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This paper examines the existence of the self-intersection local time for
a superprocess over a stochastic flow in dimensions d < 3, which through
constructive methods, results in a Tanaka-like representation. The superpro-
cess over a stochastic flow is a superprocess with dependent spatial motion,
and thus Dynkin’s proof of existence, which requires multiplicity of the log-
Laplace functional, no longer applies. Skoulakis and Adler’s method of cal-
culating moments is extended to higher moments, from which existence fol-
lows.

1. Introduction. Superprocesses (or critical branching particle systems),
originally studied by Watanabe (1968) and Dawson (1977, 1993) were first shown
by Dynkin (1988) to have a self-intersection local time (SILT). In particular,
Dynkin was able to show existence of the self-intersection local time for super
Brownian motion in R?, d <7, provided the SILT is defined over a region that is
bounded away from the diagonal. When the region contains any part of the diago-
nal, through renormalization, the SILT for super Brownian motion has been shown
by Adler and Lewin (1992) to exist in d < 3, and further renormalization processes
have been found to establish existence in higher dimensions by Rosen (1992) and
Adler and Lewin (1991). In regards to non-Gaussian superprocesses, the SILT has
been shown to exist for certain «-stable processes by Adler and Lewin (1991),
and more recently, encompassing more « values, by Mytnik and Villa (2007). Of
important note, as the L>-limit of an appropriate approximating process, Adler
and Lewin have shown the existence of a class of renormalized SILTs (indexed
on A > 0) for the super Brownian motion in dimensions d =4 and 5 and for the
super «-stable processes for d € [2«, 3cr). As one removes Dynkin’s restriction of
bounding away from the diagonal, a singularity arises from “local double points”
(i.e., us x uy where t = s) of the process; cf. Adler and Lewin (1992). The true
self-intersection local time should not be concerned with such local double points,
and thus a heuristic approach to renormalization is naturally observed in the con-
struction. It should be noted that though this is the method used in Adler and
Lewin (1991, 1992), a quite different method for renormalization was developed
by Rosen (1992). Both methods are legitimate renormalizations, and lead to exis-
tence in equivalent dimensions, but for this paper, due to the natural occurrence of
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the term involving local double points, the initial of the two methods will be em-
ployed. Moreover, the real beauty of this constructive proof of existence, as seen
in Adler and Lewin (1991, 1992), is that the aforementioned approximating pro-
cess is ‘“Tanaka-like” in form. Thus the limit gives a (quite simple) “Tanaka-like”
representation for the renormalized SILT.

Quite often, as in the case of Skoulakis and Adler (2001), interaction occurs
between particles within the system. Thus, a major drawback in each of the pre-
vious superdiffusions is the requirement of independent spatial motion. Existence
as a weak limit of a branching particle system, and uniqueness as the solution to a
martingale problem, of the superprocess with dependent spatial motion (SDSM),
as a measure-valued Markov process with state space M (R),was shown by Wang
(1998). It was later shown by Dawson, Li and Wang (2001) to exist uniquely as
a process in M (R), and was then extended by Ren, Song and Wang (2009) to
M (R?). Skoulakis and Adler (2001) suggested a different model incorporating de-
pendent spatial motion by replacing the space—time white noise of Wang’s SDSM
with a Brownian flow of homeomorphisms from R4 to RY, which was referred to
as a Superprocess over a Stochastic Flow (SSF).

As of yet, very little work has been done with regard to the self-intersection
local time for superprocesses with dependent spatial motion. Of important note
is the work of He (2009), in which the existence of the SILT for a superprocess
with dependent spatial motion, similar to the model of Wang, but discontinuous, is
shown to exist in one dimension as a probabilistic limit. Though this was known to
be true, since the local time of the superprocess with dependent spatial motion was
known to exist in one dimension [cf. Dawson, Li and Wang (2001)], He was able to
give a similar “Tanaka-like” representation for the SILT. This paper will investigate
the existence and further properties of a generalized SILT for the d-dimensional
SSF, where the generalization refers to the shift of the support of the Dirac measure
away from the origin, to a point u € R?. Note that if X, is a Markov process, then
Y; £ X; + u is a second, dependent Markov Process. The generalized SILT at u
can be realized as the intersection local time of the Markov processes X; and Y;.

2. Preliminary definitions. The SSF is constructed as the weak limit of an
R? branching particle system. Much of the work that will follow involves using
properties of the branching particle system, and thus we will briefly review this
construction. This section follows very closely to the work of Skoulakis and Adler
(2001), and the reader is referenced to this work for further questions. We will let
R? = R4 U {A} denote the one-point (Alexandroff) compactification of R?, where
A denotes the “cemetery.” We extend measurable functions ¢ € B(R?) to B(R?)
by setting ¢ (A) = 0.

Let N=1{1,2,...} and set

I &= (a0, a1,...,an):N>0,00 €N, o; €{0,1},1 <i <N},
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and for any @ = (g, ..., an) € I, let || =N and @ —i = («p, . .., ¥|¢|—i). In ad-
dition, we will write o ~, t exactly when ¢ € [l‘r’l‘—l, %). Let M (n) be the number
of particles alive at time zero, where the spatial position of each particle is written
as (x7,x5,..., xl’(ﬂn)), and define the initial (atomic) measure by

M (n)
i=1

Foreachn e N, {B*" :a¢p < M (n), |a| = 0} is defined to be a family of indepen-
dent R¢ Brownian motions, stopped at time r = n~!, with Bg = Xg- A TECUTSIVE
definition then gives a tree: foreach k € N, let {B*" : a9 < M (n), |o| = k} be a col-
lection of R valued Brownian motions, stopped at time # = (Ja|+ 1)n~!, and con-
ditionally independent given the o -field generated by {B*" : a9 < M (n), || < k}
and for which

Bf"":Bf‘_]’", t<lajnl.

In regards to branching, for n € N let {N*":q¢g < M (n)} be a family of i.i.d.
copies of N,, where N, is an N-valued random variable such that

k=2,

1
PN, =k)=1{71 —0

29
Note that it is implicit in the above that the branching is assumed to be binary,
and that for each n € N,

EN, =1,
EN? — (EN,)? =1
and
EN? =217 g4eN.

Moreover, it is assumed that the families {B*":ap < M(n)} and {N%" g <
M (n)} are independent.

The final component is that of the stochastic flow. Let 5: R? — R? and ¢: R? —
M(d,m), where M(d,m) is the space of d x m matrices, m € N, satisfying the
following:

(i) the global Lipschitz condition
|b(x) = bW+ lc(x) —cMI = Clx — y|

for any x, y € R?;
(i1) the linear growth condition,

|b(x)| + [c(x)| = CA + |x])

for any x € R?;
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(iii) for all i =1,2,...,d, j=1,2,...,m, b; and c¢;; are bounded with
bounded and continuous first and second partial derivatives.

Assume that 7 — F,(x) is the solution of the stochastic differential equation
dY; =c(Yy)dW/, Yy =x,

for all r > s and x € RY, where W" is a R”-valued Brownian motion, indepen-
dent of the families {B*"} and {N®"}. This defines a unique Brownian flow of
homeomorphisms from R? — R4 [Skoulakis and Adler (2001)].

Seta, =n"! and k, = kn—!. Then the tree of Brownian motions over the flow is
given by the family of processes Y%, defined in the following way: let « ~,, k;, for
some k € N. Over the time interval [0, k,, + a,], Y*" is defined to be the solution
of the d-dimensional stochastic differential equation,

dYt =b(Y[)dB;¥’n +C(Y[)thn,
Yo :x&lo'

Note that existence and strong uniqueness of the aforementioned solution is
ensured due to the assumed conditions on b and ¢. Now set Y;*" = ¥ for
t > k,, + a, and note that due to construction,

Yta,n — Yta—l,n

forO <t <k,,keN.
We now define the stopping times 7" as follows: for each « € I, let

0, if g > K,
1
Lon _ min{l :Ofiglal,N“"’":O}, if not @ and g < M (n),
1+ | .
| l, otherwise.
n

The stopped tree of processes, with branching, is the family of processes X"
defined by

Xa,n:{Yta’n, t<Ta’n7
! A, t>T%n,
The measure-valued process for the finite system of particles is
#Ho~pt: X" € U)
n

w" (U) =

for U € B(R?), where for a topological space E, B(E) denotes the o -field of Borel
measurable sets in E.



GSILTSSF 1487

We define the corresponding filtration F” by
F'E£ (B, N*":|a| <k)Vo(W!':s<t)Vo(B*":s <t,|a|=k)

fort € [ky, kn +a,), k=0,1,....
Let C¥(E) be the space of continuous functions on E having continuous partial
derivatives up to order k, and for ¢ € C k(R let

¢

k. =<—> )
iz (%) 0xj; 0xjy -+ - X, )

For ¢ € C*(R?) define the second-order operators L and A by

| d
(D (Lp)(x) = 3 _Zlaij(x,X)3i2j¢(X)
i,j=
and
d
(AP)(x,y)= Y 0ij(x,y) 0ip(x) D (y),
i, j=1
where
ajj(x,y) =8;jbi(x)b;j(y) +oij(x,y)

and

0ij(x,y) =Y cie(X)cje(y),

(=1

x,yeRd,i,jzl,...,d.
Furthermore, for eachn e N, ¢ € C 2(R"*4y define the second-order operator
L" by

1 n d
() (L"¢)(X)=5 > a{}q(X)api g, (x),
p.q=1i,j=1
where

ai’}q (X) = 8pq8ijbi (Xp)bj(xq) + O’ij(Xp, Xq),

x=(x1,...,x,,),xpeRd,pzl,...,n,and

5oL i=1.
=10, i#j.
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For any operator A on a Banach space B, such that A¢ = lim;_,o ¢~ '{T;¢ — ¢} for
some semigroup 7y, we will denote by D(A) C B the domain of A. That is,

D(A) = }¢ e B:limt YT,p — ¢} exists},
t—0
where the limit is in the strong sense.

ASSUMPTION 2.1. For the remainder of this paper, the assumption will be
made that L is uniformly elliptic.

For each k € N we will denote by C(’)‘ (R) the subspace of functions in C¥(R%)
which vanish at infinity.

For any topological space E, let Mr(E) denote the space of finite Borel mea-
sures on E, Cg[0, c0) the space of continuous paths in E and for any £ € N,
Cf} (R%) the subspace of CY(R?) for which the elements have compact support.

Endow D, ra)[0, 00) with the topology of weak convergence, that is, u™ e
DMF(]Rd)[O, 00) converges to u € DMF(Rd)[O, oo) provided lim,,_, 5 (¢, M(”)) =
(¢, n) for any ¢ € Cy, (R9), and let = denote weak convergence. In addition, for
any € Mp(E) and £ € N, denote by u the product measure pu X (X - X ji €
Mp (R4 Under these assumptions, and Assumption 2.1 upon L, we arrive at
the following theorem.

THEOREM 2.2. Let u™ be defined as above with u(()n) = o, then u™ = p,
where ju € C g (ra)l0, 00) is the unique solution of the following martingale prob-
lem:

For all ¢ € C% (RY),

t
3) Zi(¢) = (&, ir) — (¢, o) —/O ds(L¢, 1is)

is a continuous square integrable {F!'}-martingale such that Zy(¢) = 0 and has
quadratic variation process

t
@) (Z(@)): = /0 ds (6%, 1s) + (A, u2)).
PROOF. See Theorem 2.2.1 in Skoulakis and Adler (2001). [

ASSUMPTION 2.3. For the remainder of this work, it will be assumed that
o € Mp (R?) has compact support and satisfies
po(dx) <m(x)dx

for some bounded m € L' (R?).
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3. Some needed lemmata. Some needed technical lemmata, will be pre-
sented, where due to the significantly large number of calculations required, the
proof is deferred to the Appendix.

As in most existence proofs for self-intersection local time of a superprocess,
higher moments of the superprocess are required; cf. Adler and Lewin (1991),
Dynkin (1988). Through finding the first and second moments of the branching
process, and passing to the limit as n — oo [Skoulakis and Adler (2001)] found
the first and second moments for the SSF. A variation of this method is employed
to find higher moments of the SSF.

LEMMA 3.1. If L" is defined as (2), then L" is the generator of the diffusion
which describes the joint motion of n particles in the aforementioned branching
particle system.

PROOF. See the Appendix of Skoulakis and Adler (2001). O

LEMMA 3.2. For each n € N, there exists a transition function q;' for the
Markov process Yy = (Yl, ..., Y"). Furthermore, {Q} :t > 0}, defined by

0190) = [ o0a )
is a strongly continuous contraction semigroup on Co(R%).

PROOF. Since it is assumed that Assumption 2.1 holds for L, it follows that
for each n € N, Assumption 2.1 also holds for L". Theorem 5.11 in Dynkin (1965)
then completes the proof. [J

We denote by C*(R?) the space of infinitely differentiable functions on R, by
cy (R9), the subspace of C*(R?) of which the elements have compact support,
by D’ (RY) the space of distributions on C,%O(Rd ), and by D*u the ath-weak partial
derivative of u. Note that a differentiable function will have a weak derivative that
agrees with the functions derivative, and thus we will at times use a slight abuse in
notation and write the weak derivative as D* = 9" 95%--- 9.

We denote by S; the Schwartz space of rapidly decreasing functions on R,
and the dual to Sy, the space of tempered distributions on R¢, by S/. For any two
functions ¢ : E1 — R, ¥ : E» — R denote by ¢ ® ¥ the concatenation of ¢ and .
That is, ¢ @ ¥ : E1 X E; — R is the map defined by (x1, x2) — ¢ (x1) ¥ (x2).

LEMMA 3.3. Let ¢ € S¢xa, then there exists {¢,, :n € N} such that:

() pp =27 10 ®PF Q- @@, for some B}, ..., ¢ € CPRY);
(i1) ¢, converges to ¢ in S¢xq as n — Q.
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PROOF. Taylor’s theorem implies the above holds for any ¢ € C¢° (R9); cf.
Rudin (1976, 1987). From Theorem 7.10 of Rudin (1973) there exist {¢,:n €
NyccC ,‘?(RZX”Z) such that ¢, converges to ¢ in Sy, and the result thus follows.

O

Given ¢ € B(R"*TDxd) y e N, define the projection | by

(7'[1 Q?(ﬁ)(xla ey xn—l—l) = Q:I¢X1 (-x25 LR} xn+1)a

where ¢y (y1, ..., yn) =d (X, ¥1, ..., yn).
GivenmeN,i=1,2,....m—1, j=1,2,...,m, i # j and any function
qb:]R'”Xd — R, define (®;;¢) ‘Rm—Dxd _, R by

(PijP)(x1,s vy Xm—1)

¢(x1,-..,xi,..-,xj_l,xi,xj,...,Xm_l), l<.]5.]?ém’
¢(x17-",xi""vxm—l’xi)S i<j’j:m’
QXL ey X1, X Xy ey Xy ey Xp—1), i>j,j#1,
GXiy X1y ooy Xiy ey Xm—1), i>j,j=1
Furthermore, for X, = (x1, x2,...,xn), Xxp €{ij, 0}, p=1,2,...,m,let
Cbl‘j, xp:ij,
é‘(x[))_{n], -xp:(),
and
e XpH— +1, Xp— :i.a
Z(xp):{(pl) pl_]
Lop-n) =1, xpo1 =0,
L(xg) =L e N. Lets;, = (s1,52,...,85q),5p €[0,00), p=1,2,...,m, and denote
m— L L l m— 14 m—
5) Tyt 2 00 Qi c () QI - ) Q52 m sty

The next lemma comes from Skoulakis and Adler (2001), though it should be
noted that in the aforementioned paper the result is shown for near critical branch-
ing (as opposed to critical branching in this paper). This is of little concern though,
as a modification of the original proof (making for a much simpler proof) gives the
critical branching case.

LEMMA 3.4. Let ¢, d1,¢2 € Cx(R?) and t > 0, then

D Eui(p) = (014, o)

and

(i) Epn @1 ($2) = (07 (11 Qr—ry ($1 ® $2)), 1)
t
+ [ d510.9120F (1 Qi (91 @ 82)). o

with the convention that Q¢ = ¢, n € N.
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PROOF. See Skoulakis and Adler (2001), Proposition 3.2.1 [with (1 + y,,/n)
and e~*?"" both replaced by 1]. [

Before our moment calculations, some needed definitions and lemmata will be
presented. In what follows (S, d) will refer to a metric space, in which it is assumed
S is separable, and p will denote the Prohorov metric on Mg (S).

LEMMA 3.5. If{u"™ :n >0} C MpR?) satisfies u™ = p € Mp(R?) then
(™) = pt
forall £ € N.

PROOF. Define

1
M=1¢=QR¢:t>1, ¢ eCK(Rd)U{l},kz1,2,...,6}.
k=1

From Ethier and Kurtz (1986) Chapter 3, Proposition 4.4, for any v, v ¢
Mp(R?Y), n=1,2,..., such that lim,_, o (¢, V™) = (¢, v) for all ¢ € Cg(RY),
it follows that v = v. For any £ € N, since u™ = 1, lim,_ oo (¢, (u)¢) =
(¢, 1%, for any ¢ = @ _, ¢ with ¢ € Cx (RY) or ¢y € {1}, k=1,..., £. Thus,
for any ¢ = @i_; dx € M, lim,—, (@, (L)) = (¢, %), which implies, by
Ethier and Kurtz (1986), Chapter 3, Proposition 4.6, (Wt =put. O

We denote by Dg[0, 0o) the Skorohod space on S, that is, the space of all cadlag
mappings from [0, co) to S. Note that under the assumption that S is separable,
Dgs[0, oo) with the metric defined by Ethier and Kurtz (1986), Chapter 3, (5.2), is
a separable metric space. Moreover, if (S, d) is complete, Dg[0, co) is complete;
cf. Ethier and Kurtz (1986), Theorem 5.6, Chapter 3. For ¢ € C,(S) define the
metric ||@|lpr = [Pl V SUPy£y %. The next two lemmata are essential in

the moment proofs for the superprocess.

LEMMA 3.6. For k,€ € N, let Y :RE x R® > R in C,(RX x RY) satisfy
SUP; ek 1w (s, )lpL < 00, and let o be an a.s. finite measure having compact

support with u(()") = wo. Then

1 [nt]—1 r (AN
. n
Flyeeey rk=0
rp<--<rg

t Sk 52 ¢
—/ dsk/ dsk_l---/ ds (Y (s, ), uby| =0,
0 0 0

wherer = (r1,...,ry) and s = (s1, ..., Sk).
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PROOF. Indeed,

1N ((50) ) = [Case [ s [P st s

n Flyeens rr=0
rp < <rg
] lld r ) r
<= 2 <w<—,->,(uf)")) >—<¢<—,->,M€>
n _ n n
Flyeees i’k—o
rp<-e<rg

1 _ t Sk 52
i S () o e [ anveo] i)

By assumption sup, || (s, -)||pz. < 0o, and thus from Ethier and Kurtz (1986)
the first of the above terms converges to zero. Since ¥ is continuous and bounded,
and MS is finite with compact support, it follows that the second term is also con-
vergent toward zero. [

LEMMA 3.7. Forany ¢; € CP(RY),i=1,2,...,6,£€N,0 <t < oo,

1im E(g1 @ 2@+ @ e, (")) =Ep1 @ 2@ - ® e, ).

PROOF. Let u™ = {u?’) :t > 0} be a branching process as defined above, let

w be a weak limit point of 1™, and let {n;} be the subsequence along which
w"™) = . From Ethier and Kurtz (1986), Theorem 3.1, Chapter 3, there is a
Skorohod representation for ., u(”k), k € N. That is, there exist random variables

X, Xk, k € N, defined on the same probability space, such that X 4 w, Xg 4 AL
keN, and X; — X a.s. as k — oo.

For X € Dy, (ra)[0, 00), define PX (¢;)~! to be the distribution of X (¢;) €
Dr|0, co) then, by dominated convergence

J4 V4
<w, HPXk<¢i)—1> — <w, HPX<¢Z~>—1>
i=1

= i=I

lim sup
k=00 |1y, =1

= lim sup [EY(Xi(d1), ..., Xi(de)) —EY (X (@1), ..., X(d0))l

k=00 1y, =1

=0.

It then follows from Ethier and Kurtz (1986) that

0 £
kllr‘;o"(g PXi(pi) ", 1‘[IP>X<¢,->—1> =0

i=1
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or equivalently,

Xk (@1), ..., Xi(@e) = (X(P1), ..., X(¢e))

in Dpe[0, 00). Therefore, from Theorem 2.2,

(L @D, ... 1" (P)) = (WD), ..., 1(r))

in Dpe[0, 00). Thus, from Lemma A.3.9 of Skoulakis and Adler (2001), for i =
1,2, ..., u(¢;) is continuous. Therefore, the open mapping theorem [Ethier and
Kurtz (1986), Chapter 3, Corollary 1.9] implies that

(" @1, - 1™ ($0) = (), - 11(B0))

in RY, which further implies that

™ @) - 1™ @)™ (G0 = e @1) - e (B2) -+ i (D)

in R. Note that [cf. (3.1) in Skoulakis and Adler (2001)] for any ¢ > 0, IE,uE”)(l) =
,uén)(l), and thus {;L§”)(1):z > 0} is an F;'-martingale. It follows from Doob’s
maximal inequality [Karatzas and Shreve (2000), Theorem 3.8] that for any 7 > 0,

E sup [n" (D]’ < (m) E[n ()]’

0<t<T

Since ,u(()") = 1o, lim,— oo ;L(()")(l) = po(1), and thus, sup,,- | M(()")(l) < 00. Since
,uﬁn)(l) is the total mass process of the branching particle system, and is absent

of influence by the stochastic flow, [M(T”)(l)]( is equivalent in distribution to a

total mass process with an initial M (n)* particles, which implies IE‘Fl[,u(T")(l)]Z =
[g” (1. Thus, sup,,. | Esupg, .7l (1)]¢ < oo. Theorem 25.12 of Billings-
ley (1995) implies limy o0 ET¢_; 1™ (¢i) = ETT_, s (1), and thus,

nlinoE(‘ﬁl QMR Q ¢y, (M;(n))e> =E{p1 Q¢ ®--- g, ub). O

In Skoulakis and Adler (2001) the first and second moment calculations are
done via first finding E(¢p, u?”) and E(¢; ® ¢, M,(?>Mt(f)) then passing to the
limit as n — oo. This works well when the number of cases to consider are
small, but due to the rapid growth in cases to consider as the moments increase,
the following method will vary slightly. The method first calculates E(¢, (M§”) )3)

and E(y, (;L;”))A') for ¢ € C["(O(R3Xd), v e C}?(R“Xd), t > 0, then passes to the
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limit before utilizing the Markov property to find E(¢1 ® ¢2 ® @3, s, s, ts)
and E(Y1 © Y2 ® Y3 ® Yia, Moy fhis ay)» Where ¢, ¥ € CRRY), i =1,2,3,
ji=1,2,3,4,and0<t; <tp <t3 <14.

Since the calculations for the third moment are a much simpler case of the
fourth, we present here only the derivation of the fourth moment. To begin, note
that

1 ¢
©  Eigp. (") )= 3 B YYE [ Laa ),

ag~pt i=1

where 1, ,(¢) is the indicator on the event that the particle ; is alive at time ¢.
Thus, for the fourth moment, if o; ~, ¢, i =1,2,3,4 and N = [tn], we will have
the following cases to consider:

(I) Each particle resides on its own tree.

o]

o2

o3

o4

(II) Two particles reside on one tree, the other two reside on their own trees.
Thus, the two particles on the common tree share a common ancestor 8 with
|Bl=randre{0,1,...,N —1}.

o1

o2

o3

6 /
\ o

(IIT) Two particles reside on one tree, the other two on a second tree. Thus, the
two particles on one tree share a common ancestor 81 with | 81| =r1, the two

particles on the second tree have a common ancestor 8 with |82| = r» and
ri,rpef0,1,...,N —1}.
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o1

Bi ——

o2
o3

4&< o

(IV) Three particles reside on one tree, the fourth on its own tree. Thus, two of
the three particles share a common ancestor 8, with |82| = o, and all three
share a common ancestor 81 with |8;| =r, such thatr; € {0, 1,...,rp — 1}

andrpyef{l,...,N —1}.

o]

(%)
B2
o3
1
o4

(V) All four particles reside on one tree. This gives the following two sub-cases:

(A) Two of the particles share a common ancestor 83 with |83| = r3, the
other two share a common ancestor 8, also with |8>| = r3, all four share
a common ancestor 81 with | 81| = r1, B2 and B3 are both descendants of
Br,andri €{0,1,..., (=1 A(r3—1D}andrpy,r3e{l,...,N —1}.

o]

o3
g

(B) Two of the particles share a common ancestor B3, another particle
shares a common ancestor B> with 83, all four particles share a com-
mon ancestor 81 and B; is an ancestor of 8, which is an ancestor
of B3, with |B1| =711, |B2l =12, |B3] =r3 and r1 € {0, 1,...,r2 — 1},
mef{l,...,r3s—1},3e{2,...,N —1}L
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o1

B3
B2

Bi @
o3
a4

Taking into consideration the possible resulting diagrams, and defining r(n) €
[0,r] by r(n) = %, the following lemma can be shown.

LEMMA 3.8. Given ¢ € C%(R3>*?) and ¢ € C% (R**9), foralln e N, t > 0,
it follows that

1 N—-1 3
E(qb, (Mgn)) > (Q b, ( (n) ; Z Z Fg(r(n) z)¢ (”)) )
g
(N
(12,i)) o
n2 Z Z I, (rffn) e o ) o)
r1,r2=01,j=1
ry<ra l?é]
and

Ely, (u")') = (0w, (ug")') + - Z Z (TS0 ¥ (16”)’)
r=0i,j=1
i#]

@ ) ()
S S SED o s TUM ALY

r1 rp=0iy, j1=Llis, jp=1
"<r2n#Fjr #Fp

(12,1'2]'2,1'1]1) (n)
Z Z Z 1:(r1 (n),r2(n),r3 (n), r)w Ho )
re=0 iy, j1=1iz, jp=1

k=123 i1#j1 i#Ep
ri<r<ri

+o0(1),

®)

where T'._is defined as in (5).

PROOF. See Appendix A. [
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Having now a formula for both the third and fourth moments of the branching
process, with the exception of a some small technicalities to mention, the moment
formulae for the superprocess will follow almost immediately from Lemmas 3.6,

3.7 and 3.8.
THEOREM 3.9. Let ¢ € CRR¥*Y) and y € CPR**9) be respectfully de-
fined by
P=01 @M ®P3 and Y=Y QY2QY3Q Y4
for ¢i, ¥ € CIO{O(Rd), i=1,2,3,j=1,2,3,4. Then for all 0 < t;] <th <13 <
11 < 00,
E(W, M11M12MI3M1‘4>
4 11 ..
(0,0,0) 4 (i4,0,0,0) 3
= (F4;(t1,l‘2,t3,t4)w’ MO) + Z /(; dS(F3l;j(S,tl,tz,t3,l‘4)w’ MO>

i,j=1
i#]

3 t . 2]
(0,i4,0,0) 3 : (0,0,12,0) 3
+ Z dS(F3:(t1,S,tz.t3,t4)w’ M0)+/[2 ds(r3;(11,tz,s,t3,l4)w’MO)

— 170

i,]
i#j
! S 52 (i2j2.1j1,0,0,0) 2
+ Z Z /0 ds2/0 dsl(FZ;(S17S2,f1,t2,t3,t4)w’ ’uO)
i1, ji=liz, jo=1

i#£j1 h#p

3 3 ¢ ¢
2 1 L
(i22,0,i1,1,0,0) 2
+ Z Z fz dSZ/O dsl<F2;(S1,t1,szytz,t3,t4)1//"uO)
it j1=1liz, jp=1""1
0#j1 D#ER

3 15} §2
’ (0,12,i7,0,0) 2
+ Z / dsy dsl<F2;(t1,SI,S27t2,t3,t4)w’ MO)

ij=1"" h
i#]
SR g (ij,0,0,12,0) 2
+ Z /t dsz/(; ds1<F2;(S|,11,12,52J3,t4)w’ MO)
i,j=1""72
i#j
3 f2 (0,12,0,12,0) 2
+ b ds2 " dsl(FZ;(tl.Sl,tz,sz,ts,m)’MO)
4 3 1 3 )
' ' (12,i2 j2,i1,j1,0,0,0)
€) + Z Z /0 ds3/(; dsz/(; dsl(rl;(S],32,S3,t1,12,l3,t4)w’MO)

i, j1=1iz,2=1
L#j1 D#j
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19} 141 52 .. ..
(12,2 j2,0,i1,j1,0,0)
+ Z Z / dS3/0 ds2/0 dsl(rl;(Sl,Sz,tl,S3JzJ3J4)I//’MO)
i1, j1=1iz, p=1

i1#j1 #jp

(12,0,12,i7,0,0)
+ Z / dS3 /;1 dsz/ dS Fl (81,11,52,583,12,13, [4)w’ MO)

i,j=1
i#]

1
(12,i7,0,0,12,0)
+ Z / ds3f dSz/ dS Fl 3 (81,82,11,12,83,13, 14)1#’”0)
i,j=1

i#]

13 1§) 151
12,0,12,0,12,0
+ dS3/ dsy dS1<F ) Mo)
1) 11 0

1;(s1,11,82,12,53,13,14)

and

0,0 (i7,0,0)
E(o, ts iy bz) = <F3;(11,12,t3) + Z / d FZ (s,11,12, t;)qb )
i,j=1

i#j

131
(12,i/,0,0)
+ Z / dSz/ dS F] (51,82,t1,12, l‘3)¢ ,bL0>

i,j=1
i#]j

(10 ;
(0,12,0) 2
+-/I; dS FZ (t1,s,, t3)¢’u’0>

t 31
(12,0,12,0)
+ : dsy ) dsi (F1 1 (51,11,52,12, t3)¢ “0>

PROOF. See Appendix B. [

The purpose of the above moment formulae is due to the need for L? bounds,
the verification of which makes up the most essential part of this paper. For the re-
mainder, any arbitrary constant value, dependent only upon 0 < T', will be denoted
by C =C(T).

LEMMA 3.10. Let ¢ € Sg,d <3, and define for x = (x1, x2, x3) e R3¢y =
(¥1, Y2, 3, ya) € R4,
Y (x) £ ¢ (x1 — x3)¢p (x2 — x3)

and

P() Ed(y1 — y3)9 (32 — y4).
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Suppose that u = {u; :t > 0} is a superprocess over a stochastic flow such that
no € Mp (Rd) satisfies Assumption 2.3. Then, forany 0 <t <th <t3 <T < 00,

T 13 %)
(i) /O dr3 fo iy [ dnEW. o i) < CIOIE,

and
.. 3 h 2 2
Gi) [ [ dniElg. i) < CIOIE .
PROOF. See Appendix D. [
We now proceed with the establishing existence of the GSILT.

4. Existence of generalized self-intersection local time. Generalized self-
intersection local time (GSILT) at u € R?, over B C B(R?), is defined formally
as

L’(u;B)é/ drds(8y, tshts)
B

where §, (x) is the Dirac point-mass measure at u.
Note that in the above, and throughout the remainder of this paper, if ¢ : RY —
R, the convention

(@ 1stts) = / s (dx) 11 ()9 (x — y)

is made.
Since gy = Wt lig, it makes sense to restrict GSILT either above or below the
diagonal, and so we set

Lu,T)=L(u;{(s,0):0<s<1<T})

for fixed T € [0, 00).
The above definition is clearly formal, and thus to make sense of this a limiting
process will be constructed. For fixed A > 0, define

G}»,Lt(x) _ oodl,e—)»l (
= qr(u, x),

then, since G** is the resolvent to L at A, (A — L)G** = §, and ||G*"|| .1 < AL
From Dynkin (1965), Theorem 0.5, it can be seen that G*"(x) is not smooth
(take, e.g., x = u), and thus it is desired to estimate GHH by a class of smooth
functions.
Since G** € L1 (R?), for any ¢ € CP(RY)

(¢, Gy 2 / dx G* (x) (x) < o0,



1500 A. HEUSER

which implies G*** can be regarded as the element of S/, which sends ¢ € Sz to
(¢, G**). Thus, Lieb and Loss (2001), Theorem 7.10, implies the existence of a
family {G} : ¢ > 0} C C$° such that G** — G** as¢ — 0, in S,.

From Hoérmander (1985), L is a continuous operator on S&, and it is concluded
that

lim (A — L)G** =3,
e—0

where convergence is in the sense of distributions, and so a limiting process is
defined by

T t
yﬁ(u,néfo drfo ds(Go— L)GM pugpur).

A>0,6>0,0<T <o0.
The goal now is to make sense of the operator L appearing in the integrand.

4.1. An It6 formula. As in the independent case, the derivation of the evolu-
tion equation is accomplished through the construction, and careful application, of
an appropriate Itd6 formula. This construction will mimic that of Adler and Lewin
(1991), which begins with application of It6’s lemma to the nonanticipative func-
tional f, given by

t
f(r,x>=xf0 ds 115 (),

where ¢ € C% (R%), and x is a R-valued random variable. Note that from the
SPDE (3), if ¢ € C¥ (R?), then u: (@) is a continuous semi-martingale with de-
composition

wi(P) = po(@) + Zi (@) + Vi(@),

where
Vi 2 [ dspio,
THEOREM 4.1. If¢ € S; then (@) is an a.s. continuous semimartingale.
PROOF. See Appendix D. [

Through some careful work (outlined in the Appendix), we arrive at the follow-
ing.

LEMMA 4.2. Given ¥V € Sy,

T t T T
/0 di /0 ds (LW, i) = fo dt(W, ) — /O At (W, jug )

_/OTA;dZ(dt’dy)/otdsw("y)’lm’
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where
N
(LaW)(x,y) £ = > aij(y) 0y, 92, ¥ (x, y),

2i,j:l

and Z(dt, dy) is the corresponding martingale measure.
PROOF. See Appendix E. [J

4.2. Existence. Using lemma 4.2 with Gé‘*“ in place of W, we now have
A g : A
vhw Ty = [t [ ds(GE )
r ) r A
— [ Gz o) + [ G

+/(;T/]Rd Z(dt,dy)/(jds(Gé’”(-—y),Ms>-

As in Rosen (1992) and Adler and Lewin (1991, 1992), the issue of “local dou-
ble points” must be addressed, that is, the set of points lying on the diagonal in R?,
which will be (falsely) counted as points of self-intersection when u = 0, and will
lead to singularities in dimensions greater than one. Due to this we follow the idea
first proposed by Adler and Lewin, and renormalize our GSILT via subtraction
of the term involving “local double points.” It is easy enough to see that the term
involving the “local double points” is given by fOT dt(G*", s us), and thus we de-
fine our renormalized limiting process to generalized self-intersection local time
at u € R4, over the set {(s,1):0<s <t <T}by

T
Lhu ) =yt T) = [ di(GE )
T t N T N
=i [ dr [ ds(G ) = [ G )
T ' N
[ z@ray [ dsiiec - ..
0 JRe 0
Using Lemma 3.10 existence follows almost immediately.

THEOREM 4.3. Suppose that u = {u; :t > 0} is a d-dimensional superpro-
cess over a stochastic flow such that ug € M F(Rd), d < 3, satisfies Assump-
tion 2.3. Fix T €10, 00) and define Eg(u, T) as above, then for 0 <s <t <T,

L? — im L2(u, T) = L*(u, T),
e—0
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uniformly in u € R?, where £*(u, T) is defined by

T t T
LM, T) = A /0 dt /0 ds (G, juspte) — /O dt(G™", )

+ /OT fRd Z(dt,dy) fot ds(G*" (- = y), 1s).

For each ). > 0, L* (u, T') is referred to as the self-intersection local time at u, up
to time T, for a superprocess over a stochastic flow.

PROOF. See Appendix F. [

It should be noted that, as with the the SILT of Adler and Lewin (1991), for
d > 3 the GSILT can be shown to blow up to infinity. It remains an open question
if renormalization processes, such as those of Rosen (1992), exist for dimensions
d>3.

APPENDIX A: PROOF OF LEMMA 3.8

We now proceed with the moment calculations. Much of what follows will be
a consequence of the Markov property, and the reader is referred to Skoulakis and
Adler (2001) for a similar calculation for the first and second moments. Note that
if t >0and r € N, we define N € N and r(n) € [0,7] by N = [nt] and r(n) = 7.
Recall,

(1) Blg. ()= Y B v Y YR [Tl
1313;4 =
If a1 (0), @2(0), «3(0), and 4 (0) are given, case (I) gives
Ep (Y, Y21 Y5 Y4 = 07 (Xay (0)s X (0)» X3 (0) Xaa (0))

and ETT!_; 1,2 (t) = (5)*V. For any a1 (0), 2(0), a3(0), a4(0), there are 24V
corresponding (o1, a2, o3, o¢g) which result from binary branching over N steps.
We thus arrive at the following contribution from case (I):
1
4
e > Q7 (X1 0+ Xz (0)» Xa3(0)» Xy (0)
o (0)=1,k=1,2,3,4
o (0)#atg (0), Lk
1 4
=3 > Q7 (X1 (0)s X2 (0)> Xa3 (0) > Xag(0)
a;(0)=1,k=1,2,3,4

4
1 4
— = 2 > (@09 (a1 (0) Xz (0)» Xa3 (0)
ar(0)=1i,j=1
k=1,23 i#j
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4 3
Yo Y (@) 078 (e 0 Xar)

ap(0)=11iy, j1=1iz, j=1
J=L2 i1#j1 #p

4 3
YooY (@n®h;p P, 0/0) (e o)

a1 (0)=11iy,j1=1iz,jp=1

i1#h h#h
which by the definition of ™,
1 4
- > Q7 D (Xa; (05 Xer(0)> Xar3(0)s Xouy(0))

T (0)=1,k=1,2,3,4
g (054 (0), 2k

=(0%. (n§")") - —<<I>UQ ¢. (1g")’)

1 n 1 n
- n2 < i2)2 llle ¢, ( ()) ) (chZchzqu)tlJlQ é, ()>

From Lemma 3.5 all but the first term on the rlght—hand side will vanish as n — oo,
and thus

1 4
s > 07 ¢ (Xay (0)> Xz (0)> Xar3(0) > Xag 0))
o (0)=1,k=1,2,3,4
g (0) 0t (0), £k

= (0%, (1)) + 0(1).
For case (II), given a1 (0), «2(0), B(0) and r, proceeding as before,
E¢(Ya1 N 012 n Y[a3,n’ Yta4,n)

(12)

- A
=1 Y (O ®ij OF 1)) (K (00 Xaa(0) X(0))
i,j=1
i#j
and if for any distinct i, j € {1,2, 3,4} we define i’, j' to be the exhaustive ele-
ments of {1, 2, 3,4}\ {i, j},

4
E [T layn () = Elayn () Bl n (0O)VEE[ Loy () Ly n (1) L]
i=1
— )—@N-r—1)

For any «1(0), @2(0), B1(0) and r, there are 24N—r—1 corresponding tuples

(a1, a2, a3, q) which result from binary branching over N steps and 2 - (‘21) possi-
ble arrangements for (¢, o2, a3, 4). We thus arrive at the following contribution
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from case (II):

| N1 o4 -
=22 > (T2 .0 ®) (Xety 00+ Xtz 0)- X5 (0))
e

0i.j=1 a1(0),22(0).80)=1
i#j a1(0)Faz(0),0e(0)#B(0)

=12
1 N—1 4 j (N3
1 n
~ Z (F 3 0m.n® (W (o))
r=0i,j=1
i#j
1 N—1 4 3 LD 2
l n
2 Z Z cblzjzr 1(il(n) z)¢ ( ) )
r=0 i1, j1=1i, jp=1
i#j1 #h
1 ) )
1 n
n_3 Z Z <D12®,2]2 %l(il(n) t)¢ ( )>

r=0 iy,j1=1i, jp=1
H#j #j

Again from Lemma 3.6, all but the first term on the right-hand side will vanish as
n — oo and thus,

| N=lo4
e Z Z > (TS .6y®) (¥t 0)+ Xz )+ KB ()
: J:

I a1(0),02(0),8(0)=1
i#j a1(0)#a2(0),0¢(0)#B(0)
(=1,2

1 4
Z Z F(l(r(n) z)¢’ (n)) )+o(D).

1751

Cases (III) and (IV) will now be considered together. For case (III), given 81 (0),
B2(0), r1 and rp,

Ed)(Y“l NG cxz n Yta_g,n’ Ytoc4,n)

RS NCY)
=5 X Z Lo n sy ®) (X810 ¥8200)

(13)

=|~

i1, j1=1 12, jp=1
i#j1 L#p
iz, joF#i

and

4
E[] lan(t) =2"@N-17272),
i=1
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For case (IV), given «(0), 81(0), r; and r,

]E(]ﬁ(Y,al’n, Ylag,n’ Yta3,n’ Y[a4,n)

4 3
1 (i2j2,11J1)
=5 2 2 (Ciwhmn®) o 550)
i, =1l iy, 2=l
i1#]1 ir# o

ip=i] Or jp=i
and

4
E l_[ 10[- n(t) — 2—(4N—r1—r2—2).
i=1

Given two initial ancestors, there are 24V —"1—72—2 possible trees, and a possible
2- (‘2‘) arrangements for o1, oo, @3, o4 upon each tree (requiring ry < r») that result
in case (III). Furthermore, there are 2*NV—"17"2=2 possible trees, and a possible
2. (%) . (g) . (g) arrangements for oy, @z, @3, g upon each tree that result in case
(IV). It follows that the contribution coming from the sum of case (III) and case
(IV) is given by

| N=1oo4 3 aiis)
J2511j1)
D DD DD DI (T2 n)ora ).y ) (Fex(0)s X))
r1,r=011,j1=1i2, p=1 «a(0)=1
rn<rz i1#j i#jp  BO)=1
a(0)#B(0)

| N-1o4 3 it
_ 2J2,01J1) (n)\2
== 2 2 2 Euhwa® (4"))
r1,r2=0iy, j1=11i2, jp=1
"< f1#Fj1 #Eh

| N-1 4 3 ainin

2J2:11J1) ()

3 2 2 2 (el wn® ko)
r1,r2=0iy, j1=1is, p=1
I<rn a#j h#p

n

Thus, again from Lemma 3.6, the second term vanishes as n — oo, and we have
the contribution

| No1o4 3 it 5
) 3 3 2 @y #o”) (")) + oD,
r1=0 iy, j1=liz, jo=1

=0 i1#j1 DL#j
ri<nrn
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Considering subcase (V)(A), given ry, 2, r3 and B1(0),
Ed)(ylal,n Ytaz,n Y[a3,n Yta4,n)

1 & 4 B3,
= ¢ 2 EE[(®4 Q@) (Y750 Vit Yrstoo) 1 F o)
ij=1
i)

¢ 22y
= E Z Z (Fl;(rl(n),rg(;l),rg(n),t)qs)(x/gl(o))‘

i1, j1=1 iz, jo=1

HW#j  DL#Ehp

i2, 2 F#i1

Furthermore,
4
E 1_[ lcl' n(t) — 2—(4N—r3—r2—r1—3)‘
i=1
For subcase (V)(B), given r, r2, r3 and §1(0),

LU A A

k)

1 4
=55 2 EE[(®4 07 @) (V300 Y550 Vo) | P
i,j=1
i#]

I 5 > (12.i2)2.1j1)
= 2 2 Cnmnmo?) o)
iLja=l i p=1
171 i2# )2
ip=i] or jp=i]
and
4
E 1_[ 1(:{' n(t) — 2—(4N—r1—r2—r3—3)‘
i=1
Given one initial ancestor there are 2*N~"17"2773=3 possible trees, and a possi-
ble (i) . (f) . (‘2‘) arrangements for o, a2, @3, a4 upon each tree (requiring rp < r3)
that result in case (V)(A). Furthermore, there are 2*¥ 1727733 possible trees,
and a possible (}) : (%) : (;) : (g) arrangements for oy, a2, @3, a4 upon each tree
that result in case (V)(B). It follows that the contribution coming from the sum of
subcase (V)(A) and subcase (V)(B) is given by

TR S N N
»i2/2,01]1) (n)
(15) 52 2 2 MiGmmmrsma® ko )

ri,r2,r3=01i1, j1=11i2, jop=1
FI<r2<r3 iy#ji bh#j

Therefore, from (12), (13), (14) and (15), the lemma is shown.
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APPENDIX B: PROOF OF THEOREM 3.9

Again, due to similarity and escalating difficulty, we forgo the proof of the third
moment in favor of the fourth moment. We first prove a needed lemma.

LEMMA B.1. Given ¢y, ¥; € CP(RY), k=1,2,3, j =1,2,3,4, let ¢ =
P11 @ P2 Q@ Pz and ¥ = Y1 Q Yo ® V3 @ V4. For any t > 0, the following hold:

3 ' .
B(g. 1) = (036 u3)+ 3 [ dsirih 6. i)

i,j=1

i#]
(16) X
td “Zd (12.i)
+ Z 0 52 0 Sl( 1;(s1,sz,t)¢"u0)
ij=1
i#]
and
4 t W
1
E(y. u) = (Qfv. ud) + > /0 ds{rD , 1d)
ij=1
i#]
LS %2 (i2j2i1ji) 2
(17) + XY [dn [Canirl i v
i1, j1=11i2, jo=1
H#j1 Db#E]
4 3 t 53 52 o
(12,i2 j2,i1j1)
+ Z Z ./()dSS/O dsz'/(; dsl(rl;(sl,sz,s;,tl) lﬁ,,uo).
i1, j1=1iz, p=1
#j1 L#E]

PROOF. To begin, note that Lemma 3.5 implies (,u,(()"))Z = u(‘; for any £ € N,

and thus the first term of the right-hand sides of (7) and (8) converge, respectively,
to the first term of the right-hand sides of (16) and (17) as n — co. Since Q’; is
a strongly continuous contraction semigroup for k € N (Lemma 3.2), for any ¢ €

k k
C(R) which satisfies |||, = 1, || Q¥ lloo < 1,and sup,, [GEE=0W] <,
Thus, for any k € N, ||¢|lpr = 1 implies ||Q’,‘¢||bL < 1. From Lemma 3.6, the
remaining terms on the right-hand sides of (7) and (8) converge, respectively, to
the remaining terms of the right-hand sides of (16) and (17) as n — oo. It remains
to show that the left-hand sides of (7) and (8) converge, respectively, to the left-

hand sides of (16) and (17), but this follows immediately from Lemma 3.7 [

The proof of the main theorem can now be shown.
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PROOF OF THEOREM 3.9. Using the Markov property and Lemma 3.4, it fol-
lows that

E(W, Ml‘] Mtzﬂt3ﬂt4>

=B, (Y1) sy W) iy (3 @ Qg i3 )
=By, (Y1, (V2 ® OF (V3 ® Ory—3¥14))

13—
+ fo ds 11, (V1)

x 2 (Y2 ® Qs 1202 (W3 ® Qry—i ¥4))
=B, (Y1) 1z (m1 07,y 1 Quy—t; (V2 ® V3 @ Ya))

13
+ dS ]E:u“l‘l (Wl)

15}
X g (1 Qs 1, @12Q7, 711 Q1y—15 (Y2 ® Y3 @ Y1g))
=Ep} (T )

3;(a—t1,13—11,14—11)
3

? 13 (g, 00
+ Z § Mtl(ﬂl 2;(S—l‘1,t2—11,13—11,t4—11)w)

(0,12,0)
2:(tr—t1,5—11,13—1 ,;4_,1)1#)

3
+ | ds E,u;o’l (m

15}

3 15 52
2 (12,i4,0,0)
+ Z/ ds> ds E/’Lll(7[1Fl;(S]—t1,S2—t1Jz—l‘l,ta—tl,m—tl)w)

i,j=1 n n
i#]
3 f2 2 (12,0,12,0)
+ " ds2 " dslEutl(nlrl;(sl—tlJz—ll,S2—tla13—flyt4—ll)w)'

To make sense of the remainder of the proof, each of the above five terms will
now be considered separately.
From (17),

4 0,0
E'U“fl (7‘[1 F3;(t2—ll J13—11 ,14—1‘1)‘#)

4
_ 4/(0,0,0) 3 (1(/,0,0,0)
(18) = 110(Cait iz ¥) T Z/o ds 15 (T3, 5ty ot V)
ij=1

i#]
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4 3 tl 52
2 (r(i22.i1j1,0,0,0)
X% [ s v

i1, j1=1iz, p=1

i1#j1 L#p
4 3 1 53 )
(12,12 j2,i1 j1,0,0,0)
+ Z Z /0 ds3/(; dsz/(; dslMO(Fl;(Sl,Sz,SMl,12713714)1#)'
i1, j1=1iz, p=1
iW#j1 L#p

From (16),

3 I
3 (i7,0,0)
Z f ds E'utl (T[IFZ;(S—I],tz—tl,t3—l‘],l‘4—t|)w)

i, j=1"1
i#j

3 f 3

= E 3 (~(0,i4,0,0)

B /tl dsMO(F&(H,S,Q.&.M)‘#)
i,j=1

i#]

2 1 o
2 (1 (i22,0,i1j1,0,0)
+ Z Z /z dsZ/; ds MO(FZ;(SlJlsSLtSyM)w)
i1, ji=liz, jp=1""1
H#j1 #h

3 3 ;
2 1 §2 . ..
(12,3 j2,0,i1 j1,0,0)
+. Z Z /t ds3‘/(; dsz/o ds MO(FI;(S],32,t1,53,12,l3,t4)w)'
i1, ji=liz, p=1""
i1£j1 D#j

19)

Again from (16),

13
: 3 (0,12,0)
f dSEMtl(mFZ;(tzfn,S*tl,t3*f1,t4*t1)W)
. t3d 30(0.0.12,0)
- " SI‘LO( 3;([1,l2,s,t3,t4)w)
(20) 5
3 n ..
2(1~(7,0,0,12,0)
+ Z ‘/1‘2 dSz'/(‘) dS] ’uo(rz;(ﬂ,t1,t2,52,2‘3,l‘4)1/f)
i, j=1
i#]

3 h 52 (12,i],0,0,12,0)
+ Z/; ds3v/(; dSz/O dslMO(FI;(Sl,Sz,tl,lz,ss,ls,m) )
i,j=1""
i#j
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From Lemma 3.4,

3 1) \Y)
’ 2 (12,i4,0,0)
Z/ dsz/t dsl]E'LLII(nlFIZ(SI_fls52_tlst2_t1»t3_llsf4_tl)w)
1

n

i,j=1
i#j
e 2 2 1~(0,12,i,0,0)
2D = Z/t dsz/z dsl'U“O(FZ;(fl,Sl,S2,12J3J4)w)
i,j=1 1 1
i#]
. 53 d (12,0,12,i},0,0)
+ Z/[ ds3/[ ds2/0 dslMO(Fl;(51,t1,Sz,tz,53,t3,t4)w)
i,j=1 1 1
i#]
and
13 15}
2 (12,0,12,0)
/tz dsy " dslEﬂtl(nlFl?(Sl_flJZ_ZIs52_tl~t3_fl,f4_tl)w)
3 f2 2 /1(0,12,0,12,0)
(22) = tz ds> " dslMO(FZ:(N,S1,tz,S2,l‘3,l‘4)w)

1; (s1,11,52,12,53,

13 15 51
12,0,12,0,12,0
+ dS3/ dsy A dsi /,L()(F( )t3,t4)w)'
53 I3

Combining (18), (19), (20), (21) and (22), the desired formula follows. [

APPENDIX C: PROOF OF LEMMA 3.10
We begin with some needed corollaries (of Theorem 3.9) and lemmata.
COROLLARY C.1. For i,j=1,2,3,4, let ¢’ € CF¥R) and define ¢; €
CRR™) by
¢ =1 ® .
Thenif0<ti<th <t3<ta <T < 00,
E(é1, ) < C(M) M1l oo,
E{p2, tr i) < C(T) | P2l00s
B3, pr iy teey) < C(T) 193]l 0o
and
EAa, pey oty ez phty) < C(T) [ P4l o
PROOF. Since fdyqtk(x, y) =1 for any k € N and all x € R¥*?_ and since

o is a finite measure having compact support, this follows immediately from
Theorem 3.9. U



GSILTSSF 1511

COROLLARY C.2. Egquations (10) and (9) continue to hold for ¢ € S3xq and
W € S4xd-

PROOF. From Lemma 3.3 there exist {¢, = ZZ:1¢/1 ®'¢,% ® ¢,§:k e N}

and {Y, £ Y0¥ ® ¥ ® ¥ ® ¢tk € N} such that ¢, ¥, € CP(RY),
i=1,2,3,4,j=1,2,3,k,m €N, and lim,,—, 5 ¢, = ¢, lim,, oc ¥, = ¢, where
the convergence is uniform. For any n,m € N, from equation (9) and Corol-
lary C.1, it follows that

E(1Y¥n — ¥ml, Mt Mtzﬂt3//vt4> <CMV¥n—Ymlloo-

Thus (Y, ts te, e e, ) is Cauchy in the complete space L(P), and hence con-
vergent. Uniform convergence of ¥, implies

M (Y py ey s fy) = W By By s Hay) a.s.
Since the L' and a.s. limits must agree when they both exist,
Jme B, fhy py by Bag) = (s by by Pas g -

Considering now the right-hand sides of equations (9) and (10), by uniform con-
vergence, and since (g is finite with compact support, the desired convergence is
shown. [J

For ease in reading, we introduce the notation

=X ¢ ¢
23) By 20l ) Oi c () O, tem2) Q3 MmO
where x,,, S;,,, £, £(x) and ¢ are defined as in (5), with the convention that x,,_; =0

and £(m — 1) = 2.

PROOF OF LEMMA 3.10. Throughout this proof, the norm on L? will be de-
noted by || - ||,. From the moment equation (9) and the preceding corollary, it
follows that

13 153 ) 14
/0 dn A dti B{g, pny iy pig,) < C Y J(t, 12, 13),
k=1

where the definition of each Ji is implicit in equation (9).
To begin, note that from Dynkin (1965), Theorem 0.5, for n € N, x, y € R"*¢,
qr (x,y) < Cpj(x,y),

where C and ¢ are constants, and p” = [[/_, p., where p. is the Brownian transition
function on R¥. It thus follows that

=(0,0)
Sdi(n —S,tz—s,z3—s)(p(x)

(24) < C/da Di(t;—5) (X1, A1) Pt —s) (X2, a2)

X Di(t3—s5) (X3, A3) Pi(13—s) (X4, as)p(a)
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forall x e R**4 s €[0,1], a = (a1, az, az, as).
Using inequality (24), it follows that

~(0,0)
(2 4 (1. 10,13) P> Mo)

< [ uiax) [ dapuges.as) 1‘[ Puy (i, @) p(ar, az, a3, az)
i=1

< C/Mo(dxa)uo(dx4)/da3 day Png(x3,a3)Pu3(X4,a4)/a’a1¢(a1 —as)

X fda2¢(a2 —a4)/uo(dX1)Pm (Xl,al)/uo(dm)lmz(m,az)
<Cloli3,

and thus, since d < 3,

13
/O an | Can(=00 e ul) < IR

Let {i’, j'} ={1,2,3,4}\ {i, j},i’ < j’, then again from (24),

1
=(i,0,0) 3
Z / d L‘3 (s,t1,t2, t3)¢)’ H >

i,j=1
i#]

4 f
<c Y [Vas [udan [dvputa.y) [ dardardaydas po-o(v.a)
ij=1
i<j
X Pu(tjp—s) (Vs @) Puty (X2, Gir) Pusy 5 (X3, a )@ (a1 — az)¢(az — as)

and so, with a some applications of the Kolmogorv—Chapman equation to the
above expression,

n
~(ij,0,0 _
> f ds{EL s 0 13) = CDBIR +C [ dstry =)~
i,j=1
i#]

Since d < 3, it follows that

13 153 n — 0 0
Z / dtz/ n 0 ds “glj(s n )tz )P Ho) = CDPIT.
i,j=1

i#]
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This next case becomes quite a bit more complicated, so we explain with more
detail. Consider

L& 2 (um.ij.0,0) 2

% [Cdn [ ds(EEEO, e )

o~ = Jo 0

i,j=ln,m=1

i#j n#m
wherein the presence of both &, and ®;; greatly increase the number of cases. In
bounding, we again may assume, with the addition of a multiplicative constant to
the bound, that i < j. Note first that when m + n # 6 — i it will follow that either

,;,(nm,ij,0,0)
=2;(s ,52,11,12,13)('0()(1 s X2)

= C/dyptn(xl’y)/det(szfsl)(va)

X /dw1 dwy dws dwy p(i;—s,) (2, w;)

X pL(tjA3fS2)(Zv wj)pt(l‘i/fsl)(yv wi’)pllj/A3 (xz, wj’)(ﬂ(w)

or

= (nm,ij,0,0)
"‘2;(S1,527t1,f2,t3)(p(x1 ,X2)

5C/dyptsl(xl’y)/deL(sz—sl)(YaZ)

Xfdwldedw3dw4pL(t[—s2)(Z’ w;)
X pl(l‘j/\3—S2)(Z’ wj)Pt(tj/A3—s1)(y, wj’)Pzti/(XZ, U),‘/)(p(U)),

where again {i’, j'} = {1,2,3,4}\ {i, j}, with i’ < j’. In the case that m +n =
6 — i, we have the bound

=(nm,ij,0,0)
=25 (s1,82,11 ,t2,t3)(p(x1’ x2)

< C/dy Pusi (x1,y)/dzpm2(xz,z)

X /dw1 dws dwz dws pi(;—s,) (2, wi)
X Putjnz—s52) (2 W) Puctyr—sp) (Vs Wir) Puct s, 5—s1) (Vs W)@ (w).
It thus follows that

4 3
h 2 —(nm,i},0,0) 2
Z Z 0 452 0 dsl(a%(sl,52,t1,t2,t3)(p’ o) = C(A1+ Ax + A),

i,j=ln,m=1

i#j nsm
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where

4 3 n 52
m= Y% [Cds [ds [ o) [ dy pe ey

i g j'=1 nm=1

i) A
i<jil<j O7nTm#

X /dZ pt(sz—s1)()’a )
X /dwi dw; dwir put,—s) (¥, Wir) Put;—s,) (2, Wi)
X Pu(tjn3—s2) (25 wj)/dwj/¢(wl — w3)P (w2 — wy)

X /Mo(dxz)pnm(ma wjr),

4 3 n 52
m= Y % [Tds [ ds [ uo@n) [ dype ey

i,j,i',j/=1 n.m=l1

i A
i<jil<j OTnTmA

X /dZ pt(sz—s1)()’a 2)
x /dwi dwjdwj Py, 5—s1) (Vs W) Pu(t;—s2) (2> Wi)
X Putyamse) @) [ duwn p(wr = wa)(an = wy)

x / 1o(dx) pu, (62, wy)

and

4 3 f §
=Y Y fo ds /0 st [ odrmotdx)

i,j,i’,j’=1 n,m=l1

LA
., 6—n—m=i
i<ji'<j

X /dyptsl(xl, Y)/dZPLsZ()Q,Z)

X /dwl dwy dws dwy pl(tl.,_m(y, w;’)

X Putjipg—s1) (Vs W) Puti—s3) (2, Wi)
X Putjps—s2) (2 Wi (Wi, w2, w3, wa).

For the first of the above three terms, the process is as follows. Bound po(dx2)
by ||m|lco dx7, integrate Putjr,g (x7, w;.) with respect to dx,, then ¢ with respect
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to dw ;. In doing so, we may then integrate out one of the remaining w;, w; or
w;. In what remains, if (i, j) # (1, 2) there will be the term p,;—s,)(z, w.), or if
(i, j) = (1, 2), the term p,;—s,)(y, w3). In either case, bound the respective term
by C(t3 — s )~4/2 This allows for the integration of the second ¢.

For the second of the two above terms, bound pg(dx2) by ||m| o dx2, integrate
Dty (X2, wl’. ) with respect to dx3, then ¢ with respect to dw;-. In doing so, we may
then integrate out one of the remaining w;, w; or w; In what remains, if (i, j) €
{(1,2),(1,4), (2, 3)} there will be the term p,(;;—5,)(y, w;), otherwise there will
exist the term p,(;;—s,)(z, w.). In either case, bound the respective term by C (13 —
s )~4/2 This allows for the integration of the second ¢.

For the third and final term, if (i, j) ¢ {(1,2), (3,4)}, there will exist the
terms py(;—s,) (2, w;) and p,;—s,), which are bounded, respectively, by C(13 —
52)74/? and C(t3 — s1)~%2. When (i, j) = (1,2) we bound p,(;—s)(y, w3) and
Di(tr—s) (2, w2), respectively, by C (13 — sl)*d/ Zand C (tr — sz)*d/ 2, Finally, when
(i, j) = (3,4), bound the terms p,(;;—s,)(z, w3) and p,,—s,)(y, w2), respectively,
by C(t3 — $2)~4/2 and C (12 — s1)~/2. This allows for the desired integration of
¢ (w; — w3)d (w2 — wy).

Combining the above, and since d < 3, we arrive at the bound

! : 3 f2 d 51 —~(nm,ij,0,0) 2 2

S0 [T [Can [ [T ds(@SEI00, e i) < DI

i,j=lnm=1

i#j n#m

Considering the next case, note first the similarities in the respective correspond-
ing particle pictures of this and the previous case. This case can be seen as a mod-
ification of the previous case in which the two original particles were both born
from a common ancestor. Thus, arguing as before, we arrive at the bound

4 3 151 53 852 ..
—(12,nm,i],0,0
Z Z /0 dS3/0 dmfo dS1(n§;(ST,rf2fsj3,,l32,,3)%Mo)S C(By + B2 + B3),

i,j=lnm=1
i#j n#m
where for the B, we have

4 3 151 §3 2
B= > Y [Tdn [Cas [Tda [ uo@ [dy paceoy)

i,j,i’',j’=1 n,m=l1
i#L A T
i<jil<j OTnmmH

X /det(Sz—Sl)(y’Z)/dw pt(53—s2)(Z, w)

X /dU] dUz dU3dU4 pt(tj/A3—S1)(yv Uj/)PL(t[-/—sz)(Za U[/)

X Pu(ti—s3) (W, Vi) Pu(tjp3—s3) (W, V)

X ¢(v1 —v3)P(v2 — v4),
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4 3 I3 53 52
B= Y X [da [ de [Cds [ wo@n [aypeeo

i,j,i’,j’=1 n,m=lI
i EG T
i<jil<j OTNTmHF

X /dz pt(sz—sl)(yy Z)/dw pL(S3—52)(Za w)

X /dvldvzdm dvy pt(,i,_sl)(y, vi/)pl(tj/A3_s2)(z, vjr)

X Puti—s3) (W, Vi) Pu(tj n3—s3) (W, V)

X ¢ (v —v3)P(v2 — v4)

4 3 1 53 52
B3 = Z Z /O d53f0 dsz/O dﬂfﬂo(dx)/dypm(x,y)

i,j,i’,j'=1 n,m=l1

LA T
L s, 6—n—m=i
i<j,i'<j

X /dzldzzpt(sz—sl)(yvZl)pL(S3—S1)(yaZ2)

X /dvl dvy dv3 dva p(;—s3) (22, Vi) Pu(t; pn3—s3) (22, V)
X Pty —52) @15 Vi) Putt 1,5 -52) (21, V1)
X ¢(v1 —v3)P(v2 — v4).
Thus,
B + B> + B;

2 1 53
scn«zsnl/ ds3/ ds»
0 0

k)
X /0 dsi[(13 — $2) " (ty — 52) 7?2 4 (13 — 52) "V (13 — 53)79/?

+ (12 — 52) 7213 — 53) 7% 4 (13 — 52) "V (1 — 53) 7V,

where the above bounds are obtained similarly to the previous case. And so, since
d <3,

4 3 f t 1 3 5
~(12,nm,ij,0,0)
E E / dtz/ dt1f dS3/ dSQ/ dsl(al.(s3 $2.81,11.12 t3)¢, ,bL())
S~ ~ Jo 0 0 0 0 3(53,52,81,11,12,
i,j=ln,m=1

i#j n#Em
<c(Dllgl3.
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This takes care of four of the fourteen Ji, and we consider now the next three
integrals which are dependent upon the expression

,-00
0:45,0) o(x)

3 (11 —s1,50—51,02—51,13—51)

=< C/db pL(szfsl)(x?n b)

(25) X /dal daydazday py—s;) (X1, 1) Po(ta_j—s1) (X2, a7—i— )
X Putiz1—s52) (B, Ait 1) Pu(t3—s2) (b, aj11)
x ¢(ay —a3)p(az — aq)

forallx e R34, 0<s)<t;,1y <sy<trandi, j=1,2,3,i+# j. In the above 7/
refers to the particular arrangement of z1, z» given the pair (i, j). Applying (25)

now gives
3 %)
=(0,ij,0)
ds (u3 (t1,s,12, t3)§0 I‘LO)
i,j=1"1
i#]

ey [ s [ notdxmotass [ dy ptn. )

i,j=1
i<j

X /d27—i—j dzi+1Puy_; (X2, 27—i—j) Petisr—s) (Vs Zit1)
x [ dzjit o 020 [ dzi 6@ - 29— 20

X /uo(dm)pm (x1,21)

and, by integrating out terms and using known bounds,

3
" S3:(11.5.12.,13) P o) = i 3
i,j=l1
i#]

And so, since d < 3,

3 f2 ~(0,i/,0
Z/ dtzf dtlf ds(E5) 0, e ud) < el
14

i,j=1
i#]
Again from (25)

f (gm0.5:0
i,j=ln,m=1

i#j n#m
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where for the C; we have

3 1) 11
=3 [“dsa [“asi [ uotdn) [y pu ey [ dzpa-n22)
i,j=1""

i<j

X/dwldwi+ldwj+l Puti—sp) (¥, wi)
X Pu(ti1—52) (2 Wit 1) Put3—s2) (2, Wjt1)

X /dw7—i—j d (w1 — w3)d (w2 — wy)
X //'LO(dXZ)pL(l(7_i_j)/\3)(-x27w7—i—j)

153 n
sC||¢||1/ dSz/O dsy (13 — )2,
I

3 15 1
Co= Y [ “dsa [ dsi [ otdxn) [y pi ) [ dz piei (22
i,j=1""

i<j
X /dwz dws dwy pt(t(7—i—j)A3_S1)(y’ W7—i—j) Peti11—s2) (2, Wit1)
X Puty—s2) (2 Wjr1)P (w2 — w4)/dw1 ¢ (wy — w3)
X /Mo(dxz)pm (x2, w1)

153 n
<Clol / ds /O dsi[(t3 — 51) " + (13 — 52) 742
n
and
3 15 1
Ci=C Y [Tdsa [ Vdsi [ mo@xmo(dx)
i,j=1"1
i<j
X /dyptsl(xl’ y)/dZPLsz(xLZ)
X /dwl dwsz)S dw4 pt(l‘lfsl)()h wl)pt(l‘qf,',j)mg*sl)(yv w7—i—j)
X Putip1—52) (s Wit 1) Pu(tz—s2) (2, Wi+ 1) P (w1 — w3)p (w2 — wy)

5] 1
< C||¢||1/[ dSz/O dsi[(t3 — s1) V(13 — 52) 1 + (13 — 52) /%],
1
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Therefore,
Ci1+Cr+Cs
1) 1
< C||¢|I%/ dSsz dsi[(ts — s1) ™%+ (15— s1) 72 (13 — 52) /2
4]

+ (13 — )21,
Since d <3,

3 15} 15} n . 0.i7.0
3> [ [Can [P [T an(@ln00, e nd) < il

i,j=1nm=1 h 0
i#j n#m

After one final application of (25),

f2 —~(12,1m,0,i7.0
f dS3/ dSz/ dsi ug (slnTz tllJS3 12 A MO) <C(D1+ D> + D3),
i,j= lnm 174

i#j n#m

where for the Dj, we have

53 1
D= CZ/ dS3/ dSz/ dsy

i,j=1
i#]

X fMO(dx)fdyplsl(xvy)/deL(S2—51)(yaZ)/dwpl(S3—S2)(Zvw)

x [ dvn dvadvs dvs s G V0D Pusospamsp (0 vr-i-))

X Pty —s3) (W, Vit 1) Pu(z—s3) (W, Vj 1)@ (V1 — v3)P (v2 — v4)
5] n 52
< Clol} [ dsa [ dsa [ dsiles = 1)t 5307
3l
+ (2 —s1) "2t — s3) 7],
3 15 1 52
Dr=C Y [Tdsa [dsa [“dsi [ o) [ dypu ey
i, j=1"1
i#]j
X /dZ pt(sz—sl)(y, Z)/dw pL(S3—Sz)(Z7 w)

X /dvl dva dv3dvs purg_;_ jyaa—s2) (2 V1—i—j) Puity—s1) (¥, V1)

X Ptz —s3) (W Vit1) Pu(ty—s3) (W, Vi1 1)@ (V1 — v3)P (v2 — v4)
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1) 1 52
<Clgl? / dss /0 ds> /0 dsi[(t3 — 522 (13 — 53) 74/
1

+ (12 — 52) "% (13 — 53) 7]

and
3 15 1 2
p=cy [ ds3/0 dsz/O dsi [ o) [ dy pe . )
i,j=1"1
i#]j
X /dZ pL(sz—sl)(ysZ)/‘dw PL(S3—sl)(y, w)
X fdwldwzdw3 dW4 Pu(t;—53) (2 VO Puteig i jynz—s2) (25 V7—i—j)
X Putipr—s3) (W, Vit 1) Pu(ty—s3) (W, Vj+1)P (V1 — v3)P (v2 — v4)
2 (" n 52 y )
<Clglf /, ds; /0 ds) /0 dsi[(t3 — 52)~ (23 — 53)
1

+ (12 — 52) "2 (13 — 53) 7).
Thus,
D1+ Dy + D3

5 2 %) 1
5C||¢|I1Z/ ds3/ ds
k=171 0

X fo S dsi[(1 — 53713 — 50~ + (12 — 50791

Therefore, since d < 3,

3 3 13 1) %) 1 52
—~(12,nm,0,i},0)
Z Z / dl‘z/ dtl/ dS3/ dsZ/ dsl(‘:‘l'(ﬂ §2,11,83,12 t3)”u0>
0 0 H 0 0 PRt Rae

i,j=lnm=1
i#j n#m
<c(Dllgl3.

Thus seven of the fourteen J; are now shown to have the desired bound, we con-
tinue with three more of the Ji.

~(0.0,12)
S35 (11 —s1,12—51,52—51 ,t3—S1)¢(x)

= C/db pL(sz—sl)(x& b)
(26)

X /daldagda3 dag pi,—sy) (X1, a1) Pi(ty—s;) (X2, a2)

X Di(t3—s2) (b, A3) Pi(15—50) (D, as)p(ay, az, a3, aq)



GSILTSSF 1521

forall x e R3*4 0 <s) <t;,12 <52 <1t3. Now, from inequality (26),

3
~(0,0,12)
A ds <“3 (t1.12,5 ,3)90,M0)

13
<C t ds/,uo(dm)/dypzs(xa)’)
2
X /d23d24 pL(IS*S)(y’Z3)pl(f3*5)(y’Z4)/dzl¢(zl —23)

X / dz2 (22— 24) f wo(dx1) pu, (x1. 21) f 10(dx2) puy (X2, 22)

<C(Dlgl3.
It thus follows that

13 1)
~(0,0,12
/ dt> / an | TS8O0 6 k) < ClR.

Again from (26), we have that

=(i7.0.0,12)
/ sz [ dsi( @00 e 48) = (B + B,
i,j=1
i#]

where for £ and E, we have
2 13 3]
E| = Z/ dsz/o dS1/M0(dX1)/dy Dusy (xl,y)/dzpl(sz_sl)(y,z)
k=171

X /du)3_k dWs—k Pu(t3_g—s1) (Vs W31) Pu(t3—s) (2, W5—k)
X /dwk+2 Pu(ts—s52) (2 Wiet2) / dwi ¢ (w1 — w3)p (w2 — wa4)
X /Mo(dxz)puk (x2, wg)

n

<C||¢||1/ dsa [ " dsi(ty =57
and

13 13
E; :/ dsy | dsi(t3 —s2) >
t 0
x / po(dxy)po(dxa) / dwy dws §(wi — w3)

X /dyptsl(-xlay)pt(tl—sl)(yvwl)/deLSQ(XQ’ Z)Pz(t3—sz)(sz3)
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X /dw4 Puts—s2)(Zs w4)/dw2¢(w2 — wy)
2 [ g —d/2
< CloIE [ dsa [ dsias =)
2

Since d < 3, it follows that

13 1)
—~(ij,0,0,12
Z f dny [ " dn /t dsa [ " (BS00D o ) < Cmlgl?

With one final application of (26), we have

51 52
~(12,i},0,0,12)
Zlft dS3/0 dszfo ds1(81; (¢ oty s @ H0) < C(F1 + Fa + F3),
ij

i#]j

where, for F; and F», we have
13 1 52 a2
F = f ds /0 ds /0 dsi (12 — 1) ] wo(dx) f dz pusy (3, 2)
n
x / AW Puisssy) (2, W) [ V1 dV3 Pus —s9) (25 V1) Putts—sy (s v3) (01 — v3)
x [ dv sy w,v0) [ dva @z = v
13 1 52 an
EC”‘““/, ds3/0 dsz/o dsi(t —s1)~Y /m(dx)/dzpwz(x,z)
2

X /dvldv3 Pu(t1—s2) (2, V1) Pu(t3—-50) (2, V3)@ (V] — v3)

and
13 11 52 a2
F2=/ dS3f0 dsz/0 dsi(ty — s2)~ Y /uo(dx)/dyptsl(x,y)
9]
X /dw Pu(ss—s)) (V5 w)/dvl dvs Pty —s) (V5 V1) Doz —s3) (W, v3)P (V1 — v3)
x [ dvs pus . v0) [ dv2 g = o)
13 n 52 —d)n
< C||¢||1ft dsa/O dSz/O dsi(tz = 527" [ o(@x) [ dy pu(x.»)
2

X ]dv1 dv3 Pi(t;—s2) (Vs V1) Puitz—s1) (Y, v3)@ (V1 — v3).
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Therefore, since d < 3,

3 13 15 13 1 )
’ ° ,-‘(12 i7,0,0,12)
Z f dtz/ dtl/ dS3/ dS2/ ds1 B (51250, 01,12,53, n)(p /,L0>
ij=1 0 0 1) 0 0

< ()¢l

As a total count of the original fourteen J, the desired bound has now been
shown for ten. We continue now with

r-\(O 12,ij,0)
2 (1 —s1,50—51,53—51,1b—51,13— Sl)(p(x)

< C/dbl dby pi(sy—sy) (X2, D1) Pu(s3—s52) (b1, b2)
(27)
X fdaldazda3da4pt(z,—sl)(x1,al)pt(zw,i,jm—sz)(bl,a7—i—j)

X Ptz —s3) (B2, Ait1) Pu(tz—s3) (b2, aj1)p(a)

for any x € ]R2Xd, 0<s1<t1<sm<s3<t,and i, j=1,2,3,i < j. Applying
inequality (27) gives

,_,(0 12,i5,0)
Z/ dsz/ ds((0. (4, 52.10.13) P> )

l_]l

5 2 1) )
<ClgIPY / ds> / dsy / po(dxa) / dy Pis, (52, 7)
k=1°"1 1

X /dwz dwy pi(ty—s) (Y, W2) Pr(i3—s1) (V> wa)p (w2 — wy)

52

1§)
= C”¢”%/t dsy dsi[(tz3 — sl)_d/z + (13 — S2)—d/2].
1

1

Therefore, since d < 3, we have

3 3 ) 1) 52
~(0,12,ij,0
S [ [Can [ [Cas(@0R00, e i) = clolt
i,j=1 1 1

With a second and final application of (27), it follows that

3 15 53 151
- ~(12,0,12,ij,0
> [ Cds [ dszfo ds (201200 6 o) < C(Gy+ Ga+ G,
- 151
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where for G, G, and G3 we have

15 53 51 —d)2
Gi=[ dss [ ds, fo dsi(ty = 527" [ o(ax) [ dy ps . 9)
1 1
X /dvz/dzpmsz—sl)(y,z)/dwpm—sz)(z, W) Pi(t3—s3) (W, V3)
X /dvl Pt —s) (Y, v1)@ (V1 — vs)/dvsz(S3—t1)(w,vz)
X /dv4¢>(v2 —v4)
15 53 31 a2
< Clell f ds; f sz [ dsi(ty =527 [ ot [ dy py )
1 1
X /dvl pt(t1—sl)(yvvl)fdv3 DPits—s) (¥, v3)@ (V1 — v3),
15 53 151 —dpn
Ga = / ds3 f ds fo dsi(ty =537 [ o) [ dy piy . )
1 1
X /dvlpL(t1—s1)(y»Ul)/dU3¢(vl —v3)
X /deL(sz—Sl)(y’ Z)Pt(t3—s2)(Z, 1)3)
X /dw Di(s3—s2) (2, w)/dvz Pi(ta—s3) (W, vz)/dv4¢(v2 —v4)
15 53 51 —d)2
< Clll f ds3 / ds» fo dsi(ty =53~ [ o) [ dy puy.v)
1 1

X /dvl pt(t1—s1)(yvvl)fdv3 Di(tz—sp) (¥, v3)P (V1 — v3)

and

%) 53 n

Gs= / ds3 f dsa [ " dsi(ta =502 [ o) [ dy pus . 9)
X /dvsfdsz(S2—sl)(y,Z)/dw Pi(s3—52) (25 W) Pu(13—s3) (W, V3)
x [ dvn sy 0 ong @1 = v) [ dva pussy @ v)
X /dv4¢(v2 — V4)

<ol [“ass sy [ dsias — s
=< vf, dssf ds | s1(13 — s1)
1

x ((t3 — $2) 72 4+ (13 — 53)79/?).
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Thus

G1+G2+ G2

2 1) S3
<ClgI} [ “dss [ ds:
51 51

|
8 /0 dsi(t3 — s1) " ((13 — s2) 7% + (13 — s3)791).

And so, since d < 3,

n o (12,0,12,i),0
Z/ dQ/ dt1/ dS3/ ds | = dsy (Bl AT0 ko) < (DI}

It thus remains to show the desired bound on two of the fourteen original Ji. As
in the previous steps, the bounds will result from the following simpler bound:

r—-.(O 12,0,12) ( )
S2: (11 —s1,50—s1,00—s1,53—s1,13—s1) P X

<C f dby Pusy—sp) (x2. b1) / db puss—sn (b1, b2)
(28)

X /da1 daydazdag pis)—s)) (X1, Q1) Pu(y—s55) (D1, A2) Pi(13—53) (b2, a3)
X pL(l:;—s:;)(bZa a4)§0(a)

for any x € R2xd (< s1 <t <82 <tr <s3 <t3. Using inequality (28), it follows
that

13 5]
3 ~(0,12,0,12)
/t; dsy ; dsi (uz ((t1,81,12,50,13) P ’U“O>

13 1%
< Cllgl; / ds / ds) / Ho(dx)
2 1

X /dy ptsl(xz,y)/dwz Pilta—s)) (¥, w2)

X /dw4 Puts—s1) (Vs wa)P (w2 — wyg)

2 13 15 an
< C||¢>||1/ dsy [ dsi(s — 1)~V
15}

1

And so, since d < 3,

13 15
~(0,12,0,12
[ [ [ [P anl@S0 R, e ) < caelk
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Finally, once again by (28),
3 n f
=(12,0,12,0,12)
/tz ds3/;l dsy A ds1<“1;(S1,t1,SQ,t2,53,z3)‘pvMO)

13 15 1
<CUIR [ dss [ dss [ dsite = 507053 = 5272
1) 11 0
It thus follows that
13 153 3 15} n
~(12,0,12,0,12
[ [Can [T [Cas [T s34 0 w0 < DI
2 1

Therefore, from the bounds established above for each Ji, k =1, ..., 14, it follows
that

13 1%
/0 iy [ dn Bl o) < COIBIE,. 0

APPENDIX D: PROOF OF THEOREM 4.1

From Doob’s maximal inequality for martingales and Theorem 2.2 we have that
for¢p € CP(RY),0<T < o0,

B sup @) = 2000)” + 8621 )+ 25( [ ds MS(L¢)>2-

0<t<T

For the second term, from Lemma 3.4 and Hoélder’s inequality,

T T
EZr@)P = [ dsEn @)+ [ dsEidag)
0 0
T 2 T 2 2
— / ds 110(0sd%) + f ds 13(02A¢)
0 0
T S1
+ /0 dsy fo ds> 110(Qs, @102, A)
T T
< ||m||oo/ ds 1062, + ||m||§of ds | Q2 Adl
0 0

T S1
Hlmloe [ dst [ ds2 @120, 2911

d
<CDBl72+CT) Y 19:ll.1119;¢ll .1

i,j=1

d
+CT) Y 13dl210;01 12,

i,j=1
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where in the above {S; : # > 0} is the Brownian transition semigroup. With regards
to the third term above,

E( [ "ds us<L¢>))2

</Tds /Tds (Epts, (L) Epus, (Lp)H)'/2
= 1 0 2 (s s,

<T? sup (,u(z)(Q?(Lqﬁ ® L)) + /OS dr Mo(qu>12Qf_r(L¢ ® L¢)))

0<s<T

< T2<C||L¢ ® Lol + sup OS dr/dy(St(s_r)qu)(y)z)

0<s<T
d
<C(T) Y 0 0;@llpil19p0g0llpt + 19; 00l 12110y Ogpll 12).
i,j,p.q=1

Therefore,

B sup (@)’

0<t<T

d
(29) <CMpl2+ D UGl 111l + 101,210,611 2)

i,j=1

d
+ Y 190l L1118p 0g@ll 1 + 110 3jdll 2119 By Bl ).
6,j.p.q=1

If ¢ € S4, from Rudin (1973), Theorem 7.10, there exists a Cauchy sequence
{pn} CC¥ (R?) converging to ¢ in Sy. Thus, from (29), Chebyshev’s inequality
and a subsequence argument from the Borel-Cantelli lemma [cf. Theorem 4.2.3
of Chung (1974)], there is a subsequence {¢,,} such that u,(¢,,) converges uni-
formly in ¢ € [0, T] to us(¢p) with probability one. Therefore, ,(¢) is an a.s.
continuous semimartingale for S,.

APPENDIX E: PROOF OF LEMMA 4.2

Fix T > 0,andset ¢ € C¥ (R?), then from Itd’s lemma [cf. Ikeda and Watanabe
(1981)],

T T T t
/dz<w®¢>,mur>=/ dt(1ﬁ®¢>,uzuz)+/ dzf ds( ® Lep. justs)
0 0 0 0

+/0sz,(¢) /Otdsw,/m-
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LEMMA E.1.  Forany ¢,y € C¥(RY),
T t T t
| 4z [ asun=[* [ zaran [ aspeomm.

PROOF. Let0Q <t <T. It follows from (3) and Corollary C.1 that

IE(/OIdZs(Qb) /Osdvu,xw)z

=E/Otd(Z@).)s(/osdev(W))z

_ /0 ds /O Cdvy /0 A0 Epts () a9ty (F)

t S S
2
+ /0 ds /0 dv, fo dvs Eptg (AD) tho, () oy (V)

< C(DYUlZNY I + 1AGIZ IV 115)-

By assumption on A and since ¢, Y € C,"{O(]Rd), [Adlloo < 00 and|| AV |0 < 00,
which, since || || 0o, [|@]lcc < 00, implies by the definition of the stochastic integral
[cf. Karatzas and Shreve (2000), Chapter 3] that

t Ky
/ dZ,($) / dv iy () € LA(P).
0 0

In addition, it is clear from Lemma C.1 that f6 dvpu,(¥) e L?(P), and thus, again
from the definition of the stochastic integral, [ dv j, (1) can be approximated in
L%(P) by simple functions of the form

n
DY eal,m (@)1 o0 o (),
i Ai i i i+1

where |J; AE") = Q, Al(n) N A;”) =g it i #j, Ui(fi(n),t,-(i)l] = [0, 00), and

(tl.(”), ti(jlr)l] N (t(”), t,ii)l] = @ if i # k. It follows that an L? approximation to

JodZs(@) [y dv o () is given by
t n
fo dZs($) Z ; cail jo (@)1 o (s)
i A

=33 el @10t (Zyy, (9) — Z1,(@)).
i A !
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Clearly f(s,p(x)) =¢(x) fos dv py () is also in L2(P), and so there exist simple
functions of the form

n

Z D ca Ly (@)1 (1)) ()¢ (x),

i A

converging to f(s,¢(x)) in L2(P). From Walsh’s construction of the stochastic
integral with respect to a martingale measure [Walsh (1986)], an L? approximation
to fé [ Z(ds, dx)¢(x) [y dv puy(¥) is then given by

Y3 [eal o @1en@$ oz, ~ 2@
i A !

n
=YY cal @100 (Zi,, (9) — Z ().
i A J
Since any two L? limits of a sequence must agree, it follows that
T t T t
[ az) [ asun= [ [ za@ean [ dseoumm. o
0 0 0 JR4 0

Immediately, we arrive at the corollary:

COROLLARY E.2.

T t T T
f di / ds 115 (D) (L) = f dt e (Y)ur () — / dt ()it ()
(30) 0 0 0 0

T t
[ [z an [ dseenw)
0 JRd 0
forany yr, ¢ € CIO(O(Rd).
We can now prove the desired lemma.
PROOF. Assume that W € Sy4, then from Lemma 3.3 we can choose {V,,; n €

N} such that W, (x,y) = > 7_; (Yk @ ¢)(x, y), for some {yy:k € N}, {py 1k €
N}cCy (R?), and W, converges to W in Sg as n — oo. It is clear from (30) that

T t T T
/Odrfo ds<L2wn,usm>=f0 dl(‘I‘n,mur)—fo (W, poiie)

(31) T t
_/O /RdZ(dt,dy)/o ds (W, (-, y), is)-
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From Corollary C.1,

{/ dt(\¥ m,uzw)}z

=/O ‘”/o ds E((W — W) ® (W — W), pee e i 7

<C(D)||¥y — Wnll%

and

{f dt (W, —xpm,u,u,>}2

since W, converges in Sy to W, lim,_, o ||V, — V||~ and both of the above two
terms are L? convergent.

For any t,s > 0, since u. € CMF(Rd)[O, o0), and ¥, — ¥ uniformly, (¥,,
wsits) — (W, wspts) a.s. Since the L? limit must agree with the a.s. limit,
L2 = 1imy s o0 (Wi, pspts) = (W, pupts). Thus, L2 — limy o0 fo dt (W, pupir) =

Jo dt(¥, pepr), and L7 —limy oo fo diWn, o) = fo di (W, pepr).
Consider next the stochastic integral term and the term involving the genera-
tor L. From Lemma C.1 it follows that

T t 2
E{ /0 d fo ds(LaW, — szm,usm}

< C(D)||L2(¥, — W) |15

d
<C(T) D 19202,(Wa — W) llooll02,02, (W — W) oo
i,j,p.q=1

E{/OT /RdZ(dr,dwfotds(\vn(-,y) —wm(-,y>,us>}2

= C(Hi + Hy),

and

where H| and H, satisfy

T t t
Hl:/o dt/o dsl/o dsy B((W), — W) (x — 2) (W — W) (v — 2),

sy (dx) sy (dy) s (dz))
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T t K
< c/o dt/o dszfo zdle((\Ifn — W) (x —2) - (W — W) (y — 2),

sy (dx) sy (dy) s (dz))

and

H = Z/ dzf dsz/ s E (0 (W — W) @ 0 (W — W), p, M)
i,j=1

<c Z/ dr/ sy [ ds B0y = W) (0 = W) s o)

i,j=1
Thus,
Hy + Hy < C(T) | W, — W |12

+C(T) D 1102, (Wi = W) oo 192, (Wi — W) ll o
ij=1
Lemma 3.3 implies W, converges in the Schwartz space S>4, and thus {9, W, :n €
N} and {0y, azleJn :n €N}, forall i,j =1,2,...,d, are uniformly Cauchy se-
quences.

For any ¢, s > 0, since u. € CMF(Rd)[O, 00), and D*W¥,, — D*W uniformly for
any multiindex o, (D*W,, st — (DW, pugpi;) a.s. Since the L? limit must
agree with the a.s. limit, L2 —1im,,_ oo (D*W,,, ftspts) = (DW, pgp1;), and so L? —
limy— o0 fy dt f§ds(LoW, pspne) = [ dt [§ds(LoW, pspas).

Fmally, {fo [ Z(dt,dy) gds (W, —W,,)(x, y), s(dx))} is a Cauchy sequence
in L%. Now, for each yeR* andt €[0,T], (¥,(-, y), us) is Cauchy in L2, and
so there exists an a.s convergent subsequence (Wy, (-, y), us). Since w, is almost
surely finite and ¥,, — W uniformly, (W, (-, ¥), ) = (Y (-, y), is) a.s. as k —
oo. Furthermore, both (¥, (-, y), us) and (W (-, y), u;) are uniformly continuous in
y€E R< and 7 € [0, T], and so

T t
tim [* [z dy [ st o, m)
R4 0

k—o0 JO

:/()T/Rd Z(d”dY)/OtdSN’(-,y),Ms) as.

Since the L? limit must agree with the a.s. limit,

T t
L2~ lim / Z(dt. dy) / ds (U (-, ), its)
0 Rd 0

n—oo

:/OT /RdZ(dt,dy)/otdsW(-,y),Ms>- O
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APPENDIX F: PROOF OF THEOREM 4.3

Let {G.} C C®(R?) be any sequence such that G, and 9; G, converge, respec-
tively, in L' to G** and 9;G**, and for £1,67 > 0, x € R4, define

¢81,82(x) = Gal (x) — Gé‘z(x)~

Then for the two nonstochastic integral terms, it is clear that

T t 2
B [ dr [ dst@epenmon)]|
0 0
T t 2
fc/(; dlE[/o ds<¢81,sz’,uvsluvt>:|

(32) T t t
—C /O dt /0 dsi /O A5y B, 0y ® ey ea s M sy o)
T 13 t
SCA dt3/(; dtz : dtl E(‘ﬂsl,azv :u'l‘11u/t2/~Lt3/1Ll3>
and
T 2
}E|:‘/(; dt<¢8],82’ ,bL;,bLT>:|
T T
(33) - /0 dny /0 A0 e, oy Jiry T g T

T t
< C/() dl‘z/(; dnh ]E(ﬂl)gl,gzy ﬂtﬁ’“zﬂTMT):

where g, ¢, (X1, X2, X3, X4) = Pe, o, (X1 — X3)Pg, 6, (X2 — X4).
For the stochastic integral term, we have

gl [ [ 2y [ dstgut —mmf
= [ e[ [/ dspesntc - )m(»} )
(34) [ arl A [ st =m0
sc [ an ["an ["an [E«p ottty

d
+ Z E(¢g[{gz’ /thlllLtzl'Lt3//Lt3>:|,
p.q=1
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where
A
QP (X1, X2, X3, X4) = Ope; ey (X1 — X3) By Pey e, (X2 — Xa),
foreach p,g=1,2,...,d, and (x1, x2, x3, x4) € R¥*4 and

A A
Pep,e0 (X1, X2, X3) = Qg 6, (X1, X2, X3, X3),

for each (x1, x2, x3) € R3*4_ Thus, from (32), (33), (34) and Lemma 3.10, it fol-
lows that

T t 2
E[./o 1 /0 ds<¢el,gz,usm>] < CT) e, 032,

T 2
E[ /O d;<¢el,€2,mm>] < C(D) ey

and

T t 2

B [ [, zrdy) [ dstgu -]
0 JRrd 0
d
2
S C(D)@ey e lIT + C(T) Z 10pPey.e5 111105 Pey e ll1-
p.q=1

Since G, and 9; G, converge, respectively, to G " and 3;G**inL',i=1,...,d,

we have that lim81,82—>0 ”(bsl,sz 1 =0and lim81,82—>0 ||ai¢81,ez 1 =0.
Since the choice of the {G.} is arbitrary, it may be assumed that G, = Gé’” for
each ¢ > 0, and the result follows.

Acknowledgment. Thank you to my advisor Hao Wang, without whom this
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REFERENCES

ADLER, R. J. and LEWIN, M. (1991). An evolution equation for the intersection local times of super-
processes. In Stochastic Analysis: Proceeding of the Durahm Symposium on Stochastic Analysis.
Cambridge Univ. Press, Cambridge. MR1166405

ADLER, R. J. and LEWIN, M. (1992). Local time and Tanaka formulae for super Brownian motion
and super stable processes. Stochastic Process. Appl. 41 45-67. MR1162718

BILLINGSLEY, P. (1995). Probability and Measure. Wiley, New York. MR1324786

CHUNG, K. L. (1974). A Course In Probability Theory. Academic Press, New York.

DAWSON, D. A. (1977). The critical measure diffusion process. Z. Wahrsch. Verw. Gebiete 40 125—
145. MR0478374

DAWSON, D. A. (1993). Measure-valued Markov processes. In Ecole d’Eté de Probabilités de Saint-
Flour XXI—1991. Lecture Notes in Math. 1541. Springer, Berlin. MR1242575

DAWSON, D. A., L1, Z. and WANG, H. (2001). Superprocesses with dependent spatial motion and
general branching densities. Electron. J. Probab. 6 1-33. MR1873302

DYNKIN, E. B. (1965). Markov Processes, Vols I, Il. Academic Press, New York. MR193671


http://www.ams.org/mathscinet-getitem?mr=1166405
http://www.ams.org/mathscinet-getitem?mr=1162718
http://www.ams.org/mathscinet-getitem?mr=1324786
http://www.ams.org/mathscinet-getitem?mr=0478374
http://www.ams.org/mathscinet-getitem?mr=1242575
http://www.ams.org/mathscinet-getitem?mr=1873302
http://www.ams.org/mathscinet-getitem?mr=193671

1534 A. HEUSER

DYNKIN, E. B. (1988). Representation for functionals of superprocesses by multiple stochastic inte-
grals, with application to self-intersection local times. Astérisque 157-158 147-171. MR0976217

ETHIER, S. N. and KuUrTZ, T. G. (1986). Markov Processes, Characterization and Convergence.
Wiley, New York. MR0838085

HE, H. (2009). Discontinuous superprocesses with dependent spatial motion. Stochastic Process.
Appl. 119 130-166. MR2485022

HORMANDER, L. (1985). The Analysis of Linear Partial Differential Operators, Vol. I1l. Springer,
Berlin. MR0781536

IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.
North-Holland, Amsterdam. MR0637061

KARATZAS, 1. and SHREVE, S. E. (2000). Brownian Motion and Stochastic Calculus. Springer,
New York. MR0917065

LIEB, E. H. and Loss, M. (2001). Analysis, 2nd ed. Graduate Studies in Mathematics 14. Amer.
Math. Soc., Providence, RI. MR1817225

MYTNIK, L. and VILLA, J. (2007). Self-intersection local time of («, d, B)-superprocesses. Ann.
Inst. H. Poincaré Probab. Stat. 43 481-507. MR2329513

REN, Y., SONG, R. and WANG, H. (2009). A class of stochastic partial differential equations for
interacting superprocesses on a bounded domain. Osaka J. Math. 46 373—401. MR2549592

ROSEN, J. (1992). Renormalization and limit theorems for self-intersections of superprocesses. Ann.
Probab. 20 1341-1368. MR1175265

RUDIN, W. (1973). Functional Analysis. McGraw-Hill, New York. MR0365062

RUDIN, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, New York. MR0385023

RUDIN, W. (1987). Real and Complex Analysis. McGraw-Hill, New York. MR0924157

SKOULAKIS, G. and ADLER, R. J. (2001). Superprocesses over a stochastic flow. Ann. Appl.
Probab. 11 488-543. MR 1843056

WALSH, J. (1986). An introduction to stochastic partial differential equations. In Ecole d’été de
probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265-437. Springer, Berlin.
MRO0876085

WANG, H. (1998). A class of measure valued branching diffusions in a random medium. Stoch. Anal.
Appl. 16 753-768. MR1632574

WATANABE, S. (1968). A limit theorem of branching processes and continuous state branching
processes. J. Math. Kyoto Univ. 8 141-167. MR0237008

EPIDEMIOLOGY AND BIOSTATISTICS

NATIONAL INSTITUTES OF HEALTH

MARK O. HATFIELD CLINICAL RESEARCH CENTER
REHABILITATION MEDICINE DEPARTMENT
BETHESDA, MARYLAND

USA

E-MAIL: heuseram @cc.nih.gov


http://www.ams.org/mathscinet-getitem?mr=0976217
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=2485022
http://www.ams.org/mathscinet-getitem?mr=0781536
http://www.ams.org/mathscinet-getitem?mr=0637061
http://www.ams.org/mathscinet-getitem?mr=0917065
http://www.ams.org/mathscinet-getitem?mr=1817225
http://www.ams.org/mathscinet-getitem?mr=2329513
http://www.ams.org/mathscinet-getitem?mr=2549592
http://www.ams.org/mathscinet-getitem?mr=1175265
http://www.ams.org/mathscinet-getitem?mr=0365062
http://www.ams.org/mathscinet-getitem?mr=0385023
http://www.ams.org/mathscinet-getitem?mr=0924157
http://www.ams.org/mathscinet-getitem?mr=1843056
http://www.ams.org/mathscinet-getitem?mr=0876085
http://www.ams.org/mathscinet-getitem?mr=1632574
http://www.ams.org/mathscinet-getitem?mr=0237008
mailto:heuseram@cc.nih.gov

	Introduction
	Preliminary definitions
	Some needed lemmata
	Existence of generalized self-intersection local time
	An Ito formula
	Existence

	Appendix A: Proof of Lemma 3.8
	Appendix B: Proof of Theorem 3.9
	Appendix C: Proof of Lemma 3.10
	Appendix D: Proof of Theorem 4.1
	Appendix E: Proof of Lemma 4.2
	Appendix F: Proof of Theorem 4.3
	Acknowledgment
	References
	Author's Addresses

