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COVER LEVELS AND RANDOM INTERLACEMENTS1

BY DAVID BELIUS

ETH Zürich

This note investigates cover levels of finite sets in the random interlace-
ments model introduced in [Ann. of Math. (2) 171 (2010) 2039–2087], that is,
the least level such that the set is completely contained in the random inter-
lacement at that level. It proves that as the cardinality of a set goes to infinity,
the rescaled and recentered cover level tends in distribution to the Gumbel
distribution with cumulative distribution function exp(− exp(−z)).

0. Introduction. The random interlacements model was introduced in [18]. It
helps to understand the picture left by a simple random walk in the discrete torus
(Z/NZ)d, d ≥ 3, or the discrete cylinder (Z/NZ)d−1 × Z, d ≥ 3, when the walk
is run up to times of a certain scale. The random interlacements are an increasing
family of random sets I u ⊂ Z

d , indexed by a parameter u ≥ 0, and for each u the
set I u is, intuitively speaking, the trace the paths whose label is at most u from a
Poisson cloud of labeled doubly infinite paths in Z

d modulo time-shift. By analogy
with the concept of random walk cover times this note introduces the cover level
of a set by random interlacements and proves a fine asymptotic limit result for this
quantity. Since random interlacements model random walk in the discrete torus
and cylinder on certain suitable time scales, our result should eventually lead to a
better understanding of the distributional limits of cover times in these graphs.

We now briefly recall how I u is constructed. We denote by W the space of dou-
bly infinite nearest neighbor paths in Z

d that spend finite time in bounded subsets
of Z

d . We also introduce the equivalence relation ∼ on W by letting w ∼ v if w

is a time-shift of v, that is, if there exists an N ∈ Z such that w(n) = v(N + n)

for all n ∈ Z. The space W� of doubly infinite paths modulo time-shift is defined
by W� = W/ ∼. The “Poisson cloud” mentioned above is then the interlacement
Poisson point process, that is, a Poisson point process ω = ∑

i δ(w�
i ,ui) on the space

W� × [0,∞) with intensity measure given by the product measure of a certain
σ -finite measure ν on W� and Lebesgue measure. If K ⊂ Z

d is finite, the total
mass assigned by ν to the set of trajectories modulo time-shift that enter K is the
capacity of K [see (1.5)]. If one normalizes the measure ν on this set and then
considers for each trajectory modulo time-shift the representative from W which
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enters K for the first time at time 0, then ν corresponds to picking a position at
time 0 distributed according to the normalized equilibrium distribution [see (1.4)],
and conditionally on the position at time 0 the forward and backward trajectories
are, respectively, distributed as simple random walk and simple random walk con-
ditioned never to reenter K . We refer to Section 1 of [18] for details. We denote
the law governing ω by P. The random interlacement I u is then defined as

I u = ⋃
i : ui≤u

range(w�
i ), u ≥ 0, where ω = ∑

i

δ(w�
i ,ui),(0.1)

and range(w�) denotes the set of all vertices of Z
d visited by the path w� ∈ W�.

The measure ν is constructed so that, intuitively speaking, for a value u related
to the time up to which the random walk in the torus or cylinder is run, the trace
of the random walk “looks like” I u [16, 22]. The law of the indicator function of
I u on {0,1}Z

d
has a simple characterization (see [18], (2.16)): it is the unique law

with the property that

P(A ∩ I u = ∅) = exp
(−u · cap(A)

)
for all finite A ⊂ Z

d,(0.2)

where cap(A) denotes the capacity of A [see (1.5) for the definition].
The sets I u are naturally increasing in u. Taking inspiration from the concept of

cover time of a finite graph one may consider the cover level of a finite set A ⊂ Z
d ,

defined as the least level u such that A is completely contained in I u,

M(A) = inf{u ≥ 0 :A ⊂ I u} = max
x∈A

Ux,(0.3)

where Ux denotes the cover time of the vertex x,

Ux = inf{u ≥ 0 :x ∈ I u}, x ∈ Z
d .(0.4)

The main result of this note is the following theorem.

THEOREM 0.1 (Rescaled and recentered cover levels have a distribution close
to Gumbel). For any finite nonempty A ⊂ Z

d we have

sup
z∈R

∣∣∣∣P
(

M(A)

g(0)
− log|A| ≤ z

)
− exp(−e−z)

∣∣∣∣ ≤ c|A|−c1,(0.5)

where c1 > 0 is the constant given in (2.5) and g(·) is the Z
d Green’s function [see

(1.1)]. In particular, M(A)
g(0)

− log|A| tends in distribution to the Gumbel distribution,
as |A| tends to infinity.

We will now give some comments on the scope of the above theorem. If
G1,G2, . . . denotes a sequence of finite graphs whose cardinality tends to infin-
ity and CN denotes their cover times (i.e., the first time simple random walk has
visited every vertex of the graph) it is sometimes possible (see, e.g., [4, 8]) to
show that CN

c|GN | − log|GN | tends in law to the Gumbel distribution as N → ∞.
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Theorem 0.1 should be seen as a result of this flavor. There are, however, simple
families of graphs for which one can show that CN

c|GN | log|GN | → 1 in probability
but for which the finer distributional limit result remains out of reach to this day.
For example, when GN = (Z/NZ)d, d ≥ 3, is the discrete torus, it is known that

CN

g(0)|GN | log|GN | → 1 in probability but only conjectured that CN

g(0)|GN | − log|GN |
tends to the Gumbel distribution (see [1], Chapter 7, Section 2.2, pages 22 and 23).
In [15, 17] and [20] results are proved that couple random interlacements and the
trace of random walk in the discrete cylinder (Z/NZ)d × Z, d ≥ 2, and discrete
torus (Z/NZ)d, d ≥ 3, in nearly macroscopic boxes of side length N1−ε, ε > 0. In
these works the couplings are used as a “transfer mechanism” to allow one to study
the disconnection time of the cylinder and the so-called “fragmentation” of the
torus by studying a related problem formulated completely inside the random in-
terlacements model. We believe that in a similar way the results in the present note
for cover levels of sets in the random interlacements model will lead to progress
in the study of cover times of sets by random walk in the torus and cylinder (for
more on this see Remark 2.9).

The second result of this note is a corollary of Theorem 0.1. For any 1 ≤ l ≤ d

and z ∈ R we let Bl
N = [0,N − 1]l × {0}d−l and define a sequence (N l,z

N )N≥1 of
point measures on R

d :

N l,z
N = ∑

x∈Bl
N

δx/N1{Ux>g(0){log|Bl
N |+z}}, N ≥ 1.(0.6)

In other words, N l,z
N collects the points of [0,1]l × {0}d−l which under scaling

correspond to the sites of Bl
N not yet covered by the random interlacements at

level g(0){log|Bl
N | + z}.

COROLLARY 0.2 (Convergence of point process of uncovered points to a ho-
mogeneous Poisson point process).

N l,z
N converges in law to N l,z as N → ∞,(0.7)

where N l,z is a Poisson point process with intensity exp(−z)λl and λl is Lebesgue
measure on [0,1]l × {0}d−l .

Incidentally, it follows from this corollary that the last few sites of Bl
N to be cov-

ered by the random interlacements are “far apart,” at typical distance of about N .
This fact is proved in Proposition 2.8.

We now comment on the proofs of Theorem 0.1 and Corollary 0.2. For each
x ∈ Z

d the random variable Ux is known to have exponential distribution with
parameter 1

g(0)
[see (0.4) and (1.10)]. If the Ux were independent, then stan-

dard extreme value theory would tell us that the rescaled and recentered maxima
M(A)
g(0)

− log|A| tend in distribution to the Gumbel distribution as |A| → ∞ (see [5],
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Example 3.2.7, page 125). However, in the random interlacements model the Ux

are not independent, in fact, there is a long-range correlation; cf. (1.12). There is a
theory that gives mixing conditions called D and D′ for stationary sequences ([5],
Section 4.4, page 209) and also similar conditions for stationary random fields
[7, 12] which are sufficient for the rescaled and recentered maxima to converge in
distribution to the Gumbel distribution. When we prove (2.9) of Lemma 2.5 we
will prove something similar to D′. However, conditions similar to D are difficult
to verify in our context because of the slow decay of the correlation; cf. (1.12).
We, therefore, take a different approach and prove the convergence in distribution
directly.

The key to proving Theorem 0.1 is to exploit Lemma 2.1, which says in a quan-
titative way that in the random interlacements model spatial separation implies
approximate independence. We do this in Proposition 2.2 by considering sets A

that are “well separated,” that is, that consist of isolated points that are far apart.
This spatial separation allows us to use Lemma 2.1 to show that the points of a
well-separated set are covered approximately independently.

We then consider arbitrary nonempty finite sets A and condition on the subset
left uncovered at level g(0)(1 − ε) log|A| for a value of ε that satisfies 0 < ε ≤
12c1. In Lemma 2.6 we show that with high probability this “uncovered set” is
well separated and has cardinality concentrated around its expected cardinality,
which equals |A|ε . When the “uncovered set” is well separated, Proposition 2.2,
mentioned above, implies that after level g(0)(1 − ε) log|A| the points of the un-
covered set are covered approximately independently. This allows us to finish the
job in the proof of Theorem 0.1 by showing (in a quantitative way) that, when we
restrict to a certain “good event” that has probability tending to one as |A| → ∞,
the cover level M(A) is the maximum of approximately |A|ε random variables,
which are “essentially” independent and exponentially distributed. It is then not
hard to show that if we rescale and recenter M(A) appropriately, it is close in dis-
tribution to the Gumbel distribution, just as would be the case if the cover levels of
the points of A were truly independent.

As alluded to above, random interlacements model the picture left by random
walk in the discrete torus and the discrete cylinder when run up to times of suitably
chosen scales. In this light, the uncovered set Aε (when A = Bd

N ) can, in particular,
be thought of as a counterpart of the uncovered set in the discrete torus discussed
in [2, 9]. See Remarks 2.7 and 2.9 for more on this.

The proof of Corollary 0.2 uses Theorem 0.1 and Kallenberg’s theorem ([13],
Proposition 3.22, page 157) which allow us to verify the convergence of point
processes by checking some straightforward conditions involving convergence of
the intensity measure and the probability that the point measure does not charge a
set.

1. Notation and a review of random interlacements. Constants denoted by
c may change from line to line and within formulas. Unless otherwise indicated,
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all constants depend only on the dimension d of Z
d . Further dependence on, for

example, parameters α,β , is denoted by c(α,β). The norm | · | on Z
d is taken to

be the Euclidean norm. We denote by |A| the cardinality of the set A. The notation
A ⊂⊂ B means that A is a finite subset of B . For two sets A,B ⊂ Z

d we denote
their mutual distance infx∈A,y∈B |x − y| by d(A,B). We define a path to be a
sequence xi, i ≥ 0, of elements in Z

d such that |xi+1 − xi | = 1 for i ≥ 0.
We denote by W+ the space of paths in Z

d, d ≥ 3, going to infinity as time
goes to infinity. Furthermore, (Xn)n≥0 denotes the canonical coordinates, W+ the
σ -algebra on W+ generated by these coordinates and θn :W+ → W+ the canon-
ical shift on W+. We let Px be the probability measure on (W+, W+) that turns
(Xn)n≥0 into a simple random walk starting at x (since for d ≥ 3 the simple ran-
dom walk is transient, its law is supported on W+). If q : Zd → [0,∞) then Pq

denotes the measure
∑

x∈Zd q(x)Px .
Green’s function is given by

g(x, y) = ∑
n≥0

Px(Xn = y) and g(·) = g(·,0).(1.1)

Recall the following standard bounds for Green’s function ([6], Theorem 1.5.4,
page 31):

c|x|2−d ≤ g(x) ≤ c|x|2−d .(1.2)

Furthermore, by the invariance principle, if A is a set of diameter at most L (i.e.,
|x − y| ≤ L for all x, y ∈ A) then∑

x∈A

g(x) ≤ cL2,(1.3)

where we have used that the left-hand side of (1.3) is bounded by the expected
time spent by a random walk in a ball containing A.

For U ⊂⊂ Z
d , we define the entrance time HU = inf{n ≥ 0 :Xn ∈ U} and the

hitting time H̃U = inf{n ≥ 1 :Xn ∈ U}. The escape probability (or equilibrium
measure) eU : Zd → [0,∞) is given by

eU(x) = Px(H̃U = ∞)1U(x)(1.4)

and the capacity of U by

cap(U) = ∑
x∈U

eU(x).(1.5)

Moreover, for each y ∈ K , we have the equality

Px(HK < ∞) = ∑
y∈K

g(x, y)eK(y).(1.6)

We now recall some further facts about random interlacements. As mentioned
in the Introduction, to construct the random interlacements one defines on a proba-
bility space (�, A,P) the so-called interlacement Poisson point process ω, which
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is a Poisson point process on the space W� × [0,∞) of labeled doubly infinite
paths modulo time-shift (see the second paragraph of the Introduction for nota-
tion) whose intensity is given by the product measure of a certain σ -finite measure
ν and Lebesgue measure. For a detailed construction of the measure ν see [18],
Theorem 1.1. In this note we will only need the existence on the space (�, A,P)

of a family of Poisson point processes μK,u and μK,u,u′ on (W+, W+), defined for
any K ⊂⊂ Z

d and any 0 ≤ u ≤ u′. Loosely speaking, these point measures on W+
keep track of those doubly infinite paths modulo time-shifts in ω that enter K , and
have labels at most u and labels between u and u′, respectively (i.e., they assign
weight 1 to the paths in W+ which the double infinite paths modulo time-shifts
induce after their entrance in K). The random interlacement I u, already defined
in terms of the interlacement Poisson process ω in (0.1), can also be constructed
from the point processes μK,u (see [14], (1.16)),

I u = ⋃
K⊂⊂Zd

⋃
w∈μK,u

range(w), u ≥ 0.(1.7)

[For any point process μ we write x ∈ μ as a shorthand for x belonging to
Supp(μ), the support of μ.] For the definitions and some properties of μK,μK,u,u′
we refer to [14], (1.13)–(1.15). We will need the following facts:

μK,u and μK,u,u′ are independent Poisson point processes on (W+, W+)

with respective intensities u · PeK
and (u′ − u) · PeK

,
(1.8)

μK,u′ = μK,u + μK,u,u′ and
(1.9)

μK,u =
m∑

i=0

δθHK
(wi)1{HK(wi)<∞} for K ⊂ K ′ ⊂⊂ Z

d and μK ′,u =
m∑

i=0

δwi
.

This last compatibility relation also holds with μK,u,u′ and μK ′,u,u′ replacing μK,u

and μK ′,u.
From the characterization equation (0.2) of the law of I u we see that

P(x /∈ I u) = exp
{
− u

g(0)

}
(1.10)

and

P(x, y /∈ I u) = exp
{
−u

2

g(0) + g(x − y)

}
,(1.11)

since cap({x}) = 1
g(0)

and cap({x, y}) = 2
g(0)+g(x−y)

(see [18], (1.62) and (1.64)).
As noted in [18], (1.68), (1.11) together with the bounds on Green’s function from
(1.2) implies

covP

(
1{x∈Iu},1{y∈Iu}

) ∼ cu

|y − x|d−2 exp(−cu) as |x − y| → ∞.(1.12)
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For brevity we write

uA(z) = g(0){log|A| + z},(1.13)

so that {M(A)
g(0)

− log|A| ≤ z} = {M(A) ≤ uA(z)}.

2. Proofs of Theorem 0.1 and Corollary 0.2. We begin by discussing the
overall structure of the proofs of Theorem 0.1 and Corollary 0.2. The first step
is to extract some independence in the random interlacement model. This is done
in Lemma 2.1 which says in a quantitative fashion that the picture left by the
random interlacements in a set K1 and the picture left in a set K2 are approximately
independent if K1 and K2 are far apart.

Next we will prove that for well-separated sets, that is, sets consisting of iso-
lated points that are far apart, the cover levels of the individual points are approx-
imately independent. This is done in Proposition 2.2, which follows easily from
Lemma 2.1. If we were only interested in well-separated sets then Proposition 2.2
would be enough to prove convergence to the Gumbel distribution of the rescaled
and recentered cover levels. Intuitively speaking, this is because the cover level of
a well-separated set is the maximum of a set of essentially independent random
variables (namely, the cover levels of the individual points).

But of course we are not dealing only with well-separated sets, but with ar-
bitrary finite nonempty sets A. Therefore, we introduce the random set Aε , de-
fined in (2.7), which consists of all the points of A left uncovered at the level
g(0)(1 − ε) log|A| for a parameter ε such that

0 < ε ≤ 12c1,(2.1)

where c1 is the constant defined in (2.5). For a fixed ε ∈ (0,12c1] our methods yield
(2.19) (uniformly for all z) of which (0.5) is the special case ε = 12c1. Whenever
ε appears below, it is always understood to satisfy (2.1).

Next we need to show that Aε is “well behaved.” This is done in Lemma 2.6
which states that with probability tending to one, Aε is well separated and has
cardinality close to E|A| [which equals |A|ε by (2.17)], or in other words, with
probability tending to one, Aε belongs to the collection GA,ε of “good sets” de-
fined in (2.13).

Finally, we turn to the proof of Theorem 0.1 in which the goal essentially is
to show that P(M(A) ≤ uA(z)) is close to the cumulative distribution function of
the Gumbel distribution, that is, close to exp(− exp(−z)). The major step will be

to condition on the set of sites of A not yet covered at level (1 − ε)uA(0)
(1.13)=

g(0)(1 − ε) log|A|, that is, on Aε . This will be useful because by (1.8) we have
P(M(A) ≤ uA(z)|Aε = K) = P(M(K) ≤ uA(z) − (1 − ε)uA(0)). Next we will
show that this latter probability is close to exp(− exp(−z)). Then, multiplying by
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P(Aε = K), summing over all K ∈ GA,ε and using that Aε ∈ GA,ε with prob-
ability tending to one will allow us to show that P(M(A) ≤ uA(z)) is close to
exp(− exp(−z)).

The key to proving that P(M(K) ≤ uA(z) − (1 − ε)uA(0)) is close to
exp(− exp(−z)) is to use the fact that all K ∈ GA,ε are well separated and that |K|
is close to |A|ε . The well-separatedness of K allows us to use Proposition 2.2 to
prove that the points of K are covered approximately independently. Thus M(K)

is the maximum of |K| approximately i.i.d. random variables, meaning that with
the correct rescaling and recentering M(K) is approximately a Gumbel random
variable, or in other words, P(M(K) ≤ uK(z)) is close to exp(− exp(−z)). But

since K is close to |A|ε , it follows that uK(z)
(1.13)= g(0){log|K| + z} is close to

uA(z) − (1 − ε)uA(0)
(1.13)= g(0){ε log|A| + z}. This will allow us to conclude that

P(M(K) ≤ uA(z) − (1 − ε)uA(0)) is close to P(M(K) ≤ uK(z)) and thus also
close to exp(− exp(−z)).

Corollary 0.2 then follows easily from Theorem 0.1 using Kallenberg’s theorem
([13], Proposition 3.22, page 157).

We begin by stating and proving Lemma 2.1. The proof is just the calculation
leading up to [18], (2.15), but it is included here for completeness.

LEMMA 2.1 (Approximate independence of distant sets in random interlace-
ments). Assume u ≥ 0. Let K1,K2 ⊂⊂ Z

d be disjoint sets and let B1,B2 be
events depending only on I u ∩ K1 and I u ∩ K2, respectively. Then

|P(B1 ∩ B2) − P(B1)P(B2)| ≤ cu
cap(K1) cap(K2)

d(K1,K2)d−2 .(2.2)

PROOF. Decompose μK1∪K2,u = ∑
n≥0 δwn as follows:

μK1∪K2,u = μ1,1 + μ1,2 + μ2,1 + μ2,2,

where

μ1,1 = ∑
n≥0

δwn1{X0∈K1,HK2=∞}, μ1,2 = ∑
n≥0

δwn1{X0∈K1,HK2<∞},

μ2,1 = ∑
n≥0

δwn1{X0∈K2,HK1<∞}, μ2,2 = ∑
n≥0

δwn1{X0∈K2,HK1=∞}.

The μi,j are simply the restriction of the Poisson point process μK1∪K2,u to disjoint
sets and are thus independent Poisson point processes with respective intensity
measures

u1{X0∈K1,HK2=∞}PeK1∪K2
, u1{X0∈K1,HK2<∞}PeK1∪K2

,

u1{X0∈K2,HK1<∞}PeK1∪K2
, u1{X0∈K2,HK1=∞}PeK1∪K2

.
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There exist measurable functions of point measures F1 and F2 such that

F1(μK1,u) = 1B1 a.s. and F2(μK2,u) = 1B2 a.s.

and thus P(B1 ∩ B2) = E[F1(μK1,u)F2(μK2,u)]. Note that μK1,u − μ1,1 − μ1,2 is
a point process determined by μ2,1 and thus independent from μ1,1,μ1,2,μ2,2 and
similarly μK2,u −μ2,2 −μ2,1 is a point process independent from μ2,2,μ2,1,μ1,1.
So we can define auxiliary point processes μ′

2,1 and μ′
1,2 such that μ′

2,1 has the
same distribution as μK1,u − μ1,1 − μ1,2 and μ′

1,2 has the same distribution as
μK2,u − μ2,2 − μ2,1 and μ′

2,1,μ
′
1,2,μi,j ,1 ≤ i, j ≤ 2 are independent, so that

μ1,1 +μ1,2 +μ′
2,1

law= μK1,u and μ2,2 +μ2,1 +μ′
1,2

law= μK2,u. Then P(B1)P(B2) =
E[F1(μ1,1 +μ1,2 +μ′

2,1)F2(μ2,2 +μ2,1 +μ′
1,2)]. So |P(B1 ∩B2)− P(B1)P(B2)|

is bounded above by

P(μ′
1,2 �= 0 or μ′

2,1 �= 0 or μ1,2 �= 0 or μ2,1 �= 0)
(2.3)

≤ 2
(
P(μ1,2 �= 0) + P(μ2,1 �= 0)

)
.

We can bound the probabilities in (2.3) by the total mass of the intensity measures
of the point processes μ1,2 and μ2,1 so that

|P(B1 ∩ B2) − P(B1)P(B2)|
≤ 2u

(
PeK1∪K2

(X0 ∈ K1,HK2 < ∞) + PeK1∪K2
(X0 ∈ K2,HK1 < ∞)

)
.

But note,

PeK1∪K2
(X0 ∈ K1,HK2 < ∞)

(1.4)≤ ∑
x∈K1

eK1(x)Px(HK2 < ∞)

(1.6)= ∑
x∈K1,y∈K2

eK1(x)g(x, y)eK2(y)

(1.2), (1.5)≤ cd(K1,K2)
2−d cap(K1) cap(K2).

Applying a similar calculation for PeK1∪K2
(X0 ∈ K2,HK1 < ∞) we get (2.2). �

We are now ready to prove Proposition 2.2 which says that the points of well-
separated sets are covered approximately independently. When we use it in the
proof of Theorem 0.1 we will use a value for the parameter λ which depends on ε.

PROPOSITION 2.2 (The points of well-separated sets are covered almost inde-
pendently). Let λ > 0 be a parameter and let A ⊂⊂ Z

d be nonempty and such
that |x − y| ≥ |A|(2+λ)/(d−2) for all distinct x, y ∈ A. Then for u ≥ 0 we have

∣∣P(
M(A) ≤ u

) − [P(U0 ≤ u)]|A|∣∣ ≤ cu|A|−λ.(2.4)
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PROOF. Fix an arbitrary x ∈ A and let B1 = {M(A \ {x}) ≤ u} and B2 =
{M({x}) ≤ u} = {Ux ≤ u}. Applying Lemma 2.1 we get∣∣P(

M(A) ≤ u
) − P(U0 ≤ u)P

(
M(A \ {x}) ≤ u

)∣∣
≤ cu

cap(A \ {x}) cap({x})
d({x},A \ {x})d−2

(1.5), (1.2)≤ cu
|A|

|A|2+λ

= cu|A|−1−λ.

Now applying the same step |A| − 1 more times, with the other elements of A

substituted for x, and the appropriate subsets of A substituted for A \ {x}, and
using the triangle inequality we get∣∣P(

M(A) ≤ u
) − [P(U0 ≤ u)]|A|∣∣ ≤ cu|A||A|−1−λ = cu|A|−λ. �

REMARK 2.3. Assume A1,A2, . . . is a sequence of sets with |Ai | → ∞ as
i → ∞ that are well separated in the sense that they satisfy the hypothesis of
Proposition 2.2 for some fixed λ > 0. Then convergence in distribution of the
rescaled and recentered cover levels of the Ai to the Gumbel distribution follows,
since, in the notation of (1.13), [P(U0 ≤ uAi

(z))]|Ai | = (1 − exp(−z)
|Ai | )|Ai | tends to

exp(− exp(−z)) and the right-hand side of (2.4) tends to zero as |Ai | → ∞. This
observation is a first step on the way to arbitrary sets.

We now define the constant c1 that appears in Theorem 0.1:

c1 = 1

4
min

(
1

14

d − 2

d − 1
,

c2

9 − c2

)
(2.5)

and

c2 = P0(H̃0 = ∞).(2.6)

Since the random walk is transient in Z
d for d ≥ 3, we have c2 > 0, so that c1 > 0.

REMARK 2.4. Since P0(H̃0 < ∞) ∼ 1
2d

as d → ∞ we see that c2
9−c2

→ 1
8 >

1
14 as d → ∞, so for large d we have c1 = 1

56
d−2
d−1 . Actually it can be shown that

c2
9−c2

> 1
14 for all d ≥ 3, and hence, c1 = 1

56
d−2
d−1 for all d ≥ 3. We do not include

the details, but to do this, one uses the expression for g(0) (when d = 3) in terms of
an integral given in [10], (4.1), and the explicit computation of this integral (scaled
by a factor 1

3 ) from [21], together with the trivial bound K(k) ≤ π
2

1√
1−k2

on K(k),

the complete elliptic integral of the first kind.

The next result, Lemma 2.5, encapsulates a calculation used in Lemma 2.6 to
prove that with probability tending to one Aε , defined in (2.7), is a “good set,” that
is, belongs to the collection GA,ε from (2.13). We recall that we tacitly assume
0 < ε ≤ 12c1.
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LEMMA 2.5. For any A ⊂⊂ Z
d let

Aε = {x ∈ A :Ux > g(0)(1 − ε) log|A|}(2.7)

denote the set of points of A not yet covered at level (1 − ε)uA(0)
(1.13)=

g(0)(1 − ε) log|A|. Then for all A ⊂⊂ Z
d and b ≥ 1 we have

∑
P(x, y ∈ Aε) ≤ |A|2ε + c(ε)|A|−ε/3(2.8)

and ∑
P(x, y ∈ Aε) ≤ c(ε)bd |A|−ε/3,(2.9)

where the first sum is over all distinct x, y ∈ A and the second sum is over all
x, y ∈ A such that 0 < |x − y| < b|A|1/(2(d−1)).

PROOF. We will prove that
∑

x,y∈A,0<|x−y|<a

P(x, y ∈ Aε) ≤ min(|A|2ε, c|A|2ε−1ad) + c(ε)|A|−ε/3.(2.10)

This implies (2.9) by taking a = b|A|1/(2(d−1)) and noting that 2ε − 1 + d
2(d−1)

≤
−1

3ε because 1 − d
2(d−1)

= 1
2

d−2
d−1

(2.5)≥ 28c1
(2.1)≥ 7

3ε. Also (2.8) follows from (2.10)
by letting a → ∞. We begin by splitting the sum in (2.10) into

I1 = ∑
x,y∈A,0<|x−y|≤(log|A|)2

P(x, y ∈ Aε)

and

I2 = ∑
x,y∈A,(log|A|)2<|x−y|<a

P(x, y ∈ Aε).

To bound I1 we note

I1
(1.11)= ∑

x,y∈A,0<|x−y|≤(log|A|)2

exp
(
−(1 − ε) log|A| 2g(0)

g(0) + g(x − y)

)

(2.11)
≤ c(log|A|)2d |A|1−2(1−ε)/(1+g(e1)/g(0)),

where in the inequality we have used that g(e1)
g(0)

= Pe1(H0 < ∞) ≥ Px(H0 <

∞) = g(x)
g(0)

for all x ∈ Z
d, x �= 0. The exponent of |A| equals 1 − (1 − ε) 2

2−c2

since g(e1)
g(0)

(2.6)= 1 − c2. The definition of c1 and (2.1) immediately imply that ε ≤
12c1 ≤ 3 c2

9−c2
< 3 c2

8−c2
and rearranging gives c2 > 8ε

ε+3 . Plugging this in we have

1 − (1 − ε) 2
2−c2

< 1 − (1 − ε) 2
2−8ε/(ε+3)

= 1 − (1 − ε)2ε+6
6−6ε

= 1 − 1
3(ε + 3) = − ε

3 .
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So I1 is bounded above by c(ε)|A|−ε/3. To bound I2 first note that using the ele-
mentary inequality 1

1+x
≥ 1 − x, we find

I2
(1.11)= ∑

x,y∈A,(log|A|)2<|x−y|<a

exp
(
−2(1 − ε) log|A| 1

1 + g(x − y)/g(0)

)

≤ ∑
x,y∈A,(log|A|)2<|x−y|<a

exp
(
−2(1 − ε) log|A|

(
1 − g(x − y)

g(0)

))
(2.12)

≤ |A|−2(1−ε)
∑

x,y∈A,(log|A|)2<|x−y|<a

exp
(
c log|A|g(x − y)

)
.

Now note that g(x − y)
(1.2)≤ c|x − y|2−d ≤ c(log|A|)−2 for |x − y| ≥ (log|A|)2 so

the quantity in the exponential in (2.12) is bounded. Thus we can conclude that
(2.12) itself is bounded by

|A|−2(1−ε)
∑

x,y∈A,(log|A|)2<|x−y|<a

(
1 + c log|A|g(x − y)

)

≤ min(|A|2ε, c|A|2ε−1ad) + c|A|−2(1−ε) log|A| ∑
y∈A

∑
z∈A−y

g(z).

We have no control on the diameter of A. But let A − y = {a1, a2, . . . , an} with
|a1| ≤ |a2| ≤ · · · ≤ |an|, |A| = n, and let b1, b2, . . . be an enumeration of Z

d with
|b1| ≤ |b2| ≤ · · · . Then by Green’s function estimates in (1.2)

g(ai) ≤ c|ai |2−d ≤ c|bi |2−d ≤ cg(bi).

So
∑

z∈A−y g(z) ≤ c
∑n

i=1 g(bi) ≤ c|A|2/d since the diameter of {b1, . . . , bn} is
bounded by cn1/d . Hence,

I2 ≤ min(|A|2ε, c|A|2ε−1ad) + c|A|−2(1−ε) log|A||A|2/d+1

≤ min(|A|2ε, c|A|2ε−1ad) + c log|A||A|−10ε/9,

where we have used that −2(1 − ε) + 2
d

+ 1 = 2ε − d−2
d

≤ 2ε − 2
3

d−2
d−1

(2.5)≤ 2ε −
112

3 c1
(2.1)≤ −10

9 ε. Combining this with I1 ≤ c(ε)|A|−ε/3 then gives (2.10). �

Our next task is to use the above lemma to prove that with high probability Aε

is “well behaved.”

LEMMA 2.6 (The good event is likely). For A ⊂⊂ Z
d and ε as in (2.1) let

GA,ε = {
K ⊂ A :

∣∣|K| − |A|ε∣∣ ≤ |A|2ε/3,K �= ∅ and
(2.13)

|x − y| ≥ (21/ε|A|)1/(2(d−1)) for all distinct x, y ∈ K
}
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denote the collection of subsets of A that are well separated and close in cardinal-
ity to |A|ε . Then for all A ⊂⊂ Z

d one has

P(Aε /∈ GA,ε) ≤ c(ε)|A|−ε/3.(2.14)

PROOF. The following two statements together clearly imply (2.14):

P
(∃x, y ∈ Aε s.t. 0 < |x − y| < (21/ε|A|)1/(2(d−1))) ≤ c(ε)|A|−ε/3,(2.15)

P
(∣∣|Aε| − |A|ε∣∣ > |A|2ε/3) ≤ c(ε)|A|−ε/3.(2.16)

By the union bound (2.15) follows directly from (2.9) with b = 2(1/ε)(1/(2(d−1))) ≥
1. To prove (2.16) note that

E|Aε| = |A|P(
U0 > (1 − ε)g(0) log|A|) (1.10)= |A|ε.(2.17)

So by Chebyshev’s inequality,

P
(∣∣|Aε| − |A|ε∣∣ > |A|2ε/3) ≤ E|Aε|2 − |A|2ε

|A|4ε/3 .(2.18)

But

E|Aε|2 = ∑
x,y∈A

P(x, y ∈ Aε)

= ∑
x∈A

P(x ∈ Aε) + ∑
x,y∈A,x �=y

P(x, y ∈ Aε)

(2.8)≤ |A|ε + |A|2ε + c(ε)|A|−ε/3.

Plugging this bound for E|Aε|2 into (2.18) then gives (2.16). �

REMARK 2.7. In bounding the numerator of the right-hand side of (2.18) we
showed that the variance of |Aε| is bounded from above by |A|ε +c(ε)|A|−ε/3. The

inequality E|Aε|2 = |A|ε +∑
x �=y P(x, y ∈ Aε)

(1.11)≥ |A|ε +|A|(|A|−1)|A|−2(1−ε)

gives a matching lower bound and proves that Var |Aε| ∼ |A|ε as |A| → ∞. In par-
ticular, if A = Bd

N , then Var |Aε| ∼ Ndε . As might be expected given the connec-
tion between random interlacements and random walk in the discrete torus (see
[20, 22]), this agrees with the value which was found in the theoretical physics
paper [2] for the variance of the number of points of the torus (Z/NZ)d, d ≥ 3,
not covered by random walk run up to time (1 − ε)g(0)Nd logNd (see [2], (3.15),
(3.9)). Note that the time (1 − ε)g(0)Nd logNd is a fraction 1 − ε of the “typical”
cover time g(0)Nd logNd (see [1], Chapter 7, Section 2.2, page 22, Corollary 24)
of the torus, just as (1 − ε)g(0) logNd is a fraction 1 − ε of the “typical” cover
level g(0) logNd of Bd

N by random interlacements.



COVER LEVELS AND RANDOM INTERLACEMENTS 535

We are now ready to prove the main theorem. Recall the definition of uA(z)

from (1.13).

PROOF OF THEOREM 0.1. If z ≤ −1
4ε log|A| and |A| > 1, then

P
(
M(A) ≤ uA(z)

) (2.7)≤ P(Aε/4 = ∅)
(2.13)≤ P(Aε/4 /∈ GA,ε/4)

(2.14)≤ c(ε)|A|−ε/12.

Also, exp(− exp(−z)) ≤ exp(−|A|ε/4) ≤ |A|−ε/4 so that
∣∣P(

M(A) ≤ uA(z)
) − exp(− exp(−z))

∣∣ ≤ c(ε)|A|−ε/12.(2.19)

Furthermore, if z ≥ log|A| then

P
(
M(A) > uA(z)

) ≤ P
(
A �⊂ I 2g(0) log|A|)

(1.10)≤ |A| exp(−2 log|A|) = |A|−1.

Also, for such z we have exp(− exp(−z)) ≥ exp(−|A|−1) ≥ 1 − |A|−1 so (2.19)
also holds for z ≥ log|A|. It thus remains to show (2.19) for z ∈ (−1

4ε log|A|,
log|A|), and in what follows we assume z to be in this range.

Let μ1 = μA,(1−ε)uA(0),μ2 = μA,(1−ε)uA(0),uA(z) and μ3 = μA,uA(z). If we
fix any K ∈ GA,ε then {Aε = K} is simply the event E1 = {A \ K = A ∩⋃

w∈μ1
range(w)} [recall from the remark above (1.7) that w ∈ u1 means

w ∈ Supp(μ1)]. Furthermore, {M(A) ≤ uA(z)} is simply the event {A ⊂⋃
w∈μ3

range(w)}, and since by (1.9) we have μ1 + μ2 = μ3, the intersection
E1 ∩ {M(A) ≤ uA(z)} coincides with E1 ∩ {A ⊂ (A \ K) ∪ ⋃

w∈μ2
range(w)} =

E1 ∩{K ⊂ ⋃
w∈μ2

range(w)}. Denote the last event in the latter intersection by E2,
and recall that by (1.8) we have that μ1 and μ2 are independent, so that P(E1 ∩
E2) = P(E1) × P(E2). Also by (1.8) the point process μA,uA(z)−(1−ε)uA(0)

(1.13)=
μA,g(0){ε log|A|+z} has the same law as μ2, so

P(E2) = P

(
K ⊂ ⋃

w∈uA,g(0){ε log|A|+z}
range(w)

)
= P

(
M(K) ≤ g(0){ε log|A| + z}).

It follows that (2.20) holds for all K ∈ GA,ε by noting that both the right- and the
left-hand side equal P(E1 ∩ E2)/P(E1).

P
(
M(A) ≤ uA(z)|Aε = K

) = P
(
M(K) ≤ g(0){ε log|A| + z}).(2.20)

Then consider some K ∈ GA,ε . Define λ = 1
2ε

d−2
d−1 − 2

(2.1), (2.5)≥ 14
6 − 2 = 1

3 and

note that λ+2
d−2ε = 1

2(d−1)
, so that for distinct x, y in K we have

|x − y| (2.13)≥ (21/ε|A|)1/(2(d−1)) = (2|A|ε)(2+λ)/(d−2)
(2.13)≥ |K|(2+λ)/(d−2).
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We can now use Proposition 2.2 to get that for |A| > 1,
∣∣P(

M(K) ≤ g(0){ε log|A| + z}) − P
(
U0 ≤ g(0){ε log|A| + z})|K|∣∣

z≤log|A|≤ c log|A||K|−λ(2.21)

≤ c(ε) log|A||A|−ε/3,

since |K|−λ
(2.13)≤ (|A|ε − |A|2ε/3)−λ ≤ c(ε)|A|−λε ≤ c(ε)|A|−ε/3. Furthermore,

using again that ||A|ε − |K|| ≤ |A|2ε/3 and (1.10) we see that

(
1 − e−z

|A|ε
)|A|ε+|A|2ε/3

≤ P
(
U0 ≤ g(0){ε log|A| + z})|K|

(2.22)

≤
(

1 − e−z

|A|ε
)|A|ε−|A|2ε/3

.

But note that if |A| ≥ c(ε) one has the inequality
∣∣∣∣exp(−e−z) −

(
1 − e−z

|A|ε
)|A|ε±|A|2ε/3 ∣∣∣∣

z≥−(ε/4)log|A|≤ c|A|−ε/12.

Combining (2.20), (2.21) and (2.22) with the above formula yields that if |A| ≥
c(ε), ∣∣P(

M(A) ≤ uA(z)|Aε = K
) − exp(−e−z)

∣∣ ≤ c(ε)|A|−ε/12.(2.23)

Multiplying by P(Aε = K), and summing over all K ∈ GA,ε , we see that
∣∣P(

M(A) ≤ uA(z),Aε ∈ GA,ε

) − exp(−e−z)P(Aε ∈ GA,ε)
∣∣ ≤ c(ε)|A|−ε/12.

Finally, two applications of (2.14) gives us that (2.19) holds for |A| ≥ c(ε) and
z ∈ (−1

4ε log|A|, log|A|). Thus (2.19) holds for all z ∈ R, and (0.5) follows by
taking ε = 12c1. �

We now use Theorem 0.1 to prove Corollary 0.2 which states that the point
process of uncovered points of a box converges to a homogeneous Poisson point
process.

PROOF OF COROLLARY 0.2. We drop the superscripts on N l,z
N and N l,z

to lighten the notation. By Kallenberg’s theorem (see [13], Proposition 3.22,
page 157) it suffices to check that

lim
N→∞ ENN(I) = EN (I ) for all I ∈ J(2.24)

and

lim
N→∞ P

(
NN(I) = 0

) = P
(

N (I ) = 0
)

for all I ∈ J ,(2.25)
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where J = {Finite unions of open rectangles
∏d

i=1(ai, bi) in R
d}. To verify (2.24)

simply note that

ENN(I) = ∑
x∈NI∩Bl

N

P
(
Ux > g(0){log|Bl

N | + z})

(1.10)= |NI ∩ Bl
N |

|Bl
N | exp(−z) → λl(I ) exp(−z) as N → ∞.

Since EN (I ) = λl(I ) exp(−z) by the definition of N we have proved (2.24). To
verify (2.25) note

P
(

NN(I) = 0
) = P

(
M(NI ∩ Bl

N) ≤ g(0){log|Bl
N | + z})

= P
(
M(NI ∩ Bl

N) ≤ g(0){log|NI ∩ Bl
N | + z′}),

where z′ = log
|Bl

N |
|NI∩Bl

N | + z. So applying Theorem 0.1 we get that for all N ≥ 1,

∣∣∣∣P(
NN(I) = 0

) − exp
(
−|NI ∩ Bl

N |
|Bl

N | exp(−z)

)∣∣∣∣ ≤ c|NI ∩ Bl
N |−c1 .

By taking the limit N → ∞ and using that
|NI∩Bl

N |
|Bl

N | → λl(I ) we get

P
(

NN(I) = 0
) → exp(−λl(I ) exp(−z)).

But P(N (I ) = 0) = exp(−λl(I ) exp(−z)), so (2.25) follows. �

Corollary 0.2 has the following interesting implication.

PROPOSITION 2.8. Let the random vector (X1,X2, . . . ,XNl ) be the sites of
Bl

N ordered by the level at which they are covered (where we use, e.g., the lexico-
graphic order when several sites are covered at the same level) so that

M(Bl
N) = UX1 ≥ UX2 ≥ · · · ≥ UX

Nl
.

Then for all k ≥ 2,

lim
δ→0

lim sup
N→∞

P(∃1 ≤ i < j ≤ k such that |Xi − Xj | ≤ δN) = 0,(2.26)

or in other words, the last sites of Bl
N to be covered by the random interlacements

are separated, at typical distance of order N .

PROOF. Fix a δ > 0 and let f : Rd → [0, δ−1] be a continuous function such
that f (x) = δ−1 when |x| ≤ δ and f (x) = 0 when |x| ≥ 2δ. Consider the sum∑

x,y∈NN,x �=y f (x − y) = NN ⊗ NN(f (· − ·)) − f (0)NN([0,1]d) [recall that

NN = N l,z
N and N = N l,z depend on l and z and also the remark above (1.7)
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about the notation x ∈ NN ]. We have that NN tends weakly to N , so the product
NN ⊗ NN tends weakly to N ⊗ N , so that for all z ∈ R,

lim
N→∞ E

[ ∑
x,y∈NN,x �=y

f (x − y)

]
= E

[
N ⊗ N

(
f (· − ·)) − f (0)N ([0,1]d)

]

(2.27)

= E

[ ∑
x,y∈N ,x �=y

f (x − y)

]
.

Let Ñ be a homogeneous Poisson point process on R
l × {0}d−l (identified with

R
l) with intensity measure exp(−z)λl . Recall that the Palm measure of Ñ (viewed

as a point process on R
l) is simply exp(−z) times the law of Ñ + δ{0} ([11],

Chapter 2, Exercise 3). So by the definition of the Palm measure ([11], Chapter 2,
Theorem II.4) we get

E

[ ∑
x,y∈Ñ

1{x∈[0,1]l ,y �=x}f (x − y)

]
= exp(−z)

∫
[0,1]l

E[Ñ (f )]dx

= exp(−2z)

∫
Rl

f (x) dx

≤ c(z)δl−1.

The left-hand side of the above equality is an upper bound for the right-hand side
of (2.27). So for any z ∈ R we find that

lim
δ→0

lim sup
N→∞

P
(∃x �= y in Supp(NN) such that |x − y| ≤ δ

)

≤ lim
δ→0

lim sup
N→∞

P

( ∑
x,y∈NN ,x �=y

f (x − y) ≥ δ−1
)

≤ lim
δ→0

δ lim sup
N→∞

E

( ∑
x,y∈NN,x �=y

f (x − y)

)
= 0.

Finally, we have the inequality

P(∃1 ≤ i < j ≤ k such that |Xi − Xj | ≤ δN)

≤ P
(∃x �= y in Supp(NN) such that |x − y| ≤ δ

) + P
(

NN([0,1]d) < k
)
.

So taking, in order, the limits N → ∞, δ → 0 and z → −∞ (and noting that
limz→−∞ P(N ([0,1]d) < k) = 0) we get (2.26). �

We finish with a remark about the possible applicability of our results to the
study of random walk cover times, a comment about the connection between the
uncovered set Aε and the uncovered set in the discrete torus and an open question
about whether our results can be generalized.
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REMARK 2.9. (1) Using our results and the known connection between ran-
dom interlacements and simple random walk in the discrete cylinder (see [15, 17])
it should be possible to determine the finer asymptotic behavior of the cover time
of the cylinder’s zero level (Z/NZ)d−1 × {0}, d ≥ 3, by random walk. Present
knowledge states that the cover time is asymptotic to N2d(1+o(1)) (see [3], Theo-
rem 1).

(2) As already explained in the Introduction in the paragraph after the statement
of Theorem 0.1, it is tempting to use the coupling result from [20] together with
Theorem 0.1 to devise a proof of the conjecture that CN

g(0)Nd − logNd tends in law
to the Gumbel distribution, where CN denotes the cover time of the discrete torus
of side length N and dimension d ≥ 3.

(3) In this note the uncovered set Aε is studied as one step in proving fine results
about the covering of sets by random interlacements. The corresponding uncov-
ered set in the torus (cf. Remark 2.7) has been studied for its own sake. Further
illustrating the connection between random interlacements and random walk in
the torus, Aε and the uncovered set in the torus share some properties. Other than
the agreement of the variance of the cardinality of the uncovered sets mentioned
in Remark 2.7, [9] also shows that in the torus the uncovered set is (in a certain
sense) well separated ([9], Lemma 6.4), a result similar in spirit to our Lemma 2.6.

(4) Random interlacements can be constructed for any infinite graph on which
simple random walk is transient (see [19]). It is an open question whether a result
like Theorem 0.1 can be proved for random interlacements on more general graphs.
It seems plausible that on a transient graph G such that Green’s function decays
“fast enough” and such that a = cap({x}) is independent of x ∈ G one can use the
same method to prove that for sequences of finite sets A ⊂ G

M(A)

a−1 − log|A| law→ Gumbel distribution, as |A| → ∞,

where M(A) is the cover level of A.
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