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SUPREMA OF LÉVY PROCESSES1
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In this paper we study the supremum functional Mt = sup0≤s≤t Xs ,
where Xt , t ≥ 0, is a one-dimensional Lévy process. Under very mild as-
sumptions we provide a simple, uniform estimate of the cumulative distribu-
tion function of Mt . In the symmetric case we find an integral representation
of the Laplace transform of the distribution of Mt if the Lévy–Khintchin ex-
ponent of the process increases on (0,∞).

1. Introduction. By a classical reflection argument, the supremum functional
Mt = sup0≤s≤t Xs of the Brownian motion Xt has truncated normal distribution,
P(Mt ≥ x) = 2P(Xt ≥ x) (x ≥ 0). A similar question for symmetric α-stable pro-
cesses was first studied by Darling [11], and the case of general Lévy processes
Xt was addressed by Baxter and Donsker [3]. Theorem 1 therein gives a formula
for the double Laplace transform of the distribution of Mt , which for a symmetric
Lévy process Xt with Lévy–Khintchin exponent �(ξ) reads∫ ∞

0

∫ ∞
0

e−ξx−ztP(Mt ∈ dx)dt

(1.1)

= 1√
z

exp
(
− 1

π

∫ ∞
0

ξ log(z + �(ζ))

ξ2 + ζ 2 dζ

)
.

Inversion of the double Laplace transform is typically a very difficult task. Apart
from the Brownian motion case, an explicit formula for the distribution of Mt was
found for the Cauchy process (the symmetric 1-stable process) by Darling [11],
for a compound Poisson process with �(ξ) = 1− cos ξ by Baxter and Donsker [3]
and for the Poisson process with drift by Pyke [32].

The development of the fluctuation theory for Lévy processes resulted in many
new identities involving the supremum functional Mt ; see, for example, [5, 13, 31,
33]. There are numerous other representations for the distribution of Mt , at least
in the stable case; see [4, 7, 11, 12, 15, 16, 19, 20, 27, 28, 30, 36]. The main goal
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of this article is to give a more explicit formula for P(Mt < x) and simple sharp
bounds for P(Mt < x) in terms of the Lévy–Khintchin exponent �(ξ) for a class
of Lévy processes. Most estimates of the cumulative distribution function of Mt

are proved for very general Lévy processes, without symmetry assumptions.
Let τx denote the first passage time through a barrier at the level x for the pro-

cess Xt ,

τx = inf{t ≥ 0 :Xt ≥ x}, x ≥ 0,

with the infimum understood to be infinity when the set is empty. We always as-
sume that X0 = 0. Since P(Mt < x) = P(τx > t), the problems of finding the cu-
mulative distribution functions of Mt and τx are the same. The supremum func-
tional and first passage time statistics are important in various areas of applied
probability [1, 2], as well as in mathematical physics [21, 26]. The recent progress
in the potential theory of Lévy processes is, in part, due to the application of fluc-
tuation theory; see [9, 10, 18, 22–25].

The paper is organized as follows. Section 2 contains some preliminary material
related to Bernstein functions, Stieltjes functions and estimates for the Laplace
transform. In Section 3 (Theorem 3.1 and Corollary 3.2) we prove, under mild
assumptions, the estimate

P(Mt < x) ≈ min
(
1, κ(1/t,0)V (x)

)
, t, x > 0,

where V (x) and κ(z,0) are the renewal function for the ascending ladder-height
process, and the Laplace exponent of the the ascending ladder-time process cor-
responding to Xt , respectively. Here f (x) ≈ g(x) means that there are constants
c1, c2 > 0 such that c1g(x) ≤ f (x) ≤ c2g(x). In Section 4 we show that in the
symmetric case, given some regularity of �(ξ), we have

V (x) ≈ 1√
�(1/x)

, x > 0;

see Theorem 4.4. Therefore the estimate of the above cumulative distribution func-
tion of Mt takes a very explicit form,

P(Mt < x) ≈ min
(

1,
1√

t�(1/x)

)
, t, x > 0.

The other main result of Section 4 is an explicit formula for the (single, in the
space variable) Laplace transform of the distribution of Mt (Theorem 4.1), under
the assumption that Xt is symmetric and �(ξ) is increasing on [0,∞).

When �(ξ) = ψ(ξ2) for a complete Bernstein function ψ(ξ), the above results
can be significantly improved. Following the approach of [30], a (rather compli-
cated) explicit formula for P(Mt < x) can be given, and estimates and asymptotic
formulae for P(Mt < x) extend to (d/dt)nP(Mt < x) when x is small or t is large.
These results will be covered in a forthcoming paper.



SUPREMA OF LÉVY PROCESSES 2049

NOTATION. We denote by C, C1, C2, etc. constants in theorems, and by c,
c1, c2, etc. temporary constants in proofs. Any dependence of a constant on some
parameters is always indicated by writing, for example, c(n, ε). We write f (x) ∼
g(x) when f (x)/g(x) → 1. We use the terms increasing, decreasing, concave,
convex function, etc. in the weak sense.

2. Preliminaries.

2.1. Complete Bernstein and Stieltjes functions. A function ψ(ξ) is said to be
a complete Bernstein function (CBF) if

ψ(ξ) = c1 + c2ξ + 1

π

∫ ∞
0+

ξ

ξ + ζ

μ(dζ )

ζ
, ξ ∈ C \ (−∞,0),(2.1)

where c1, c2 ≥ 0, and μ is a measure on (0,∞) such that the integral
∫ ∞

0 min(ζ−1,

ζ−2)μ(dζ ) is finite. A function ψ̃(ξ) is said to be a Stieltjes functions if

ψ̃(ξ) = c̃1

ξ
+ c̃2 + 1

π

∫ ∞
0+

1

ξ + ζ
μ̃(dζ ), ξ ∈ C \ (−∞,0],(2.2)

for some c̃1, c̃2 ≥ 0 and some measure μ̃ on (0,∞) such that the integral∫ ∞
0 min(1, ζ−1)μ̃(dζ ) is finite. See [34] for a general account on complete Bern-

stein functions, Stieltjes functions and related notions.
It is known that ψ(ξ) is a CBF if and only if ψ(ξ) is nonnegative and increas-

ing on (0,∞), holomorphic in C \ (−∞,0], and Imψ(ξ) > 0 when Im ξ > 0.
Furthermore, if ψ(ξ) is a CBF, then ξ/ψ(ξ) is a CBF, and 1/ψ(ξ) and ψ(ξ)/ξ are
Stieltjes functions

The function ψ̃(ξ) given by (2.2) is the Laplace transform of c̃2δ0(dx) +
(c̃1 + Lμ̃(x)) dx ([34], Theorem 2.2). Furthermore, πc̃1δ0(dζ ) + μ̃(dζ ) is the
limit of measures − Im(ψ̃(−ζ + iε)) dζ as ε → 0+ ([34], Corollary 6.3 and
Comments 6.12), so, in a sense, it is the boundary value of ψ̃ . Therefore, we
use a shorthand notation − Im(ψ̃+(−ζ )) dζ for μ̃(dζ ). Furthermore, we have
c̃1 = limξ→0(ξψ̃(ξ)) and c̃2 = limξ→∞ ψ̃(ξ).

Following [30], we define

ψ†(ξ) = exp
(

1

π

∫ ∞
0

ξ logψ(ζ 2)

ξ2 + ζ 2 dζ

)
, Re ξ > 0,(2.3)

for any function ψ(ξ) such that min(1, ζ−2) logψ(ζ 2) is integrable in ζ > 0. By a
simple substitution,

ψ†(ξ) = exp
(

1

π

∫ ∞
0

logψ(ξ2ζ 2)

1 + ζ 2 dζ

)
, ξ > 0.(2.4)

By [30], Lemma 4, if ψ(ξ) is a CBF, then also ψ†(ξ) is a CBF (this was indepen-
dently proved in [24], Proposition 2.4), and

ψ†(ξ)ψ†(−ξ) = ψ(−ξ2), ξ ∈ C \ R.(2.5)
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PROPOSITION 2.1. If ψ(ξ) is nonnegative on (0,∞), and both ψ(ξ) and
ξ/ψ(ξ) are increasing on (0,∞), then

e−2C/π
√

ψ(ξ2) ≤ ψ†(ξ) ≤ e2C/π
√

ψ(ξ2),(2.6)

where C ≈ 0.916 is the Catalan constant. Note that e2C/π ≤ 2.
If, in addition, ψ(ξ) is regularly varying at ∞, then

ψ†(ξ) ∼
√

ψ(ξ2), ξ → ∞.(2.7)

An analogous statement for ξ → 0 holds for ψ(ξ) regularly varying at 0.
In particular, (2.6) holds for any CBF. Likewise, (2.7) holds for any regularly

varying CBF.

A result similar to (2.6) was obtained independently in [25], Proposition 3.7,
while (2.7) for CBFs was derived in [22], Proposition 2.2.

PROOF. By the assumptions, we have

ψ(ξ2)min(1, ζ 2) ≤ ψ(ξ2ζ 2) ≤ ψ(ξ2)max(1, ζ 2), ξ, ζ > 0.(2.8)

It follows that

ψ†(ξ) = exp
(

1

π

∫ ∞
0

logψ(ξ2ζ 2)

1 + ζ 2 dζ

)

≤
√

ψ(ξ2) exp
(

1

π

∫ ∞
1

log ζ 2

1 + ζ 2 dζ

)
= e2C/π

√
ψ(ξ2).

The lower bound is obtained in a similar manner.
The second statement of the proposition is proved in a very similar manner

to Lemma 15 in [30]. Define an auxiliary function h(ξ, ζ ) = ψ(ξ2ζ 2)/ψ(ξ2).
By (2.8) we have | logh(ξ, ζ )| ≤ 2| log ζ |, ξ, ζ > 0. Since ψ is regularly varying
at infinity, for some α, limξ→∞ h(ξ, ζ ) = ζ 2α for each ζ > 0. Hence, by dominated
convergence,

lim
ξ→∞

∫ ∞
0

logh(ξ, ζ )

1 + ζ 2 dζ =
∫ ∞

0

log ζ 2α

1 + ζ 2 dζ = 0.

It follows that

lim
ξ→∞

(∫ ∞
0

logψ(ξ2ζ 2)

1 + ζ 2 dζ − π

2
logψ(ξ2)

)
= 0,

and so finally limξ→∞ ψ†(ξ)/

√
ψ(ξ2) = 1, as desired. Regular variation at 0 is

proved in a similar way. �
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As in [30], for differentiable functions ψ(ξ) with positive derivative, we define

ψλ(ξ) = 1 − ξ/λ2

1 − ψ(ξ)/ψ(λ2)
, λ > 0, ξ ∈ C \ (−∞,0).(2.9)

This definition is extended continuously by ψλ(λ
2) = ψ(λ2)/(λ2ψ ′(λ2)). Note

that if ψ(0) = 0, then ψλ(0) = 1. For simplicity, we denote ψ
†
λ(ξ) = (ψλ)

†(ξ). By
[30], Lemma 2, if ψ(ξ) is a CBF, then ψλ(ξ) is a CBF for any λ > 0.

2.2. Estimates for the Laplace transform. This short section contains some
rather standard estimates for the inverse Laplace transform.

PROPOSITION 2.2. Let a > 0, c ≥ 1. If f is nonnegative and f (x) ≤
cf (a)max(1, x/a) (x > 0), then for any ξ > 0,

f (a) ≥ ξ Lf (ξ)

c(1 + (aξ)−1e−aξ )
.

PROOF. We have

ξ Lf (ξ) =
∫ a

0
ξe−ξxf (x) dx +

∫ ∞
a

ξe−ξxf (x) dx

≤ cf (a)

∫ a

0
ξe−ξx dx + cf (a)

a

∫ ∞
a

ξxe−ξx dx

= cf (a)(1 − e−aξ ) + cf (a)

aξ
(1 + aξ)e−aξ = cf (a)

(
1 + (aξ)−1e−aξ )

,

as desired. �

PROPOSITION 2.3. If f is nonnegative and increasing, then for a, ξ > 0,

f (a) ≤ eaξ ξ Lf (ξ).

PROOF. As before,

ξ Lf (ξ) =
∫ a

0
ξe−ξxf (x) dx +

∫ ∞
a

ξe−ξxf (x) dx

≥ f (a)

∫ ∞
a

ξe−ξx dx = f (a)e−aξ ,

as claimed. �

PROPOSITION 2.4. If f is nonnegative and decreasing, then for a, ξ > 0,

f (a) ≤ ξ Lf (ξ)

1 − e−aξ
.
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PROOF. Again,

ξ Lf (ξ) =
∫ a

0
ξe−ξxf (x) dx +

∫ ∞
a

ξe−ξxf (x) dx

≥ f (a)

∫ a

0
ξe−ξx dx = f (a)(1 − e−aξ ),

as claimed. �

3. Suprema of general Lévy processes. We briefly recall the basic notions
of the fluctuation theory for Lévy processes. Let Lt be the local time of the process
Xt reflected at its supremum Mt , and denote by L−1

s the right-continuous inverse
of Lt , the ascending ladder-time process for Xt . This is a (possibly killed) sub-
ordinator, and Hs = X(L−1

s ) = M(L−1
s ) is another (possibly killed) subordinator,

called the ascending ladder-height process. The Laplace exponent of the ascend-
ing ladder process, that is, the (possibly killed) bivariate subordinator (L−1

s ,Hs)

(s < L(∞)), is denoted by κ(z, ξ). By [5], Corollary VI.10,

κ(z, ξ) = c exp
(∫ ∞

0

∫
[0,∞)

(e−t − e−zt−ξx)t−1P(Xt ∈ dx)dt

)
,(3.1)

where c is a normalization constant of the local time. Since our results are not af-
fected by the choice of c, we assume that c = 1. We note that κ(z,0) is a Bernstein
function of z, and also z/κ(z,0) is a Bernstein function (this follows from (3.1) by
Frullani’s integral; see [5], formula (VI.3) for the case when Xt is not a compound
Poisson process). For a more in-depth account of the fluctuation theory, we refer
the reader to [5, 13, 31]. In general, there is no closed-form formula for κ(z, ξ).
For a list of special cases, see [29] and the references therein. For a symmetric
process which is not a compound Poisson process, we have κ(z,0) = √

z.
As usual, τx denotes the first passage time through a barrier at x ≥ 0 for Xt (or

for Mt ). Following [5], for x, z ≥ 0, we define

V z(x) = E
(∫ ∞

0
exp(−zL−1

s )1[0,x)(Hs) ds

)
= E

(∫ ∞
0

e−zt1[0,x)(Mt) dLt

)
.

For z = 0, we simply have V 0(x) = ∫ ∞
0 P(Hs < x)ds, so that V 0(x) = V (x) is

the renewal function of the process Hs , studied in more detail for symmetric Lévy
processes in Section 4. By [5], formula (VI.8),∫ ∞

0
e−ztP(Mt < x)dt = κ(z,0)V z(x)

z
, x, z ≥ 0.(3.2)

(Note that in [5], a weak inequality Mt ≤ x is used in the definition of V z(x).)
Hence, for a symmetric process Xt which is not a compound Poisson process, we
have ∫ ∞

0
e−ztP(Mt < x)dt = V z(x)√

z
, x, z ≥ 0.(3.3)
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This is a partial inverse of the double Laplace transform in (1.1); however, there is
no known explicit formula for V z(x). For a different and, in a sense, more explicit
partial inverse, see (4.2) below.

By [5], Section VI.4, the Laplace transform of V z(x) is 1/(ξκ(z, ξ)). Hence,
when Xt is symmetric and it is not a compound Poisson process, the right-hand
side of the Baxter–Donsker formula (1.1) can be written as

√
z/(zκ(z, ξ)); see

[14], Corollary 9.7.

THEOREM 3.1. Let Xt be a Lévy process, Mt = sup0≤s≤t Xs and let κ(z, ξ)

be the bivariate Laplace exponent of its ascending ladder process. Suppose that

K(s) =
∫ ∞
s

κ(z,0)

z2 dz < ∞, s > 0(3.4)

and that κ(z,0)/z is unbounded (near 0). For t, x > 0, we have

min
(
C1,C2(κ, t)κ(1/t,0)V (x)

) ≤ P(Mt < x)
(3.5)

≤ min
(

1,
e

e − 1
κ(1/t,0)V (x)

)
.

Here

C1 = e − 1

8e2 and C2(κ, t) = zt

2e
,

where z ∈ (0,1/t) solves

κ(z,0)

z
= 4e2

e − 1
K(1/t).

PROOF. The upper bound in (3.5) is a direct consequence of (3.2) and Propo-
sition 2.4 with ξ = 1/t .

Following [5], Lemma VI.21, we find a lower bound for V z(x). We have

V (x) = E
(∫ ∞

0
1[0,x)(Mt) dLt

)

≤ eE
(∫ 1/z

0
e−zt1[0,x)(Mt) dLt

)
+ E

(∫ ∞
1/z

1[0,x)(Mt) dLt

)
,

which implies

eV z(x) ≥ V (x) − E
(∫ ∞

1/z
1[0,x)(Mt) dLt

)
.(3.6)

Let σz = inf{t ≥ 1/z :Xt = Mt } = L−1(L1/z); σz is a stopping time. Since the
support of the measure dLt is contained in the set {t :Xt = Mt } of zeros of the
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reflected process, we have

E
(∫ ∞

1/z
1[0,x)(Mt) dLt

)
= E

(∫ ∞
σz

1[0,x)(Mt) dLt ;M1/z < x

)

≤ E
(∫ ∞

σz

1[0,x)(Mt − Mσz) dLt ;M1/z < x

)
.

Next, observe that Mσz = Xσz , so that

Mt − Mσz = sup
s≤t−σz

(Xσz+s − Xσz), t ≥ σz.

Hence,

E
(∫ ∞

1/z
1[0,x)(Mt) dLt

)

≤ E
(∫ ∞

σz

1[0,x)

(
sup

s≤t−σz

(Xσz+s − Xσz)
)
dLt ;M1/z < x

)

= E
(∫ ∞

0
1[0,x)

(
sup
s≤u

(Xσz+s − Xσz)
)
d(Lσz+u − Lσz);M1/z < x

)
.

Since σz ≥ 1/z, by the strong Markov property,

E
(∫ ∞

1/z
1[0,x)(Mt) dLt

)
≤ P(M1/z < x)E

(∫ ∞
0

1[0,x)(Mu)dLu

)

= P(M1/z < x)V (x),

which, by (3.6), yields

V z(x) ≥ (1 − P(M1/z < x))V (x)

e
= P(M1/z ≥ x)V (x)

e
.

Let k > 0. By (3.2) and the already proved upper bound of (3.5),

V z(x)κ(z,0) = z

∫ k/z

0
e−ztP(Mt < x)dt + z

∫ ∞
k/z

e−ztP(Mt < x)dt

≤ e

e − 1
V (x)z

∫ k/z

0
e−ztκ(1/t,0) dt + P(Mk/z < x).

The last two estimates give

P(Mk/z < x) ≥ κ(z,0)P(M1/z ≥ x)V (x)

e
− e

e − 1
V (x)z

∫ k/z

0
κ(1/t,0) dt

(3.7)

= V (x)κ(z,0)

e

(
P(M1/z ≥ x) − e2

e − 1

zK(z/k)

κ(z,0)

)
.

Fix ε ∈ (0,1) (later we choose ε = 1/4). Note that the function κ(z,0)/z is con-
tinuous, decreasing and unbounded. Hence, it maps the interval (0,1/t] onto
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the interval [tκ(1/t,0),∞). Furthermore, κ(z,0) is increasing, so that K(z) ≥
κ(z,0)/z. In particular, e2

ε(e−1)
K(1/t) > K(1/t) ≥ tκ(1/t,0). It follows that we

can choose z = z(t) < 1/t such that

κ(z,0)

z
= e2

ε(e − 1)
K(1/t).

Setting k = zt < 1, the above equality can be rewritten as

e2

e − 1

zK(z/k)

κ(z,0)
= ε.(3.8)

Suppose now that V (x)κ(z,0) ≤ ε(e − 1)/e. Then, by the upper bound of (3.5),
we have P(M1/z ≥ x) = 1 − P(M1/z < x) ≥ 1 − ε. This, (3.7) and (3.8) give

P(Mt < x) = P(Mk/z < x) ≥ V (x)κ(z,0)

e
(1 − 2ε).

This estimate holds for t ≥ t0, where V (x)κ(z(t0),0) = ε(e − 1)/e [here we use
continuity of κ(z(t),0) as a function of t]. Hence, by monotonicity of P(Mt < x)

in t ,

P(Mt < x) ≥ min
(

ε(1 − 2ε)(e − 1)

e2 ,
(1 − 2ε)V (x)κ(z,0)

e

)
.

The lower bound in (3.5) follows by taking ε = 1/4 and using the inequality
κ(z,0) = κ(k/t,0) ≥ kκ(1/t,0). �

To formulate the next result we define the following upper scaling conditions:

for some � ∈ (0,1) and c > 0,
κ(z2,0)

κ(z1,0)
≤ c

z
�
2

z
�
1

(3.9)
when 0 < z1 < z2 < 1,

for some � ∈ (0,1) and c > 0,
κ(z2,0)

κ(z1,0)
≤ c

z
�
2

z
�
1

(3.10)
when 1 < z1 < z2.

Observe that condition (3.10) implies that for any z∗ > 0, there is c∗ such that

κ(z2,0)

κ(z1,0)
≤ c∗ z

�
2

z
�
1

when z∗ < z1 < z2.(3.11)

COROLLARY 3.2. Let Xt be a Lévy process, Mt = sup0≤s≤t Xs and let κ(z, ξ)

be the bivariate Laplace exponent of its ascending ladder process. If κ(z,0) sat-
isfies condition (3.9) with 0 < � < 1 and the integral

∫ ∞
1 κ(z,0)z−2 dz is finite,

then

C(κ)min
(
1, κ(1/t,0)V (x)

) ≤ P(Mt < x) ≤ min
(
1,2κ(1/t,0)V (x)

)
,(3.12)
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for every x > 0 and t ≥ 1. If κ(z,0) satisfies (3.10) with 0 < � < 1 and
limz→0 z/κ(z,0) = 0, then (3.12) holds for x > 0 and t ≤ 1.

In particular, if κ(z,0) satisfies both (3.9) and (3.10), that is, there are c > 0
and � ∈ (0,1) such that κ(λz,0) ≤ cλ�κ(z,0) for λ ≥ 1 and z > 0, then (3.12) is
true for every x > 0 and t > 0.

PROOF. We begin with the first part of the statement. By condition (3.9),

κ(z,0) ≤ c1(κ)

(
z

s

)�

κ(s,0), s ≤ z ≤ 1.

In particular, κ(s,0)/s is unbounded. Furthermore, using also finiteness of the
integral

∫ ∞
1 κ(z,0)z−2 dz, we obtain

K(s) ≤ c2(κ)
κ(s,0)

s
, s ≤ 1.(3.13)

This implies that the assumptions of Theorem 3.1 are satisfied.
Let t ≥ 1 and define z = z(t) ∈ (0,1/t) as in Theorem 3.1. By condition (3.9)

we have

κ(1/t,0)

κ(z,0)
≤ c3(κ)

(zt)�
.

By definition of z and (3.13) (with s = 1/t), we have

1

z
= 4e2

e − 1

K(1/t)

κ(z,0)
≤ 4e2c2(κ)c3(κ)

e − 1

t

(tz)�
,

which gives zt ≥ c4(κ). Hence, the constant C2 in Theorem 3.1 satisfies C2 =
zt/(2e) ≥ c4(κ)/(2e). This ends the proof of the first part.

The second part can be justified in a similar way, since condition (3.10) implies
that

K(s) ≤ c5(κ)
κ(s,0)

s
, s ≥ 1.

Moreover, for t < 1 and z = z(t) selected according to Theorem 3.1 we have
z(1) ≤ z(t) < 1/t . Applying (3.10) [with z∗ = z(1)], we obtain

κ(1/t,0)

κ(z,0)
≤ c6(κ)

(zt)�
, z ≤ 1

t
.

Finally, the last statement is a direct consequence of the previous ones. �

REMARK 3.3. Due to Potter’s theorem ([8], Theorem 1.5.6) condition (3.9)
is implied by regular variation of κ(z,0) at zero with index 0 < �∗ < 1. Likewise,
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condition (3.10) is implied by regular variation of κ(z,0) at ∞ with index 0 <

�∗ < 1.
In the second part of the above corollary the assumption limz→0 z/κ(z,0) = 0

can be removed at the expence that the lower bound holds for t ≤ t0, where t0 =
t0(κ) is sufficiently small. This is due to the fact that since limt↘0 K(1/t) = 0,
z = z(t) in Theorem 3.1 is well defined for t small enough.

By the results of [5], Theorem VI.14 and [6], the regular variation of order
� ∈ (0,1) of κ(z,0) at 0 or at ∞ is equivalent to the existence of the limit of
P(Xt ≥ 0) as t → ∞ or t → 0+, respectively. Hence, Corollary 3.2 implies the
following result.

COROLLARY 3.4. Let Xt be a Lévy process and Mt = sup0≤s≤t Xs . If

lim
t→∞ P(Xt ≥ 0) ∈ (0,1) and lim sup

t→0+
P(Xt ≥ 0) < 1,

then (3.12) holds for x > 0 and t ≥ 1. If

lim
t→0+ P(Xt ≥ 0) ∈ (0,1) and lim sup

t→∞
P(Xt ≥ 0) < 1,

then (3.12) is true for x > 0 and t ≤ 1. Finally, if

lim
t→∞ P(Xt ≥ 0) ∈ (0,1) and lim

t→0+ P(Xt ≥ 0) ∈ (0,1),

then (3.12) holds for every x > 0 and t > 0.

PROOF. We only need to verify that κ(z,0)/z2 is integrable at infinity, and
that limz→0+(z/κ(z,0)) = 0. In each of the cases, there is ε > 0 such that P(Xt ≥
0) ≤ 1−ε for all t > 0. Therefore, by (3.1) and the Frullani integral, κ(z,0) ≤ z1−ε

for z ≥ 1, and κ(z,0) ≥ z1−ε when 0 < z < 1. The result follows. �

REMARK 3.5. The uniform estimates of Corollary 3.4 complement the exist-
ing results from [17] about the asymptotic behavior of P(Mt < x), where it was
shown that

lim
t→∞

√
π

κ(1/t,0)
P(Mt < x) = V (x),

under the assumption that κ(z,0) is regularly varying at zero with index � ∈ (0,1).

4. Suprema of symmetric Lévy processes. In this section we assume that
Xt is a symmetric Lévy process with Lévy–Khintchin exponent �(ξ). In a rather
general setting, we can invert the Laplace transform in time variable in (1.1).
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THEOREM 4.1. Suppose that Xt is a symmetric Lévy process with Lévy–
Khintchin exponent �(ξ). Suppose that �(ξ) is increasing in ξ > 0. If Mt =
sup0≤s≤t Xs , then

Ee−ξMt = 1

π

∫ ∞
0

ξ� ′(λ)

(λ2 + ξ2)
√

�(λ)
(4.1)

× exp
(

1

π

∫ ∞
0

ξ log(λ2 − ζ 2)/(�(λ) − �(ζ))

ξ2 + ζ 2 dζ

)
e−t�(λ) dλ.

Since P(Mt < x) = P(τx > t), the following integrated form of (4.1) is some-
times more convenient.

COROLLARY 4.2. With the notation and assumptions of Theorem 4.1,
∫ ∞

0
e−ξxP(τx > t) dx

= Ee−ξMt

ξ
(4.2)

= 1

π

∫ ∞
0

� ′(λ)

(λ2 + ξ2)
√

�(λ)

× exp
(

1

π

∫ ∞
0

ξ log((λ2 − ζ 2)/(�(λ) − �(ζ)))

ξ2 + ζ 2 dζ

)
e−t�(λ) dλ.

PROOF OF THEOREM 4.1. Let ψ(ξ) = �(
√

ξ) for ξ > 0. For any z ∈ C \
(−∞,0] and ξ > 0, we define [see (1.1) and (2.3)]

ϕ(ξ, z) = √
z exp

(
− 1

π

∫ ∞
0

ξ log(z + �(ζ))

ξ2 + ζ 2 dζ

)

= exp
(
− 1

π

∫ ∞
0

ξ log(1 + ψ(ζ 2)/z)

ξ2 + ζ 2 dζ

)
.

For any ξ > 0, the function ϕ(ξ, z) is positive and increasing in z ∈ (0,∞). As z →
0 or z → ∞, ϕ(ξ, z) converges to 0 and 1, respectively. Furthermore, if Im z > 0,
then arg(1 + ψ(ζ 2)/z) ∈ (−π,0) for all ζ > 0, and therefore

argϕ(ξ, z) = − 1

π

∫ ∞
0

ξ arg(1 + ψ(ζ 2)/z)

ξ2 + ζ 2 dζ ∈ (0, π/2).

Hence, for any ξ > 0, ϕ(ξ, z) [and even (ϕ(ξ, z))2] is a complete Bernstein func-
tion of z. Note that the continuous boundary limit ϕ+(ξ,−z) exists for z > 0: if
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z = ψ(λ2), or λ =
√

ψ−1(z), then

ϕ+(ξ,−z) = exp
(
− 1

π

∫ ∞
0

ξ log−(1 − ψ(ζ 2)/ψ(λ2))

ξ2 + ζ 2 dζ

)

= exp
(
− 1

π

∫ ∞
0

ξ log |1 − ψ(ζ 2)/ψ(λ2)|
ξ2 + ζ 2 dζ + i

∫ ∞
λ

ξ

ξ2 + ζ 2 dζ

)

= exp
(

1

π

∫ ∞
0

ξ(logψλ(ζ
2) − log |1 − ζ 2/λ2|)
ξ2 + ζ 2 dζ + i arctan

ξ

λ

)
;

see (2.9) for the notation. Here log− denotes the boundary limit on (−∞,0)

approached from below, log−(−ζ ) = −iπ/2 + log ζ for ζ > 0. The function
log |1 − ζ 2/λ2| is harmonic in the upper half-plane Im ζ > 0, so that

1

π

∫ ∞
0

ξ log |1 − ζ 2/λ2|
ξ2 + ζ 2 dζ = 1

2
log

(
1 + ξ2

λ2

)
.

Furthermore, exp(i arctan(ξ/λ)) = (λ + iξ)/

√
λ2 + ξ2. Therefore, with z =

ψ(λ2),

ϕ+(ξ,−z) = λ(λ + iξ)

λ2 + ξ2 exp
(

1

π

∫ ∞
0

ξ logψλ(ζ
2)

ξ2 + ζ 2 dζ

)

(4.3)

= λ(λ + iξ)ψ
†
λ(ξ)

λ2 + ξ2 ;
see (2.3) for the notation. Note that if ψ(ξ) is bounded on (0,∞) and z ≥
supξ>0 ψ(ξ), then ϕ+(ξ,−z) is real.

By (1.1), ϕ(ξ, z)/z is the double Laplace transform of the distribution of Mt .
But for all ξ > 0, ϕ(ξ, z)/z is a Stieltjes function of z. Therefore, by (2.2),

ϕ(ξ, z)

z
= 1

π

∫ ∞
0

Im
ϕ+(ξ,−ζ )

ζ

1

z + ζ
dζ

= 1

π

∫ ∞
0

2λψ ′(λ2) Im
ϕ+(ξ,−ψ(λ2))

ψ(λ2)

1

z + ψ(λ2)
dλ

= 2

π

∫ ∞
0

λψ ′(λ2)

ψ(λ2)

λξψ
†
λ(ξ)

λ2 + ξ2

1

z + ψ(λ2)
dλ.

Note that the second equality holds true also when ψ(ξ) is bounded. Since 1/(z +
ψ(λ2)) = ∫ ∞

0 e−tψ(λ2)e−zt dt , we have

ϕ(ξ, z)

z
=

∫ ∞
0

(
2

π

∫ ∞
0

λψ ′(λ2)

ψ(λ2)

λξψ
†
λ(ξ)

λ2 + ξ2 e−tψ(λ2) dλ

)
e−zt dt.

The theorem follows by the uniqueness of the Laplace transform. �
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Let V (x) = V 0(x) be the renewal function for the ascending ladder-height pro-
cess Hs corresponding to Xt ; see Section 3 for the definition. When Xt satisfies
the absolute continuity condition [e.g., if 1/(1 + �(ξ)) is integrable in ξ ], then
V (x) is the (unique up to a multiplicative constant) increasing harmonic function
for Xt on (0,∞), and V ′(x) is the decreasing harmonic function for Xt on (0,∞);
cf. [35]. It is known ([5], formula (VI.6)) that for ξ > 0,

LV (ξ) = 1

ξκ(0, ξ)
,

Moreover, if Xt is not a compound Poisson process, then by [14], Corollary 9.7,

κ(0, ξ) = exp
(

1

π

∫ ∞
0

ξ log�(ζ)

ξ2 + ζ 2 dζ

)
= ψ†(ξ),

where �(ξ) = ψ(ξ2); see (2.3) for the notation. Clearly, we have LV ′(ξ) =
ξ LV (ξ) = 1/ψ†(ξ); here V ′ is the distributional derivative of V on [0,∞). We
remark that when Xt is a compound Poisson process, then, also by [14], Corol-
lary 9.7,

κ(0, ξ) = cψ†(ξ) with c = exp
(
−1

2

∫ ∞
0

1 − e−t

t
P(Xt = 0) dt

)
.(4.4)

For simplicity, we state the next three results only for the case when Xt is not a
compound Poisson process. However, extensions for compound Poisson processes
are straightforward due to (4.4).

As an immediate consequence of Proposition 2.1 and Karamata’s Tauberian
theorem ([8], Theorem 1.7.1), we obtain the following result, which in the case of
complete Bernstein functions was derived in Proposition 2.7 of [22].

PROPOSITION 4.3. Let �(ξ) be the Lévy–Khintchin exponent of a symmetric
Lévy process Xt , which is not a compound Poisson process, and suppose that both
�(ξ) and ξ2/�(ξ) are increasing in ξ > 0. If �(ξ) is regularly varying at ∞, then
V is regularly varying at 0 and �(1 +α)V (x) ∼ 1/

√
�(1/x) as x → 0. Similarly,

if �(ξ) is regularly varying at 0, then �(1 + α)V (x) ∼ 1/
√

�(1/x) as x → ∞.

Another consequence of Proposition 2.1 is a uniform estimate of the renewal
function; see also Proposition 3.9 of [25].

THEOREM 4.4. Let �(ξ) be the Lévy–Khintchin exponent of a symmetric
Lévy process Xt , which is not a compound Poisson process, and suppose that both
�(ξ) and ξ2/�(ξ) are increasing in ξ > 0. Then

1

5

1√
�(1/x)

≤ V (x) ≤ 5
1√

�(1/x)
, x > 0.
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PROOF. Let ψ(ξ) = �(
√

ξ) for ξ > 0. By Proposition 2.1, we obtain

e−2C/π/

√
ξ2ψ(ξ2) ≤ LV (ξ) ≤ e2C/π/

√
ξ2ψ(ξ2), ξ > 0. Since V is increasing,

Proposition 2.3 gives

V (x) ≤ eLV (1/x)

x
≤ e1+2C/π√

ψ(1/x2)
≤ 5√

ψ(1/x2)
.

Furthermore, using subadditivity and monotonicity of V (see [5], Section III.1),
for x = ka + r (k ≥ 0, r ∈ [0, a)) we obtain V (x) ≤ kV (a)+V (r) ≤ (k + 1)V (a).
It follows that V (x) ≤ 2V (a)max(1, x/a) for all a, x > 0, and so, by Proposi-
tion 2.2,

V (x) ≥ LV (1/x)

2x(1 + e−1)
≥ 1

2(1 + e−1)e2C/π
√

ψ(1/x2)
≥ 1

5
√

ψ(1/x2)
,

as desired. �

We remark that when V is a concave function on (0,∞) (e.g., when ψ is a
complete Bernstein function, see below), then clearly V (x) ≤ max(1, x/a)V (a),
so that the lower bound in Theorem 4.4 holds with constant 2/5 instead of 1/5.

If ψ(ξ) is a complete Bernstein function [CBF, see (2.1)], then ψ†(ξ) and
ξ/ψ†(ξ) are CBFs, and hence 1/ψ†(ξ) is a Stieltjes function; see (2.2). Therefore,
V ′(x) is a completely monotone function on (0,∞), and V (x) is a Bernstein func-
tion; see [34] for the relation between completely monotone, Bernstein, complete
Bernstein and Stieltjes functions. More precisely, we have the following result.

PROPOSITION 4.5. Let �(ξ) be the Lévy–Khintchin exponent of a symmet-
ric Lévy process Xt , which is not a compound Poisson process, and suppose that
�(ξ) = ψ(ξ2) for a complete Bernstein function ψ . Then V is a Bernstein func-
tion, and

V (x) = bx + 1

π

∫ ∞
0+

Im
(
− 1

ψ+(−ξ2)

)
ψ†(ξ)

ξ
(1 − e−xξ ) dξ, x > 0,(4.5)

V ′(x) = b + 1

π

∫ ∞
0+

Im
(
− 1

ψ+(−ξ2)

)
ψ†(ξ)e−xξ dξ, x > 0,(4.6)

where b = limξ→0+(ξ/

√
ψ(ξ2)).

As explained after formula (2.2), the expression Im(−1/ψ+(−ξ2)) dξ in (4.5)
and (4.6) should be understood in the distributional sense, as a weak limit
of measures Im(−1/ψ(−ξ2 + iε)) dξ on (0,∞) as ε → 0+. The measure
Im(−1/ψ+(−ξ)) dξ has an atom of mass πb at 0, and this atom is not included in
the integrals from 0+ to ∞ in (4.5) and (4.6).
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PROOF. Since 1/ψ†(ξ) is a Stieltjes function, it has the form (2.2),

LV ′(ξ) = 1

ψ†(ξ)
= a + b

ξ
+ 1

π

∫ ∞
0+

1

ξ + ζ
μ̃(dζ ), ξ ∈ C \ (−∞,0],

where, using (2.5),

μ̃(dξ) = − Im
(

1

(ψ†)+(−ξ)

)
dξ = − Im

(
ψ†(ξ)

ψ+(−ξ2)

)
dξ

and

a = lim
ξ→∞

1

ψ†(ξ)
, b = lim

ξ→0+
ξ

ψ†(ξ)
.

Using Proposition 2.1, we can express a and b in terms of ψ . Since ψ is un-
bounded, also ψ† is unbounded [by (2.6)], and so in fact a = 0. In a similar way,
if ξ/ψ(ξ) converges to 0 as ξ → 0+, then (2.6) gives ξ/ψ†(ξ) → 0, so that b = 0.
When the limit of ξ/ψ(ξ) is positive [since ξ/ψ(ξ) is a CBF, the limit always ex-

ists], then ψ is regularly varying at 0, and so b = limξ→0+(ξ/

√
ψ(ξ2)), as desired.

By the uniqueness of the Laplace transform,

V ′(x) = b + 1

π

∫ ∞
0+

e−xξ μ̃(dξ), x > 0.

The result follows by integration in x. �

Note that for a compound Poisson process, we have a > 0, so there is an extra
positive constant in (4.5).

As a combination of Theorem 3.1 and Theorem 4.4, we obtain the following
result.

THEOREM 4.6. Let �(ξ) be the Lévy–Khintchin exponent of a symmetric
Lévy process Xt . Suppose that both �(ξ) and ξ2/�(ξ) are increasing in ξ > 0. If
Mt = sup0≤s≤t Xs , then for all t, x > 0,

1

100
min

(
1,

1

200
√

t�(1/x)

)
≤ P(Mt < x) ≤ min

(
1,

10√
t�(1/x)

)
.

PROOF. When Xt is not a compound Poisson process, then the result follows
from Theorems 3.1 and 4.4, and from κ(z,0) = √

z. Suppose that Xt is a com-
pound Poisson process. For ε > 0 consider Xε

t = εBt + Xt , where the Brown-
ian motion Bt is independent of Xt . Then the Lévy–Khintchin exponent of Xε

t

equals to �ε(ξ) = (εξ)2 + �(ξ). It is easy to check that ξ2/�ε(ξ) is increasing.
Moreover, Mε

t converges in distribution to Mt as ε → 0. The result follows by the
continuity of �(ξ). �
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REMARK 4.7. Clearly, the condition “�(ξ) and ξ2/�(ξ) are increasing in
ξ > 0,” in Theorem 4.4, Proposition 4.3 and Theorem 4.6, can be replaced with

0 < � ′(ξ) <
2�(ξ)

ξ
, ξ > 0.(4.7)

If �(ξ) = ψ(ξ2), then (4.7) reads

0 < ψ ′(ξ) <
ψ(ξ)

ξ
, ξ > 0.(4.8)

Using the standard representation of Bernstein functions, it is easy to check that
any Bernstein function ψ(ξ) (not necessarily a complete one) satisfies (4.8).
Hence, Theorem 4.6 applies to any subordinate Brownian motion: a process
Xt = Bηt , where B(s) is the standard Brownian motion [with E(Bs) = 0 and
Var(Bs) = 2s], ηt is a subordinator [with E(e−ξηt ) = e−tψ(ξ)], and Bs and ηt are
independent processes.
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[23] KIM, P., SONG, R. and VONDRAČEK, Z. (2010). On the potential theory of one-dimensional
subordinate Brownian motions with continuous components. Potential Anal. 33 153–173.
MR2658980
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