
The Annals of Probability
2012, Vol. 40, No. 5, 1897–1944
DOI: 10.1214/11-AOP675
© Institute of Mathematical Statistics, 2012

THE TOPOLOGY OF SCALING LIMITS OF POSITIVE GENUS
RANDOM QUADRANGULATIONS1

BY JÉRÉMIE BETTINELLI

Université Paris-Sud 11

We discuss scaling limits of large bipartite quadrangulations of positive
genus. For a given g, we consider, for every n≥ 1, a random quadrangulation
qn uniformly distributed over the set of all rooted bipartite quadrangulations
of genus g with n faces. We view it as a metric space by endowing its set
of vertices with the graph metric. As n tends to infinity, this metric space,
with distances rescaled by the factor n−1/4, converges in distribution, at least
along some subsequence, toward a limiting random metric space. This con-
vergence holds in the sense of the Gromov–Hausdorff topology on compact
metric spaces. We show that, regardless of the choice of the subsequence, the
limiting space is almost surely homeomorphic to the genus g-torus.

1. Introduction.

1.1. Motivation. The present work is a sequel to a work by Bettinelli [5],
whose aim is to investigate the topology of scaling limits for random maps of
arbitrary genus. A map is a cellular embedding of a finite graph (possibly with
multiple edges and loops) into a compact connected orientable surface without
boundary, considered up to orientation-preserving homeomorphisms. By cellular,
we mean that the faces of the map—the connected components of the comple-
ment of edges—are all homeomorphic to disks. The genus of the map is defined
as the genus of the surface into which it is embedded. For technical reasons, it will
be convenient to deal with rooted maps, meaning that one of the half-edges—or
oriented edges—is distinguished.

We will particularly focus on bipartite quadrangulations: a map is a quadrangu-
lation if all its faces have degree 4; it is bipartite if each vertex can be colored in
black or white, in such a way that no edge links two vertices that have the same
color. Although in genus g = 0, all quadrangulations are bipartite, this is no longer
true in positive genus g ≥ 1.

A natural way to generate a large random bipartite quadrangulation of genus g

is to choose it uniformly at random from the set Qn of all rooted bipartite quadran-
gulations of genus g with n faces, and then consider the limit as n goes to infinity.
A natural setting for this problem is to consider quadrangulations as metric spaces
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endowed with their graph metric, properly rescaled by the factor n−1/4 [21] and to
study their limit in the Gromov–Hausdorff topology [15]. From this point of view,
the planar case g = 0 has largely been studied during the last decade. Le Gall
[18] showed the convergence of these metric spaces along some subsequence. It
is believed that the convergence holds without the “along some subsequence” part
in the last sentence, and Le Gall gave a conjecture for a limiting space to this
sequence [18]. Although the whole convergence is yet to be proved, some infor-
mation is available on the accumulation points of this sequence. Le Gall and Paulin
[20] proved that every possible limiting metric space is almost surely homeomor-
phic to the two-dimensional sphere. Miermont [22] later gave a variant proof of
this fact.

We showed in [5] that the convergence along some subsequence still holds in
any fixed positive genus g. In this work, we show that the topology of every pos-
sible limiting space is that of the genus g-torus Tg .

1.2. Main results. We will work in fixed genus g. On the whole, we will not
let it figure in the notation, in order to lighten them. As the case g = 0 has already
been studied, we suppose g ≥ 1.

Recall that the Gromov–Hausdorff distance between two compact metric spaces
(X , δ) and (X ′, δ′) is defined by

dGH((X , δ), (X ′, δ′)) := inf{δH(ϕ(X ), ϕ′(X ′))},
where the infimum is taken over all isometric embeddings ϕ : X → X ′′ and
ϕ′ : X ′ → X ′′ of X and X ′ into the same metric space (X ′′, δ′′), and δH stands for
the usual Hausdorff distance between compact subsets of X ′′. This defines a met-
ric on the set M of isometry classes of compact metric spaces [8], Theorem 7.3.30,
making it a Polish space.2

For any map m, we call V (m) its set of vertices. There exists on V (m) a natural
graph metric dm: for any vertices a and b ∈ V (m), the distance dm(a, b) is defined
as the number of edges of any shortest path linking a to b. The main result of [5]
is the following.

PROPOSITION 1. Let qn be uniformly distributed over the set Qn of all bipar-
tite quadrangulations of genus g with n faces. Then, from any increasing sequence
of integers, we may extract a subsequence (nk)k≥0 such that there exists a metric
space (q∞, d∞) satisfying(

V (qnk
),

1

γ n
1/4
k

dqnk

)
(d)−→

k→∞(q∞, d∞)

in the sense of the Gromov–Hausdorff topology, where

γ := (8
9

)1/4
.

2This is a simple consequence of Gromov’s compactness theorem [8], Theorem 7.4.15.
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Moreover, the Hausdorff dimension of the limit space (q∞, d∞) is almost surely
equal to 4, regardless of the choice of the sequence of integers.

Remark that the constant γ is not necessary in this statement (simply change
d∞ into γ d∞). We kept it for the sake of consistency with [5], and because of our
definition of d∞ later in the paper, although it is irrelevant for the moment. Note
also that, a priori, the metric space (q∞, d∞) depends on the subsequence (nk)k≥0.
Similarly to the planar case, we believe that the extraction in Proposition 1 is not
necessary, and we conjecture the space (q∞, d∗∞) for the limit, where d∗∞ was de-
fined at the end of Section 6.3 in [5]. We also believe that the space (q∞, d∗∞)

is somewhat universal, in the sense that we conjecture it as the scaling limit of
more general classes of random maps. More precisely, we think that Proposition 1
still holds while replacing the class of quadrangulations with some other “reason-
able” class of maps, as well as the constant γ , which is inherent to the class of
quadrangulations, with the appropriate constant. In particular, our approach can be
generalized to the case of 2p-angulations, p ≥ 2, by following the same lines as
Le Gall in [18].

We may now state our main result, which identifies the topology of (q∞, d∞),
regardless of the subsequence (nk)k≥0.

THEOREM 2. The metric space (q∞, d∞) is a.s. homeomorphic to the g-
torus Tg .

In the general picture, we rely on the same techniques as in the planar case.
The starting point is to use a bijection due to Chapuy, Marcus and Schaeffer [10]
between bipartite quadrangulations of genus g with n faces and so-called well-
labeled g-trees with n edges. The study of the scaling limit as n→∞ of uni-
form random well-labeled g-trees with n edges was the major purpose of [5]. This
study leads to the construction of a continuum random g-tree, which generalizes
Aldous’s CRT [1, 2]. The first step of our proof is to carry out the analysis of Le
Gall [18] in the nonplanar case and see the space (q∞, d∞) as a quotient of this
continuum random g-tree via an equivalence relation defined in terms of Brown-
ian labels on it. We then adapt Miermont’s approach [22], and use the notion of
1-regularity introduced by Whyburn [26] and studied by Whyburn and Begle [3,
26] in order to see that the genus remains the same in the limit.

Finally, we deduce the technical estimates we need from the planar case thanks
to a bijection due to Chapuy [9] between well-labeled g-trees and well-labeled
plane trees with g distinguished triples of vertices.

We will use the background provided in [5]. We briefly recall it in Section 2.
In Section 3, we define real g-trees and explain how we may see (q∞, d∞) as
a quotient of such objects. Theorem 8 in Section 4 gives a criteria telling which
points are identified in this quotient, and Section 5 is dedicated to the proof of
Theorem 2. Finally, we expose in Section 6 Chapuy’s bijection, and use it to prove
four technical lemmas stated during Section 4.
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2. Preliminaries. In this section, we recall the notation, settings and results
from [5] that we will need for this work. We refer the reader to [5] for more details.

We use the following formalism for maps. For any map m, we denote by V (m)

and E(m), respectively, its sets of vertices and edges. We also call �E(m) its set of

half-edges, and e∗ ∈ �E(m) its root. For any half-edge e, we write ē its reverse—so
that E(m)= {{e, ē} : e ∈ �E(m)}—as well as e− and e+ its origin and end. Finally,
we say that Ě(m) ⊂ �E(m) is an orientation of the half-edges if for every edge
{e, ē} ∈E(m) exactly one of e or ē belongs to Ě(m).

2.1. The Chapuy–Marcus–Schaeffer bijection. The first main tool we will
need consists of the Chapuy–Marcus–Schaeffer bijection [10], Corollary 2 to The-
orem 1, which allows us to code (rooted) quadrangulations by so-called well-
labeled (rooted) g-trees.

A g-tree is a map of genus g with only one face. This notion naturally general-
izes the notion of plane tree: in particular, 0-trees are plane trees. It may be con-
venient to represent a g-tree t with n edges by a 2n-gon whose edges are pairwise
identified (see Figure 1). We note e1 := e∗, e2, . . . , e2n the half-edges of t arranged
according to the clockwise order around this 2n-gon. The half-edges are said to
be arranged according to the facial order of t. Informally, for 2≤ i ≤ 2n, ei is the
“first half-edge to the left after ei−1.” We call facial sequence of t the sequence
t(0), t(1), . . . , t(2n) defined by t(0) = t(2n) = e

−
1 = e

+
2n and for 1 ≤ i ≤ 2n− 1,

t(i)= e
+
i = e

−
i+1. Imagine a fly flying along the boundary of the unique face of t.

Let it start at time 0 by following the root e∗, and let it take one unit of time to
follow each half-edge, then t(i) is the vertex where the fly is at time i.

Let t be a g-tree. Two vertices u, v ∈ V (t) are said to be neighbors, and we write
u∼ v, if there is an edge linking them.

FIG. 1. Left. The facial order and facial sequence of a g-tree. Right. Its representation as a polygon
whose edges are pairwise identified.
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DEFINITION 1. A well-labeled g-tree is a pair (t, l) where t is a g-tree and
l :V (t)→ Z is a function (thereafter called labeling function) satisfying:

(i) l(e−∗ )= 0, where e∗ is the root of t;
(ii) if u∼ v, then |l(u)− l(v)| ≤ 1.

We call Tn the set of all well-labeled g-trees with n edges. A pointed quadran-
gulation is a pair (q, v•) consisting in a quadrangulation q together with a vertex
v• ∈ V (q). We call Q•

n := {(q, v•) :q ∈ Qn, v
• ∈ V (q)} the set of all pointed bipar-

tite quadrangulations of genus g with n faces.
The Chapuy–Marcus–Schaeffer bijection is a bijection between the sets Tn ×

{−1,+1} and Q•
n. We briefly describe here the mapping from Tn× {−1,+1} onto

Q•
n, and we refer the reader to [10] for a more precise description. Let (t, l) ∈ Tn

be a well-labeled g-tree with n edges and ε± ∈ {−1,+1}. As above, we write
t(0), t(1), . . . , t(2n) its facial sequence. The pointed quadrangulation (q, v•) cor-
responding to ((t, l), ε±) is then constructed as follows. First, shift all the labels in
such a way that the minimal label is equal to 1. Let us call l̃ := l − min l + 1
this shifted labeling function. Then, add an extra vertex v• carrying the label
l̃(v•) := 0 inside the only face of t. Finally, following the facial sequence, for
every 0≤ i ≤ 2n− 1, draw an arc—without crossing any edge of t or arc already
drawn—between t(i) and t(succ(i)), where succ(i) is the successor of i, defined
by

succ(i) :=
{

inf{k ≥ i : l̃(t(k))= �}, if {k ≥ i : l̃(t(k))= �} �=∅,
inf{k ≥ 1 : l̃(t(k))= �}, otherwise,

(1)

where �= l̃(t(i))− 1, and with the conventions inf ∅=∞, and t(∞)= v•.
The quadrangulation q is then defined as the map whose set of vertices is V (t)∪

{v•}, whose edges are the arcs we drew and whose root is the first arc drawn,
oriented from t(0) if ε± =−1 or toward t(0) if ε± =+1; see Figure 2.

Because of the way we drew the arcs of q, we see that for any vertex v ∈ V (q),
l̃(v)= dq(v

•, v). When seen as a vertex in V (q), we write q(i) instead of t(i). In
particular, {q(i),0≤ i ≤ 2n} = V (q) \ {v•}.

We end this section by giving an upper bound for the distance between two
vertices q(i) and q(j), in terms of the labeling function l:

dq(q(i),q(j))
(2)

≤ l(t(i))+ l(t(j))− 2 max
(

min
k∈−−−→[[i, j ]]

l(t(k)), min
k∈−−−→[[j, i]]

l(t(k))
)
+ 2,

where we note, for i ≤ j , [[i, j ]] := [i, j ] ∩Z= {i, i + 1, . . . , j}, and

−−−→[[i, j ]] :=
{ [[i, j ]], if i ≤ j ,
[[i,2n]] ∪ [[0, j ]], if j < i.

(3)

We refer the reader to [23], Lemma 4, for a detailed proof of this bound.
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FIG. 2. The Chapuy–Marcus–Schaeffer bijection. In this example, ε± = +1. On the bottom–left
picture, the vertex v• has a thicker (red) borderline.

2.2. Decomposition of a g-tree. We explained in [5] how to decompose a g-
tree into simpler objects. Roughly speaking, a g-tree is a scheme (a g-tree whose
all vertices have degree at least 3) in which every half-edge is replaced by a forest.

2.2.1. Forests. We adapt the standard formalism for plane trees—as found in
[24] for instance—to forests. Let us call U := ⋃∞

n=1 N
n, where N := {1,2, . . .}.

If u ∈ N
n, we write |u| := n. For u = (u1, . . . , un), v = (v1, . . . , vp) ∈ U , we let

uv := (u1, . . . , un, v1, . . . , vp) be the concatenation of u and v. If w = uv for some
u, v ∈ U , we say that u is a ancestor of w and that w is a descendant of u. In the
case where v ∈N, we may also use the terms parent and child instead.

DEFINITION 2. A forest is a finite subset f⊂ U satisfying the following:

(i) there is an integer t (f)≥ 1 such that f∩N= [[1, t (f)+ 1]];
(ii) if u ∈ f, |u| ≥ 2, then its parent belongs to f;

(iii) for every u ∈ f, there is an integer cu(f)≥ 0 such that ui ∈ f if and only if
1≤ i ≤ cu(f);

(iv) ct(f)+1(f)= 0.

The integer t (f) is called the number of trees of f.

For u= (u1, . . . , up) ∈ f, we call a(u) := u1 its oldest ancestor. A tree of f is a
level set for a: for 1 ≤ j ≤ t (f), the j th tree of f is the set {u ∈ f :a(u)= j}. The
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FIG. 3. The facial sequence of a well-labeled forest from F20
7 .

integer a(u) hence records which tree u belongs to. We call f ∩N= {a(u), u ∈ f}
the floor of the forest f.

For u, v ∈ f, we write u∼ v if either u is a parent or child of v, or u, v ∈N and
|u− v| = 1. It is convenient, when representing a forest, to draw edges between
u’s and v’s such that u ∼ v; see Figure 3. We say that an edge drawn between a
parent and its child is a tree edge whereas an edge drawn between two consecutive
tree roots, that is, between some i and i + 1, will be called a floor edge. We call
F m

σ := {f : t (f)= σ, |f| =m+ σ + 1} the set of all forests with σ trees and m tree
edges.

DEFINITION 3. A well-labeled forest is a pair (f, l) where f is a forest, and
l : f→ Z is a function satisfying:

(i) for all u ∈ f∩N, l(u)= 0;
(ii) if u∼ v, |l(u)− l(v)| ≤ 1.

Let Fm
σ := {(f, l) : f ∈ F m

σ } be the set of well-labeled forests with σ trees and m

tree edges.

Encoding by contour and spatial contour functions. There is a very convenient
way to code forests and well-labeled forests. Let f ∈ F m

σ be a forest. Let us begin
by defining its facial sequence f(0), f(1), . . . , f(2m+ σ) as follows (see Figure 3):
f(0) := 1, and for 0≤ i ≤ 2m+ σ − 1:

� if f(i) has children that do not appear in the sequence f(0), f(1), . . . , f(i), then
f(i + 1) is the first of these children, that is, f(i + 1) := f(i)j0 where

j0 =min
{
j ≥ 1 : f(i)j /∈ {f(0), f(1), . . . , f(i)}};

� otherwise, if f(i) has a parent [i.e., |f(i)| ≥ 2], then f(i + 1) is this parent;
� if neither of these cases occur, which implies that |f(i)| = 1, then f(i + 1) :=

f(i)+ 1.
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FIG. 4. The contour pair of the well-labeled forest appearing in Figure 3. The paths are dashed on
the intervals corresponding to floor edges.

Each tree edge is visited exactly twice—once going from the parent to the child,
once going the other way around—whereas each floor edge is visited only once—
from some i to i + 1. As a result, f(2m+ σ)= t (f)+ 1.

The contour pair (Cf,Lf,l) of (f, l) consists in the contour function Cf : [0,2m+
σ ]→R+ of f and the spatial contour function Lf,l : [0,2m+ σ ]→R defined by

Cf(i) := |f(i)| + t (f)− a(f(i)) and Lf,l(i) := l(f(i)), 0≤ i ≤ 2m+ σ,

and linearly interpolated between integer values (see Figure 4). It entirely deter-
mines (f, l).

2.2.2. Decomposition of a well-labeled g-tree into simpler objects. We ex-
plain here how to decompose a well-labeled g-tree. See [5] for a more precise
description.

DEFINITION 4. We call scheme of genus g a g-tree with no vertices of degree
one or two. A scheme is said to be dominant when it only has vertices of degree
exactly three.

We call S the finite set of all schemes of genus g and S∗ the set of all dominant
schemes of genus g.

Let us first explain how to decompose a g-tree (without labels) into a scheme,
a family of forests and an integer. Let s be a scheme. We suppose that we have
forests fe ∈ F me

σ e , e ∈ �E(s), where for all e, σ ē = σ e, as well as an integer u ∈ [[0,
2me∗ + σ e∗ − 1]], where e∗ denotes the root of s. We construct a g-tree as follows.
First, we replace every edge {e, ē} in s with a chain of σ e = σ ē edges. Then, for
every half-edge e ∈ �E(s), we replace the chain of half-edges corresponding to it
with the forest fe, in such a way that its floor matches with the chain. In other
words, we “graft” the forest fe to the left of e. Finally, the root of the g-tree is the
half-edge linking fe∗(u) to fe∗(u+ 1) in the forest grafted to the left of e∗.
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FIG. 5. Decomposition of a well-labeled g-tree t into its scheme s, the collection of its Motzkin
paths (Me)

e∈ �E(s)
and the collection of its well-labeled forests (fe, le)

e∈ �E(s)
. In this example, the

integer u = 10. The floor of t is more thickly outlined, and its two nodes are even more thickly
outlined.

PROPOSITION 3. The above description provides a bijection between the set
of all g-trees and the set of all triples (s, (fe)

e∈ �E(s)
, u) where s ∈S is a scheme (of

genus g), the forests fe ∈ F me

σ e are such that σ ē = σ e for all e and u ∈ [[0,2me∗ +
σ e∗ − 1]].

Moreover, g-trees with n edges correspond to triples satisfying the condition∑
e∈ �E(s)

(me + 1
2σ e)= n.

Let t be a g-tree and (s, (fe)
e∈ �E(s)

, u) be the corresponding triple. We say that

s is the scheme of t and that the forests fe, e ∈ �E(s), are its forests. The set V (s)

may be seen as a subset of t; we call nodes its elements. Finally, we call floor of
t the set fl of vertices we obtain after replacing the edges of s by chains of edges
(see Figure 5).

We now deal with well-labeled g-trees. We will need the following definition:

DEFINITION 5. We call Motzkin path a sequence (Mn)0≤n≤σ for some σ ≥
0 such that M0 = 0 and for 0 ≤ i ≤ σ − 1, Mi+1 −Mi ∈ {−1,0,1}. We write
σ(M) := σ its lifetime.

Let s be a scheme. We suppose that we have well-labeled forests (fe, le) ∈ Fme

σ e ,
e ∈ �E(s), where for all e, σ ē = σ e, as well as an integer u ∈ [[0,2me∗ + σ e∗ − 1]].
Suppose moreover that we have a family of Motzkin paths (Me)

e∈ �E(s)
such that

Me is defined on [[0, σ e]] and Me(σ e) = le
+ − le

−
for some family of integers

(lv)v∈V (s) with le
−∗ = 0. We suppose that the Motzkin paths satisfy the following

relation:

Mē(i)=Me(σ e − i)− le, 0≤ i ≤ σ e where le := le
+ − le

−
.
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We will say that a quadruple (s, (Me)
e∈ �E(s)

, (fe, le)
e∈ �E(s)

, u) satisfying these con-
straints is compatible.

We construct a well-labeled g-tree as follows. We begin by suitably relabeling
the forests. For every half-edge e, first, we shift the labels of Me by le

−
so that it

goes from le
−

to le
+

. Then we shift all the labels of (fe, le) tree by tree according
to the Motzkin path: precisely, we change le into w ∈ fe �→ le

− +Me(a(w)− 1)+
le(w). Then we replace the half-edge e with this forest, as in the previous section.
As before, we find the position of the root thanks to u. Finally, we shift all the
labels for the root label to be equal to 0.

PROPOSITION 4. The above description provides a bijection between the set
of all well-labeled g-trees and the set of all compatible quadruples.

Moreover, g-trees with n edges correspond to quadruples satisfying the condi-
tion

∑
e∈ �E(s)

(me + 1
2σ e)= n.

If we call (Ce,Le) the contour pair of (fe, le), then we may retrieve the oldest
ancestor of fe(i) thanks to Ce by the relation

a(fe(i))− 1= σ e −Ce(i),

where we use the notation

Xs := inf[0,s]X

for any process (Xs)s≥0. The function

Le := (
Le(t)+Me

(
σ e −Ce(t)

))
0≤t≤2me+σ e,(4)

then records the labels of the forest fe, once shifted tree by tree according to the
Motzkin path Me. This function will be used in Section 2.4.

Through the Chapuy–Marcus–Schaeffer bijection, a uniform random quadran-
gulation corresponds to a uniform random well-labeled g-tree. It can then be
decomposed into a scheme, a collection of well-labeled forests, a collection of
Motzkin paths and an integer, as explained above. The following section exposes
the scaling limits of these objects.

2.3. Scaling limits. Let us define the space K of continuous real-valued func-
tions on R+ killed at some time

K := ⋃
x∈R+

C([0, x],R).

For an element f ∈ K, we will define its lifetime σ(f ) as the only x such that
f ∈ C([0, x],R). We endow this space with the following metric:

dK(f, g) := |σ(f )− σ(g)| + sup
y≥0

∣∣f (
y ∧ σ(f )

)− g
(
y ∧ σ(g)

)∣∣.
Throughout this section, m and σ will denote positive real numbers and l will

be any real number.
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2.3.1. Brownian bridges, first-passage Brownian bridges and Brownian snake.
We define here the Brownian bridge B0→l[0,m] on [0,m] from 0 to l and the first-

passage Brownian bridge F 0→−σ
[0,m] on [0,m] from 0 to −σ . Informally, B0→l[0,m] and

F 0→−σ
[0,m] are a standard Brownian motion β on [0,m] conditioned, respectively, on

the events {βm = l} and {inf{s ≥ 0 :βs = −σ } = m}. Because both theses events
occur with probability 0, we need to define these objects properly. There are several
equivalent ways to do so; see for example [4, 6, 25]. We call pa the density of a
centered Gaussian variable with variance a, as well as p′a its derivative

pa(x) := 1√
2πa

exp
(
−x2

2a

)
and p′a(x)=−x

a
pa(x).

Let (βt )0≤t≤m be a standard Brownian motion. As explained in [14], Proposi-
tion 1, the law of the Brownian bridge is characterized by the equation B0→l[0,m](m)=
l and the formula

E
[
f

((
B0→l[0,m](t)

)
0≤t≤m′

)]= E

[
f ((βt )0≤t≤m′)

pm−m′(l − βm′)

pm(l)

]

for all bounded measurable functions f on K, for all 0 ≤ m′ < m. We define the
law of the first-passage Brownian bridge in a similar way, by letting

E
[
f

((
F 0→−σ
[0,m] (t)

)
0≤t≤m′

)]
(5)

= E

[
f ((βt )0≤t≤m′)

p′m−m′(−σ − βm′)

p′m(−σ)
1{β

m′>−σ }
]

for all bounded measurable functions f on K, for all 0 ≤ m′ < m and
F 0→−σ
[0,m] (m)=−σ .
For any real numbers l1, l2, σ1 > σ2, we define the bridge on [0,m] from l1 to

l2 and the first-passage bridge on [0,m] from σ1 to σ2 by

B
l1→l2[0,m] (s) := l1 +B

0→l2−l1[0,m] and F
σ1→σ2[0,m] := σ1 + F

0→σ2−σ1[0,m] .

See [5], Section 5.1, for a more precise description of these objects. In particular,
[5], Lemmas 10 and 14, show that these objects appear as the limits of their discrete
analogs.

Conditionally given a first-passage Brownian bridge F = Fσ→0[0,m] , we define a
Gaussian process (Z[0,m](s))0≤s≤m with covariance function

cov
(
Z[0,m](s),Z[0,m](s′)

)= inf[s∧s′,s∨s′](F − F).

The process (F σ→0[0,m] ,Z[0,m]) has the law of the so-called Brownian snake’s head;
see [12, 16] for more details.
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2.3.2. Convergence results. Recall that S∗ is the set of all dominant schemes
of genus g, that is, schemes with only vertices of degree 3. For any s ∈ S, we

identify an element (m,σ, l, u) ∈R
�E(s)\{e∗}+ × (R∗+)Ě(s)×R

V (s)\{e−∗ } ×R+ with an

element of R
�E(s)
+ × (R∗+)

�E(s) ×R
V (s) ×R+ by setting:

� me∗ := 1−∑
e∈ �E(s)\{e∗}m

e,

� σ ē := σ e for every e ∈ Ě(s),
� le

−∗ := 0.

We write


s :=
{
(xe)e∈ �E(s)

∈ [0,1] �E(s),
∑

e∈ �E(s)

xe = 1
}
,

the simplex of dimension | �E(s)| − 1. Note that m lies in 
s as long as me∗ ≥ 0.
We define the probability μ by, for all measurable function ϕ on

⋃
s∈S{s} ×
s×

(R∗+)
�E(s) ×R

V (s) × [0,1],

μ(ϕ)= 1

ϒ

∑
s∈S∗

∫
S s

dLs 1{me∗≥0,u<me∗ }ϕ(s,m,σ, l, u)

× ∏
e∈ �E(s)

−p′me(σ
e)

∏
e∈Ě(s)

pσ e(le),

where le := le
+ − le

−
, the measure dLs = d(me) d(σ e) d(lv) du is the Lebesgue

measure on the set

S s := [0,1] �E(s)\{e∗} × (R∗+)Ě(s) ×R
V (s)\{e−∗ } × [0,1]

and

ϒ = ∑
s∈S∗

∫
S s

dLs 1{me∗≥0,u<me∗ }
∏

e∈ �E(s)

−p′me(σ
e)

∏
e∈Ě(s)

pσ e(le)(6)

is a normalization constant. We gave a nonintegral expression for this constant
in [5].

Let (tn, ln) be uniformly distributed over the set Tn of well-labeled g-trees with
n vertices. We call sn its scheme and we define, as in Section 2.2, (fen, l

e
n)e∈ �E(sn)

its well-labeled forests, (me
n)e∈ �E(sn)

and (σ e
n)

e∈ �E(sn)
, respectively, their sizes and

lengths, (lvn)v∈V (sn) the shifted labels of its nodes, (Me
n)e∈ �E(sn)

its Motzkin paths
and un the integer recording the position of the root in the first forest fe∗n . We call
(Ce

n,L
e
n) the contour pair of the well-labeled forest (fen, l

e
n), and we extend the

definition of Me
n to [0, σ e

n] by linear interpolation. We then define the rescaled
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versions of these objects [recall that γ := (8/9)1/4]

me
(n) :=

2me
n + σ e

n

2n
, σ e

(n) :=
σ e

n√
2n

, lv(n) :=
lvn

γ n1/4 , u(n) := un

2n
,

Ce
(n) :=

(
Ce

n(2nt)√
2n

)
0≤t≤me

(n)

, Le
(n) :=

(
Le

n(2nt)

γ n1/4

)
0≤t≤me

(n)

,

Me
(n) :=

(
Me

n(
√

2nt)

γ n1/4

)
0≤t≤σ e

(n)

.

REMARK. Throughout this paper, the notation with a parenthesized n will
always refer to suitably rescaled objects, as in the definitions above.

We described in [5] the limiting law of these objects:

PROPOSITION 5. The random vector(
sn,

(
me

(n)

)
e∈ �E(sn)

,
(
σ e

(n)

)
e∈ �E(sn)

,
(
lv(n)

)
v∈V (sn), u(n),(

Ce
(n),L

e
(n)

)
e∈ �E(sn)

,
(
Me

(n)

)
e∈ �E(sn)

)
converges in law toward the random vector(

s∞, (me∞)
e∈ �E(s∞)

, (σ e∞)
e∈ �E(s∞)

, (lv∞)v∈V (s∞), u∞,

(Ce∞,Le∞)
e∈ �E(s∞)

, (Me∞)
e∈ �E(s∞)

)
,

whose law is defined as follows:

� the law of the vector

I∞ := (
s∞, (me∞)

e∈ �E(s∞)
, (σ e∞)

e∈ �E(s∞)
, (lv∞)v∈V (s∞), u∞

)
is the probability μ,

� conditionally given I∞:
– the processes (Ce∞,Le∞), e ∈ �E(s∞), and (Me∞), e ∈ Ě(s∞), are indepen-

dent;
– the process (Ce∞,Le∞) has the law of a Brownian snake’s head on [0,me∞]

going from σ e∞ to 0

(Ce∞,Le∞)
(d)= (

F
σ e∞→0
[0,me∞],Z[0,me∞]

);
– the process (Me∞) has the law of a Brownian bridge on [0, σ e∞] from 0 to

le∞ := le
+
∞ − le

−
∞

(Me∞)
(d)= B

0→le∞[0,σ e∞];
– the Motzkin paths are linked through the relation

Mē∞(s)=Me∞(σ e∞ − s)− le∞.
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Applying Skorokhod’s representation theorem, we may and will assume that
this convergence holds almost surely. As a result, note that for n large enough,
sn = s∞.

2.4. Maps seen as quotients of [0,1]. Let qn be uniformly distributed over
the set Qn of bipartite quadrangulations of genus g with n faces. Conditionally
given qn, we take v•n uniformly over V (qn) so that (qn, v

•
n) is uniform over the set

Q•
n of pointed bipartite quadrangulations of genus g with n faces. Recall that every

element of Qn has the same number of vertices, n+ 2− 2g. Through the Chapuy–
Marcus–Schaeffer bijection, (qn, v

•
n) corresponds to a uniform well-labeled g-tree

with n edges (tn, ln). The parameter ε± ∈ {−1,1} appearing in the bijection will
be irrelevant to what follows.

Recall the notation tn(0), tn(1), . . . , tn(2n) and qn(0), qn(1), . . . ,qn(2n) from
Section 2.1. For technical reasons, it will be more convenient, when traveling along
the g-tree, not to begin by its root but rather by the first edge of the first forest.
Precisely, we define

ṫn(i) :=
{

tn(i − un + 2n), if 0≤ i ≤ un,
tn(i − un), if un ≤ i ≤ 2n,

where un is the integer recording the position of the root in the first forest of tn.
We define q̇n(i) in a similar way, and endow [[0,2n]] with the pseudo-metric dn

defined by

dn(i, j) := dqn(q̇n(i), q̇n(j)).

We define the equivalence relation ∼n on [[0,2n]] by declaring that i ∼n j if
q̇n(i) = q̇n(j), that is, if dn(i, j) = 0. We call πn the canonical projection from
[[0,2n]] to [[0,2n]]/∼n , and we slightly abuse notation by seeing dn as a met-
ric on [[0,2n]]/∼n defined by dn(πn(i),πn(j)) := dn(i, j). In what follows, we
will always make the same abuse with every pseudo-metric. The metric space
([[0,2n]]/∼n, dn) is then isometric to (V (qn) \ {v•n}, dqn), which is at dGH-distance
at most 1 from the space (V (qn), dqn).

We extend the definition of dn to noninteger values by linear interpolation and
define its rescaled version: for s, t ∈ [0,1], we let

d(n)(s, t) := 1

γ n1/4 dn(2ns,2nt).(7)

Spatial contour function of (tn, ln). The spatial contour function of the pair
(tn, ln) is the function Ln : [0,2n]→R, defined by

Ln(i) := ln(ṫn(i))− ln(ṫn(0)), 0≤ i ≤ 2n,

and linearly interpolated between integer values. Its rescaled version is

L(n) :=
(

Ln(2nt)

γ n1/4

)
0≤t≤1

.
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Recall definition (4) of the process Le
n. We define its rescaled version by

Le
(n) :=

(
Le

n(2nt)

γ n1/4

)
0≤t≤me

(n)

= (
Le

(n)(t)+Me
(n)

(
σ e

(n) −Ce
(n)(t)

))
0≤t≤me

(n)
.

Proposition 5 shows that Le
(n) converges in the space (K, dK) toward

Le∞ :=
(
Le∞(t)+Me∞

(
σ e∞ −Ce∞(t)

))
0≤t≤me∞ .

We can express L(n) in terms of the processes Le
(n)’s by concatenating them.

For f,g ∈ K0 two functions started at 0, we call f • g ∈ K0 their concatenation
defined by σ(f • g) := σ(f )+ σ(g) and, for 0≤ t ≤ σ(f • g),

f • g(t) :=
{

f (t), if 0≤ t ≤ σ(f ),
f (σ(f ))+ g

(
t − σ(f )

)
, if σ(f )≤ t ≤ σ(f )+ σ(g).

We arrange the half-edges of sn according to its facial order, beginning with the
root e1 = e∗, . . . , e2(6g−3), so that L(n) = L

e1
(n) •L

e2
(n) • · · · •L

e2(6g−3)

(n) . By continuity

of the concatenation, L(n) converges in (K, dK) toward L∞ := L
e1∞ • L

e2∞ • · · · •
L

e2(6g−3)∞ , where the half-edges of s∞ are arranged in the same way.

Upper bound for d(n). Bound (2) provides us with an upper bound on d(n). We
define

d◦n(i, j) := Ln(i)+Ln(j)− 2 max
(

min
k∈−−−→[[i, j ]]

Ln(k), min
k∈−−−→[[j, i]]

Ln(k)
)
+ 2,

we extend it to [0,2n] by linear interpolation and define its rescaled version d◦(n)

as we did for dn by (7). We readily obtain that

d(n)(s, t)≤ d◦(n)(s, t).(8)

Moreover, the process (d◦(n)(s, t))0≤s,t≤1 converges in (C([0,1]2,R),‖ · ‖∞) to-
ward the process (d◦∞(s, t))0≤s,t≤1 defined by

d◦∞(s, t) := L∞(s)+L∞(t)− 2 max
(

min
x∈−−→[s, t]

L∞(x), min
x∈−−→[t, s]

L∞(x)
)
,

where

−−→[s, t] :=
{ [s, t], if s ≤ t ,
[s,1] ∪ [0, t], if t < s.

(9)

Tightness of the processes d(n)’s. In [5], Lemma 19, we showed the tight-
ness of the processes d(n)’s laws thanks to the inequality (8). As a result, from
any increasing sequence of integers, we may extract a (deterministic) subsequence
(nk)k≥0 such that there exists a function d∞ ∈ C([0,1]2,R) satisfying

(d(nk)(s, t))0≤s,t≤1
(d)−→

k→∞(d∞(s, t))0≤s,t≤1.(10)
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By Skorokhod’s representation theorem, we will assume that this convergence
holds almost surely. We can check that the function d∞ is actually a pseudo-
metric. We define the equivalence relation associated with it by saying that s ∼∞ t

if d∞(s, t)= 0, and we call q∞ := [0,1]/∼∞ . We proved in [5] that
(
V (qnk

),
1

γ n
1/4
k

dqnk

)
(d)−→

k→∞(q∞, d∞)

in the sense of the Gromov–Hausdorff topology.
From now on, we fix such a subsequence (nk)k≥0. We will always focus on this

particular subsequence in the following, and we will consider convergences when
n→∞ to hold along this particular subsequence.

3. Real g-trees. In the discrete setting, it is sometimes convenient to work
directly with the space tn instead of [[0,2n]]. In the continuous setting, we will see
q∞ as a quotient of a continuous version of a g-tree, which we will call real g-tree.
In other words, we will see the identifications s ∼∞ t as of two different kinds:
some are inherited “from the g-tree structure,” whereas the others come “from the
map structure.”

3.1. Definitions. As g-trees generalize plane trees in genus g, real g-trees are
the objects that naturally generalize real trees. We will only use basic facts on real
trees in this work. See, for example, [17] for more detail.

We consider a fixed dominant scheme s ∈ S∗. Let (me)
e∈ �E(s)

and (σ e)
e∈ �E(s)

be two families of positive numbers satisfying
∑

e me = 1 and σ e = σ ē for
all e. As usual, we arrange the half-edges of s according to its facial order,
e1 = e∗, . . . , e2(6g−3). For every s ∈ [0,1), there exists a unique 1≤ k ≤ 2(6g − 3)

such that

k−1∑
i=1

mei ≤ s <

k∑
i=1

mei .

We let e(s) := ek and 〈s〉 := s − ∑k−1
i=1 mei ∈ [0,me(s)). By convention, we set

e(1)= e1 and 〈1〉 = 0. Beware that these notions depend on the family (me)
e∈ �E(s)

.
There should be no ambiguity in what follows.

Let us suppose we have a family (he)
e∈ �E(s)

of continuous functions he : [0,

me] → R+ such that he(0) = σ e and he(me) = 0. It will be useful to consider
their concatenation: we define the continuous function h : [0,1]→R+ going from∑

e σ e to 0 by

h := (he1 − σ e1) • (he2 − σ e2) • · · · • (
he2(6g−3) − σ e2(6g−3)

)+
2(6g−3)∑

i=1

σ ei .(11)
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We define the relation � on [0,1] as the coarsest equivalence relation for which
s � t if one of the following occurs:

h(s)= h(t)= inf[s∧t,s∨t]h;(12a)

h(s)= h(s), h(t)= h(t),
(12b)

e(s)= e(t) and he(s)(〈s〉)= σ e(t) − he(t)(〈t〉);
〈s〉 = 〈t〉 = 0 and e(s)− = e(t)−.(12c)

If we see the he’s as contour functions (in a continuous setting), the first item
identifies numbers coding the same point in one of the forests. The second item
identifies the floors of forests “facing each other”: the numbers s and t should
code floor points (two first equalities) of forests facing each other (third equality)
and correspond to the same point (fourth equality). Finally, the third item iden-
tifies the nodes. We call real g-tree any space T := [0,1]/� obtained by such a
construction.3

We now define the notions we will use throughout this work (see Figure 6).
For s ∈ [0,1], we write T (s) its equivalence class in the quotient T = [0,1]/�.
Similarly to the discrete case, the floor of T is defined as follows.

DEFINITION 6. We call floor of T the set fl :=T ({s :h(s)= h(s)}).

For a = T (s) ∈ T \ fl, let l := inf{t ≤ s :h(t) = h(s)} and r := sup{t ≥
s :h(t) = h(s)}. The set τa := T ([l, r]) is a real tree rooted at ρa := T (l) =
T (r) ∈ fl.

DEFINITION 7. We call tree of T a set of the form τa for any a ∈T \ fl.

FIG. 6. Left. On this picture, we can see the floor fl, the two nodes n and m, an example of tree
τa and an example of tree τ to the left of [[ρb, b]] rooted at ρ. Middle. The set [a, b]. Right. On this
picture, a is an ancestor of b and c, and we can see the sets [[b, c]], [[α,β]] and fe.

3There should be a more intrinsic definition for these spaces in terms of compact metric spaces that
are locally real trees. As we will need to use this construction in what follows, we chose to define
them as such for simplicity.
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If a ∈ fl, we simply set ρa := a. Let τ be a tree of T rooted at ρ, and a, b ∈ τ .
We call [[a, b]] the range of the unique injective path linking a to b. In particular,
the set [[ρ,a]] will be of interest. It represents the ancestral lineage of a in the
tree τ . We say that a is an ancestor of b, and we write a � b, if a ∈ [[ρ,b]]. We
write a ≺ b if a � b and a �= b.

DEFINITION 8. Let b = T (t) ∈ T \ fl and ρ ∈ [[ρb, b]] \ {ρb, b}. Let l′ :=
inf{s ≤ t :T (s)= ρ} and r ′ := sup{s ≤ t :T (s)= ρ}. Then, provided l′ �= r ′, we
call the tree to the left of [[ρb, b]] rooted at ρ the set T ([l′, r ′]).

We define the tree to the right of [[ρb, b]] rooted at ρ in a similar way, by
replacing “≤” with “≥” in the definitions of l′ and r ′.

DEFINITION 9. We call subtree of T any tree of T , or any tree to the left or
right of [[ρb, b]] for some b ∈T \ fl.

Note that subtrees of T are real trees, and that trees of T are also subtrees
of T . For a subtree τ , the maximal interval [s, t] such that τ =T ([s, t]) is called
the interval coding the subtree τ .

DEFINITION 10. For e ∈ �E(s), we call the forest to the left of e the set fe :=
T ({s : e(s)= e}).

The nodes of T are the elements of T ({s : 〈s〉 = 0}). In what follows, we will
identify the nodes of T with the vertices of s. In particular, the two nodes e− and
e+ lie in fe. We extend the definition of [[a, b]] to the floor of fe: for a, b ∈ fe ∩ fl,
let s, t ∈ {r : e(r)= e} be such that a =T (s) and b=T (t). We define

[[a, b]] :=T ([s ∧ t, s ∨ t])∩ fl

the range of the unique4 injective path from a to b that stays inside fe. For clarity,
we write the set [[e−, e+]] simply as [[e]]. Note that, in particular, [[e]] = fe ∩ fē =
fe ∩ fl.

Let a, b ∈T . There is a natural way5 to explore T from a to b. If infT −1(a)≤
supT −1(b), then let t := inf{r ≥ infT −1(a) :b = T (r)} and s := sup{r ≤
t :a = T (r)}. If supT −1(b) < infT −1(a), then let t := infT −1(b) and s :=
supT −1(a). We define

[a, b] :=T (
−−→[s, t]),(13)

4Note that e+ �= e− because s is a dominant scheme.
5Note that, if a, b ∈ fl, there are other possible ways to explore the g-tree between them. Indeed,

a point of fl is visited twice—or three times if it is a node—when we travel around fl. In particular,
this definition depends on the position of the root in s for such points. In what follows, we never use
this definition for such points, so there will be no confusion.
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where
−−→[s, t] is defined by (9).

We call Tn (resp., T∞) the real g-tree obtained from the scheme sn (resp., s∞)
and the family (Ce

(n))e∈ �E(sn)
[resp., (Ce∞)

e∈ �E(s∞)
]. For the sake of consistency

with [5], we call C(n) and C∞ the functions obtained by (11) in this construction.
We also call �(n) and �∞ the corresponding equivalence relations. When dealing
with T∞, we add an ∞ symbol to the notation defined above: for example, the
floor of T∞ will be noted fl∞, and its forest to the left of e will be noted fe∞. It is
more natural to use tn rather than Tn in the discrete setting. As tn may be viewed
as a subset of Tn, we will use for tn the formalism we defined above simply by
restriction. Note that the notions of floor, forests, trees and nodes are consistent
with the definitions we gave in Section 2.2 in that case.

Note that, because the functions Ce∞’s are first-passage Brownian bridges, the
probability that there exists ε > 0 such that Ce∞(s) > Ce∞(0) for all s ∈ (0, ε) is
equal to 0. As a result, there are almost surely no trees rooted at the nodes of T∞.
Moreover, the fact that the forests fe and fē are independent yields that, almost
surely, we cannot have a tree in fe and a tree in fē rooted at the same point. As
a consequence, we see that, almost surely, all the points of T∞ are of order less
than 3.

3.2. Maps seen as quotients of real g-trees. Consistently with the notation
tn(i) and qn(i) in the discrete setting, we call T∞(s) [resp., q∞(s)] the equivalence
class of s ∈ [0,1] in T∞ = [0,1]/�∞ (resp., in q∞ = [0,1]/∼∞ ).

LEMMA 6. The equivalence relation �∞ is coarser than ∼∞, so that we can
see q∞ as the quotient of T∞ by the equivalence relation on T∞ induced from
∼∞.

PROOF. By definition of �∞, it suffices to show that if s < t satisfy (12a),
(12b) or (12c), then s ∼∞ t . Let us first suppose that s and t satisfy (12a), that is,

C∞(s)= C∞(t)= inf[s,t]C∞.

In a first time, we moreover suppose that C∞(r) > C∞(s) for all r ∈ (s, t). Us-
ing Proposition 5, we can find integers 0 ≤ sn < tn ≤ 2n such that (s(n), t(n)) :=
(sn/2n, tn/2n) → (s, t) and C(n)(s(n)) = C(n)(t(n)) = inf[s(n),t(n)] C(n). The latter
condition imposes that ṫn(sn)= ṫn(tn) so that dn(sn, tn)= 0 and s ∼∞ t by (10).

Equation (5) shows that, for every e, the law of Ce∞ is absolutely continuous
with respect to the Wiener measure on any interval [0,me∞−ε], for ε > 0. Because
local minimums of Brownian motion are pairwise distinct, this is also true for any
Ce∞, and thus for the whole process C∞ by construction. If there exists r ∈ (s, t)

for which C∞(r) = C∞(s), it is thus unique. We may then apply the previous
reasoning to (s, r) and (r, t) and find that s ∼∞ r and r ∼∞ t , so that s ∼∞ t .
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Let us now suppose that s and t satisfy (12b). If there is 0 ≤ r < s such that
C∞(r) = C∞(s), then r �∞ s by (12a). The same holds with t instead of s. We
may thus restrict our attention to s and t for which C∞(r) > C∞(s) for all r ∈
[0, s) and C∞(r) > C∞(t) for all r ∈ [0, t). Let us call e= e(s)= e(t). In order to
avoid confusion, we use the notation 〈·〉n and en(·) when dealing with the functions
Ce

(n)’s. We know that for n large enough, we have sn = s∞. We only consider
such n’s in the following. We first find 0 ≤ sn ≤ 2n such that s(n) := sn/2n→ s,
en(s(n))= e, and C(n)(s(n))= C(n)(s(n)). We define

t(n) := inf
{
r ∈ 1

2n
[[0,2n]] : en(r)= ē,Cē

(n)(〈r〉n)= σ e
(n) − Ce

(n)

(〈
s(n)

〉
n

)}
,

so that t(n) �(n) s(n), and then d(n)(s(n), t(n)) = 0. Taking an extraction if needed,
we may suppose that t(n) → t ′ ∼∞ s. By construction, e(t ′)= e(t) and C∞(t ′)=
C∞(t ′) = C∞(t). So t ′ and t fulfill requirement (12a) and t ′ ∼∞ t by the above
argument. The case of (12c) is easier and may be treated in a similar way. �

This lemma allows us to define a pseudo-metric and an equivalence relation
on T∞, still denoted by d∞ and ∼∞, by setting d∞(T∞(s),T∞(t)) := d∞(s, t)

and declaring T∞(s) ∼∞ T∞(t) if s ∼∞ t . The metric space (q∞, d∞) is then
isometric to (T∞/∼∞, d∞). We define d◦∞ on T∞ by letting

d◦∞(a, b) := inf{d◦∞(s, t) :a =T∞(s), b=T∞(t)}.
We will see in Lemma 9 that there is a.s. only one point where the function L∞

reaches its minimum. On this event, the following lemma holds.

LEMMA 7. Let s• be the unique point where L∞ reaches its minimum. Then

d∞(s, s•)= L∞(s)−L∞(s•).

Moreover, s ∼∞ t implies L∞(s)= L∞(t).

PROOF. This readily comes from the discrete setting. Let 0 ≤ s•n ≤ 2n be
an integer where Ln reaches its minimum. By extracting if necessary, we may
suppose that s•n/2n converges and its limit is necessarily s•. Let 0 ≤ sn ≤ 2n be
such that sn/2n→ s. From the Chapuy–Marcus–Schaeffer bijection, dn(sn, s

•
n)=

Ln(sn)−Ln(s
•
n)+ 1. Letting n→∞ after renormalizing yields the first assertion.

The second one follows from the first one and the triangle inequality. �

As a result of Lemmas 6 and 7, we can define L∞ on T∞ by L∞(T∞(s)) :=
L∞(s). When (a, b) /∈ (fl∞)2, we have

d◦∞(a, b)= L∞(a)+L∞(b)− 2 max
(

min
x∈[a,b]L∞(x), min

x∈[b,a]L∞(x)
)
,(14)

where [a, b] was defined by (13).
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4. Points identifications. This section is dedicated to the proof of the follow-
ing theorem:

THEOREM 8. Almost surely, for every a, b ∈ T∞, a ∼∞ b is equivalent to
d◦∞(a, b)= 0.

We already know that d◦∞(a, b)= 0 implies a ∼∞ b from the bound d∞ ≤ d◦∞.
We will show the converse through a series of lemmas. We adapt the approach of
Le Gall [18] to our setting.

4.1. Preliminary lemmas. Let us begin by giving some information on the pro-
cess (C∞,L∞).

LEMMA 9. The set of points where L∞ reaches its minimum is a.s. a singleton.

Let f : [0,1] → R be a continuous function. We say that s ∈ [0,1) is a right-
increase point of f if there exists t ∈ (s,1] such that f (r)≥ f (s) for all s ≤ r ≤ t .
A left-increase point is defined in a symmetric way. We call IP(f ) the set of all
(left or right) increase points of f .

LEMMA 10. A.s., IP(C∞) and IP(L∞) are disjoint sets.

As the proofs of these lemmas are rather technical and unrelated to what follows,
we postpone them to Section 6.

4.2. Key lemma.

REMARK. In what follows, every discrete path denoted by the letter “℘” will
always be a path in the map, never in the tree, that is, a path using the edges of the
map.

Let τ be a subtree of tn and ℘ = (℘ (0),℘ (1), . . . ,℘ (r)) be a path in qn that
avoids the base point v•n. We say that the arc (℘ (0),℘ (1)) enters the subtree τ from
the left (resp., from the right) if ℘(0) /∈ τ , ℘(1) ∈ τ and ln(℘ (1))− ln(℘ (0))=−1
[resp., ln(℘ (1))− ln(℘ (0))= 1]. We say that the path ℘ passes through the subtree
τ between times i and j , where 0 < i ≤ j < r , if:

� ℘(i − 1) /∈ τ ; ℘([[i, j ]])⊆ τ ; ℘(j + 1) /∈ τ ,
� ln(℘ (i))− ln(℘ (i − 1))= ln(℘ (j + 1))− ln(℘ (j)).

The first condition states that ℘ “visits” τ , whereas the second one ensures that it
really goes “through.” It enters and exits τ going “in the same direction.”

We say that a vertex an ∈ tn converges toward a point a ∈ T∞ if there exists
a sequence of integers sn ∈ [[0,2n]] coding an [i.e., an = ṫn(sn)] such that sn/2n
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admits a limit s satisfying a =T∞(s). Let [[ln, rn]] be the intervals coding subtrees
τn ⊆ tn. We say that the subtree τn converges toward a subtree τ ⊆ T∞ if the
sequences ln/2n and rn/2n admit limits l and r such that the interval coding τ is
[l, r]. The following lemma is adapted from Le Gall [18], end of Proposition 4.2.

LEMMA 11. With full probability, the following occurs. Let a, b ∈T∞ be such
that L∞(a) = L∞(b). We suppose that there exists a subtree τ rooted at ρ such
that infτ L∞ < L∞(a) < L∞(ρ). We further suppose that we can find vertices an,
bn ∈ tn and subtrees τn in tn converging, respectively, toward a, b, τ and satisfying
the following property: for infinitely many n’s, there exists a geodesic path ℘n in
qn from an to bn that avoids the base point v•n and passes through the subtree τn.

Then, a �∼∞ b.

PROOF. The idea is that if a and b were identified, then all the points in the
discrete subtrees close (in a certain sense) to the geodesic path would be close to
a in the limit. Fine estimates on the sizes of balls yield the result. We proceed to
the rigorous proof.

We reason by contradiction and suppose that a ∼∞ b. We only consider integers
n for which the hypothesis holds. We call ρn the root of τn, and we set, for ε > 0,

U ε∞ :=
{
y ∈ τ :L∞(y) < L∞(a)+ ε; ∀x ∈ [[ρ,y]],L∞(x) > L∞(a)+ ε

8

}
.

We first show that U ε∞ ⊆ B∞(a,2ε), where B∞(a,2ε) denotes the closed ball of
radius 2ε centered at a in the metric space (q∞, d∞). Let y ∈ U ε∞. We can find
yn ∈ τn \ {ρn} converging toward y. For n large enough, we have

dqn(an, bn)≤ ε

32
n1/4, sup

c∈℘n

|ln(c)− ln(an)| ≤ ε

32
n1/4,

ln(yn)≤ ln(an)+ 3

2
εn1/4, ∀x ∈ [[ρn, yn]] ln(x)≥ ln(an)+ ε

16
n1/4.

The first inequality comes from the fact that a ∼∞ b. The second inequality
is a consequence of the first one. The third inequality holds because (ln(yn) −
ln(v

•
n))/γ n1/4 → L∞(y) and (ln(an) − ln(v

•
n))/γ n1/4 → L∞(a). Finally, the

fourth inequality follows by compactness of [[ρ,y]].
From now on, we only consider such n’s. We call tn := sup{t :yn = ṫn(t)} the

last integer coding yn, and [[ln, rn]] the interval coding τn. We also call i ≤ j two
integers such that ℘n passes through τn between times i and j . For the sake of
simplicity, we suppose that ℘n enters τn from the left.6 Notice that the path ℘n

does not intersect [[ρn, yn]], because the labels on [[ρn, yn]] are strictly greater

6The case where ℘n enters τn from the right may be treated by considering the path h �→
℘n(dqn(an, bn)− h) instead of ℘n.
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than the labels on ℘n. Let k be the largest integer in [[i − 1, j ]] such that ℘n(k)

belongs to the set {℘n(i − 1)} ∪ ṫn([[ln, tn]]). Then ℘n(k + 1) ∈ {℘n(j + 1)} ∪
ṫn([[tn, rn]]). Moreover, ln(℘n(k + 1))= ln(℘n(k))− 1: otherwise, all the vertices
in [℘n(k + 1),℘n(k)] would have labels greater than ln(℘n(k)), and it is easy to
see that this would prohibit ℘n from exiting τn by going “to the right,” in the
sense that we would not have ln(℘n(j + 1)) = ln(℘n(j)) − 1. As a result, when
performing the Chapuy–Marcus–Schaeffer bijection for the arc linking ℘n(k) to
℘n(k + 1), we have to visit yn. Then, going through consecutive successors of tn,
we are bound to hit ℘n(k + 1), so that dqn(yn,℘n)≤ ln(yn)− ln(℘n(k + 1)). This
yields that dqn(an, yn) ≤ dqn(an, bn)+ dqn(yn,℘n) ≤ 2εγ n1/4, and, by taking the
limit, d∞(a, y)≤ 2ε.

We conclude thanks to two lemmas, whose proofs are postponed to Section 6.
They are derived from similar results in the planar case: [18], Lemma 2.4, and
[19], Corollary 6.2. We call λ the volume measure on q∞, that is, the image of the
Lebesgue measure on [0,1] by the canonical projection from [0,1] to q∞.

LEMMA 12. Almost surely, for every η > 0 and every subtree τ rooted at ρ,
the condition infτ L∞ < L∞(ρ)− η implies that

lim inf
ε→0

ε−2λ

({
y ∈ τ :L∞(y) < L∞(ρ)− η+ ε;

∀x ∈ [[ρ,y]],L∞(x) > L∞(ρ)− η+ ε

8

})
> 0.

LEMMA 13. Let δ ∈ (0,1]. For every p ≥ 1,

E

[(
sup
ε>0

(
sup

x∈q∞

λ(B∞(x, ε))

ε4−δ

))p]
<∞.

We apply Lemma 12 to τ and η= L∞(ρ)−L∞(a) > 0, and we find that, for ε

small enough,

λ(U ε∞)≥ ε5/2.

The inclusion U ε∞ ⊆ B∞(a,2ε) yields that

S := sup
ε>0

(
sup

x∈q∞

λ(B∞(x, ε))

ε7/2

)
=∞.

Lemma 13 applied to δ = 1/2 and p = 1 yields that S is integrable, so that S <∞
a.s. This is a contradiction. �

4.3. Set overflown by a path. We call fln the floor of tn. Let i ∈ [[0,2n]], and
let succ(i) be its successor in (tn, ln), defined by (1). We moreover suppose that
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FIG. 7. The set overflown by the path ℘ is the set of (blue) large dots.

succ(i) �=∞. We say that the arc linking tn(i) to tn(succ(i)) overflies the set

tn(
−−−−−−−→[[i, succ(i)]])∩ fln,

where
−−−−−−−→[[i, succ(i)]] was defined by (3). We define the set overflown by a path ℘

in qn that avoids the base point v•n as the union of the sets its arcs overfly; see
Figure 7. We denote it by of (℘)⊆ fln.

LEMMA 14. Let a ∼∞ b ∈ T∞ and α, β ∈ fe∞ ∩ fl∞. We suppose that, for n

sufficiently large, there exist vertices αn, βn ∈ fen ∩ fln and an, bn ∈ tn converging,
respectively, toward α, β , a and b. If, for infinitely many n’s, there exists a geodesic
path ℘n from an to bn that overflies [[αn,βn]], then for all c ∈ [[α,β]],

L∞(c)≥ L∞(a)= L∞(b).

Moreover, if there exists c ∈ [[α,β]] for which L∞(c)= L∞(a), then a ∼∞ c.

PROOF. Let c ∈ [[α,β]]. We can find vertices cn ∈ [[αn,βn]] converging to c.
By definition, there is an arc of ℘n that overflies cn. Say it links a vertex labeled l

to a vertex v labeled l − 1. From the Chapuy–Marcus–Schaeffer construction, we
readily obtain that ln(cn)≥ l. Using the fact that ln(an)− l ≤ dqn(an, bn), we find

ln(cn)≥ ln(an)− dqn(an, bn).

Moreover, we can construct a path from cn to v going through consecutive suc-
cessors of cn. As a result, dqn(cn,℘n)≤ ln(cn)− l + 1, so that

dqn(cn, an)≤ ln(cn)− ln(an)+ 2dqn(an, bn)+ 1.

Both claims follow by taking limits in these inequalities after renormalization,
and by using the fact that dqn(an, bn)= o(n1/4). �
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4.4. Points identifications. We proceed in three steps. We first show that points
of fl∞ are not identified with any other points, then that points cannot be identified
with their strict ancestors, and finally Theorem 8.

4.4.1. Floor points are not identified with any other points.

LEMMA 15. A.s., if a ∈ fl∞ and b ∈T∞ are such that a ∼∞ b, then a = b.

PROOF. Let a ∈ fl∞ and b ∈T∞ \ {a} be such that a ∼∞ b. We first suppose
that a is not a node. There exists e ∈ �E(s∞) such that a ∈ fe∞∩ fē∞, and we can find
s, t satisfying a = T∞(s)= T∞(t), e(s)= e and e(t)= ē. Without loss of gener-
ality, we may suppose that s < t . Until further notice, we will moreover suppose
that ρb /∈ [[e]].

We restrict ourselves to the case sn = s∞, which happens for n sufficiently
large. We can find an ∈ fln and bn ∈ tn converging toward a and b and satisfying
ρbn /∈ [[e]]. Let ℘n be a geodesic path (in qn, for dqn ) from an to bn. It has to overfly
at least [[an, e

−]] or [[an, e
+]]. Indeed, every pair (x, y) ∈ [[an, e

−]] × [[an, e
+]]

breaks tn into connected components, and the points an and bn do not belong to
the same of these components. There has to be an arc of ℘n that links a point
belonging to the component containing an to one of the other components. Such
an arc overflies x or y.

Let us suppose that, for infinitely many n’s, ℘n overflies [[an, e
−]]. Then,

Lemma 14 ensures that L∞(c) ≥ L∞(a) = L∞(b) for all c ∈ [[a, e−]]. Proper-
ties of Brownian snakes show that the labels on [[a, e−]] are Brownian. Precisely,
we may code [[e]] by the interval [0, σ e] as follows. For x ∈ [0, σ e], we define
Tx := inf{r ≥ 〈s〉 :C∞(r) = C∞(〈s〉) − x}. Then [[e]] = T∞({Tx,0 ≤ x ≤ σe}),
and (

L∞(Tx)−L∞(〈s〉))0≤x≤σe
= (Me∞(x))0≤x≤σe

,

where, conditionally given I∞, the process Me∞ (defined during Proposition 5)
has the law of a certain Brownian bridge. Using the fact that local minimums of
Brownian motion are distinct, we can find d ∈ [[a, e−]] \ {a} such that L∞(c) >

L∞(a) for all c ∈ [[a, d]] \ {a}.
Because a ∈ fl∞, s and t are both increase points of C∞ and thus are not increase

points of L∞, by Lemma 10. As a result, there exist two trees τ 1 ⊆ fe∞ and τ 2 ⊆
fē∞ rooted at ρ1, ρ2 ∈ [[a, d]] \ {a} satisfying infτ i L∞ < L∞(a) < L∞(ρi) (see
Figure 8).

Similarly, if for infinitely many n’s, ℘n overflies [[an, e
+]], then we can find two

trees τ 3 ⊆ fe∞ and τ 4 ⊆ fē∞ rooted at ρ3, ρ4 ∈ [[a, e+]] \ {a} satisfying infτ i L∞ <

L∞(a) < L∞(ρi), and L∞(c) > L∞(a) for all c ∈ [[ρ3, ρ4]]. Three cases may
occur:

(i) for n large enough, ℘n does not overfly [[an, e
+]] (and therefore overflies

[[an, e
−]]);
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FIG. 8. The trees τ1 and τ2.

(ii) for n large enough, ℘n does not overfly [[an, e
−]] (and therefore overflies

[[an, e
+]]);

(iii) for infinitely many n’s, ℘n overflies [[an, e
+]], and for infinitely many n’s,

℘n overflies [[an, e
−]].

In case (i), the trees τ 1 and τ 2 are well defined. Let τ 1
n ⊆ fen, τ 2

n ⊆ fēn be
trees rooted at ρ1

n , ρ2
n ∈ [[an, e

−]] converging to τ 1 and τ 2. We claim that,
for n sufficiently large, ℘n passes through τ 1

n or τ 2
n . First, notice that, for n

large enough, ℘n ∩ [[ρ1
n, ρ2

n]] = ∅. Otherwise, for infinitely many n’s, we could
find αn ∈ ℘n ∩ [[ρ1

n, ρ2
n]], and, up to extraction, we would have αn → α ∈

[[ρ1, ρ2]] ⊆ [[a, d]] \ {a}. Furthermore, dqn(an,αn)≤ dqn(an, bn) so that a ∼∞ α,
and L∞(a)= L∞(α) by Lemma 7, which is impossible. For n even larger, it holds
that infτ i

n
ln < inf℘n ln. Roughly speaking, ℘n cannot go from a tree located at the

right of τ 1
n (resp., at the left of τ 2

n ) to a tree located at its left in fen (resp., to a tree
located at its right in fēn) without entering it. Then ℘n has to enter τ 1

n from the right
or τ 2

n from the left and pass through one of these trees (see Figure 9).

FIG. 9. The path ℘n passing through the tree τ1
n .
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More precisely, we call [[s1
n, t1

n ]] and [[s2
n, t2

n ]] the sets coding the subtrees τ 1
n

and τ 2
n . Let ωn ∈ [[an, e

+]] be a point that is not overflown by ℘n, pn := inf{t1
n ≤

r ≤ 2n :ωn = ṫn(r)} and qn := sup{0≤ r ≤ s2
n :ωn = ṫn(r)}. Then, we let

An := ṫn(
−−−−−→[[t1

n,pn]] ∪
−−−−−→[[qn, s

2
n]]).

We call ℘n(i − 1) the last point of ℘n belonging to An. Such a point ex-
ists because an ∈ An and bn /∈ An. The remarks in the preceding paragraphs
yield that neither ℘n(i − 1) nor ℘n(i) belong to [[ρ1

n, ρ2
n]], and, because of the

way arcs are constructed in the Chapuy–Marcus–Schaeffer bijection, we see that
℘n(i) ∈ τ 1

n ∪ τ 2
n . Without loss of generality, we may assume that ℘n(i) ∈ τ 1

n . Be-
cause ℘n does not overfly ωn, it enters τ 1

n from the right at time i, that is,
ln(℘n(i)) = ln(℘n(i − 1)) + 1. Let ℘n(j + 1) be the first point after ℘n(i) not
belonging to τ 1

n . It exists because bn /∈ τ 1
n . Then, because ℘n(j + 1) /∈An and ℘n

does not overfly ωn, we see that ln(℘n(j + 1))= ln(℘n(j))+ 1, so that ℘n passes
through τ 1

n between times i and j .
In case (ii), we apply the same reasoning with τ 3 and τ 4 instead of τ 1 and τ 2.

In case (iii), the four trees τ 1, τ 2, τ 3 and τ 4 are well defined, and we obtain that
℘n has to pass through one of their discrete approximations. We then conclude by
Lemma 11 that a �∼∞ b, which contradicts our hypothesis.

We treat the case where ρb ∈ [[e]] \ {a} in a similar way, simply by replacing
e+ (resp., e−) by ρb if ρb ∈ [[a, e+]] (resp., ρb ∈ [[a, e−]]). When a is a node, we
apply the same arguments, finding up to six trees (one for each forest containing a).
Finally, if ρb = a, then a is a strict ancestor of b. This will be a particular case of
Lemma 16. �

4.4.2. Points are not identified with their strict ancestors.

LEMMA 16. A.s., for every a, b ∈T∞ such that ρa = ρb and a ≺ b, we have
a �∼∞ b.

The proof of this lemma uses the same kind of arguments we used in Sec-
tion 4.4.1, is slightly easier than the proof of Lemma 15 and is very similar to Le
Gall’s proof for Proposition 4.2 in [18], so that we leave the details to the reader.

4.4.3. Points a, b are only identified when d◦∞(a, b)= 0.

LEMMA 17. A.s., for every tree τ ⊆ T∞ rooted at ρ ∈ fl∞ and all a, b ∈
τ \ {ρ} satisfying a ∼∞ b, we have d◦∞(a, b)= 0.

PROOF. Let τ ⊆ T∞ be a tree rooted at ρ ∈ fl∞ and a, b ∈ τ \ {ρ} satisfy-
ing a �= b and a ∼∞ b. By Lemma 16, we know that a �≺ b and b �≺ a. As a
consequence, we have either s < t for all (s, t) ∈ T −1∞ (a) × T −1∞ (b) or s > t
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for all (s, t) ∈ T −1∞ (a) × T −1∞ (b). Without loss of generality, we will assume
that the first case occurs. Let us suppose that d◦∞(a, b) > 0. By Lemma 7, we
know that L∞(a) = L∞(b), and by (14), we have both inf[a,b]L∞ < L∞(a) and
inf[b,a]L∞ < L∞(a). As a result, there are two subtrees τ 1 ⊆ [a, b] and τ 2 ⊆ [b, a]
rooted at ρ1 ∈ [[a, b]] \ {a, b} and ρ2 ∈ ([[ρ,a]]∪ [[ρ,b]]∪fl∞)\ {a, b} satisfying
infτ i L∞ < L∞(a).

Let τn ⊆ tn be a tree rooted at ρn and an, bn ∈ tn be points converging to τ , a,
and b. Let τ 1

n ⊆ [an, bn] and τ 2
n ⊆ [bn, an] be subtrees rooted at ρ1

n ∈ [[an, bn]] \
{an, bn} and ρ2

n ∈ ([[ρn, an]] ∪ [[ρn, bn]] ∪ fln) \ {an, bn} converging toward τ 1

and τ 2. We consider a geodesic path ℘n from an to bn. Recall that a ∼∞ b implies
that dqn(an, bn)= o(n1/4).

Because every point in [[ρ,ρ1]] is a strict ancestor to a or b, for n large enough,
℘n does not intersect [[ρn,ρ

1
n]]. Otherwise, we could find an accumulation point

α identified with a and b, such that α ≺ a or α ≺ b (possibly both), and this would
contradict Lemma 16. If ρ2 ∈ τ , for n large, ℘n does not intersect [[ρn,ρ

2
n]] either.

The same reasoning yields that ℘n does not intersect fln for n sufficiently large,
because of Lemma 15.

Let [[s1
n, t1

n ]] and [[s2
n, t2

n ]] be the sets coding the subtrees τ 1
n and τ 2

n . We let

An := ṫn(
−−−−→[[t2

n, s1
n]]) and Bn := ṫn(

−−−−→[[t1
n, s2

n]]).
By convention, if ρ2

n /∈ fen, we set [[ρn,ρ
2
n]] := ∅. It is easy to see that an ∈ An,

bn ∈ Bn, An ∩Bn ⊆ [[ρn,ρ
1
n]] ∪ [[ρn,ρ

2
n]] ∪ fln and An ∪Bn ∪ τ 1

n ∪ τ 2
n = tn.

We conclude as in the proof of Lemma 15. We call ℘n(i−1) the last point of ℘n

belonging to An. Such a point exists because an ∈ An and bn /∈ An. The remarks
in the preceding paragraphs yield that, for n large enough, neither ℘n(i − 1) nor
℘n(i) belong to An ∩Bn. For n even larger, inf

τ
j
n
ln < inf℘n ln, and because of the

way arcs are constructed in the Chapuy–Marcus–Schaeffer bijection, we see that
℘n(i) ∈ τ 1

n ∪ τ 2
n . The path ℘n either enters τ 1

n from the left or enters τ 2
n from the

right. Without loss of generality, we may suppose that ℘n(i) ∈ τ 1
n . Let ℘n(i

′ + 1)

be the first point after ℘n(i) not belonging to τ 1
n . Then ℘n(i

′ + 1) ∈ Bn ∪ τ 2
n . If ℘n

passes through τ 1
n between times i and i ′, we are done. Otherwise, ℘n(i

′ + 1) ∈
τ 2
n because of the condition infτ 2

n
ln < inf℘n ln (informally, ℘n cannot pass over

τ 2
n without entering it). We consider the first point ℘n(i

′′ + 1) after ℘n(i
′) not

belonging to τ 2
n , and reiterate the argument. Because ℘n is a finite path, we see

that ℘n will eventually pass through τ 1
n or τ 2

n ; see Figure 10.
If ℘n passes through τ 1

n (resp., τ 2
n ) for infinitely many n’s, a reasoning similar

to the one we used in the proof of Lemma 14 yields that L∞(ρ1) > L∞(a) [resp.,
L∞(ρ2) > L∞(a)]. We conclude by Lemma 11 that a ∼∞ b. This is a contradic-
tion. �

LEMMA 18. A.s., for all a, b ∈ T∞ \ fl∞ such that ρa �= ρb and a ∼∞ b, we
have d◦∞(a, b)= 0.
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FIG. 10. The path ℘n passing through the subtree τ1
n .

PROOF. The proof of this lemma is very similar to that of Lemma 17. Let
a, b ∈T∞\fl∞ be such that ρa �= ρb and a ∼∞ b. Here again, we may suppose that
s < t for all (s, t) ∈T −1∞ (a)×T −1∞ (b), and we can find two subtrees τ 1 ⊆ [a, b]
and τ 2 ⊆ [b, a] rooted at ρ1, ρ2 ∈ ([[ρa, a]] ∪ [[ρb, b]] ∪ fl∞) \ {a, b} satisfying
infτ i L∞ < L∞(a). As before, we consider the discrete approximations an, bn,
τ 1
n = ṫn([[s1

n, t1
n ]]) and τ 2

n = ṫn([[s2
n, t2

n ]]) of a, b, τ 1 and τ 2. Let ℘n be a geodesic
path from an to bn. We still define

An := ṫn(
−−−−→[[t2

n, s1
n]]) and Bn := ṫn(

−−−−→[[t1
n, s2

n]]),
and we see by the same arguments as in Lemma 17 that, for n sufficiently large,
℘n does not intersect An ∩Bn. We then conclude exactly as before. �

Theorem 8 follows from Lemmas 15, 16, 17 and 18. A straightforward conse-
quence of Theorem 8 is that, if the equivalence class of a =T∞(s) for ∼∞ is not
trivial, then s is an increase point of L∞. By Lemma 10, the equivalence class of
a for �∞ is then trivial. Such points may be called leaves by analogy with tree
terminology.

5. 1-regularity of quadrangulations. The goal of this section is to prove
Theorem 2. To that end, we use the notion of regular convergence, introduced
by Whyburn [26].

5.1. 1-regularity. Recall that (M, dGH) is the set of isometry classes of com-
pact metric spaces, endowed with the Gromov–Hausdorff metric. We say that a
metric space (X , δ) is a path metric space if any two points x, y ∈ X may be
joined by a path isometric to a real segment—necessarily of length δ(x, y). We
call PM the set of isometry classes of path metric spaces. By [8], Theorem 7.5.1,
PM is a closed subset of M.
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DEFINITION 11. We say that a sequence (Xn)n≥1 of path metric spaces is 1-
regular if for every ε > 0, there exists δ > 0 such that for n large enough, every
loop of diameter less than δ in Xn is homotopic to 0 in its ε-neighborhood.

This definition is actually slightly stronger than Whyburn’s original defini-
tion [26]. See the discussion in the second section of [22] for more details. We
also chose here not to restrict the notion of 1-regularity only to converging se-
quences of path metric spaces, as it was done in [22, 26], because the notion of
1-regularity (as stated here) is not directly related to the convergence of the se-
quence of path metric spaces. Our main tool is the following theorem, which is a
simple consequence of Begle [3], Theorem 7.

PROPOSITION 19. Let (Xn)n≥1 be a sequence of path metric spaces all home-
omorphic to the g-torus Tg . Suppose that Xn converges toward X for the Gromov–
Hausdorff topology, and that the sequence (Xn)n≥1 is 1-regular. Then X is home-
omorphic to Tg as well.

5.2. Representation as metric surfaces. In order to apply Proposition 19, we
construct a path metric space (Sn, δn) homeomorphic to Tg , and an embedded
graph that is a representative of the map qn, such that the restriction of (Sn, δn) to
the embedded graph is isometric to (V (qn), dqn). We use the method provided by
Miermont in [22], Section 3.1.

We write F(qn) the set of faces of qn. Let (Xf ,Df ), f ∈ F(qn) be n copies of
the hollow bottomless unit cube

Xf := [0,1]3 \ (
(0,1)2 × [0,1)

)
endowed with the intrinsic metric Df inherited from the Euclidean metric. (The
distance between two points x and y is the Euclidean length of a minimal path in
Xf linking x to y.)

Let f ∈ F(qn), and let e1, e2, e3 and e4 be the four half-edges incident to f ,
ordered according to the counterclockwise order. For 0≤ t ≤ 1, we define:

ce1(t)= (t,0,0) ∈Xf ;
ce2(t)= (1, t,0) ∈Xf ;
ce3(t)= (1− t,1,0) ∈Xf ;
ce4(t)= (0,1− t,0) ∈Xf .

In this way, we associate with every half-edge e ∈ �E(qn) a path along one of the
four edges of the square ∂Xf , where f is the face located to the left of e.

We then define the relation ≈ as the coarsest equivalence relation for which
ce(t) ≈ cē(1− t) for all e ∈ �E(qn) and t ∈ [0,1]. This corresponds to gluing the
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spaces Xf ’s along their boundaries according to the map structure of qn. The topo-
logical quotient Sn := (

∐
f∈F(qn) Xf )/≈ is a two-dimensional CW-complex satis-

fying the following. Its 1-skeleton En = (
∐

f∈F(qn) ∂Xf )/≈ is an embedding of
qn with faces Xf \ ∂Xf . To the edge {e, ē} ∈ E(qn) corresponds the edge of Sn

made of the equivalence class of the points in ce([0,1]). Its 0-skeleton Vn is in
one-to-one correspondence with V (qn). Its vertices are the equivalence classes of
the corners of the squares ∂Xf .

We endow the space
∐

f∈F(qn) Xf with the largest pseudo-metric δn compatible
with Df , f ∈ F(qn) and ≈, in the sense that δn(x, y) ≤ Df (x, y) for x, y ∈ Xf

and δn(x, y) = 0 whenever x ≈ y. Its quotient—still noted δn—then defines a
pseudo-metric on Sn (which actually is a true metric, as we will see in Propo-
sition 20). As usual, we define δ(n) := δn/γ n1/4 its rescaled version.

We rely on the following proposition. It was actually stated in [22] for the two-
dimensional sphere but readily extends to the g-torus.

PROPOSITION 20 ([22], Proposition 1). The space (Sn, δn) is a path metric
space homeomorphic to Tg . Moreover, the restriction of Sn to Vn is isometric to
(V (qn), dqn), and any geodesic path in Sn between points in Vn is a concatenation
of edges of Sn. Finally, dGH((V (qn), dqn), (Sn, δn))≤ 3, so that, by Proposition 1,

(
Snk

, δ(nk)

) (d)−→
k→∞(q∞, d∞)

in the sense of the Gromov–Hausdorff topology.

5.3. Proof of Theorem 2. We prove here that (q∞, d∞) is a.s. homeomorphic
to Tg by means of Propositions 19 and 20. To this end, we only need to show that
the sequence (Snk

, δ(nk))k is 1-regular. At first, we only consider simple loops made
of edges. We proceed in two steps: Lemma 21 shows that there are no noncon-
tractible “small” loops; then Lemma 22 states that the small loops are homotopic
to 0 in their ε-neighborhood.

LEMMA 21. A.s., there exists ε0 > 0 such that for all k large enough, any
noncontractible simple loop made of edges in Snk

has diameter greater than ε0.

PROOF. The basic idea is that a noncontractible loop in Sn has to intersect fln

and to “jump” from a forest to another one. At the limit, the loop transits from a
forest to another by visiting two points that ∼∞ identifies. If the loops vanish at
the limit, then these two identified points become identified with a point in fl∞,
creating an increase point for both L∞ et C∞. We proceed to the rigorous proof.

We argue by contradiction and assume that, with positive probability, along
some (random) subsequence of the sequence (nk)k≥0, there exist noncontractible
simple loops ℘n made of edges in Sn with diameter tending to 0 (with respect to
the rescaled metric δ(n)). We reason on this event.
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Because ℘n is noncontractible, it has to intersect fln: if not, ℘n would entirely be
drawn in the unique face of sn, which is homeomorphic to a disk, by definition of a
map. It would thus be contractible, by the Jordan curve theorem. Let an ∈ ℘n ∩ fln.
Up to further extraction, we may suppose that an→ a ∈ fl∞. Notice that every time
℘n intersects fln, it has to be “close” to an. Precisely, if bn ∈ ℘n ∩ fln tends to b,
then δ(n)(an, bn)≤ diam(℘n)→ 0, which yields a ∼∞ b, and a = b by Lemma 15.
Moreover, for n sufficiently large, the base point v•n /∈ ℘n: otherwise, for infinitely
many n’s, (ln(an)−min ln + 1)/γ n1/4 ≤ diam(℘n)→ 0, so that L∞ would reach
its minimum at a, and we know by Lemma 9 that this is not the case.

Let us first suppose that a is not a node of T∞. There exists e ∈ �E(s∞) such that
a ∈ fe∞∩ fē∞ and for n large enough, an ∈ fen∩ fēn. For n even larger, the whole loop
℘n “stays in fen ∪ fēn.” Precisely, for all e′ ∈ �E(s∞) \ {e, ē}, we have ℘n ∩ fe

′
n =∅.

Otherwise, since �E(s∞) is finite, there would exist e′ /∈ {e, ē} such that for infinitely
many n’s, we can find cn ∈ ℘n ∩ fe

′
n . Up to extraction, cn → c ∈ fe

′
∞, so that c �= a

(a is not a node) and c∼∞ a, which is impossible, by Lemma 15.
We claim that there exists an arc of ℘n linking a point bn ∈ fen to some point

in fēn that overflies either [[ρbn, e
+]] or [[e−, ρbn]] (see Figure 11). Let us suppose

for a moment that this does not hold. In particular, there is no arc linking a point
in fen \ fln to a point in fēn \ fln. It will be more convenient here to write ℘n as
(an = v1, α1, v2, α2, . . . , vr−1, αr−1, vr = an) where the vi ’s are vertices, and the
αi’s are arcs. Let i := inf{j ∈ [[2, r]] :vj ∈ fln} be the index of the first time ℘n

returns to fln. Then v2, . . . , vi−1 belong to the same set fen \ fln or fēn \ fln, and
(α1, v2, α2, . . . , vi−1, αi−1) is thus drawn inside the face of sn. As a result, the path
(v1, α1, v2, . . . , vi−1, αi−1, vi) is homotopic to the segment [[v1, vi]]. Repeating
the argument for every “excursion” away from fln, we see that ℘n is homotopic to
a finite concatenation of segments all included in the topological segment [[2, σ e

n]],
where we used the notation of Section 2.2.1 for the forest fen; see Figure 11. It
follows that ℘n is contractible, which is a contradiction.

FIG. 11. A noncontractible loop intersecting fln at an and “jumping” from fen to fēn at bn.
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We consider the case where the arc from the previous paragraph overflies
[[ρbn, e

+]]. The other case is treated in a similar way. From the construction of
the Chapuy–Marcus–Schaeffer bijection, we can find integers sn ≤ tn such that
bn = ṫn(sn), e+ = ṫn(tn) and for all sn ≤ r ≤ tn, Ln(r) ≥ Ln(sn). Up to further
extraction, we may suppose that sn/2n → s and tn/2n → t . Therefore, for all
s ≤ r ≤ t , L∞(r) ≥ L∞(s). Moreover, the fact that bn → a �= e+ yields s < t , so
that s is an increase point for L∞. But T∞(s)= a and s has to be an increase point
for C∞. By Lemma 10, this cannot happen.

If a is a node, there are three half-edges e1, e2 and e3 such that a = e
+
1 = e

+
2 =

e
+
3 . A reasoning similar to what precedes yields the existence of an arc of ℘n

linking a point bn in one of the three sets fei ∪ fēi+1 , i = 1,2,3 (where we use the
convention e4 = e1) to a point lying in another one of these three sets that overflies
either, if bn ∈ f

ei∞, [[ρbn, a]] ∪ [[ei+1]] or [[e−i , ρbn]], or, if bn ∈ f
ei+1∞ , [[ρbn, e

+
i+1]]

or [[ei]] ∪ [[a,ρbn]]. We conclude by similar arguments. �

We now turn our attention to contractible loops. Let ℘ be a contractible simple
loop in Sn made of edges. Then ℘ splits Sn into two domains. Only one of these is
homeomorphic to a disk.7 We call it the inner domain of ℘, and we call the other
one the outer domain of ℘. In particular, these domains are well defined for loops
whose diameter is smaller than ε0, when n is large enough.

LEMMA 22. A.s., for all ε > 0, there exists 0 < δ < ε ∧ ε0 such that for all k

sufficiently large, the inner domain of any simple loop made of edges in Snk
with

diameter less than δ has diameter less than ε.

PROOF. We adapt the method used by Miermont in [22]. The idea is that a
contractible loop separates a whole part of the map from the base point. Then the
labels in one of the two domains it separates are larger than the labels on the loop.
In the g-tree, this corresponds to having a part with labels larger than the labels
on the “border.” In the continuous limit, this creates an increase point for both C∞
and L∞.

Suppose that, with positive probability, there exists 0 < ε < ε0 for which, along
some (random) subsequence of the sequence (nk)k≥0, there exist contractible sim-
ple loops ℘n made of edges in Sn with diameter tending to 0 (with respect to the
rescaled metric δ(n)) and whose inner domains are of diameter larger than ε. Let
us reason on this event. First, notice that, because g ≥ 1, the outer domain of ℘n

7This is a consequence of the Jordan–Schönflies theorem, applied in the universal cover of Sn,
which is either the plane when g = 1, or the unit disk when g ≥ 2; see, for example, [13], Theo-
rem 1.7.
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contains at least one noncontractible loop, so that its diameter is larger than ε0 > ε

by Lemma 21.
Let s• be the unique point where L∞ reaches its minimum, and s•n be an integer

where Ln reaches its minimum. We call w•n := ṫn(s
•
n) the corresponding point in

the g-tree. This is a vertex at δn-distance 1 from v•n. Let us take xn in the domain
that does not contain w•n, such that the distance between xn and ℘n is maximal. (If
w•n ∈ ℘n, we take xn in either of the two domains according to some convention.)
Let yn ∈ ℘n ∩ ([[ρw•n,w

•
n]] ∪ fln ∪ [[ρxn, xn]]) be such that there exists an injective

path8 pn in tn from xn to yn that intersects ℘n only at yn. In other words, when
going from xn to w•n along some injective path, yn is the first vertex belonging to
℘n we meet; see Figure 12. Such a point exists because xn and w•n do not belong
to the same of the two components delimited by ℘n. Up to further extraction,
we suppose that s•n/2n → s•, xn → x and yn → y. We call p ⊆ [[ρw•,w•]] ∪
fl∞ ∪ [[ρx, x]] the injective path corresponding to pn in the limit, that is, the path
defined as pn “without the subscripts n.” Because the distance between two points
in the same domain as xn is smaller than 2δ(n)(xn,℘n)+ diam(℘n), we obtain that
δ(n)(xn, yn) ≥ ε/4, as soon as diam(℘n) ≤ ε/2. In particular, we see that x �= y,
and that the path p is not reduced to a single point.

FIG. 12. The path ℘n intersects τn. This figure represents the case where yn ∈ [[ρxn, xn]].

8Depending on the case, the path pn will be of one of the following forms:

� [[xn, yn]], with yn ∈ [[ρxn, xn]];
� [[xn,ρxn ]] ∪ [[ρxn, yn]], with yn ∈ fln;
� [[xn,ρxn ]] ∪ [[ρxn, e+1 ]] ∪ [[e2]] ∪ · · · ∪ [[ek]] ∪ [[e+k , yn]] for some half-edges e1, e2, . . . , ek of

sn satisfying e+i = e−i+1, with yn ∈ fln;

� [[xn,ρxn ]] ∪ [[ρxn, e+1 ]] ∪ [[e2]] ∪ · · · ∪ [[ek]] ∪ [[e+k , ρw•n ]] ∪ [[ρw•n , yn]] for some half-edges

e1, e2, . . . , ek of sn satisfying e+i = e−i+1, with yn ∈ [[ρw•n ,w•n]].
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Let us first suppose that y �=w• :=T∞(s•). (In particular, w•n /∈ ℘n for n large,
so that there is no ambiguity on which domain to chose xn.) In that case, y ∈
([[ρw•,w•]] ∪ fl∞ ∪ [[ρx, x]]) \ {x,w•}, so that the points in T −1∞ (y) are increase
points of C∞. By Lemma 10, we can find a subtree9 τ , not containing y, satisfying
infτ L∞ < L∞(y) and rooted on the path p.

We consider a discrete approximation τn rooted on pn. Because the loop ℘n is
contractible, all the labels of the points in the same domain as xn are larger than
inf℘n ln. Indeed, the labels represent the distances (up to an additive constant) in qn

to the base point, and every geodesic path from such a point to the base point has to
intersect ℘n. For n large enough, it holds that infτn ln < inf℘n ln. As a consequence,
τn cannot entirely be included in the domain containing xn. Therefore, the set
℘n ∩ τn is not empty, so that we can find zn ∈ ℘n ∩ τn. Up to extraction, we may
suppose that zn→ z.

On one hand, δ(n)(yn, zn)≤ diam(℘n), so that y ∼∞ z. On the other hand, z ∈ τ

and y /∈ τ , so that y �= z. Because y is not a leaf, this contradicts Theorem 8.
When y = w•, we use a different argument. Let an = ṫn(αn) and bn = ṫn(βn)

be, respectively, in the inner and outer domains of ℘n, such that their distance to
℘n is maximal. Because an and bn do not belong to the same domain, we can find

t1
n ∈−−−−−→[[αn,βn]] and t2

n ∈−−−−−→[[βn,αn]]
such that ṫn(t

1
n), ṫn(t

2
n) ∈ ℘n. Up to extraction, we suppose that

αn

2n
→ α,

βn

2n
→ β,

t1
n

2n
→ t1 ∈−−−→[α,β] and

t2
n

2n
→ t2 ∈−−−→[β,α].

Because diam(℘n)→ 0, we have T∞(t1) = T∞(t2) = w•. Moreover, the argu-
ment we used to prove that x �= y yields that T∞(α) �= w• and T∞(β) �= w•. As
a result, we obtain that t1 �= t2. This contradicts Lemma 9. �

It remains to deal with general loops that are not necessarily made of edges.
We reason on the set of full probability where Lemmas 21 and 22 hold. We fix
0 < ε < diam(q∞)/4. Let ε0 be as in Lemma 21 and δ as in Lemma 22. For k suf-
ficiently large, the conclusions of both lemmas hold, together with the inequality
δγ n

1/4
k ≥ 12. Now, take any loop L drawn in Snk

with diameter less than δ/2.
Consider the union of the closed faces10 visited by L . The boundary of this union

9Here again, we need to distinguish between some cases:

� if y ∈ [[ρx, x]], then p = [[x, y]], and τ is a tree to the left or right of [[ρx, x]] rooted at some
point in [[x, y]] \ {x, y};

� if y ∈ fl∞ \ {ρx}, then τ is a tree of T∞ rooted on (p∩ fl∞) \ {y};
� if y ∈ [[ρw• ,w•]] \ {ρw• }, then τ is a tree to the left or right of [[ρw• , y]].

10We call closed face the closure of a face.
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consists in simple loops made of edges in Snk
. Let us call � the set of these simple

loops.
Because every face of Snk

has a diameter smaller than 3/γ n
1/4
k , we see that

for all λ ∈�, diam(λ)≤ diam(L )+ 6/γ n
1/4
k ≤ δ. Then, by Lemma 21, λ is con-

tractible and, by Lemma 22, its inner domain is of diameter less than ε. By defini-
tion, for all λ ∈�, L entirely lies either inside the inner domain of λ, or inside its
outer domain. We claim that there exists one loop in � such that L lies in its inner
domain. Then, it will be obvious that L is homotopic to 0 in its ε-neighborhood.

Let us suppose that L lies in the outer domain of every loop λ ∈�. Then, every
face of Snk

is either visited by L , or included in the inner domain of some loop
λ ∈ �. As a result, we obtain that diam(q∞) ≤ diam(L ) + 2 supλ∈� diam(λ) +
6/γ n

1/4
k ≤ 3δ. This is in contradiction with our choice of δ.

6. Transfering results from the planar case through Chapuy’s bijection.
In order to prove Lemmas 9, 10, 12 and 13, we rely on similar results for the
Brownian snake driven by a normalized excursion (e,Z). This means that e has the
law of a normalized Brownian excursion, and, conditionally given e, the process
Z is a Gaussian process with covariance

cov(Zx,Zy)= inf[x∧y,x∨y]e.

We first focus on the proofs of Lemmas 9 and 10. Lemmas 3.1 and 3.2 in [20] state
that, a.s., Z reaches its minimum at a unique point, and that, a.s., IP(e) and IP(Z)

are disjoint sets. We will use a bijection due to Chapuy [9] to transfer these results
to our case.

6.1. Chapuy’s bijection. Chapuy’s bijection consists in “opening” g-trees into
plane trees. We briefly describe it here. See [9] for more details. Let t be a g-
tree whose scheme s is dominant. Such a g-tree will be called dominant in the
following. As usual, we arrange the half-edges of s according to its facial order:
e1 = e∗, . . . , e2(6g−3). Let v be one of the nodes of t. We can see it as a vertex of s.
Let us call ei1 , ei2 and ei3 the three half-edges starting from v (i.e., v = e

−
i1
= e

−
i2
=

e
−
i3

), where i1 < i2 < i3. We say that v is intertwined if the half-edges ei1 , ei2 , ei3

are arranged according to the counterclockwise order around v (see Figure 13).
When v is intertwined, we may slice it: we define a new map, denoted by t � v, by
slicing the node v into three new vertices v1, v2 and v3 (see Figure 13).

The map obtained by such an operation turns out to be a dominant (g − 1)-
tree. After repeating g times this operation, we are left with a plane tree. In that
regard, we call opening sequence of t a g-uple (v1, . . . , vg) such that vg is an
intertwined node of t, and for all 1≤ i ≤ g−1, the vertex vi is an intertwined node
of t � vg � · · · � vi+1. We can show that every g-tree has exactly 2g intertwined
nodes, and thus 2gg! opening sequences.
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FIG. 13. Slicing an intertwined node v.

To reverse the slicing operation, we have to intertwine and glue back the three
vertices together. We then need to record which vertices are to be glued to-
gether. This motivates the following definition: we call tree with g triples a pair
(t, (c1, . . . , cg)), where:

� t is a (rooted) plane tree;
� for 1≤ i ≤ g, ci = {v1

i , v
2
i , v

3
i } ⊆ V (t) is a set of three vertices of t;

� the vertices v
j
i , 1≤ i ≤ g, 1≤ j ≤ 3, are pairwise distinct;

� the vertices of the tree ⋃
i,i′,j,j ′

[[vj
i , v

j ′
i′ ]]

have degree at most 3, and the v
j
i ’s have degree exactly 1 in that tree. (As in the

case of g-trees, the set [[a, b]] represents the range of the unique path linking a

and b in the tree.)

Let t be a g-tree together with an opening sequence (v1, . . . , vg). For all 1≤ i ≤ g,
let us call ci the triple of vertices obtained from the slicing of vi , as well as t :=
t � vg � · · · � v1 the plane tree. We define �(t, (v1, . . . , vg)) := (t, (c1, . . . , cg)).
Then � is a bijection from the set of all dominant g-tree equipped with an opening
sequence into the set of all trees with g triples.

Now, when the g-tree is well-labeled, we can do the same slicing operation,
and the three vertices we obtain all have the same label. We call well-labeled tree
with g triples a tree with g triples (t, (c1, . . . , cg)) carrying a labeling function
l :V (t)→ Z such that:

� l(e−)= 0, where e is the root of t;
� for every pair of neighboring vertices v ∼ v′, we have l(v)− l(v′) ∈ {−1,0,1};
� for all 1≤ i ≤ g, we have l(v1

i )= l(v2
i )= l(v3

i ).

We call Wn the set of all well-labeled trees with g triples having n edges. The
bijection � then extends to a bijection between dominant well-labeled g-trees
equipped with an opening sequence and well-labeled trees with g triples.

6.2. Contour pair of an opened g-tree. The contour pair of an opened g-tree
can be obtained from the contour pair of the g-tree itself (and vice versa). The
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labeling function is basically the same, but read in a different order. The contour
function is slightly harder to recover, because half of the forests are to be read with
the floor directed “upward” instead of “downward.” Because we will deal at the
same time with g-trees and plane trees in this section, we will use a Gothic font
for objects related to g-trees, and a boldface font for objects related to plane trees.
In the following, we use the notation of Section 2.2.

Let (t, l) be a well-labeled dominant g-tree with scheme s and (t, l) be one of
the 2gg! corresponding opened well-labeled trees. The intertwined nodes of the
g-tree correspond to intertwined nodes of its scheme, so that the opening sequence
used to open (t, l) into (t, l) naturally corresponds to an opening sequence of s. Let
s be the tree obtained by opening s along this opening sequence. We identify the
half-edges of s with the half-edges of s, and arrange them according to the facial
order of s: e1 = e∗, e2, . . . , e2(6g−3). (Beware that this is not the usual arrangement
according to the facial order of s.) Now, the plane tree t is obtained by replacing
every half-edge e of s with the corresponding forest fe of Proposition 4, as in
Section 2.2.2.

We call (Ce,Le) the contour pair of (fe, le), we let Ce := Ce− σ e and we define
Le by (4). For any edge {ei , ej } �= {e∗, ē∗} with i < j , we will visit the forest fei

while “going up” and the forest fej while “coming down” when we follow the
contour of t. Precisely, we define

Cei := Cei − 2Cei and Cej := Cej .(15)

The first function is the concatenation of the contour functions of the trees in fei

with an extra “up step” between every consecutive trees. The second one is the
concatenation of the contour functions of the trees in fej with an extra “down step”
between every consecutive trees. It is merely the contour function of fej shifted in
order to start at 0. What happens to the forests fe∗ and fē∗ is a little more intricate.
Let us first call (see Figure 14)

x := inf{s :Ce∗(s)= Ce∗(u)},
(16)

y := inf{s :Cē∗(s)=−σ e∗ − Ce∗(u)}.
When visiting the forest fē∗ , the floor is directed downward up to time y and then
upward:

Cē∗ := (Cē∗(s))0≤s≤y •
(
Cē∗(y + s)− 2 inf[y,y+s]C

ē∗ + Cē∗(y)
)

0≤s≤mē∗−y
.(17)

Finally, the forest fe∗ is visited twice. The first time (when beginning the contour),
it is visited between times u and me∗ , and the floor is directed upward:

Ce∗,1 :=
(
Ce∗(u+ s)− 2 inf[u,u+s]C

e∗ + Ce∗(u)
)

0≤s≤me∗−u
.(18)
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FIG. 14. Opening of a 2-tree. The squares form one triple and the triangles the other one. The
(blue) short dashes correspond to the upward-directed floors and the (green) long dashes to the
downward-directed floors. The (red) solid line on the right of the root corresponds to the part of the
tree containing the root that has to be visited at the end. The forest fe17 is also represented on this
figure.

The second time (when finishing the contour), we visit it between times 0 and x

with the floor directed downward, then we visit a part of the tree containing the
root between times x and u:

Ce∗,2 := (Ce∗(s))0≤s≤x •
(
Ce∗(x + s)− 2 inf[x+s,u]C

e∗ + Ce∗(u)
)

0≤s≤u−x
.(19)

The contour pair of (t, l) is then given by{
C :=Ce1,1 •Ce2 •Ce3 • · · · •Ce2(6g−3) •Ce1,2,

L := Le1,1 •Le2 •Le3 • · · · •Le2(6g−3) •Le1,2,
(20)

where

Le1,1 := (
Le1(u+ s)−Le1(u)

)
0≤s≤me1−u and Le1,2 := (Le1(s))0≤s≤u.

6.3. Opened uniform well-labeled g-tree. As in Section 2.3, we let (tn, ln) be
uniformly distributed over the set Tn of well-labeled g-trees with n edges, and,
applying Skorokhod’s representation theorem, we assume that the convergence of
Proposition 5 holds almost surely. Let (in)n∈N be a sequence of i.i.d. random vari-
ables uniformly distributed over [[1,2gg!]] and independent of (tn, ln)n∈N. With
any dominant scheme s ∈S∗ and integer i ∈ [[1,2gg!]], we associate a determinis-
tic opening sequence. When (tn, ln) is dominant, we may then define (tn, ln) as the
opened tree of (tn, ln) according to the opening sequence determined by the inte-
ger in. In this case, we call (Cn,Ln) the contour pair of (tn, ln). When (tn, ln) is not
dominant, we simply set (Cn,Ln)= (02n,02n), where we write 0ζ :x ∈ [0, ζ ] �→ 0.
We also let

C(n) :=
(

Cn(2nt)√
2n

)
0≤t≤1

and L(n) :=
(

Ln(2nt)

γ n1/4

)
0≤t≤1
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be the rescaled versions of Cn and Ln.
We now work at fixed ω for which Proposition 5 holds, s∞ ∈S∗, and such that

for all i ∈ [[1,2gg!]], |{n ∈ N : in = i}| =∞. Note that the set of such ω’s is of full
probability. For n large enough, sn = s∞ ∈S∗, so that (tn, ln) is well defined. For
all n such that sn = s∞ and in = i, we always open the g-tree (tn, ln) according
to the same opening sequence, so that the ordering e1, e2, . . . , e2(6g−3) of the half-
edges of sn is always the same. As a result, we obtain that

(
C(n),L(n)

) n : in=i−−−→
n→∞ (Ci∞,Li∞),

where (Ci∞,Li∞) is defined by (15)–(19) and (20) when replacing every occur-
rence of Ce by Ce∞ := Ce∞ − σ e∞ and every occurrence of Le by Le∞. Note that
(C(n),L(n)) has exactly 2gg! a priori distinct accumulation points, each corre-
sponding to one of the ways of opening the real g-tree T∞.

Now, because every Le∞ goes from 0 to 0, it is easy to see that for all i, the points
where L∞ reaches its minimum are in one-to-one correspondence with the points
where Li∞ reaches its minimum. Moreover, we can see that if C∞ and L∞ have a
common increase point, then at least one of the pairs (Ci∞,Li∞) will also have a
common increase point. Indeed, let us suppose that C∞ and L∞ have a common
increase point. Then, there exists e ∈ �E(s∞) such that Ce∞ and Le∞ have a common
increase point s ∈ [0,me∞]. We use the following lemma:

LEMMA 23. Let f : [0,m]→R be a function.

� If s ∈ [0,m) is an increase point of f , then s is an increase point of f − 2f as
well.

� If s ∈ (0,m] is an increase point of f , then s is an increase point of r �→ f (r)−
2 inf[r,m] f .

We postpone the proof of this lemma and finish our argument. If s < me∞, then
s is a common increase point of Ce∞ and Le∞ thanks to Lemma 23. When e= e∗,
this fact remains true if we define Ce∞ := Ce,2∞ • Ce,1∞ . Note that x is an increase
point of Ce∞, even if 0 is not an increase point of the second function defining Ce,2∞
in (19). In this case, for all i, Ci∞ and Li∞ have a common increase point.

Let us now suppose that s =me∞, and let us fix i ∈ [[1,2gg!]]. We consider the
opening corresponding to i. If ei = e is visited while coming down in the contour
of the opened tree, then we conclude as above. If both ei and ei+1 are visited
while going up, then 0 will be an increase point of Cei+1∞ , so that Ci∞ and Li∞
will still have a common increase point. In the remaining case where ei is visited
while going up and ei+1 is visited while coming down (i.e., ei+1 = ēi ), we cannot
conclude that Ci∞ and Li∞ have a common increase point. This, however, only
happens when the node e+ belongs to the opening sequence. But when we pick
an opening sequence, we can always choose not to pick a given node, because at
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each stage of the process, we have at least 2 intertwined nodes. This implies that
at least one of the opening sequences will not contain e+, and the corresponding
pair (Ci∞,Li∞) will have a common increase point.

PROOF OF LEMMA 23. Let s ∈ [0,m) be an increase point of f . If s is a right-
increase point of f , then f (r)≥ f (s) when s ≤ r ≤ t for some t > s. For such r’s,
f (r)= f (s), so that f (r)− 2f (r)≥ f (s)− 2f (s), and s is a right-increase point
of f − 2f .

If s is a left-increase point of f , then f (r) ≥ f (s) when t ≤ r ≤ s for some
t < s. If f (s) > f (s), then, using the fact that f (s) = f (r) ∧ inf[r,s] f , we ob-
tain that f (r) = f (s) when t ≤ r ≤ s and conclude as above that s is a left-
increase point of f − 2f . Finally, if f (s) = f (s), then for all r ≥ s, we have
f (r)− 2f (r)= (f (r)− f (r))− f (r) ≥ 0− f (s)= f (s)− 2f (s), and because
s < m, we conclude that s is a right-increase point of f − 2f .

We obtain the second assertion of the lemma by applying the first one to m− s

and the function x �→ f (m− x). �

6.4. Uniform well-labeled tree with g triples. Conditionally on the event
Dn := {(Cn,Ln) �= (02n,02n)}, the distribution of (Cn,Ln) is that of the contour
pair of a uniform well-labeled tree with g triples. We use this fact to see that the
law of (C(n),L(n)) converges weakly toward a law absolutely continuous with re-
spect to the law of (e,Z). Let (τn, λn) be uniformly distributed over the set T 0

n

of all well-labeled plane trees with n edges. We call (�n,�n) the contour pair of
(τn, λn) and define as usual the rescaled versions of both functions,

�(n) :=
(

�n(2nt)√
2n

)
0≤t≤1

and �(n) :=
(

�n(2nt)

γ n1/4

)
0≤t≤1

.(21)

For all n≥ 1, k ∈ Z and x ∈R, we define

Xn(k) := |{v ∈ τn :λn(v)= k}| and X(n)(x) := 1

n
γn1/4Xn("γ n1/4x#),

respectively, the profile and rescaled profile of (τn, λn). We let I be the one-
dimensional ISE (random) measure defined by

〈I, h〉 :=
∫ 1

0
dt h(Zt )

for every nonnegative measurable function h. By [7], Theorem 2.1, it is known
that I a.s. has a continuous density fISE with compact support. In other words,
〈I, h〉 = ∫

R
dx h(x)fISE(x) for every nonnegative measurable function h.

PROPOSITION 24. The triple (�(n),�(n),X(n)) converges weakly toward the
triple (e,Z,fISE) in the space C([0,1],R)2 × Cc(R) endowed with the product
topology.
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PROOF. It is known that the pair (�(n),�(n)) converges weakly to (e,Z): in
[11], Theorem 5, Chassaing and Schaeffer proved this fact with "2nt# instead of
2nt in the definition (21). The claim as stated here easily follows by using the
uniform continuity of (e,Z). Using [7], Theorem 3.6, and the fact that fISE is
a.s. uniformly continuous [7], Theorem 2.1, we also obtain that the sequence X(n)

converges weakly to fISE. As a result, the sequences of the laws of the processes
�(n), �(n) and X(n) are tight. The sequence (νn) of the laws of (�(n),�(n),X(n))

is then tight as well, and, by Prokhorov’s lemma, the set {νn, n ≥ 0} is relatively
compact. Let ν be an accumulation point of the sequence (νn). There exists a
subsequence along which (�(n),�(n),X(n)) converges weakly toward a random
variable (e′,Z′, f ′) with law ν. Thanks to Skorokhod’s theorem, we may and will
assume that this convergence holds almost surely along this subsequence. We know
that

(e′,Z′) (d)= (e,Z) and f ′ (d)= fISE.

It remains to see that f ′ is the density of the occupation measure of Z′, that is,
∫ 1

0
dt h(Z′t )=

∫
R

dx h(x)f ′(x)(22)

for all h continuous with compact support. First, notice that

1

n

∑
k∈Z

Xn(k)h(γ−1n−1/4k) = 1

n

∫
R

dx Xn("x#)h(γ−1n−1/4"x#)

=
∫

R

dx X(n)(x)h(γ−1n−1/4"γ n1/4x#)

→
∫

R

dx f ′(x)h(x)

by dominated convergence, a.s. as n→∞ along the subsequence we consider. It is
convenient to introduce now the notation 〈〈s〉〉n defined as follows: for s ∈ [0,2n),
we set

〈〈s〉〉n :=
{ $s%, if �n($s%)− �n("s#)= 1,
"s#, if �n($s%)− �n("s#)=−1.

Then, if we denote by τn(i) the ith vertex of the facial sequence of τn, and by ρn

the root of τn, we obtain that the time the process (τn(〈〈s〉〉n))s∈[0,2n) spends at each
vertex v ∈ τn \ {ρn} is exactly 2. So we have

1

n

∑
k∈Z

Xn(k)h(γ−1n−1/4k)

= 1

n

∑
v∈τn\{ρn}

h(γ−1n−1/4λn(v))+ 1

n
h(0)
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= 1

2n

∫ 2n

0
ds h(γ−1n−1/4�n(〈〈s〉〉n))+ 1

n
h(0)

=
∫ 1

0
ds h(γ−1n−1/4�n(〈〈2ns〉〉n))+ 1

n
h(0)

→
∫ 1

0
dt h(Z′t )

a.s. along the subsequence considered. We used the fact that

γ−1n−1/4�n(〈〈2ns〉〉n)→Z′s,

which is obtained by using the uniform continuity of Z′.
This proves that (e′,Z′, f ′) has the same law as (e,Z,fISE). Thus the only

accumulation point ν of the sequence (νn) is the the law of the process (e,Z,fISE).
By relative compactness of the set {νn, n≥ 0}, we obtain the weak convergence of
the sequence (νn) toward ν. �

We define

W := (
∫

f 3
ISE)g

E[(∫ f 3
ISE)g] .

This quantity is well defined [9], Lemma 10. We also define the law of the pair
(C∞,L∞) by the following formula: for every bounded Borel function ϕ on
C([0,1],R)2,

E[ϕ(C∞,L∞)] = E[Wϕ(e,Z)].(23)

PROPOSITION 25. The pair (C(n),L(n)) converges weakly toward the pair
(C∞,L∞) in the space (C([0,1],R)2,‖ · ‖∞) of pair of continuous real-valued
functions on [0,1] endowed with the uniform topology.

PROOF. Let f be a bounded continuous function on C([0,1],R)2. We have

E
[
f

(
C(n),L(n)

)]= P(Dn)
∑

(τ,λ)∈T 0
n

(τ,λ)↔(C,L)

f (C,L)P
(
(τn, λn)= (τ, λ)|Dn

)

+ P(Dn)f (02n,02n),

where we used the notation (τ, λ)↔ (C,L) to mean that the well-labeled tree
(τ, λ) is coded by the contour pair (C,L). It was shown in [9], Lemma 8, that
the number of well-labeled trees with g triples having n edges is equivalent to
the number of well-labeled plane trees having n edges, together with g triples of
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vertices (not necessarily distinct and not arranged) such that all the vertices of the
same triple have the same label. More precisely, we have

P
(
(τn, λn)= (τ, λ)|Dn

)= 1

|Wn|
(∑

k∈Z

|{v ∈ τ :λ(v)= k}|3
)g

+O(n−1/4).

And, because f is bounded and P(Dn)→ 1, we obtain that

E
[
f

(
C(n),L(n)

)]∼ |T 0
n |

|Wn|E
[(∑

k∈Z

Xn(k)3
)g

f
(
�(n),�(n)

)]
.

Using the asymptotic formulas |T 0
n | ∼

√
π12nn−3/2, as well as |Wn| ∼ cg12n ×

n(5g−3)/2 for some positive constant cg only depending on g ([9], Lemma 8), as
well as the computation

n−5/2
∑
k∈Z

Xn(k)3 = n−5/2
∫

R

dx Xn("x#)3 = γ−2
∫

R

dx X(n)(x)3,

we see that there exists a positive constant c such that

E
[
f

(
C(n),L(n)

)]∼ cE

[(∫
R

dx X(n)(x)3
)g

f
(
�(n),�(n)

)]
.

Now, let ε > 0. Thanks to [9], Lemma 10, we see that both quantities
E[(∫ f 3

ISE)g] and supn E[(∫ X3
(n))

g+1] are finite. Then, using the fact that

E

[(∫
X3

(n)

)g

1{∫ X3
(n)>L}

]
≤ 1

L
E

[(∫
X3

(n)

)g+1]
,

we obtain that, for L sufficiently large,

sup
n

E

[(∫
R

dx X(n)(x)3
)g

f
(
�(n),�(n)

)
1{∫ X3

(n)>L}
]

< ε

and

E

[(∫
f 3

ISE

)g

f (e,Z)1{∫ f 3
ISE>L}

]
< ε.

Thanks to the Proposition 24, for n sufficiently large,∣∣∣∣E
[(∫

R

dxX(n)(x)3
)g

f
(
�(n),�(n)

)
1{∫ X3

(n)≤L}
]

−E

[(∫
f 3

ISE

)g

f (e,Z)1{∫ f 3
ISE≤L}

]∣∣∣∣ < ε.

This yields the existence of a constant C such that

E
[
f

(
C(n),L(n)

)] −→
n→∞CE

[(∫
f 3

ISE

)g

f (e,Z)

]
,
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and we compute the value of C by taking f ≡ 1. �

Thanks to (23), we see that the properties that hold almost surely for the pair
(e,Z) also hold almost surely for (C∞,L∞). We may now conclude thanks to
[20], Lemma 3.1, that

P
(∃s �= t :L∞(s)= L∞(t)=minL∞

)

≤ 1

2gg!
2gg!∑
i=1

P
(∃s �= t : Li∞(s)= Li∞(t)=min Li∞

)

= P
(∃s �= t : L∞(s)= L∞(t)=min L∞

)= 0,

and, by [20], Lemma 3.2,

P
(
IP(C∞)∩ IP(L∞) �=∅

) ≤
2gg!∑
i=1

P
(
IP(Ci∞)∩ IP(Li∞) �=∅

)

= 2gg!P(
IP(C∞)∩ IP(L∞) �=∅

)
= 0.

This concludes the proof of Lemmas 9 and 10.

6.5. Remaining proofs.

6.5.1. Proof of Lemma 12. Chapuy’s bijection may naturally be transposed in
the continuous setting. Let i ∈ [[1,2gg!]] be an integer corresponding to an opening
sequence, and Ti∞ the real tree coded by Ci∞. The interval [0,1] may be split
into 2g + 1 intervals coding the two halves of f

e∗∞ and the other forests of T∞.
Through the continuous analog of Chapuy’s bijection, these intervals are reordered
into an order corresponding to the opening sequence. We call ϕi : [0,1] → [0,1]
the bijection accounting for this reordering. It is a cadlag function with derivative
1 satisfying L∞(s)= Li∞(ϕi(s)) for all s ∈ [0,1].

In order to see that Lemma 12 is a consequence of [18], Lemma 2.4, let us first
see what happens to subtrees of T∞ through the continuous analog of Chapuy’s
bijection. It is natural to call root of T∞ the point ∂ := T∞(u∞), where the real
number u∞ was defined in Proposition 5 as the limit of the integer coding the
root in tn, properly rescaled. Using classical properties of the Brownian motion
together with Proposition 5, it is easy to see that, almost surely, ∂ is a leaf of T∞,
so that τ∂ is well defined. Any subtree of T∞ not included in τ∂ (these subtrees
require extra care, we will treat them separately) is transformed through Chapuy’s
bijection into some subtree of the opened tree Ti∞ (i.e., into some tree to the left
or right of some branch of Ti∞). This is easy to see when the subtree is not rooted
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at a node of T∞, and we saw at the end of Section 3.1 that, almost surely, all the
subtrees are rooted outside the set of nodes of T∞.

We reason by contradiction to rule out these subtrees. We call L the Lebesgue
measure on [0,1]. Let us suppose that there exist η > 0, and some subtree τ , coded
by [l, r], not included in τ∂ , such that inf[l,r]L∞ < L∞(l)− η, and

lim inf
ε→0

ε−2L

({
s ∈ [l, r] :L∞(s) < L∞(l)− η+ ε;
∀x ∈ [C∞(l),C∞(s)],(24)

L∞
(
sup{t ≤ s :C∞(t)= x}) > L∞(l)− η+ ε

8

})
= 0.

Note that, by definition of Ci∞, the function s �→ C∞(s)− Ci∞(ϕi(s)) is con-
stant on [l, r]. Let us call l′ := ϕi(l) and r ′ := ϕi(r). It is easy to see that (24) re-
mains true when replacing, respectively, l, r , C∞ and L∞ with l′, r ′, Ci∞ and Li∞.
Thanks to Proposition 25, the conclusion of [18], Lemma 2.4, is also true for the
opened tree Ti∞, and the fact that [l′, r ′] codes a subtree of the opened tree yields
a contradiction.

We then use a re-rooting argument to conclude. With positive probability, τ∂ is
no longer the tree containing the root in the uniformly re-rooted g-tree. Let us
suppose that, with positive probability, there exists a subtree of T∞ included in τ∂ ,
satisfying the hypotheses but not the conclusion of Lemma 12. Then, with positive
probability, there will exist a subtree not included in the tree containing the root of
the uniformly re-rooted g-tree, satisfying the hypotheses but not the conclusion of
Lemma 12. The fact that the uniformly re-rooted g-tree has the same law as T∞
yields a contradiction.

6.5.2. Proof of Lemma 13. Using the same arguments as in [19], we can see
that Lemma 13 is a consequence of the following lemma (see [19], Corollary 6.2):

LEMMA 26. For every p ≥ 1 and every δ ∈ (0,1], there exists a constant
cp,δ <∞ such that, for every ε > 0,

E

[(∫ 1

0
1{L∞(s)≤minL∞+ε} ds

)p]
≤ cp,δε

4p−δ.

PROOF. This readily comes from [19], Lemma 6.1, stating that for every p ≥ 1
and every δ ∈ (0,1], there exists a constant c′p,δ <∞ such that, for every ε > 0,

E

[(∫ 1

0
1{Zs≤minZ+ε} ds

)p]
≤ c′p,δε

4p−δ.
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Obviously, this still holds for δ ∈ (1,2]. Using the link between L∞ and L∞, as
well as Proposition 25, we see that, for p ≥ 1 and δ ∈ (0,1],

E

[(∫ 1

0
1{L∞(s)≤minL∞+ε} ds

)p]
= E

[(∫ 1

0
1{L∞(s)≤min L∞+ε} ds

)p]

= E

[
W

(∫ 1

0
1{Zs≤minZ+ε} ds

)p]

≤ (E[W 2]c′2p,2δ)
1/2ε4p−δ

= cp,δε
4p−δ,

where cp,δ := (E[W 2]c′2p,2δ)
1/2 <∞, by [9], Lemma 10. �

Acknowledgment. The author is sincerely grateful to Grégory Miermont for
the precious advice and support he provided during the accomplishment of this
work.

REFERENCES

[1] ALDOUS, D. (1991). The continuum random tree. I. Ann. Probab. 19 1–28. MR1085326
[2] ALDOUS, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. MR1207226
[3] BEGLE, E. G. (1944). Regular convergence. Duke Math. J. 11 441–450. MR0010964
[4] BERTOIN, J., CHAUMONT, L. and PITMAN, J. (2003). Path transformations of first passage

bridges. Electron. Commun. Probab. 8 155–166 (electronic). MR2042754
[5] BETTINELLI, J. (2010). Scaling limits for random quadrangulations of positive genus. Elec-

tron. J. Probab. 15 1594–1644. MR2735376
[6] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

MR0233396
[7] BOUSQUET-MÉLOU, M. and JANSON, S. (2006). The density of the ISE and local limit laws

for embedded trees. Ann. Appl. Probab. 16 1597–1632. MR2260075
[8] BURAGO, D., BURAGO, Y. and IVANOV, S. (2001). A Course in Metric Geometry. Graduate

Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. MR1835418
[9] CHAPUY, G. (2010). The structure of unicellular maps, and a connection between maps of

positive genus and planar labelled trees. Probab. Theory Related Fields 147 415–447.
MR2639711

[10] CHAPUY, G., MARCUS, M. and SCHAEFFER, G. (2009). A bijection for rooted maps on ori-
entable surfaces. SIAM J. Discrete Math. 23 1587–1611. MR2563085

[11] CHASSAING, P. and SCHAEFFER, G. (2004). Random planar lattices and integrated super-
Brownian excursion. Probab. Theory Related Fields 128 161–212. MR2031225

[12] DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branch-
ing processes. Astérisque (281) vi+147. MR1954248

[13] EPSTEIN, D. B. A. (1966). Curves on 2-manifolds and isotopies. Acta Math. 115 83–107.
MR0214087

[14] FITZSIMMONS, P., PITMAN, J. and YOR, M. (1993). Markovian bridges: Construction, Palm
interpretation, and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA,
1992). Progress in Probability 33 101–134. Birkhäuser, Boston, MA. MR1278079

[15] GROMOV, M. (2007). Metric Structures for Riemannian and Non-Riemannian Spaces, English
ed. Birkhäuser, Boston, MA. MR2307192

http://www.ams.org/mathscinet-getitem?mr=1085326
http://www.ams.org/mathscinet-getitem?mr=1207226
http://www.ams.org/mathscinet-getitem?mr=0010964
http://www.ams.org/mathscinet-getitem?mr=2042754
http://www.ams.org/mathscinet-getitem?mr=2735376
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=2260075
http://www.ams.org/mathscinet-getitem?mr=1835418
http://www.ams.org/mathscinet-getitem?mr=2639711
http://www.ams.org/mathscinet-getitem?mr=2563085
http://www.ams.org/mathscinet-getitem?mr=2031225
http://www.ams.org/mathscinet-getitem?mr=1954248
http://www.ams.org/mathscinet-getitem?mr=0214087
http://www.ams.org/mathscinet-getitem?mr=1278079
http://www.ams.org/mathscinet-getitem?mr=2307192


1944 J. BETTINELLI

[16] LE GALL, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential
Equations. Birkhäuser, Basel. MR1714707

[17] LE GALL, J.-F. (2005). Random trees and applications. Probab. Surv. 2 245–311 (electronic).
MR2203728

[18] LE GALL, J.-F. (2007). The topological structure of scaling limits of large planar maps. Invent.
Math. 169 621–670. MR2336042

[19] LE GALL, J.-F. (2010). Geodesics in large planar maps and in the Brownian map. Acta Math.
205 287–360. MR2746349

[20] LE GALL, J.-F. and PAULIN, F. (2008). Scaling limits of bipartite planar maps are homeomor-
phic to the 2-sphere. Geom. Funct. Anal. 18 893–918. MR2438999

[21] MARCKERT, J.-F. and MOKKADEM, A. (2006). Limit of normalized quadrangulations: The
Brownian map. Ann. Probab. 34 2144–2202. MR2294979

[22] MIERMONT, G. (2008). On the sphericity of scaling limits of random planar quadrangulations.
Electron. Commun. Probab. 13 248–257. MR2399286

[23] MIERMONT, G. (2009). Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm.
Supér. (4) 42 725–781. MR2571957

[24] NEVEU, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Stat.
22 199–207. MR0850756

[25] REVUZ, D. and YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 293. Springer, Berlin. MR1725357

[26] WHYBURN, G. T. (1935). Regular convergence and monotone transformations. Amer. J. Math.
57 902–906. MR1507123

LABORATOIRE DE MATHÉMATIQUES

UNIVERSITÉ PARIS-SUD 11
F-91405 ORSAY CEDEX

FRANCE

E-MAIL: jeremie.bettinelli@normalesup.org
URL: www.normalesup.org/~bettinel

http://www.ams.org/mathscinet-getitem?mr=1714707
http://www.ams.org/mathscinet-getitem?mr=2203728
http://www.ams.org/mathscinet-getitem?mr=2336042
http://www.ams.org/mathscinet-getitem?mr=2746349
http://www.ams.org/mathscinet-getitem?mr=2438999
http://www.ams.org/mathscinet-getitem?mr=2294979
http://www.ams.org/mathscinet-getitem?mr=2399286
http://www.ams.org/mathscinet-getitem?mr=2571957
http://www.ams.org/mathscinet-getitem?mr=0850756
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1507123
mailto:jeremie.bettinelli@normalesup.org
http://www.normalesup.org/~bettinel

	Introduction
	Motivation
	Main results

	Preliminaries
	The Chapuy-Marcus-Schaeffer bijection
	Decomposition of a g-tree
	Forests
	Encoding by contour and spatial contour functions

	Decomposition of a well-labeled g-tree into simpler objects

	Scaling limits
	Brownian bridges, first-passage Brownian bridges and Brownian snake
	Convergence results

	Maps seen as quotients of [0,1]
	Spatial contour function of (tn,ln)
	Upper bound for d(n)
	Tightness of the processes d(n)'s


	Real g-trees
	Definitions
	Maps seen as quotients of real g-trees

	Points identifications
	Preliminary lemmas
	Key lemma
	Set overflown by a path
	Points identifications
	Floor points are not identified with any other points
	Points are not identified with their strict ancestors
	Points a, b are only identified when dinfty°(a,b) =0


	1-regularity of quadrangulations
	1-regularity
	Representation as metric surfaces
	Proof of Theorem 2

	Transfering results from the planar case through Chapuy's bijection
	Chapuy's bijection
	Contour pair of an opened g-tree
	Opened uniform well-labeled g-tree
	Uniform well-labeled tree with g triples
	Remaining proofs
	Proof of Lemma 12
	Proof of Lemma 13


	Acknowledgment
	References
	Author's Addresses

