. The transpose of X is denoted by XT . Let
y = (y1, y2, . . . , yn) denote the realization of random vector Y = (Y1, Y2, . . . , Yn)

and β = (β1, β2, . . . , βp) denote the regression coefficient vector. Let Ip×p denote
the p × p identity matrix. For a p-dimensional vector a = (a1, a2, . . . , ap), define
the l1 norm by ‖a‖1 = ∑p

j=1 |aj |, the l2 norm by ‖a‖2 = (
∑p

j=1 |aj |2)1/2, the l∞
norm by ‖a‖∞ = maxj |aj | and the l0 norm by ‖aj‖0 = ∑p

j=1 I(aj �= 0), where
I(aj �= 0) is an index variable such that I(aj �= 0) = 1 if aj �= 0 and I(aj �= 0) = 0
otherwise. The probability density of a random variable Z conditional on θ is
denoted by f (z|θ). We define S = {j :βj �= 0, j = 1,2, . . . , p}, that is, the index
set of nonzero valued coefficients in β = (β1, β2, . . . , βp). We further define XS

as the design matrix of X whose columns are indexed by S. Finally, we define
the sign function for variable z as sign(z) = 1 if z > 0; sign(z) = −1 if z < 0;
sign(z) = 0 if z = 0.

3. The method. We start by assigning prior distributions on parameters in the
regression model (1.1). Note that in a regression model a covariate can only be
selected if its coefficient is estimated with a nonzero value. Based on this obser-
vation, we assign an index variable γj to each covariate and define that γj = 1
if βj �= 0 and γj = 0 if βj = 0. Here, we may write γj = I(βj �= 0). With the
definition of γj , the regression model (1.1) has an equivalent representation given
by

Yi =
p∑

j=1

xij γjβj + εi.

From a variable selection point of view, the index vector γ = (γ1, γ2, . . . , γp) is
an indicator for candidate models. Different candidate models will have different
values in γ .
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3.1. The Bayesian formulation. Under a Bayesian framework, we assume

Yi |xi, β, γ, σ 2 ∼ Normal

( p∑
j=1

xij γjβj , σ
2

)
for i = 1,2, . . . , n,

βj |σ 2, γj , λ ∼ γj Normal(0, σ 2λ−1) + (1 − γj )I(βj = 0)

for j = 1,2, . . . , p,(3.1)

σ 2|τ1, τ2 ∼ Inverse-Gamma(τ1, τ2),

γj |κ ∼ Bernoulli(κ) for j = 1,2, . . . , p.

The prior distribution of βj given in (3.1) is the spike and slab prior originally
proposed by Mitchell and Beauchamp [30]. It implies that conditional on γj = 0,
βj is equal to 0 with probability one, and conditional on γj = 1, βj follows a
normal distribution with mean 0 and variance σ 2λ−1. The Bernoulli prior on γj

says that if only prior information is available, γj will have probability κ to be 1
and 1 − κ to be 0. Note that since γj ∈ {0,1}, we can express the mixture form of
the prior on βj as Normal(0, σ 2λ−1)γj × I(βj = 0)1−γj . This representation will
be used in deriving the joint posterior density of the parameters.

Under Bayesian model (3.1), the joint posterior density of β , γ and σ 2 can be
expressed as

f (β, γ, σ 2|X,y,λ, τ1, τ2, κ)
(3.2)

∝ f (y|X,β,γ, σ 2)f (β|σ 2, γ, λ)f (σ 2|τ1, τ2)f (γ |κ).

With (3.2), we can estimate (β, γ, σ 2) via various inference methods. In this paper,
the maximum a posteriori (MAP) method is adopted. Formally, the MAP estimator
for (β, γ, σ 2) is defined by

(β̂, γ̂ , σ̂ 2) = arg min
β,γ,σ 2

{−2 logf (β, γ, σ 2|X,y,λ, τ1, τ2, κ)},(3.3)

that is, the minimizer of the minus 2 logarithm of the joint posterior density. The
minus 2 logarithm of the joint posterior density can be explicitly expressed as

−2 logf (β, γ, σ 2|X,y,λ, τ1, τ2, κ) = 1

σ 2

n∑
i=1

(
yi −

p∑
j=1

xij γjβj

)2

+ λ

σ 2

p∑
j=1

γjβ
2
j

(3.4)

+ 2τ2

σ 2 + (n + 2τ1 + 2) logσ 2

+
p∑

j=1

γj log
{

2πσ 2(1 − κ)2

λκ2

}
+ const.
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Here, we have used an equivalent representation Normal(0, σ 2λ−1)γj × I(βj =
0)1−γj for f (βj |σ 2, λ, γ ) given that γj ∈ {0,1}. Note that in (3.4) the term∑p

j=1 log I(βj = 0)1−γj vanishes since for every j , γj = 1 implies I(βj = 0) = 0.
In turn, (1 − γj ) log I(βj = 0) = 0 · ∞ = 0. On the other hand, γj = 0 implies
I(βj = 0) = 1, and in turn log I(βj = 0) = log 1 = 0.

For practical purposes, we fix σ 2 and multiply (3.4) with σ 2 in the following
discussion. Given that σ 2 is fixed, the function (3.4) has some meaningful inter-
pretations in terms of regularization estimation on β . For example, by definition
γj ≥ 0, and the quantity

∑p
j=1 γj can be seen as an l1 norm on the vector γ . Given

the above argument, we can write the fourth term on the right-hand side of (3.4)
as ρλ,κ,σ 2‖γ ‖1, where ρλ,κ,σ 2 = σ 2 log[2πσ 2λ−1(1 − κ)2κ−2]. Note that as κ in-
creases, ρλ,κ,σ 2 will decrease. It implies that a strong belief in the presence of a
variable will decrease the penalty value for the variable. In addition, by definition
γj = I(βj �= 0), and the term ‖γ ‖1 can further be seen as an l0 norm on β , as
‖γ ‖1 = ∑p

j=1 |I(βj �= 0)| = lims→0
∑p

j=1 βs
j , which is the l0 norm by definition.

Here, we have used the assumption that 00 = 0. We can express the fourth term
in (3.4) by ρλ,κ,σ 2‖β‖0.

3.2. Parameter estimation. Now given all other parameters fixed, the MAP
estimator of σ 2 can be derived by first making a derivative of (3.4) with respect
to σ 2, setting the derivative to zero, and then solving the equation for σ 2. The
estimation of β is further carried out given σ 2 is fixed. With fixed σ 2 and the
interpretations of regularization estimation given above, (3.4) has an equivalent
representation given by

L(β;λ,ρλ,κ,σ 2) = ‖y − Xβ‖2
2 + λ‖β‖2

2 + ρλ,κ,σ 2‖β‖0 + const.(3.5)

Note that here we have multiplied (3.4) with σ 2. Now with (3.5), we can construct
an iteration scheme to obtain (3.3). At the (m+ 1)th iteration, the iteration scheme
is given by

(σ̂ 2)(m+1) =
∑n

i=1(yi − ∑p
j=1 xij γ̂

(m)
j β̂

(m)
j )2 + λ

∑p
j=1 γ̂

(m)
j (β̂

(m)
j )2 + 2τ2

n + ∑p
j=1 γ̂

(m)
j + 2τ1 + 2

,

β̂(m+1) = arg min
β

L
(
β;λ,ρλ,κ,(σ̂ 2)(m+1)

)
,(3.6)

γ̂ (m+1) = (
I
(
β̂

(m+1)
1 �= 0

)
, I

(
β̂

(m+1)
2 �= 0

)
, . . . , I

(
β̂(m+1)

p �= 0
))

.

Note that the objective function (3.5) involves an l0 norm, which by definition, is
not continuous. Therefore, related optimization tasks in the second term of (3.6)
require some refinements. Here, we adopt a relaxation approach to tackling the op-
timization problem. We begins the approach by noting that, mathematically the l0
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norm on a p-dimensional vector β can be expressed as

‖β‖0 = lim
τ3→0

p∑
j=1

log(1 + τ−1
3 |βj |)

log(1 + τ−1
3 )

,(3.7)

which can be verified by seeing (3.7) as a function of τ3 and using l’Hôpital’s
rule. A more detailed discussion on the properties of the log-sum function on the
right-hand side of (3.7) is given in Supplementary Material [35]. With representa-
tion (3.7), the objective function (3.5) can be reexpressed as

L(β;λ,ρλ,κ,σ 2) = ‖y − Xβ‖2
2 + λ‖β‖2

2
(3.8)

+ ρλ,κ,σ 2

{
lim

τ3→0

p∑
j=1

log(1 + τ−1
3 |βj |)

log(1 + τ−1
3 )

}
+ const.

If τ3 is small enough, the log-sum function on the right-hand side of (3.8) will
give an approximate representation of ‖β‖0. Graphical representations for the log-
sum function with different τ3 and their mixtures with the squared l2 norm can
be found in the left and middle panels of Figure 1. In addition, since the log-
sum function in (3.8) is continuous in β , the combinatorial nature of ‖β‖0 is re-
laxed. However, the term log(1+ τ−1

3 |βj |) is not convex in βj , and replacing ‖β‖0
with (3.7) in (3.5) still makes objective function (3.8) remain nonconvex. To tackle
this problem, a majorization–minimization algorithm is adopted. Majorization-
minimization (MM) algorithms [18, 34] are a set of analytic procedures aiming
to tackle difficult optimization problems by modifying their objective functions so
that solution spaces of the modified ones are easier to explore. For an objective
function g(θ), the modification procedure relies on finding a function h(θ; θ(l))

satisfying the following properties:

h
(
θ; θ(l)) ≥ g(θ) for all θ,

(3.9)
h
(
θ(l); θ(l)) = g

(
θ(l)).

In (3.9), the objective function g(θ) is said to be majorized by h(θ; θ(l)). In this
sense, h(θ; θ(l)) is called the majorization function. In addition, (3.9) implies that
h(θ; θ(l)) is tangent to g(θ) at θ(l). Moreover, if θ(l+1) is a minimizer of h(θ; θ(l)),
then (3.9) further implies that

g
(
θ(l)) = h

(
θ(l); θ(l)) ≥ h

(
θ(l+1); θ(l)) ≥ g

(
θ(l+1)),(3.10)

which means that the iteration procedure θ(l) pushes g(θ) toward its minimum.
Now we turn back to the function on the right-hand side of (3.8). Note that,

since log(θ) is a concave function of θ for θ > 0, therefore the inequality

log(θ ′) + θ

θ ′ − 1 ≥ log(θ)(3.11)



1754 T.-J. YEN

holds for all θ > 0 and θ ′ > 0. Note that the left-hand side of (3.11) is convex in θ .
In addition, if we let θ ′ = θ , then (3.11) becomes an equality, which implies that
the left-hand side of (3.11) satisfies the properties stated in (3.9), therefore is a
valid function for majorizing log(θ).

PROPOSITION 3.1. Define ρτ3 = 1/ log(1 + τ−1
3 ) and let L′(β;λ,ρλ,κ,σ 2) be

the same as (3.5) but without the constant term. Then L′(β;λ,ρλ,κ,σ 2) can be
majorized by the following function:

L′′(β;λ,ρλ,κ,σ 2, β
′) = ‖y − Xβ‖2

2 + λ‖β‖2
2 + ρλ,κ,σ 2h2(β;β ′),(3.12)

where

h2(β;β ′) = lim
τ3→0

ρτ3

p∑
j=1

(
log(1 + τ−1

3 |β ′
j |) + |βj | + τ3

|β ′
j | + τ3

− 1
)
.(3.13)

PROOF. Let h1(β) = ‖y−Xβ‖2
2 +λ‖β‖2

2. Assume β(l+1) minimizes L′′(β;λ,

ρλ,κ,σ 2, β ′) given β ′ = β(l). Then with (3.7) and the inequality (3.11), the quantity
L′(β(l+1);λ,ρλ,κ,σ 2) can be bounded in a way such that

L′(β(l+1);λ,ρλ,κ,σ 2
) = h1

(
β(l+1)) + ρλ,κ,σ 2 lim

τ3→0
ρτ3

p∑
j=1

log
(
1 + τ−1

3

∣∣β(l+1)
j

∣∣)
≤ h1

(
β(l+1)) + ρλ,κ,σ 2h2

(
β(l+1);β(l))(3.14)

= L′′(β(l+1);λ,ρλ,κ,σ 2, β
(l))

which verifies the first condition stated in (3.9). For β = β ′, h2(β;β ′) is equal to
the log-sum function in (3.7), which verifies the second condition stated in (3.9)
and completes the proof. �

A graphical representation of using MM algorithms in approximating the log-
sum function in (3.7) can be found in the right panel of Figure 1. From the argu-
ment given above, we can construct an iteration scheme to obtain the minimizer of
L(β;λ,ρλ,κ,σ 2), with the l0 norm, or equivalently the log-sum function, replaced
by h2(β;β ′) defined in Proposition 3.1. For example, in (3.6), β̂(m+1) can be ob-
tained by carrying out the following iteration scheme:

β̂(m+1,l+1)

(3.15)

= arg min
β

{
‖y − Xβ‖2

2 + λ‖β‖2
2 + ρλ,κ,(σ̂ 2)(m+1)

p∑
j=1

φ̂
(m+1,l)
j |βj |

}

over index l, where φ̂
(m+1,l)
j = limτ3→0[log(1+τ−1

3 )(|β̂(m+1,l)
j |+τ3)]−1. The pro-

cedure of using iteration scheme (3.15) in obtaining the minimizer for the objective
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FIG. 1. The penalty functions and related approximations.

function (3.5), or equivalent (3.8), is called the BAVA-MIO (BAyesian VAriable se-
lection using a Majorization–mInimization apprOach), and the resulting minimizer
is called the BAVA-MIO estimator.

Note that the last term on the right-hand side of (3.15) is a linear combination of
φ̂

(m+1,l)
j |βj |, a convex function of βj , therefore given ‖y − Xβ‖2

2 + λ‖β‖2
2 is con-

vex in β , the whole objective function in (3.15) will be convex in β , which guar-
antees that the iteration scheme will converge. In addition, the minimizer (3.15)
can be obtained by using the coordinate descent algorithm proposed by Friedman
et al. [9]. In practice, the coordinate descent algorithm is based on iteratively cy-
cling a one-dimensional soft-thresholding scheme. Given that ρλ,κ,σ 2 is fixed, at
the (m1 + 1)th iteration, the soft-thresholding scheme for the j th coordinate is
given by

β̃
(m1+1)
j =

(
n∑

i=1

x2
ij + λ

)−1

ST

(
n∑

i=1

xij r̃
(m1)
i,−j , ρλ,κ,σ 2

φ̃
(m1)
j

2

)
,(3.16)

where r̃
(m1)
i,−j = yi −∑

j ′ �=j xij ′ β̃
(m′

1)

j ′ , with m′
1 = m1 +1 for j ′ = 1,2, . . . , j −1, and

m′
1 = m1 for j ′ = j +1, j +2, . . . , p, and φ̃

(m1)
j = limτ3→0[log(1+τ−1

3 )(|β̃(m1)
j |+

τ3)]−1. Here ST(a, b) is a soft-thresholding operator defined by ST(a, b) =
sign(a)(|a| − b)+. A detailed derivation of (3.16) is given in Appendix A of Sup-
plementary Material [35].

3.3. Choosing hyperparameters. Choosing appropriate hyperparameters for
prior construction is an important issue in many Bayesian inference problems.
For hyperparameters present in the model (3.1), we consider the triple (λ, τ1, τ2)

first. One principle we adopt in parameterizing the hyperparameters is that as the
number of samples n increases, the impact of the hyperparameters in parameter
estimation will become less significant. In addition, we let τ1 = τ2 + 1, so that
the prior expectation of σ 2 is equal to 1. Given these conditions, one of the possi-
ble choices is (λ, τ1, τ2) = (1/

√
n,p logp/

√
n + 1,p logp/

√
n). We will discuss

other possible settings in the simulation study in the later section.
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Now we consider the prior inclusion probability κ . In some circumstances, data-
driven empirical Bayes approaches [12] are proposed to obtain κ , while in other
circumstances full Bayesian methods that assign priors on κ are proposed. For
example, please see [24]. Unlike previously proposed approaches, in which single
point estimates were obtained for κ , we adopt an approach by specifying a feasible
region for the function

ψ(κ) = 1
2

[
σ 2 log

(
2πσ 2λ−1(1 − κ)2/κ2)]

φ̂(0),(3.17)

and carry out parameter estimation under different values of ψ(κ). Here we have
assumed φ̂

(0)
j = φ̂(0) for j = 1,2, . . . , p. Note that by definition the term φ̂

(0)
j is

a function of the initial value β̂
(0)
j . The function ψ(κ) is the threshold used in

the soft-thresholding scheme (3.16). We carry out the parameter estimation with
values in the feasible region and look for which values of ψ(κ) lead to the best
performance measured by criteria such as ten fold cross validation or the Bayes
factor. Under this approach, estimated parameters can be seen as functions of κ

on the feasible region. Given different values of κ , curve-like paths for estimated
parameters can be obtained. The main reason we adopt this “whole-path” fitting
strategy is that the optimization procedure may get stuck in some stationary points.
It can occur in a situation in which we need an initial value φ̂

(1)
j to run the iteration

scheme (3.15). By definition, φ̂
(1)
j is a function of β̂

(1)
j , which by definition, is a

function of ψ(κ). As pointed out by Candés et al. [3] and Mazumder et al. [25],
different φ̂

(1)
j may lead to different solutions for the minimizer. Under this situa-

tion, a global minimum may not be guaranteed. By using the strategy given above,
we can run the iteration scheme (3.15) with a large number of possible values
of φ̂

(1)
j , therefore eliminating the possibility that the solution is stuck in some local

minima.
Our approach is similar to the one using a fixed grid on the tuning parameter and

then running parameter estimation with different values of the tuning parameter.
This fixed grid approach to tuning parameter selection has been adopted in [9, 11,
27] and is advocated by [10, 34] for fast and accurate parameter estimation.

3.4. A toy example. Here, we provide a toy example to illustrate the BAVA-
MIO estimation. We let the number of samples n = 100 and the number of co-
variates p = 1,000. For regression coefficients β = (β1, β2, . . . , β1,000), we let
β250 = 2, β500 = −3.2, β750 = −1.25, β1,000 = 5.44, and βj = 0 for all j ’s
∈ {1,2, . . . ,1,000} \ {250,500,750,1,000}. We generate each row of X indepen-
dently identically from MVN(0, Ip×p), and then calculating Y = Xβ + ε with
ε ∼ MVN(0, In×n). For the hyperparameters, we let τ1 = 0.2p log(p)/

√
n + 1,

τ2 = 0.2p log(p)/
√

n and λ = 1/
√

n. Further let τ3 = 10−6. We use 100 equal
spaced points to form a grid for �(κ). We perform two BAVA-MIO estimations:
one uses the Bayes factor and the other uses ten fold cross validation for tuning
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parameter selection. Remember the index set S is defined by S = {j :γj = 1}. We
define the Bayes factor between models MS′ and MS by

BF(MS′, MS;y) = f (y|γ ′, τ1, τ2, κ, λ)

f (y|γ, τ1, τ2, κ, λ)
,(3.18)

where the term f (y|γ, τ1, τ2, κ, λ) refers to the marginalized likelihood with β

and σ 2 being integrated out with respect to their prior probability measures. For
the Bayesian model stated in (3.1), the marginalized likelihood has a closed form
representation given by

f (y|γ, τ1, τ2, κ, λ) = π−n/2

|λ−1XT
S XS + Iγ |1/2

(2τ2)
τ1

�(τ1)
�

(
n + 2τ1

2

)
× (

yT (λ−1XSXT
S + In)

−1y + 2τ2
)−[(n+2τ1)/2]

.

In subsequent sections we will use the measure (3.18) for variable selection. In
addition, for all variable selection tasks using (3.18), the baseline model MS will
always refer to the null model.

The results are shown in Figure 2. The path plot in the top left panel of Figure 2
shows that nonzero coefficients entered into the model earlier under the BAVA-
MIO estimation. In addition, the paths of estimated coefficients behave similar
to those under the hard-thresholding estimation, that is, once a coefficient is es-
timated to be nonzero, the corresponding estimation path makes a sharp jump to
the nonthresholded value. Moreover, due to the presence of the squared l2 norm
in the objective function, the number of selected covariates can be larger than the
number of samples. Throughout the estimation procedure, the maximum number
of selected covariates is 831, which is much larger than the number of samples
n = 100. Here we also provide the lasso estimation for regression fitting with
the same data. The results are shown in the bottom panel of Figure 2. As com-
pared with the lasso estimation, in which 33 covariates are selected using ten fold
cross validation, the BAVA-MIO estimations using the Bayes factor and ten fold
cross validation correctly select covariates with nonzero coefficients. In addition,
as shown in the right panel of Figure 2, values of the nonzero coefficients are also
estimated more accurately under the BAVA-MIO estimations.

4. Simulation studies. In this section, we conduct two simulation studies.
The first one is a general assessment on the performance of the BAVA-MIO es-
timation. The second one focuses the performance of the BAVA-MIO estimation
under various situations in which the Irrepresentable Condition may or may not
hold.

4.1. Simulation study I. In the first simulation study, we compare the BAVA-
MIO estimation with other estimation approaches by fitting regression model
Y = Xβ + ε with data generated from different simulation schemes. Here Y and ε
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FIG. 2. Estimation results for the toy example.

are n-dimensional vectors, X is an n × p matrix and β is a p-dimensional vector.
We assume each entry in ε is i.i.d. from Normal(0, σ 2

Y ), and each row in the design
matrix X is i.i.d. from MVN(0,�X). Throughout the whole simulation study, we
let p = 120. For regression coefficient vector β = (β1, β2, . . . , βp), we generate
βj from Normal(0,1) for j = 1,2, . . . ,10 and let βj = 0 for j = 11,12, . . . ,120.
That is, we have 10 nonzero and 110 zero coefficients in the “true” model. In ad-
dition, we use different values of (�X,σ 2

Y , n) in generating the design matrix X

and the error term ε. We apply three different �X to generate the design matrix.
The first one has an independent structure with diagonal terms equal to 1 and off-
diagonal terms equal to 0. The second one has a covariance structure such that
(�X)ij = 1 for i = j and (�X)ij = 0.5 for i �= j . The third one has a covari-
ance structure such that (�X)ij = 0.5|i−j |. Now define the signal-to-noise ratio by

SNR =
√

E(βT �Xβ)/σ 2
Y . We consider σ 2

Y = 10,1 and 0.2 in generating the er-
ror term ε. For �X = I10×10, these values correspond to SNR = 1,3.16 and 7.07,
respectively. For practical purposes, we will use the labels SNR = 1 for experi-
ments using σ 2

Y = 10, SNR = 3.16 for experiments using σ 2
Y = 1 and SNR = 7.07

for experiments using σ 2
Y = 0.2. By using X, β and ε, the response vector Y is

calculated by Y = Xβ + ε. For the number of samples, we consider five values
n = 40,80,120,160 and 200. With three different structures for �X , three differ-
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ent values for σ 2
Y , and five different values for n, we have total 3 × 3 × 5 = 45

simulation experiments.
Here we describe hyperparameter settings in BAVA-MIO estimations. We let

hyperparameters (λ, τ1, τ2) = (1/
√

n,p logp/
√

n + 1,p logp/
√

n) for the cases
of SNR = 3.16 and 7.07. For the case of SNR = 1, we use

λ =
(

1 − ĉorr

ĉorr

)2√
p

n
logp,

τ1 =
(

ĉorr

1 − ĉorr

)(
p logp√

n

)ĉorr/ logn

+ 1,(4.1)

τ2 = 1√
n

(
p logp√

n

)1+ĉorr/ logn

,

where ĉorr is an average over the top 10 percent absolute values of the sample
correlations between response Y and covariates X. For tuning parameter selection,
we use two criteria: the Bayes factor, which is defined in (3.18), and ten-fold cross
validation. The resulting estimators are called BMIO-BF and BMIO-CV, respec-
tively.

We also carry out three other estimation approaches for comparisons. The first
one is the lasso [33]. We use R package “glmnet” to obtain the lasso estimates. The
tuning parameter is selected using ten fold cross validation. The second approach
is the relaxed lasso [28]. We use R package “relaxo,” which is the companion
software to [28], to obtain the relaxed lasso estimates. The tuning parameter is se-
lected using ten fold cross validation with 100 values of scaling parameters equally
spaced in [0,1]. The third approach is the adaptive lasso [40]. We use R package
“parcor” to obtain the adaptive lasso estimates with the default setting that uses the
lasso estimate as the initial value for the weight and selects the tuning parameter λ

via ten fold cross validation.
We collect several performance measures at each simulation run. The first one

is the standardized l2 distance between a given estimate β̂ and the true regression
coefficient vector β , which is defined by

l2-dis(β̂) =
√√√√∑p

j=1(β̂j − βj )2∑p
j=1 β2

j

.

The second one is the predictive mean squared error of β̂ for a test data set, which
is defined by

PMSE(β̂) =
∑ntest

i=1(xT
i,testβ̂ − xT

i,testβ)2

ntest
.

The test data set contains ntest = n × 10 data points generated using a simulation
scheme the same as the training data set. The third one is the number of coefficients
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with nonzero estimated values |Ŝ|, where Ŝ = {j : β̂j �= 0}. The final one is the sign
function-based false positive rates, which is defined by

S-FPR = #{j ∈ Ŝ : sign(β̂j ) �= sign(βtrue,j )}
|Ŝ| ,

where the sign function sign(·) is defined in Section 2.
For each of the 45 simulation experiments, we generate 100 runs to collect the

four performance measures. We then plot the average of each performance mea-
sure against the ratio n/|S|, that is, the ratio between the number of samples and
the number of true coefficients with nonzero values. These plots are shown in
Figures 3, 4 and 5 for SNR = 1,3.16 and 7.07, respectively. From the three fig-
ures, we can see none of the estimation approaches can dominate the others in
all four performance measures. In most cases, BAVA-MIO based estimations have
smaller sign function-based false positive rates, as shown in the second column of

FIG. 3. Simulation results given SNR = 1. Top: Model 1 (covariance matrix with off-diagonal
terms equal to 0); Middle: Model 2 (covariance matrix with off-diagonal terms equal to 0.5); Bot-
tom: Model 3 (covariance matrix with off-diagonal terms following a specified covariance structure).
First column: standardized l2-distance between estimated and true values; Second column: sign func-
tion-adjusted false positive rate; Third column: prediction mean squared error; Fourth column: num-
ber of nonzero estimates.
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FIG. 4. Simulation results given SNR = 3.16. Top: Model 1 (covariance matrix with off-diago-
nal terms equal to 0); Middle: Model 2 (covariance matrix with off-diagonal terms equal to 0.5);
Bottom: Model 3 (covariance matrix with off-diagonal terms following a specified covariance struc-
ture). First column: standardized l2-distance between estimated and true values; Second column: sign
function-adjusted false positive rate; Third column: prediction mean squared error; Fourth column:
number of nonzero estimates.

each figure. It implies that more accurate variable selection may be done using the
BAVA-MIO estimations. These findings become more significant as the number
of samples increases. In addition, BAVA-MIO estimations have fewer numbers of
nonzero estimates, as shown in the fourth column of each figure. Moreover, since
the BAVA-MIO estimation using the Bayes factor has relatively fewer numbers of
nonzero estimates, it is surprising that the PMSE and l2-dis measures under the
BMIO-BF estimation are comparable to those under other estimation approaches,
for example, in the cases with SNR = 3.16 and in some cases with SNR = 1. How-
ever, we also noticed that the BMIO-BF estimation has higher values in the PMSE
and l2-dis in the cases with SNR = 7.07, particularly in the situations in which the
number of samples is small.

4.2. Simulation study II. In the second simulation study, we investigate the
impact of the Irrepresentable Condition on the performance of BAVA-MIO esti-
mation in variable selection. Before stating the Irrepresentable Condition, we give
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FIG. 5. Simulation results given SNR = 7.07. Top: Model 1 (covariance matrix with off-diago-
nal terms equal to 0); Middle: Model 2 (covariance matrix with off-diagonal terms equal to 0.5);
Bottom: Model 3 (covariance matrix with off-diagonal terms following a specified covariance struc-
ture). First column: standardized l2-distance between estimated and true values; Second column: sign
function-adjusted false positive rate; Third column: prediction mean squared error; Fourth column:
number of nonzero estimates.

some notation definitions. We define S0 = {j :βj �= 0, for some j ∈ {1,2, . . . , p}
and Sc

0 = {1,2, . . . , p} \ S0. Let βS0 denote the coefficients with indices in S0 and
βSc

0
the coefficients with indices in Sc

0. Similar definitions are also applied to XS0

and XSc
0
. An estimator β̂(n) is said to be sign consistent in estimating β if the

probability of the event {sign(β̂(n)) = sign(β)} approaches to 1 as n → ∞. Given
the sign consistency holds, the estimated index set Ŝ0 = {j : β̂j �= 0} will be the
same as the true index set S0, therefore the sign consistency implies variable se-
lection consistency, that is, asymptotically with probability one, nonzero-valued
coefficients will have nonzero estimated values and zero-valued coefficients will
be estimated with zero values.

Zhao and Yu [39] showed that if one wants the lasso estimation to achieve the
sign consistency, then the design matrices X must satisfy the following condition:

‖XT
Sc

0
XS0(X

T
S0

XS0)
−1 sign(βS0)‖∞ < 1,(4.2)
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where βS0 is the vector of nonzero-valued coefficients. The condition (4.2) is
called the (Weak) Irrepresentable Condition. If the Irrepresentable Condition (4.2)
fails to hold, then the sign consistency will never occur even when n → ∞.
An intuitive way to explain the Irrepresentable Condition is to see the quantity
XT

Sc
0
XS0(X

T
S0

XS0)
−1 as a least squares estimate for the regression XSc

0
on XS0 . In

this sense, the Irrepresentable Condition states that the largest amount of coeffi-
cients for the regression XSc

0
on XS0 should not exceed 1, that is, XSc

0
is “irrepre-

sentable” in terms of XS0 .
Here we conduct a simulation study for the investigation. We generate 100

design matrices in which each row is i.i.d. from MVN(0,�X), with �X ∼
Wishart(Ip×p,p,p) with p = 30. This setting is similar to the one used in Zhao
and Yu’s study. Corresponding regression coefficients β are generated in a way that
the first 5 entries of β are i.i.d. from Normal(0,1), and the rest of 25 entries are
set to 0. Note that for some pairs (X,β), the Irrepresentable Condition (4.2) will
hold, but for some pairs it will not hold. Zhao and Yu defined the irrepresentable
statistic by

Irr.stat = 1 − ‖XT
Sc

0
XS0(X

T
S0

XS0)
−1 sign(βS0)‖∞.(4.3)

The Irrepresentable Condition is considered to be violated if Irr.stat is smaller than
zero. We carry out 100 simulation runs and calculate the irrepresentable statistic for
each pair (X,β). In each run, we generate n = 100 data points. We use σ 2

Y = 0.05
to generate the error term ε, which is corresponding to SNR = 10. We then fit the
regression model using the lasso estimation and the BAVA-MIO estimation with
these data points. For each pair (X,β), we calculate the model selection probabil-
ity P(Ŝ0 = S0) based on counting the times of whether the estimated sign vector
matched the true sign vector throughout the whole regularization paths.

We also carry out the same simulation experiment under SNR = 5, 2 and 1. The
scatter plots in Figure 6 show the estimated model selection probability against
Irr.stat under signal-to-noise ratios SNR = 10, 5, and 2. From these plots, we can

FIG. 6. Scatter plots for the sign probability P(Ŝ = S0) against the Irrepresentable Statistic under
different signal-to-noise ratios.
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TABLE 1
The sign probability P(Ŝ = S0) under different signal-to-noise ratios. Each value is calculated by
averaging over 100 simulation runs, and the corresponding standard error is given in the bracket.

The term corr. in the second line of each panel is the squared correlation between the sign
probability and the irrepresentable statistic. We use Kendall’s τ for the correlation calculation

Name SNR = 10 SNR = 5 SNR = 2 SNR = 1

BMIO 0.398 (0.030) 0.338 (0.030) 0.077 (0.018) 0.023 (0.006)
corr. 0.052 0.047 0.180 0.110

Lasso 0.314 (0.047) 0.203 (0.030) 0.072 (0.016) 0.022 (0.006)
corr. 0.418 0.232 0.194 0.107

see that performances of the BAVA-MIO and the lasso estimations are deteriorated
when the signal-to-noise ratio is decreasing. However, we also found in some cir-
cumstances the BAVA-MIO estimation can achieve high model selection probabil-
ities even when the Irrepresentable Condition is violated, that is, Irr.stat is smaller
than zero. In Section 5, we will provide a theoretical result to explain this phe-
nomenon. The second and fourth rows in Table 1 show the squared correlations
between the estimated model selection probability and the irrepresentable statis-
tic. The squared correlations for the BAVA-MIO estimation are relatively small in
comparison with the lasso estimation.

5. Asymptotic analysis. In this section, we will derive asymptotic results for
the BAVA-MIO estimator. When deriving the asymptotic results, we will consider
a situation in which the number of parameters p is an increasing function of the
number of samples n. For practical purposes, we will focus on the case p = p(n) ∝
nα , where α > 0. The first asymptotic result gives a theoretical explanation for
the invariance of the BAVA-MIO estimator under the Irrepresentable Condition.
The second result is on the posterior model consistency related to the hierarchical
Bayesian formulation (3.1), and the third result shows the estimation consistency
of the BAVA-MIO estimator.

5.1. Sign consistency. Before stating the result of sign consistency, we give
some notation definitions first. We use the same definitions given in Section 4.2
for S0, Sc

0, βS0 , βSc
0
, XS0 and XSc

0
. Further let S denote the space that S0 belongs

to. For a symmetric matrix C, let �min(C) and �max(C) denote the smallest and
the largest eigenvalues, respectively.

Our result on the sign consistency of the BAVA-MIO estimator is based on the
following simplification: the variable σ 2 is fixed and the term ρλ,κ,σ 2 in (3.5) is
treated as a constant. For simplicity, we let ρ = ρλ,κ,σ 2 . Now define

β̂τ3 = arg min
β

‖y − Xβ‖2
2 + λ‖β‖2

2 + ρ

p∑
j=1

log(1 + τ−1
3 |βj |)

log(1 + τ−1
3 )

.(5.1)
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Note that the log-sum function on the right-hand side of (5.1) becomes ‖β‖0 if
τ3 → 0, and β̂τ3 in this sense can be seen as the BAVA-MIO estimator. Now define

E0,τ3 = {β : sign(βj ) = sign(β̂
τ3
j ) for j = 1,2, . . . , p},(5.2)

that is, the event of sign consistency for the estimator β̂τ3 in (5.1). For practical
purposes, further define CSS0 = n−1(XT

S0
XS0 + λI), CScS0 = n−1XT

Sc
0
XS0 , DS0 =

n−1/2XT
S0

ε and DSc
0

= n−1/2XT
Sc

0
ε. In the following, we give some assumptions

that will be used in deriving the asymptotic results.

ASSUMPTION 1. For CSS = n−1(XT
S XS + λI) and any S ∈ S , the maximum

eigenvalue �max(CSS) and the minimum eigenvalue �min(CSS) satisfy the follow-
ing condition:

0 ≤ c1 < �min(CSS) ≤ �max(CSS) ≤ c2 < ∞.

ASSUMPTION 2. For the vector XT ε, ‖XT ε‖1 = O(p).

ASSUMPTION 3. For parameter λ, we assume 0 ≤ λ < ∞. For parameter ρ,
we assume 0 ≤ ρ and ρn−1/2 → 0.

Assumption 1 is a special case of the Restricted Eigenvalue Assumption stated
in Bickel et al. [1]. It implies that the inverse of CSS0 exists and the ratio
[�max(X

T
S XS) + λ]/[�min(X

T
S XS) + λ] ≤ c2/c1 is bounded from above for any

S ∈ S . Assumption 2 is equivalent to the statement that n−1/2‖XT ε‖1 is bounded
from some quantity proportional to pn−1/2 as n → ∞, which further implies
‖DS0‖1 and ‖DSc

0
‖1 are bounded from the quantity as well.

THEOREM 5.1. Given that Assumptions 1 to 3 hold, if the number of covari-
ates p ∝ nα , 0 < α < 1/2, and τ3 ∝ n−1, then we have

P(E0,τ3) → 1

as n → ∞.

The proof is given in Appendix C of Supplementary Material [35]. The proof
will start by exploring the KKT conditions associated to the minimization problem
stated in (5.1). Note that in Theorem 5.1 we do not assume that the Irrepresentable
Condition should hold. Indeed, as stated in Corollary C1 in Appendix C, even if
the Irrepresentable Condition is violated, Theorem 5.1 will still hold given that
some mild condition is imposed.
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5.2. Posterior model consistency. We give notation definitions first. Let yn =
(y1, y2, . . . , yn). The notation yn emphasizes the fact that the number of entries in
the observed response vector y is n. Further let MS denote the model characterized
by the index set S. Under a Bayesian framework, MS usually refers to the sam-
pling density, and posterior model consistency is defined as P(MS0 |yn) → 1 as
n → ∞, where MS0 can be seen as the “true model,” or the true sampling density
that a sample comes from. The posterior model consistency states that the posterior
probability will put all its mass on MS0 as the sample size goes to infinity. Note
that in general, multiple true models are allowed under Bayesian frameworks, that
is, S0 may not be unique. However, for simplicity we only pay attention on the
situation in which there is only one true model.

Note that the posterior probability P(MS′ |yn) with S′ ∈ S can be expressed in
terms of Bayes factors by

P(MS′ |yn) = f (yn|MS′)f (MS′)∑
S∈S f (yn|MS)f (MS)

(5.3)

= BF(MS′, MS0;yn)f (MS′)∑
S∈S BF(MS, MS0;yn)f (MS)

.

The formulation (5.3) implies that the event P(MS0 |yn) → 1 is equivalent to the
events BF(MS, MS0) → 0 for all S ∈ S and S �= S0, given that the probability
f (MS0) is bounded from zero. It turns out that to examine whether the posterior
probability is consistent at the true model MS0 is the same as to examine whether
Bayes factors between other models and the true model will approach to zero or
not.

Here, we make some assumptions on the Bayesian formulation (3.1) before
stating the main result of posterior model consistency.

ASSUMPTION 4. The prior probability on the true model MS0 is bounded
away from zero, that is, f (MS0) > 0.

ASSUMPTION 5. We assume λ−1τ2 < ∞.

ASSUMPTION 6. The condition

(yn)T yn

�min(XS0X
T
S0

)
< (yn)T (XSXT

S + λI)−1yn(5.4)

holds for all n ∈ N
+, S ∈ S \ S0 and 0 ≤ λ < ∞.

Assumption 4 states that the true model should always have positive mass un-
der the prior. It is a reasonable assumption since otherwise by Bayes’ theorem the
posterior probability of MS0 will be zero. In addition, Assumption 6 is a technical
condition which ensures that the ratio (yn)T (XS0X

T
S0

+λI)−1yn/[(yn)T (XSXT
S +
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λI)−1yn] is smaller than 1. The assumption will be useful in proving the conver-
gence of the Bayes factor BF(MS, MS0;yn).

THEOREM 5.2. Given Assumptions 4 to 6 hold and the number of covariates
p ∝ nα , the inequality

P(MS0 |yn) ≥ 1 − c3 exp
{
−nα

2
(n1−αξ − c11 log 4)

}
will hold for some constants 0 ≤ c3 < ∞, ξ > 0, 0 < c11 < ∞ and n∗ > 0 for all
n > n∗. Therefore, for 0 < α < 1, P(MS0 |yn) → 1 as n → ∞.

The proof of Theorem 5.2 is given in Appendix D of Supplementary Mate-
rial [35].

5.3. Estimation consistency. Using (5.1), the BAVA-MIO estimator can be de-
fined as β̂BMIO = limτ3→0 β̂τ3 . Now we deal with the estimation consistency of
β̂BMIO under a frequentist’s framework. We will derive an asymptotic bound for
the l2 distance between β̂BMIO and β0 and show that the l2 distance converges to 0
as n → ∞. Let β0 denote the coefficient vector corresponding to the true model
MS0 . Define the expected l2 distance between estimator β̂ and the true coeffi-
cient β0 by

EY [‖β̂ − β0‖2
2] =

∫
‖β̂ − β0‖2

2f (y|β0) dy,

where f (y|β0) is the sampling density parametrized by the true parameter β0.
Before deriving the asymptotic result, we make some finite moment assumptions
on the true parameters (β0, σ

2).

ASSUMPTION 7. There exist finite constants c4 > 0 and c5 > 0 such that
β2

0,j < c4 for j = 1,2, . . . , p, and σ 2 < c5.

Assumption 7 ensures that parameter β0 and parameter σ 2 are bounded away
from above as the sample size n goes large.

THEOREM 5.3. Given Assumptions 1, 3 and 7 hold and the number of covari-
ates p ∝ nα with α > 0, the inequality

P(‖β̂BMIO − β0‖2
2 > ξn) ≤ c13 exp{− log(n1−αξn)}(5.5)

will hold for some positive finite constant c13 and ξn. Assume ξn ≥ 0 is decreasing
with n, that is, ξn → 0 as n → ∞. Let ξn ∝ n−α∗

for some α∗ > 0. Then with the
condition 0 < α∗ < α < 1/2, P(‖β̂BMIO − β0‖2

2 > ξn) → 0 as n → ∞.

The proof of Theorem 5.3 is given in Appendix E of Supplementary Mate-
rial [35].
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6. An extension to generalized linear models. Here we extend the proposed
method, the BAVA-MIO, to parameter estimation in the generalized linear models.
Consider the density of the exponential family

f (y|θ,ϕ) = exp
{
yθ − b(θ)

ϕ
+ d(y,ϕ)

}
,(6.1)

where θ is a parameter characterizing mean of the distribution and ϕ is a parameter
characterizing dispersion of the distribution. Under the exponential family (6.1),
variable Y has properties such that E(Y |θ,ϕ) = b′(θ), Var(Y |θ,ϕ) = b′′(θ)ϕ. Now
let ν = b′(θ). For a generalized linear model, there exists a link function η such that
η(ν) = xT β . The link function gives a flexible connection between the mean ν and
the predictor xT β , and a valid regression can be formulated under this parametriza-
tion. In addition, ν is parametrized by θ , therefore by inverse mapping, we can
express θ as a function of xT β . We write θ = θ(xT β).

For a practical inference concern, we will not assign a prior on ϕ in the follow-
ing Bayesian hierarchical formulation. We only assign priors on regression coef-
ficients β and covariate indices γ . The inference concern arises from the fact that
the estimation of ϕ is dependent on the function d(y,ϕ), and in general, d(y,ϕ) is
case dependent. We will launch an investigation on how to assign a prior on ϕ in
the future, but at present we only focus on inference based on priors on β and γ .
Now consider the logarithm of the joint density function

− logf (β, γ |X,y,ϕ,λ, κ) = −
n∑

i=1

{
yiθi(x

T
i β) − b[θi(x

T
i β)]

ϕ
+ d(yi, ϕ)

}

+ λ

2ϕ

p∑
j=1

γjβ
2
j(6.2)

+ 1

2

p∑
j=1

γj log
{

2πϕ(1 − κ)2

λκ2

}
+ const.

The first term in (6.2) is the logarithm of joint sampling density over i =
1,2, . . . , n, and the second and third terms are logarithms of the priors on β and
covariate indices γ , respectively. To modify (6.2) for BAVA-MIO estimation, we
first multiply (6.2) with ϕ. We then apply a majorization–minimization technique
to obtain an approximation to the l0 norm penalty. The BAVA-MIO estimator of β

is defined as the minimizer of the approximate objective, which can be obtained
by the following iteration scheme:

β̂(m+1) = arg min

{
−

n∑
i=1

{yiθi(x
T
i β) − b[θi(x

T
i β)]}

(6.3)

+ λ

2
‖β‖2

2 + ρ‖φ̂(m)β‖1

}
,
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where ρ = ϕ[log 2πϕ(1 − κ)2(λκ2)−1]/2 and φ̂(m) = limτ3→0[log(1 + τ−1
3 ) ×

(|β̂(m)| + τ3)]−1. Further, by differentiating (6.3) with respect to β , and setting the
derivatives to zero, we obtain the subgradient equations of β , which are given by

−XT Wr + λβ + gβρφ̂(m) = 0,(6.4)

where r = (y − ν)η′(ν), W = diag{[η′(ν1)
2]b′′(θ1), . . . , [η′(νn)

2]b′′(θn)}−1, ν =
(ν1, ν2, . . . , νn) with νi = b′(θi) and gβ = (gβ1, gβ2, . . . , gβp) is the subgradient
vector of ‖β‖1 such that gβj

= 1 if βj > 0, gβj
= −1 if βj < 0 and gβj

∈ [−1,1]
if βj = 0. The term XT Wr in (6.4) is a standard result in parameter estimation of
the generalized linear models, and its derivation can be found in [26]. The term
XT Wr allows us to formulate an iteration scheme to approximate the solution of
the subgradient equations (6.4). Here we will use the iteration scheme

(β̂∗)(m+1) = arg min
β

{
1

2

∥∥U(m)(z(m) − Xβ
)∥∥2

2 + λ

2
‖β‖2

2 + ρ
∥∥φ̂(m)β

∥∥
1

}
,(6.5)

where

z(m) = r(m) + η(m),

U(m) = (W 1/2)(m),

to approximates the solution of the subgradient equations (6.4). The j th element
of the iteration scheme (6.5) can be obtained by further carrying out the following
soft-thresholding scheme coordinatewise:

(β̃∗
j )(m+1,l+1) =

(
n∑

i=1

w
(m)
ii x2

ij + λ

)−1

ST

(
n∑

i=1

xijw
(m)
ii ṽ

(m,l)
i,−j , ρφ̃

(m)
j

)
,(6.6)

where w
(m)
ii is the ith diagonal term of W(m), ṽ

(m,l)
i,−j = z

(m)
i − ∑

j ′ �=j xij β̃
∗
j ′

with β̃∗
j ′ = (β̃∗

j ′)(m+1,l+1) for j ′ = 1,2, . . . , j − 1 and β̃∗
j ′ = (β̃∗

j ′)(m,l) for j ′ =
j + 1, j + 2, . . . , p, and ST(a, b) is the soft-thresholding operator defined by
ST(a, b) = sign(a)(|a| − b)+.

We now conduct a simulation study to assess the performance of the BAVA-
MIO estimation. We take logistic regression as the example. For the true model,
we assume Yi ∼ Bernoulli(ζi), where ζi is parametrized in terms of predictor xT

i β

via the link function log[(ζi)/(1 − ζi)]. We further let the number of covariates
p = 120. For the regression coefficients β , we generate the j th entry βj from
Normal(0,1) for j = 1,2, . . . ,10, and let the rest of 110 β ′

j s equal to zero. We
simulate covariate vector xi i.i.d. from MVN(0,�X). We consider three �X’s, the
same as those described in Section 4.1, to generate the covariate vectors. With β

and xi , we simulate Yi from Bernoulli(ζi) for the cases of n = 100 and n = 200.
With three different values for �X and two different values for n, we have six sce-
narios in the simulation study. For each scenario, we generate 100 simulation runs.
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TABLE 2
Results of BAVA-MIO GLM estimation. Each value is calculated by averaging over 100 simulation

runs, and the corresponding standard error is given in the bracket. BMIO-CV: the BAVA-MIO
estimation using ten-fold cross validation; lasso: the lasso estimation. The top panel: covariance
matrix with off-diagonal terms equal to 0; The middle panel: covariance matrix with off-diagonal

terms equal to 0.5; The bottom panel: covariance matrix with off-diagonal terms following a
specified covariance structure

n PMSE l2-dis S-FPR |̂S|
BMIO-CV 100 0.186 (0.004) 0.039 (0.002) 0.305 (0.031) 11.39 (1.788)
GLM-lasso 100 0.173 (0.003) 0.044 (0.004) 0.680 (0.012) 21.34 (1.050)
BMIO-CV 200 0.145 (0.003) 0.018 (0.001) 0.176 (0.021) 7.54 (0.549)
GLM-lasso 200 0.144 (0.002) 0.026 (0.001) 0.694 (0.011) 27.65 (1.141)

BMIO-CV 100 0.180 (0.004) 0.055 (0.003) 0.455 (0.031) 13.86 (1.841)
GLM-lasso 100 0.169 (0.003) 0.052 (0.003) 0.654 (0.018) 17.54 (0.966)
BMIO-CV 200 0.157 (0.003) 0.027 (0.002) 0.327 (0.025) 8.58 (0.564)
GLM-lasso 200 0.154 (0.003) 0.030 (0.001) 0.654 (0.012) 20.67 (0.908)

BMIO-CV 100 0.180 (0.004) 0.046 (0.003) 0.271 (0.028) 8.28 (1.187)
GLM-lasso 100 0.170 (0.003) 0.047 (0.003) 0.668 (0.016) 19.18 (0.914)
BMIO-CV 200 0.152 (0.004) 0.022 (0.001) 0.203 (0.023) 7.19 (0.478)
GLM-lasso 200 0.150 (0.003) 0.027 (0.001) 0.675 (0.014) 23.50 (1.045)

In each simulation run, we apply the BAVA-MIO estimation to fit a logistic regres-
sion model. We let hyperparameter λ = n−1/2 for all estimations. Note that for a
Bernoulli variable, a closed form representation for the Bayes factor does not ex-
ist, therefore we only use ten fold cross validation for tuning parameter selection.
For comparison purposes, we also carry out the lasso estimation using R package
“glmnet” and use ten fold cross validation for tuning parameter selection. We col-
lect four performance measures, the same as those described in Section 4.1, at each
simulation run. Average values of the four performance measures over the 100 sim-
ulation runs are given in Table 2. From these tables we can see that the BAVA-MIO
estimation in general has slightly larger values in PMSE than the lasso estimation
has, but it gives far fewer number of selected covariates, more accurate results in
covariate selection, and in some circumstances, better parameter estimation than
the lasso estimation.

7. Real data examples. In this section, we present two real data analyses. We
will apply methods developed in Section 3 and Section 6 to estimate parameters in
regression models.

7.1. Diabetes data. The Diabetes data contains a measure on disease pro-
gression and 10 covariates: age, sex, the BMI index, blood pressure and six
related variables for 442 diabetes patients. In our analysis, each covariate has
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TABLE 3
Estimation results based on the Diabetes data. The value in the bracket is the inclusion probability
of the covariate based on the 100 subsampling estimations. For g-prior, hyper-g and BIC, the value

in the bracket is the posterior inclusion probability of the covariate

Name BMIO-BF BMIO-CV g-prior hyper-g BIC

age 0.00 (0.01) 0.00 (0.30) 0.00 (0.11) 0.00 (0.33) 0.00 (0.05)

sex −11.23 (0.49) −11.08 (0.64) −10.64 (0.99) −8.02 (0.97) −10.71 (0.98)

bmi 24.92 (1.00) 25.06 (1.00) 24.96 (1.00) 19.00 (1.00) 25.37 (1.00)

map 15.54 (0.86) 15.01 (0.92) 15.29 (1.00) 11.55 (1.00) 15.53 (1.00)

tc 0.00 (0.03) 0.00 (0.33) −16.62 (0.71) −13.54 (0.75) 0.00 (0.57)

ldl 0.00 (0.10) 0.00 (0.28) 8.51 (0.50) 6.51 (0.59) 0.00 (0.38)

hdl −13.76 (0.69) −11.20 (0.81) 0.00 (0.49) 0.00 (0.57) −7.29 (0.57)

tch 0.00 (0.01) 0.00 (0.27) 0.00 (0.30) 0.00 (0.48) 0.00 (0.20)

ltg 22.59 (1.00) 25.72 (1.00) 29.13 (1.00) 22.29 (1.00) 28.31 (1.00)

glu 0.00 (0.10) 3.44 (0.47) 0.00 (0.17) 0.00 (0.41) 0.00 (0.07)

been rescaled to have mean zero and variance 1, and the response variable has
been centered around its mean. All estimations are based on the rescaled covari-
ates and centered response variable. For hyperparameters, we let (τ1, τ2) = (1,1)

and λ = 0.2 × √
p log(p)/n ≈ 0.049. We perform two BAVA-MIO estimations.

The first one uses the Bayes factor (BMIO-BF) while the second one uses ten
fold cross validation (BMIO-CV) for tuning parameter selection. The results are
shown in the first two columns of Table 3. From the results, we can see the
BMIO-BF estimation leads to a covariate selection sparser than its counterpart
using ten fold cross validation. We also run another 100 estimations based on
sampling half of the 442 subjects without replacement to calculate the inclu-
sion probabilities for the 10 covariates. For each covariate, the inclusion prob-
ability is defined as the proportion of occurrences of nonzero estimated values
appearing in the 100 subsampling estimations. We compare the results from the
BAVA-MIO estimations with the results from three other estimation approaches:
g-prior, hyper-g and BIC. All the three estimations are carried out using R pack-
age “BAS,” which is developed by Clyde, Ghosh and Littman [5] as the com-
panion software to the paper of Liang et al. [24]. These results are shown in
the last three columns of Table 3. For the three estimations using the BAS
package, we report the models estimated with the highest marginalized like-
lihood. The results show that the estimation based on BAVA-MIO using the
Bayes factor has relative sparse covariate selection among the five proposed ap-
proaches. Among the 10 inclusion probabilities estimated via the BMIO-BF esti-
mation, only four are above 0.5, compared to five for the BMIO-CV estimation,
six for the g-prior and the BIC estimations, and seven for the hyper-g estima-
tion.
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TABLE 4
Classification results for Golub’s gene expression data

Method CV-error Test-error # of genes

Golub et al. [15] 3/38 4/34 50
Elastic Net (Zou and Hastie [41]) 3/38 0/34 45
l1-pen GLM (Park and Hastie [31]) 1/38 2/34 23
SIS-SCAD-LD (Fan and Lv [8]) 0/38 1/34 16
FAIR (Fan and Fan [6]) 1/38 1/34 11
BMIO-CV I 1/38 1/34 8
BMIO-CV II 1/38 1/34 9
BMIO-CV III 1/38 0/34 23

7.2. Golub’s Leukemia data. The Leukemia gene expression data, adopted
from R package “golubEsets,” is originally from [15]. It consists of gene expres-
sion profiles for 72 Leukemia patients, of which 47 are diagnosed with acute lym-
phoblastic leukemia (ALL) and 25 are diagnosed with acute myeloid leukemia
(AML). Each profile has 7,129 gene expression values measured by Affymetrix
Hgu6800 chips. The data set is further divided into the training set, which con-
sists of 27 ALL patients and 11 AML patients, and the test set, which consists of
20 ALL patients and 14 AML patients. Our aim is to identify a patient’s disease
type with a small set of genes. The data set is processed as follows. The disease
type is labeled with 0 for the acute lymphoblastic leukemia and 1 for the acute
myeloid leukemia. Each covariate is first rescaled to have a range greater than
or equal to zero. Then it is under a suitable logarithm transform before rescaled
again to have mean 0 and variance 1. For the classification rule construction, we
apply the BAVA-MIO estimation to fit logistic regression models with the training
data. We parametrize hyperparameter λ = λ∗√p logp/n and perform three esti-
mations with λ∗ = 0.05,0.1 and 0.5. The tuning parameter is selected via five fold
cross validation and the resulting estimates are termed BMIO-CV I, BMIO-CV II
and BMIO-CV III, respectively. With estimated regression coefficients, we calcu-
late the label probability for each patient, and classifying those with label prob-
abilities smaller than 0.5 to the acute lymphoblastic leukemia group, and those
with label probabilities greater than 0.5 to the acute myeloid leukemia group. The
corresponding classification results are reported in Table 4, along with classifica-
tion results on the same data set done by Golub et al. [15] and four other esti-
mation approaches [6, 8, 31, 41] aiming to tackle high-dimensional classification
problems. The results show that BAVA-MIO-based classification rules tend to use
less numbers of genes in identifying a patient’s disease type. However, even with
smaller numbers of genes, the BAVA-MIO-based classification rules can still gen-
erate results that are comparable with those provided by other benchmark meth-
ods.
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8. Concluding remarks. One important issue to which we did not pay much
attention is the impacts of hyperparameters on estimation results. Here we provide
some possible modifications in addressing this issue. First, an equally spaced grid
may be constructed for hyperparameter λ so that the estimation procedure can be
carried out along the grids on λ and �(κ). Another possible modification is to drop
the prior assumption on σ 2 and treat it as a constant. In this approach the impact
of σ 2 on parameter estimation can be dealed together with the tuning parame-
ter �(κ). This approach has been adopted in Section 6 for parameter estimation in
the generalized linear models.
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SUPPLEMENTARY MATERIAL

Supplement File (DOI: 10.1214/11-AOS884SUPP; .pdf). In Supplementary
Material, we provide brief discussions on the log-sum function, connections with
other approaches, derivation of the soft-thresolding operator, and proofs of Theo-
rems 5.1, 5.2 and 5.3.
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